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&OYAL AIRCRAFT ESTABLISBMENT -- 

E. G. Broadbent 

The flutter probkm of a thin rectangular solid steel wing of aspect 
ratio 3 is considered with allowance for reducticn in stiffnesses due to 
thermal effects. The c!mnge i-h caniber associated with wing bending gives 
rise to a destabilising aer~ynamjc coupling which leads to a critical 
flutter Mach number of just over 3s; no other coupling in the same sense 
exists with the assumption s made, so that kthout this effect the flutter 
speed wc~ld be inf'iizitc. The root constraint is not important for a wing 
of the aspect ratic cansidered. 
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I INiRODUCTION 

In reference ? a simple example of aeroelastic deformation at high 
temperatureswas presented. The calculation was for a solid steel biconvex 
wing of rectangular planform, 
Mansfield2. 

and used the large deflection analysis due to 
Kansfield assumes that the heating leads to a temperature 

distribution that is parabolic across the wing chord and then derives exact 
two-dimensional relationships between the torque and rate of twist, and 
between the bending moment and the curvature. These,non~linear equations 
were solved by a process of successive approximation to obtain theequili- 
brium deformation of the wing when set at incidence in a supersonic airstream. 
The effects of the thermal stresnem Q i) <are to reduce the torsional and bending 
stiffnesses and to increase the antiolastic curvature that accmpsnies any 
bending deformation. This last effect is stabilising in the static problem 
mentioned above but it seemed to the writer that it would very likely be 
destabilising in an aeroelastic vibration. This point is illustrated in the 
present paper in which the flutter speed of the same wing is calculated with 
an allowance for thermal effects, although in this case only the linear part 
sf the equations is retained. The aerodynamic assumptions are such that the 
flutter speed would have been infinite with no chordwise curvature, but with 
the curvature included the critical flutter condition is represented by a 
Mach nuniber of just over $L-. 

2 FLUTTER ANALYSIS I- 

The wing is iliustrated in E.g.-l. It is a rectangular wing clamped 
at the root and with a rune1 aspect ratio of -13 (i.e. the net tip to tip 
aspect ratio would 'be 3 P and with a symmetric biconvex section of 2% thick- 
ness chord ratio in solid steel. The flutter analysis is in two degrees of 
freedom, one of wing torsicn in which the rate of twist is assumed to fall 
linearly to zero from root to tip and the other of wing bending in whioh 
the sp‘anwise curvature also falls linearly to zero frQlz root to tip; these 
modes satisfy the tip condition of zero bending moment and zero torque. 
Lagrange's equations are used, so that the elastic coefficients are obtained 
from the strain energy, the inertia coefficients are obtained from the 
kinetic energy and the aerodynamic coefficients (based in this case on 
piston theor-v) are obtained by considering the virtual work done in a small 
disp1acerlllXLt: 

2.1 The strain energy 

The linearised equations can be obtained frcm the exact relationships2 
by neglecting the second order terms* which leads to:- 

- 8 (I f v) (1) 

rt- c Es (1 - 9 (1 -I- u)) (I e (I e.4 u) a> 
" = jij fl + $(I " u)] (2) 

and (3) 

* They are also given by Mansield 3 in an earlier paper, but it is convenient 
here to use the notation of ref.1 which is mostly taken frcxn ref,2. Work 
similar to Mansfieldss has been puhlished independently by Kochanski and 
Argyris4. 



where T is the torque on a secticn 

0 is the rate of twist at the section 

ii is the bending moment on a section 

It is the spanwise curvature at the section 

K' is the chordtise curvature at the section 

and the circumflex accent denotes a non-dimensional form of the quantity i.e, 

e  ̂= c2 8 
4 $5 to 

f; = c2 ic 

4 J5 to 

(4) 

where B is the flexur,al rigidity (E I) 

3 
without thermal effects 

C is the torsional. rigidity (G J) 

and to is the wing thickness at mid chord. 

Also V is Poisson's ratio 

and 8 = c2 ; F 
IO to2 

(5) 

where c is the wing chord 

!? is the temperature difference between the aver.a.ge temperature of the 
leading and trailing edges and the mid chord 

z is the coefficient of thermal expansion. 

The non-dimension~al parameter 8 gives a measure of the thermal strain (or 
thermal stress) and in the present example has a value of O.k. This value, taken 
from ref,l, is based on a temperature difference of 133’ which gives a reason- 
able simulation cf conditions reached by acceleration to a Xach number of about 
3 at 20,000 ft altitude. It will perhaps be as well to state here that the 
method of solution cf the flutter equations is to calculate the critical Mach 
number for flutter; if this critical Mach number had been found to be very 
different from 3 then a process of trinl and error would have been follaved, 
but in fact such a process proves to be zmnr~r~~sary in this particular example. 



The modes of deformation are given by:- 

and 

g = SIC = W-rl)q2 

(6) 

(7) 

where s is the distance from root to tip 

0 is the incidence of a section relative to the root 

rj x y/e e where y is the spanwise variable 

(9 is the slope of the mid-chord line relative to the corresponding 
slope at the root 

and q, and q2 are the generalised co-ordinates. 

