C.P. No. 446
$(20,189)$
A.R.C. Fechnical Report

C.P. No. 446
$(20,189)$
A.R.C. Technical Report

MINISTRY OF SUPPLY

aERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

A One-Dimensional Theory of Liquid-Fuel

Rocket Combustion.

Part II. The Influence of Chemical Reaction

by
J. Adler,
Imperial College, London

A Onc-Dimensional Theory of Liquid-Fuel Rocket Combustion II: The Influence of Chemical Reaction - By -
J. Adler,

Mechanical Engineering Dopartment, Inperial Colluge, London

285h May, 1958

SUGMARY

The differential equations, resulting from the one-dimensional liquid-fucl rocket combustion hodel II of Spalding, have bcen integrated, and terperature and vclocity profiles for the fuel droplets derived. A simplc approximate procedure for solving the equations is also given which gives good results when compared with exact integration.

1. Introduction

In a provious paper, spalding ${ }^{1}$, has considered a ono-ainensional model for liguidifuol rocket combustion. By use of laws for droplet vaporisation and drae and the conservation of energy it has been possible to set up first order total differential equations for the temperature, droplut radius arui volocity. In those equations the independent variable is the distance of the droplets rom the point of injection. To facililate the dorivation of solutions cortain simplifying assumptions were nadc. If the chomical loadine paraneter, L, is taken as zero, jiodel I of Spalaing's paper, the tomperature along the length of the combustion chamber is uniform and oqual to the oquilibrium gas temperaturc. An aduitional simplification is obtained by assuming that Stokes Lew is applicable for the droplet drag, Model I(a), in which caso the equations may uasily te intcgrated to give analytical solutions. It has boon shown thei the qualitative behaviour of these solutions is what one would expect from physical considerations. If L is not zero, chonical reaction is of importance in determining the behaviour of the droplets. Sirce undir practical liquid-fuel rocket operating conditions chemioal roaction i:s likely to be of importance it is nocossary to detcrmine what its cifuct is on the ovorall performance and in particular whether the solutions of Model I are of sufficient accurncy as I_{1} approaches its critical value I_{c}. The nature of the initial
difforential equations is such as to makc dcsk computation impracticable and it has therefore been found necessary to programne a high-speed electronic digiticl computer for their solution.

2. Differential Equations

2.1 Dinensionless form of equations

The differential equations for the droplet radius, velocity, and temperature and the equation for the gas velocity may be put in the following convenient dimensionless form, c.f. Ref. 1.

$$
\begin{aligned}
& \chi \frac{d \zeta}{d \xi}=-\sigma \rho f_{1} \quad \ldots(1)
\end{aligned}
$$

$$
\begin{align*}
& \frac{d \tau}{\overline{d \xi}=} \frac{1}{I-\frac{\psi}{\zeta^{3}}}-3 \tau \sigma \frac{\zeta_{0}^{2}}{-\beta f_{1}} \quad \ldots(3) \\
& \omega=\frac{1-\zeta^{3}}{\delta} \tag{4}
\end{align*}
$$

in which the sylabols have the following meanings:

ζ	dimensionless droplet radius
χ	dimensionless droplet velocity
ξ	dimensionless distance variable
$\beta(\zeta, \chi-\omega)$	dimensionless vaporisation rate
S	dimensionless droplet drag (constant)
ω	dimensionless gas velocity
I	dimensionless chemical loading parameter (constant)
T	dimensionless temperature or reactedness
$\sigma(\tau)$	functional dependence of vaporisation on reactodness
$m(T)$	functional dependence of drag on reactedness
$\delta(\tau)$	functional dependence of gas density on reactedncss
$\psi(T)$	dimensionless reaction rate function
$f_{1}\left[\delta \zeta\|x-\omega\| R e_{0} / m\right]$	function of droplet Reynolds number Re
$\mathrm{f}_{2}\left[\delta \zeta\|\chi-\omega\| R e_{0} / m\right]$	function of droplet Reynolds number Re
Since the dimersionlass distance variable does not occur explicitly in the equations it may be eliminated by corabining (1) with (2) and (3). One obtains	

