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Non-equilibrium Theory of an Ideal-dissociating 
Gas through a Conical Nozzle 

- By - 
N. C. Freeman, Ph.D. 

of the Aerodynamics Division, N.P.L. 
-.- 

jth August, 1958 .̂  _a - ..- -.- 

The one-dimensional flow of an ideal-dissociating gas in 
non-equilibrium flow through a conical nozzle is investigated using the 
simple rate equation of Freeman (1358), The effect of the rate 
parameter A (the ratio of the time scale of the motion to that of 
dissociation) on the flow is investigated for one set of initial 
conditions. It is shown that thermodynamic equilibrium cannot be 
achieved in the conical section if A is finite, The composition of 
the gas becomes frozen at some point in the nozzle and further expansion 
causes no further recombination. 

Similar results have been obtained by Bray (1958) and 
Heims (1958). 

Introduction cm-I-.-A- -*s-. 

In a recent paper the author considered the effect of 
dissociation away from thermodynamic equilibrium in a gas flowing 
through a plane shock wave and past a bluff body (Freeman, 1958). 
A :,-impl.e rate equation was postulated depending on the collision theory 
of the dissociation process to predict the relative rates of dissociation 
and recombination in the gas. 

In this paper this rate equation is used to compute the flow 
obtained in a conical nozzle. This type of flow occurs in a hypersonic 
shock tunnel when the hot gas generated behind the shock wave is expanded 
through a nozzle to obtain higher Xlach numbers in the working section. 
The hot gas (at a sufficient distancbe behind the shock wave which 
produces it) will be in thermodynamic equilibrium, but this equilibrium 
will be disturbed again as the flow expands in the nozzle. The 
resulting effect is well lknown to chemical engineers (Penner, 1955). 
If the expansion is sufficiently rapid, the cooling in the nozzle occurs 
at a rate which is much faster than the dissociation process itself which 
is in this case mostly confined to the recombination of atoms into 
molecules. Consequently the density of the atoms and molecules in the 
nozzle falls to such a level that the heat recovered from recombination 
collisions is insufficient to combat the large loss of heat in expansion. 
In fact, a position i s eventually reached where the composition of the 

gas/ 
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gas 'freezes' out with a certain amount of dissociated gas still 
existing at temperatures much below the equilibrium values for the gas. 

Thus the air in the working section of the tunnel will not be 
in thermodynamic equilibrium, The amount by which the gas is out of 
equilibrium depends on the rate at which the dissociation takes place 
in the nozzle and, in particular, on a parameter A which is the 
ratio of the time scale for the flow through the nozzle to the time 
scale of the dissociation process. If h is small, the changes due 
to dissociation take place much slower than the time the gas takes to 
move through the nozzle. Consequently, the gas remains frozen at a 
level close to its initial dissociation level. However, if A is 
large, the dissociation rate is rapid compared to the time scale of the 
flow, and the gas is near thermodynamic equilibrium, Between these 
two extremes lies the correct value for the particular gas with which 
we are concerned. At present, values of the rate parameter are not 
available for direct comparison, although the general indication is 
that the recombination may take place very rapidly. 

The procedure adopted for the calculations in the present 
paper is to consider the flow in the nozzle to be one-dimensional and 
inviscid. A stream of air in thermodynamic equilibrium of velocity uo, 
density p,, pressure p,, temperature To and an amount of 

dissociation (x0 enters the nozzle at the point x = 0. The amount 

of dissociation is the ratio of the weight of atoms per unit volume to 
the weight of atoms and molecules. This al>pmximation may be quite 
reasonable for the case of nozzles in hypersonic flow where the nozzle 
angle is usually quite small and hence changes normal to the axis may 
only occur slowly, The area of the nozzle is specified in terms of the 
initial area A0 and a length scale x0 in the form 

A = A00 + Ex/x,l)” l x0 
is thon the distance of the initial section 

from the apex of the cone, and x is the distance along the cone axis 
from the initial section. 