The strain energy 7 is given by:- 

I I 

2v z s 
J 

8Td?'j+s 
i 

IC ii dr l (8) 

0 0 

From equations (I), (2), (6) ard (7) and the relations (4), this expression 
for the strain energy can be evlrluated in terms of the generelised co- 
ordinates q1 and q2, viz:- 

2.2 The kinetic energy 

Fig.1) 
The doznward deflection of a point P on the wing mid chord AB (see 

is given by:- 

(10) 

by equation (7). The deflection of a point Q in the chord D E (see Fig.1) 
relative to P I is:- 

X X 

T&P = i 
xrcrdx+ 

i 
odx 

0 0 

where x is the chordwise variable measured aft from the mid choti; i.e. 
x = PQ. Let 

X =%I 

% e 
then 

%b-P = 
o2 

i 
Erc' dg + c 

i 

o2 g2 Sdg "7 rc‘+oO~ (11) 
0 0 

-5- 



since x1 and 0 are constant over the chord. If we substitute for 0 using 
equation (6) and for ICI using equations (3) ‘anti (7), then by (IO) and (II) 
we have:- 

45$-l) = c Q, E (?P$) + s r+$(1-+$ E2 (1-q) bJ+(bJp#-J (12) 

The kinetic energy ? is now given by 

4 
2 !I! = p, c s to 

I 
s s aq (1 - 4 E2) i2 (&T) a e (13) 

0 
1 

-T- 

where p, is the density of steel, since the wing thickness at a point 

2e3 The aerodynamic forces 

In the present example piston theory5 is used with the thickness terns 
neglected. This leads to the very simple expression for the pressure 
difference between the lower and upper surfaces:- 

Ap = epa(g+V$) 

where p is the air density 

and a is the speed of sound. 

We let " xc c = ze 

where q =%i.s a non-dimensional time variable. Hence, if M is the 

Mach number, AP = 2Q$+M@ , 

and the work done in a small displacement 6z is given by:- 

2.4 Application cf Lagrange*s equations 

Lagrange's equaticns are given by:- 

(14) 1 

05) 

W) 

where the suffix r is given in turn the values I and 2, and W6 is the co- 
% 

efficient crf 6% in the expression for W given by equation (17); i.e. W6 
% 

"GM 



is the generalised force in the degree of freedom 
%* We have two 

equations of the form (18) which are made non-dimensional by dividing 

through by the factor pa2 x2. The inertia terms 7till then have the form 
in tne ith Lagrangi~uz equation:- 

A tjj ij A. . x2qj 

pa2 so2 
222 

PSC 
4 s aij X2qj 

. 
by the definition of 'h in equation (15). The aer~amic terms in the ith 
Lagrangi~an equation will have the form:- 

lhbi j + MCij) qj (20) 

where b. . and c 
iJ ij are non-dimensional aerodynamic coefficients, and the 

elastic coefficients in the ith Lagrangian equation will have the form:- 

E ij 

pa2 so2 
4j s eij qj (21) 

since there are two co-ordinates i and j take the values 1 and 2 and the 
two flutter equations can be written in matrix form:- 

[a h2 + bh + CM + e] q ~3 0 (22) 

wh:re a.) b, c and e are square matrices of non-dimensional coefficients and 
q is a matrix column. Equation (22) is solved by equating the determinant 
to zerc and. solving for the Mach nmiber M. 

2*5 Solution of the flutter equation 

We ma 
equation (9 ?; 

remark frcan the form of the expression for potential energy, 
, that no elastic coupling exists, i.e. e. . = 0, i *j, Also in iJ 

the expression for the kinetic energy, equations (42) and (13), since the 
integral of an odd power of E between the lirnits of 4 and $ is zero we 
again have no ooupling term and a. - 0, i 3: j, lj - This implies that the two oo- 

ordinates are in fact normal co-ordinates, which can also be inferred fmm 
physical considerations. FirALly, in the expression for the aerod;ynamio 
work from equations (16) and (17), we 
proportionel to h is an integral of z2 

a ain have that the part which is 
t; similar 

kinetic enorm) and hence b. . =: 0, i Sj, 
to the integral for the 

LJ It also follows that the direct 

aerodynamic dampings which are proportional to bll and b22 are positive, 

and o~ti;7 the aerodynamic stiffnesses can supply the couplings which would 
1eLld to r1utter. It is instructive here to consider the test functions 
fcr stability; the flutter dete x-minant can be axpanded to give 

4 PO h + P, x3 + P2 x2 f P3 h + p4 = 0 (23) 

-7- 



and it is necessary and sufficient for stability that all the p's shall 
be positive and that 

T3 
2 2 

= PI P2 P3 - PO P3 @ PI P4 ' 0 l 

Suppose, for the moment that the oam~er tern, ICI, were zerc, as would 
generally be assumed in a flutter calculation that did not take account of 
the them&L stresses. In this case c,,, c,2 and ~2~ would all be zero; 

hence the motion would inevitably be stable since no (1,2) coupling term 
would exist and the direct dampings would be positive. We how, however, 
that the effect of the camber ICY is stabilising as regards static divergence 
(see ref.1, for example, in which the analogy with a swept back wing is 
drawn) so that the value of c,~ introduced by L' must increase p 