$$
\begin{align*}
& \frac{d x}{d \zeta}=-s \frac{m}{\sigma \beta \zeta_{b}^{2}}\left(\frac{1}{f_{1}}\right)\left[\frac{f_{2}}{-1-\zeta_{\sigma}^{3}} \frac{\delta}{\delta}-\chi\right] \tag{5}\\
& \frac{d r}{d \zeta}=-\frac{1}{\left(1-\zeta_{\zeta}^{3}\right)}\left[\frac{1 \psi \cdot x}{-\sigma \beta f_{1}}-3 \zeta^{2} \tau\right] . \tag{6}
\end{align*}
$$

2.2 Combustion ModeI II(a)

Spalaing has shom that in $R e<j 0$ the ratio f_{2} / f_{1} does not differ by more than about 6% Irom unity. We therefore take this ratio to be unity. If in addition it is assumed that for the particle drag Stokes' Lav is operative one will have $f_{z}=1$. We make the further assumptions, that

$$
\begin{array}{rll}
\sigma(\tau) & =\tau & \ldots(7) \\
m(\tau) & =1 & \ldots(8) \\
\delta(\tau) & =1 & \ldots(9) \\
\beta & =1 & \tag{10}\\
\hline \zeta & \ldots(10
\end{array}
$$

Equations (3) anc (9) imply that the gas viscosity and density do not depend explicitly on temperature. Equation (10) arises under pure vaporisation conditions, cf., Ref. 2 .

To conform with the dcfinition of the reaction rate function we shall take

$$
\begin{equation*}
\psi(\tau)=(n+1)\left(1+\frac{1}{n}\right)^{n}(1-\tau) r^{n} \tag{11}
\end{equation*}
$$

witir n integor. This function has a single maximun and rises from
 has the forr of a typical reaction rate function, ef., Ref. 3.

With conditions (7) - (10) the differential equations become

$$
\begin{align*}
& \frac{d x}{d \zeta}=-\frac{S}{T \zeta}\left(1-\omega^{3}-x\right) \tag{12}\\
& \frac{d \tau}{d \zeta}=-\frac{\zeta}{(1-\zeta)}\left(\begin{array}{l}
1 \Psi \\
-\frac{\zeta}{\zeta} \tau-3 \zeta \tau \\
L
\end{array}\right) . \tag{13}
\end{align*}
$$

2.3 Boundary conditions

At tho point of droplet injection the following conditions apply:

$$
\begin{equation*}
\zeta \zeta=1: \hat{x}=x_{0} ; \quad \tau=T_{0} \tag{14}
\end{equation*}
$$

where τ_{0} is determined by the requirement

$$
\zeta=1 /
$$

$$
\zeta=1: \frac{d \tau}{\partial \bar{\zeta}}=\left(\begin{array}{l}
\bar{d} \tau \tag{15}\\
-\bar{\omega} \\
\alpha_{j}
\end{array}\right)_{1} \equiv \text { finite. }
$$

Examination of (13) shows that for this to be satisfied one must have

$$
\begin{align*}
& 1 \psi\left(\tau_{0}\right) \tag{16}\\
& \frac{L}{r_{0}} x_{0}-3 \tau_{0}=0 .
\end{align*}
$$

Equation (16) determines real values of τ_{0} only if the loading parameter L lies between zero and a critical value L_{c}. For the reaction rate function (11)

$$
L_{c}=\frac{1}{3}\binom{n+1}{--1}\left(1+\frac{1}{n}\right)^{n}\left(1-\frac{1}{n-1}\right)^{n-2} x_{0} \quad \ldots(17)
$$