2. E&qations of Motion -* . . 1 "."-..= --*- 

The gas in the nozzle is specified in terms of variables c(, 
p, p, u and T which denote the amount of dissociation, density, 
pressure, velocity and temperature respectively, As the gas flows 
through the nozzle, mass, momentum and energy are conserved. These 
requirements maybe written for the ideal dissociating gas postulated by 
Lighthill (1957) and used in the previous paper (Freeman, 1958) in the 
form 

puA = f', u. Ao> . . ..(2.1) 

di I dp 
-- = - -- 
dx p Gx' 

. ..(2.2) 

(4+d P D 
where i = ----- I + -- a 

(1-w) p 2m 
is the enthalpy of the dissociating gas. 

D is the energy of dissociation and m the mass of one atom. The 
rate of dissociation is then postulated to take the form 



-3- 

da C D - -- 
u -- = -- 

dx TS c 
p(1 - a) e kT - -- p" 2 

3 
l (2.4) 

PD 

where k = Boltzmann's constant and C, 3 and p, are constants. 

PD is a characteristic density for the gas and may be obtained from 

equilibrium considerations. C governs the rate of the dissociation 
process. The exponent s was inserted in the equation to take account 
of the distribution of energy in the various degrees of freedom during 
the collisions, and was discussed in a previous paper (Freeman 1958). 
In view of the dependence of the behaviour on the exponential term, the 
effect of this factor is likely to be small, and in the following work 
it is assumed zero. It should be noted, however, that the behaviour 
of the gas when governed by the recombination process is like1 

3 
to be 

influenced by this factor. Equation (2.4) together with (2.1 , (2.2), 
(2.3) and the equation of state for the gas, which is 

P 
- = RT(1 + a) . ..(2.5) 
P 

where R = k/2m is the gas constant for the undissociated gas, then 
specify the problem completely. 

After a little algebra, these equations may be reduced to two 
simultaneous non-linear ordinary first order differential equations. 
These are 

1 
3 

1 
1 

a’ + 8a + l+ - 3a. 
e ----c----- .e------------- - --------c-------- 

p2 (1 -I- x)': (1 + a)(4 + 4 (1 + a)(4 + 4 

3P 
+ ---̂ ---̂ ----__ 1 (4 + a)(1 + a) - 

1 6~ 
1 - ------.o.--- +@.+a -a - --------------.w-- 

p”(1 + xy 0 
p2 (I + a)(1 + x)~ 3 

- ----------------- = 0 
(I + a)p”(l + x)~ 

,..(2.6) 

and 

where we have non-dimensionalised the variables by writing x for x/x0, 

P for P/P,* P and ~1 correspond to the ratios of the initial thermal 

energy to the dissociation energy io/[D/2m] and the initial kinetic 

energy to the dissociation energy h~/[E/2ml. The rate process is 

governed/ 

Y 
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governed by the value of the parameter A = Cpoxo/uo which is the 

ratio of the time scale of the flow through the nozzle xo/uo to that 

for the dissociation [Coo]-" . The equations (2.6) and (2.7) must 

then be solved with the boundary conditions . 

a = a 
0’ P = 1 at x = 0. . ..(2.8) 

It will be observed that in general it is difficult to obtain a 
solution to (2.6) and (2.7) without resort to numerical methods. 
Particular solutions are known for A = 0, A = 00. For A 
we have 

1 ta 
0 

--+?- 
a = a o' PP 

2 = pep I - --e--w---- 
py1 f xy ) 

. ..(2.9) 

= 0, 

which corresponds to completely frozen flow and is the solution for an 
ideal gas of constant specific heats c 

P 
= (4 + ao)R, cv = (3 -I- ao)R. 