4 
since this 

coefficient vanishes at the divergence speed. Alternatively, it can be seen 
from the expression for W (or from physical considerations) that c2, is 

positive and that c,~, which depends on xct is negative, and hence p4 is 

increased. The magnitude of this increase is, moreover, proportional to Ms 
whereas par ply p2 and p3 are sill constant, and it follows from the form of 

T3 in expression (CL!+) that this must lead to instability for sufficiently 

large values of M, 

The critic,al Mach number for flutter is found most simply by using 
the test function T3 and solving for the limiting case T3 = 0. This is a 

linear equation in 1 375 

3 lWMERICA7; PXSJLT AND coIW3LusIoNs 

The structural data asswned are given by:- 

E = 29.5 x ,06 lb/sq irr. 

G = 11.5 x ,06 lb/sq in. 

V =: 0.28 

P, = l&90 lb/cub. ft 

GJ = r,GI 

8 = 0.4 

No allowance fcr reduction in the elastic moduli due to thermal effects 
has been made. The aerodynamic data are 

P = 0.533 e 0.002378 slug/cub. ft (at 20,000 ft) 

a z 1038 ft/sec. 

These data lead to the following matrices of coefficients:- 

-8- 



a = 
1.067 

0 1 

. 

. 

b = 0 
0.1146 1 

c s -0.009037 
0 1 

e = 0 
0.0882 1 

and the solution of T 
3 

= 0 gives M = 3.6. This is in sufficiently close 

agreement with the assumed conditions at a Mach number of 3 to be taken as 
the criticjl flutter Mach number. It may be noted that this value of 3.6 
comparecs with the value cf infinity if there is no camber change and 
Cl2 = 0. It may perhaps be mentioned here that the reason why finite flutter 

speeds are often predicted for symmetric supersonic sections using piston 
theory is that if the thickness terms are included a small negative value is 
introduced for bq2 (and also for c 22 although this is much less important) 

and this provides the required coupling. The coupling would be very small 
for a wing of only 26 thickness/chord ratio. 

It may be thought that the flutter IG&ch number of 3.6 is unrealistic 
because of the root constraint, but this is not in fact so. Mansfi.eld3 has 
shove that the root constraint would be effective to a distance of about $c 
(for a parabolic section as used in our example) from the root. The magnitude 
of this restraint has been estimated by neglecting the effect of IC' for 
0 < 7-j < 0.2. This led to a reduction in the numerical value of c,~ by about 

15% and an increase in the value of e 22 (since there is now no loss in bending 

stiffness near the root) by about 2% The reduction in c,~ raises the flutter 

speed, but the increase in e22 lowers it again so that the net effect is that 

the critical flutter qzed is increased only slightly: in fact the solution 
gave M = 3*8. 

. The general implications of these calculations are that thermal stresses 
can seriously 1olrJer the flutter speed of a solid wing at high Mach numbers. 
For a thicker wing, however, the effects would be much less, because of greater 
intrinsic stiffness, less drop in stiffness a& less adverse caniber change. 
rt is also apparent that if the wing is designed to keep the thermal stresses 
to a low level by using a torsion box, for example, instead of a solid section, 
then again the flutter speed would rm high. 

LIST 05' SYME?QLS 

A ij 8 dimensionnl inertia coefficient 

B the flexural rigidity (EI) 

C the torsional rigidity (GJ) 

E Young's modulus 

-P- 
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a dimensional. stiffness coefficient 

shear modulus 

section moment of inertia 

effective polar 

Mach number 

bending mcxnent 

ncn-dimensionjl 

section torque 

moment of inertia 

form of 2 (see equation l+) 

stability test function 

temprature difference 

non-dimensional form of T (see equation 4) 

kinetic energy 

forward speed 

strain energy 

work 

speed of sow33 

ncn-dimensional inertia coefficient 

non-dimensional aerodynamic damping coefficient 

wing chord 

non-dimensional aerodynamic stiffness coefficient 

non--dimf2nsional structural stiffness coefficient 

pressure 

coefficient in h-polyncmial 

generalised cc+ardinate 

distance from root to tip 

time 

wing thickness at hLilf chord 

chordwise variable 

spanwise variable 

vertical downward deflection 



LIST OF SYMEOLS (Cont'd) 

h 

V 

P 

ps 

9 

7; 

9 

rotation of chordwise section relative to root 

coefficient O;r thermal expansion 

non-dimensional spanwise variable = y/s 

rate of twist 

non-dimensionsl rate of twist (see eqmtion 4) 

spanwise curvature 

non-dimensional spanwise curvature (see equation4) 

chordwise curvature 

ooefficient of 'G in the exponent 

Poisson's ratio 

non-dimensional chordwise vz&able = X/C 

density of air 

density of steel 

non-dimensional thermal stress (see equation 4) 

non-dimensional form of time = t a/o 

bending slope 
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FIG. I. PLANFORM OF WING CONSIDERED. 
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