The functional relationship between I_{c} / χ_{0} and n is show in Fig. 1 . By application of L'Hospital's theoren to equation (13) at $\zeta=1$ one can determine (15). With (11) one obtains

$$
\left(\begin{array}{c}
\vec{\partial} \tau \tag{18}\\
- \\
\partial \zeta
\end{array}\right)_{1}=\frac{\left(S-\tau_{0}\right)\left(1-\tau_{0}\right)}{1-(n-2)\left(1-\tau_{0}\right)}
$$

At the point of disappearance of the droplet,

$$
\begin{equation*}
\zeta=0: \chi=1, \tau=\tau_{1} \leqslant 1 . \tag{19}
\end{equation*}
$$

By intogration of (1) with appropriatc substitution, it is seen that this occurs at a distance

$$
\begin{equation*}
\xi^{*}=\int_{0}^{1}-\frac{x}{\tau}-\zeta \partial \tag{20}
\end{equation*}
$$

from the point of injection.

2.4 Numorical procedure

To facilitate the formard step-by-stop integration of equation (12) and (13) it is convenient to replace ζ by an auxiliaxy variable. We therefore make the substitution

$$
\begin{equation*}
\breve{\zeta}=1-\eta \tag{21}
\end{equation*}
$$

so that (12) and (13) become

$$
\begin{align*}
& \frac{d x}{d \eta}=\frac{S}{(1-\eta) \tau}\left[\eta\left(\eta^{2}-3 n+3\right)-x\right] \tag{22}\\
& \frac{d \tau}{\bar{d} \eta}=\frac{(1-\eta)}{\eta\left(\eta 1^{2}-3 \eta+3\right)}\left[\frac{1 \psi}{L} \frac{-x-3(1-\eta) \tau]}{\tau}\right]
\end{align*}
$$

With new boundary conditions:

$$
\begin{aligned}
& \eta=0: \chi=\chi_{0}, \tau=T_{0} \\
& \frac{d r}{\bar{d} \eta}=\left(\begin{array}{c}
\bar{d} \tau \\
-\overline{d \eta})_{0}=\frac{\left(S-\tau_{0}\right)\left(1-\tau_{0}\right)}{(n-2)\left(1-\tau_{0}\right)-1}
\end{array}\right]_{i} \quad \ldots(24)
\end{aligned}
$$

A Ferranti inarls I^{*} high-speed computer was programed to deal with the step-by-step integration of equations (22) and (23). The programme employs Cill's form of the Runge-Kutta processt which is of fourth order. Unfortunately the method is not applicable to (23) at $\eta=0$ so that it was necossary to start the integration procedure away from the boundary. The values of the functions at the first step were taicen as

$$
\begin{align*}
& x_{1}=\chi_{0}+\left(\frac{\dot{a} \chi}{\bar{\omega}}\right)_{0} h \tag{25}\\
& r_{1}=\tau_{0}+\left(\frac{d T}{-}\right)_{0} h \tag{26}
\end{align*}
$$

in which h is the step size for the integration. Since the right-hand side of (22) becomes indeterminate at $n=1$ the integration process was torminated at $\eta=1-h$.
3. An Approximate Solution

Equation (16) shows that as $I_{1}=0, \tau_{0} \rightarrow 1$ and hence that $\left(\frac{d}{d}\right)_{1} \rightarrow 0$. Since τ is a nonotonic function of ζ for most of $0 \leqslant \breve{\zeta} \leqslant 1$, a reasonable approximation to nake, when $L \ll 1$ is

$$
\begin{equation*}
-p=\frac{\bar{d} T}{-\bar{\omega}}=0 \text { in } 0 \leqslant \zeta \leqslant 1 . \tag{27}
\end{equation*}
$$

Equation (13) now becones

$$
\begin{equation*}
\frac{\psi(r)}{\tau^{2}}-3 \frac{I K_{0}}{x}=0 . \tag{28}
\end{equation*}
$$

Por a givon ζ_{0} and $x\left(c_{j}\right), \tau(\zeta)$ is detomined from (28). This value of τ nay then be used for a new step in the integration of (12), giving a next value $\chi(\zeta)$. Continuation of the process eventually results in $\chi(\stackrel{\zeta}{\sigma})$ and $r\left(\zeta_{0}\right)$ profiles.