For A = 00, we have thermodynamic equilibrium for which 

2 [PJ)/P,I 1 
-mm-- = ------- exp - - 
1 -a r 1 P -T 

. ..(2.10) 

1 +a a 
log T" + ----- + a + 2 log m-s-- 

T 1 -a 

= log [ 4-~?! J + ( t-‘%p) (,C) + a0 + 2 log ;-$;- 

0 

. ..(2.L) 

and 
1 

c 

1 
T = --L-B pea - ---------- 0 >I 

. . ..(2..12) 
4-5 a p” (1 + x)4 

The first equation is obtained directly from (2.7) by letting A + 00. 
The remaining system of algebraic equations is obtained by integrating 
a combination of equations (2.q) - (2.4) with A = 03. The integrable 
equation corresponds to the entropy of the flow which is oonserved when 
A = co. Since it is not possible to obtain explicit solution from 
equations (2.6) and (2.7) it was decided to compute numerically solutions 
corresponding to one set of conrditions behind a shock wave and attempt to 
find the variation of the resulting solution with the rate parameter A. 
The solution chosen was for a shock of Mach number apprcximately 18 moving 
into air at a pressure 0-r" approximatciy IO mm of Hg, The equilibrium 
relations across a shock wave for the ideal dissociating gas given in 
Lighthill's paper (1357) were used. The corresponding values of a , 

G and JJ are 0'40, 0*23 and 0060 respectively with pD/po = lOo.o 

The resulting solution for cc as a function of x at various 
values of A are plotted in Fig. 4. It will be seen that the dissociation 
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in the nozzle takes place at first near the equilibrium value and then 
breaks away very quickly to assume a constant value which we will denote 
by a, A plot of the density shows that the density differs very 

little for the extreme cases of completely frozen and equilibrium flow 
(Zig;. 2). The freeze of a at the value 0400 takes place when the 

rate of dissociation becomes small which occurs rapidly and almost 
discontinuously due to the exponential form of the term. Fig. 3 shows 
how am varies with A, It will be seen that the change from completely 
frozen to equilibrium flow in which aa - 03 takes place over the 

range 4 < loglo A < 13. For a nozzle of half-angle 8 and initial 
area A 

0' 
the parameter A may be written 

-_-._ 

bol A0 

w--w- 

J 

m . -  

tan 8 71; 
.,.(2.13) 

and thus it should be possible by varying the geometry of the nozzle and 
the density conditions at the beginning to obtain the range of values 
of A to check the theory. The parameter [w,l may be determined 

from a detailed study of the density variation in the flow behind a 
shock wave. 

Mathematically the equations (2.6) and (2.7) are interesting 
due to the rapid variation of the solution in the neighbourhood of the 
point of divergence from the 'equilibrium' value, Even numerical 
solution of the equations is difficult if the solution is required over 
the complete range of A due to the severe form of the behaviour at the 
'divergence' point. As was mentioned in the Introduction the solution 
is not entirely independent of the power of T originally introduced in 
the rate equation (2.4), since the form of the recombination rate after 
the departure from the equilibrium curve will be dependent upon it. 
The equation (2.4) may then be written in the form 

dcr c p” 
U -- = c --- __ a2 

-s dx T PD 

. ..(2.14) 

since p and u very quickly tend to their limiting asymptotic forms 
where p 'u xe2 and u-- q (constant) as x -+ Q. The form of this 
equation becomes 

dol a2 1 
me = -B --.---e 
fix x" T+s . ..(2.15) 

Thus it is not possible in this application to ignore the 

variation with T-' 
(Freeman ~9.!33). 

as was confidently done in the previous paper 
It is not thought however that the exponent s could 

be sufficiently large to invalidate the results completely. 

3. Discussion and Conclusion - -_I- -...m . I . . . e.. m--m 

It would seem fruitful to try to explore analytically the 
solution of the set of equations(2.6) and (2.7). It does not seem 
possible to do this by any systematic approach, although a certain amount 
of information can be deduced from studying a simple equation which may be 

regarded/ 
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regarded as a model of the equations. This equation is derived from 
equation (2.7) by noting that p does not differ greatly from its 
equilibrium value p e' Equation (2.7) may be written 

da -- M 
ax 

(4 + a> - ---------I------------------ 
- a + F+ p[l - p;y1 + x)-” 

. ..(3J) 

. 