$$
\text { Examination of (28) shows that all } T(\ddot{\zeta}) \text { profiles pass }
$$

through $T=1$ when $y_{c}=0$, so that for I not very small, the approximation will ovorestinate τ for most of its range. On roarrangement of (13)

$$
\begin{equation*}
\frac{I}{\chi}\left[3 \ddot{\square}+\frac{\left(1-\zeta^{3}\right)}{\breve{\zeta}}\right]=\frac{\psi(\tau)}{\tau} \tag{29}
\end{equation*}
$$

In the region where $p<0, p=0$ underestimates T and where $p>0, p=0$ gives an overestinate it being assumed that the change in χ can be neglected. The total effect, as shown by Figs. 2(a) and 2(b), is to displace the profile towards the injection end.

Equation (22) has been integrated in combination with (28) to determine the accuracy of the approxination. Since (22) is a lincar differential equation this could casily have been donc by use of a desk machine, but since only few mouifications to the iark I^{*} programe wore necessary, the calculation was completed using the high-speed conputer.
4. Rcsults

Iquations (12) and (13) hawc been integrated for the following paramoters:

$$
\begin{array}{ll}
x_{0}=0.5 & n=4.8 \\
x_{0}=1 & n=4,8
\end{array}
$$

The values of L have buen chosen so that in all casos $L<I_{c}$. As shom by Fig. 1, L_{C} is a function $o_{i} \chi_{0}$ and n_{0}. In every case the choice $S=1$ hes been made. Figs. $3(a)$ and (b) show the results for $x_{0}=0.5$ and Piss. $4(a)$ and (b) those for $x_{0}=1$.

Equation (22) has been integrated in combination with (28) for the perticular case:

$$
S=1 \quad x_{0}=0.5 \quad n=4 \quad L=0.25
$$

The resulting curves are show in Pie. 5. The corresponding exact integration is also acain displayed for comparison.

All curtos have becn ploted against $\eta=1-\ddot{b}$. If Γ_{0} is the droplet redius at injeotion ard T the radius at any subsequent position, then

$$
\eta=\frac{I_{0}-\Gamma}{I_{0}} \quad \ldots(30)
$$

so that η is the fractionel decrease in the croplet radius.
Vilues of $\bar{\sigma}^{*}$ have been eviluated using equation (20) and are show on Pi , 3 . 3-5.
5. Dicesision

Waunation of the tenperature profiles of Figs. 3-4 shows that r is noarly in all cases a monotonic function of η. whon the locdinc nararetor is close to its cidtical value there is an initial crop in tompatur wich then rises to its maximum valuo τ_{1}. As τ_{1} is ioss than mity, chemical reaction is incomplete at the point of disappearance of the uroplets and an additional distance is required for the process to so to completion. This distance, which hes not been oveluated, should bu added to 5^{*} to give the minimun rochet length for eificicmt combustion.

The droplet velocity profiles show that for given initial conditions they are nearly independent of variations in the loading parametor. This indicates that iodol I(a) of Spalding will give good rosults even when I is not zoro. All velocities initially fall below
those at the point of injection, and as previously, reach the gas velocity at the disappearance of the droplets.

The values of ξ^{*} are increasing functions of the loading parameter I. This, as may be seen, is due to an overall drop in temperature as L increases.

The maxim chemical loading I_{c}, is determincd by the shape of the reaction rate Iunction, characterized by n, and by $\%_{0}$, the injection velocity of the droplets. Rcuation (17) shows that L_{c} increases lincarly with x_{0} anc decreases with increasing activation energy.

Examination oi the approximate solutions, plotted in Pig. 5, shows that the voloci:y profile is practically coincident with that given by exact integration. The temperature profile, as predicted, lies slightly above the exact solution, but this discrepancy will disappear with decreasing I and increasing n.

Acknowledgenents

The author wishes to thank Dr. D. D. Spelding for sugeesting the problon and for helpfit discussions. Thanks are also due to A.K.D.F., Fort Halstead for use of the electronic digital computer AMOS.

References

No. Sutinor(s)
1 D. D. Spalaing

2 D. I. Bratang and V. K. Jain

3 I. B. Boalding
4 B. Gill

Title, etc.

A ono-dinensional theory of liquid-fuel rocket combustion.

C.P.445. May, 1958.

Theory of the burning of mono-propellant croplets.
C. P. 447. May, 1958.

Combuction and flame 1 (1957) 287, 296.
Proc. Camb. Ehil. Soc. 47 (1950) 96.

Fig. 1.

$\frac{L_{c}}{\chi_{0}} \frac{\text { versus reaction rate function paramenter } n \text { of the system }}{\psi(\tau)=(n+1)\left(1+\frac{1}{n}\right)^{n}(1-\tau) \tau^{n}}$

(a)

Graphical construction for determining τ from typical reaction rate function $\psi(\tau)$

Typical τ versus ξ curve showing effect of neglecting temperature gradient P.

Fig. 3 (a)

T and χ versus 7 curves for $\chi_{0}=0.5 \pi=4$.
$\tau_{a} \chi_{a}: L=0, \quad \xi^{*}=0.267$
$\tau_{b} \chi_{b}: L=0.10, \quad \zeta^{*}=0.276$
$\tau_{c} \chi_{c}: L=0.15, \quad \overleftarrow{\zeta}_{5}^{*}=0.282$
$\tau_{d} \chi_{d}: L=0.20, \quad \xi^{*}=0.291$
$\tau_{e} \chi_{e}: L=0.25, \quad \xi^{*}=0.304$
$\tau_{f} \chi_{f}: L=0.30, \quad \xi^{*}=0.344$

Fig. $3(b)$

τ and χ versus η curves for $\chi_{0}=0.5 \pi=8$.

$$
\begin{array}{llll}
\tau_{a} & \chi_{a}: & L=0 & \xi^{*}=0.267 \\
\tau_{b} & \chi_{b}: & L=0.15, & \xi^{*}=0.275 \\
\tau_{c} & \chi_{c}: & L=0.20, & \xi^{*}=0.281
\end{array}
$$

Fig. $4(a)$

T and χ versus η curves for $\chi_{0}=1 \quad \pi=4$

$$
\begin{array}{lll}
\tau_{a} & L=0, & L=\zeta^{*}=0.433 \\
\tau_{b}, \chi_{b}: & L=0.45, \zeta^{*}=0.502 \\
\tau_{c}, \chi_{c}: & L=0.50, \zeta^{*}=0.517 \\
\tau_{d}, \chi_{d}: & L=0.55, \zeta^{*}=0.539 \\
\tau_{e}, \chi_{e}: & L=0.60, \xi^{*}=0.606
\end{array}
$$

Fig. 4 (b)

T and χ versus 7 curves for $\chi_{3}=1 \quad n=8$

τ_{c}	$:$	$L=0$	$\xi^{*}=0.433$
τ_{b}	$X_{b}:$	$L=0.30$,	$\xi^{*}=0.463$
τ_{c}	$\chi_{c}:$	$L=0.35$,	$\xi^{*}=0.468$
τ_{d}	$\chi_{d}:$	$L=0.40$,	$\xi^{*}=0.475$

Fig. 5.

T and χ versus η curves for $\chi_{0}=0.5 \quad \pi=4 \quad L=0.25$ showing effect of neglecting temperature gradient P.

Exact integration $\xi^{*}=0.304$
$P=0$ approximation $\xi^{*}=0.298$

C.P. No. 446

$(20,189)$
A.R.C. Technical Report
(C) Crown copyright 1959

Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w.I
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
Tower Lane, Bristol I
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast
or through any bookseller
Printed in Great Britain