The first term can then be approximated by its value at equilibrium and 
we obtain 

da 
mm = 

ax 
-$) F(x) Ia2, - a2 i d3.2) 

where F(x) = p;(I+xy 

and ----- l 

w(3.3) 

Equation (3.2) is then a Riccati equation, and may be reduced to a 
second-order linear differential equation in the usual way by writing 

from which (3.2) becomes 

a2c F’ d.@ 
m-w - -- -- e 
dx" Fdx n, 2 F" sip = 0, 

l l . (3.4) 

The form of this equation looks promising since it would appear at first 
sight to be directly amenable to asymptotic estimation for AD large. 

However, the form of the function ae makes this very difficult since it 

behaves like xe -d with Y > 0 as x + 00. 
equation (3.4) h 

In fact, consideration of 
s ows that the function p depends on the Bessel functions 

of imaginary argument of the function Aa 
e’ 

and its rapid variation results 

from the variation of ae near infinity, i.e., due to the singular 

behaviour of one of them at the origin. The form of equation (3.2) shows 
clearly however how the form of solution of the equations will change as 
x becomes large. 

In the previous sections therefore we have considered the flow 
of an ideal dissociating gas through a conical nozzle, and the particular 
case computed shows that attainment of thermodynamic equilibrium is not 
possible within the nozzle. Any extension to the nozzle, such as for 
example, a constant area working section vi0uia restore equilibrium only 
comparatively slowly since the process would be governed by the 
recombination rate term. The amount by which the conditions differ from 
equilibrium depends, however, on the rate parameter. 

Similar results to those obtained above have been obtained by 
Bray (1958) using the same rate equation and Heims (I 958). 

References/ 



References 

Bray, K. N. C. 1958 Departure from dissociation equilibrium in 
a hypersonic nozzle. 
Communioated by Dr. J. W. Maccoll. 
A.R.C.l9,983. 
March, 1958. 

IFreeman, N. C. 1958 

Ileims, S. P. 1958 

Lighthill, M. J. 1957 

Penner, S. S. 1955 

Dynamics of a dissooiating gas. 
III. Non-equilibrium theory. 
Journal Fluid Mech. Vol.IV Part IV, 
1958. 

Effect of oxygen reccmbination on 
one-dimensional flow at high kach numbers. 
K.A.C.A. TN&l&. 

Dynamics of a dissociattig gas. 
Part I. Equilibrium flow. 
Journal Fluid Mech. Vo1.2, p.1, 1957. 

Introduction to the study of chemical 
reactions in flow systems. 
AG&RDograph No. 7. 

Acknowledgement 

The computations in this paper were made by &thematics Division, 
N.P.L. The paper is published by permission of the Director, N.P.L. 





4 
t 

i 

I 

--L 
0 2 4 

Variation of amount of dissocjatisn, a, AWKJ the nozzie fbr various values of the dissociation 

I- < . 

r&e parameter A 



-.-- 
I 

--- 

Variation of density along the nozzle. (Dependence on A 

cannot be shown on thisscale which is identical with that of Fit II 
.- 



FE. 3 

i >- . 

f i 

I ! 

1 t 
-_ .-- - I- 

I-- 
-----?-------- 

i I i I 

---_c_ 

O 2 4 -6 

I I -f- 
I 1 
I 
i 

1 
6 IO 

The var;ation of cym with A 







C.P. No. 438 
( 20,340) 

A.R.C. Technical Report 

0 Crown copyright 1959 

Printed an&published by 
HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London W.I 
13~ Castle Street, Edinburgh 2 

IqlStMaIyStree&carm 

39 Kii Street, Manchester 2 

Tower Lane, Bristol I 
2 Edmund Street, Birmingham 3 

80 Chichester Street, Belfast 
or through any bookseller 

printed in Great Britak 

S.0 Code No. 23-901 1-3s 

C.P: No. 438 


