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SUMMARY 

A technique developed by Spreiter and Alksne for determining the 

pressure distribution over a two-dimensional sharp-nosed aerofoil moving at 

a speed in the transonic range is extended to the case of a round-nosed 

aerofoil. If there are no shocks before the trailing edge, Sinnott's method. 

can be used for calculating the pressure distribution over the rear part of 

the wing. The method is applicable to a round-nosed aerofoil at incidence, 
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1 INTRODUCTION 

. 

The determination of the transonic flow over an arbitrary two-dimensional 
aerofoil has long been one of the most exasperating unsolved problems of aero- 
dynat&s. The partial differential equation for the velocity potential is 
simple, the boundary conditions aan be set up without diffioulty, and the 
problem is of considerable praotical importance. In spite of all this the 
results obtained were, until recently, soanty, 

TWO main methods had been tried, the hodograph method and the integral 
equation met;hod, In the first of these the (non-linear) differential 
equations of motion are transformed so that the velocities become the indepen- 
dent variables while the spatial coordinates become the depen&nt variables. 
The transformed equations are linear and solutions of them uan be built up 
by superposition. 
Guderleyls 

A desori~tion of this theory forms the major part of 
interesting book , which also contains a comprehensive list of 

references. The greatest difficulty in t!!e use of the hodograph method is 
that the boundaries in the physical plane, along which data are prescribed, 
are, in general, unknown in the hodograph plane. This has restricted the 
use of the hodograph method to studies of transonio flow over wedges ard 
flat plates; there is no lack of such studies. An extension to flow over 
curved surfaces might be possible by a "trial and error" process, but such 
a process would be most laborious. 

The integral equat3on method originated with Oswatitsah' and was 
elaborated by Gullstra.nd . In this method, (almost a method of despair 

1 
, 

the differential equations of motion are transformed into a (non-linear 
integral equation, some approximations are made to the integrand, a guess 
at the velooity distribution over the aerofoil is made, and a solution is 
obtained by iteration. Anot 
given by Spreiter and Alksne k 

er elaboration of Oswatitsqh's method was 
. As in Gullstrand's work the technique 

permits the calculation of the position and strength of shook waves on the 
aerofoil. Agreement with the few eqerimental results available is unexoiting. 
The integral equation method is preferable to the hodograph method since 
curved profiles can be treated, but it is tedious to apply and the effects of 
the approximations introduced are not easy to estimate. 

A third approach to the solution of the problem is also due to 
Cswatitsch. Some work by Behrbod is based on a suggestion of Oswatitsch 
that a factor of a term in the differential equations be taken as an un- 
determined constant. The equations then become linear and a solution 's 
obtained with one arbPtrar,y constant. A paper by Oswatitsch and Keune ir 
contains a method for determining this constant in the axisymmetrio ease. 
The examples included there show that Oswatitsoh's suggestion can lead to 
useful results. A romartible paper by Spreiter and Alksne-/ has recently 
appeared which is based on an ingenious refinement of Oswatitsuh's suggestion. 
The method described there leads to a simple analytical expression for the 
pressure distribution over an arbitrary profile, and the results are in 
striking agreement with experiment. 

The present note briefly desoribes the work of Spreiter and Alksne7, 
and extends it to round-nosed profiles and profiles at irfiidenoe. The 
methods are applied to a profile which has been extensively investigated by 
Holder and CashB. 

A brief description 0rily~5.s given here: the interested reader is 
referred to the original paper for a full treatment. 
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The problem is to determine the steady transonic flow over a two- 
dimensional, thin, symmetrical profile, Cartesian coordinates, x and y, 
are introduced, with origin at the nose of the profile; the line of symmetry 
of the profile is part of the x axis, and the y axis is normal to this. 
x direction coincides with the free stream direction. 

The 

stream is U and the l&ch number is M . 
The speed of the free 

Even when shock waves are present 
the flow may be assumed to be irrotatyonal* since the aerofoil is thin, a 
disturbance velocity potential, $, may be introduced, such that 

x velooity 

while y velocity 

the suffixes denoting partial 
velocities". 6 satisfies the 
differential equation: 

= u, (1 -I- $x) = u, (1 -I- u) 

= u, $y = zT,v ¶ (lb) 

derivatives. u and v may be termed "incremental 
following non-linear second-order partial 

y being the ratio of the specific heats of the fluid. The boundary oonditions 
that the solution of (2) must satisfy are that the incremental velocities 
vanish at infinity and that the given profile be a streamline. If the 
equation of the profile is: 

Y = .-c h (4 (3) 

where h is of order one and ?; is a constant of the order of the thickness chord 
ratio of the profile, 
form: 

the boundary condition may be written, in simplified 

Y = 0, 
@Y 

= 7; h' (x) (4) 

the prime denoting differentiation, The equations giving the changes in 
the incremental velocities across a shock also take on a simplified form in 
transonic flowl; since they are not needed in this note, there is no point 
in giving them here. 

(2) may be written 

where h is an unspecified constant. The right hand side is regarded as a 
given function of x ard y, f(x,y), although it is a known function only 
when (2) has been solved. 
the solution being 

(5) can be solved by the use of Green's theorem, 

for positive h, and 



0 “OO -co 

for negative h. E an3 r) are running coordinates oorresponding 
respectively. d is the "unit heat source", 

d = 0 

are defined by 

and 

to xandy 

suffixes u an3 -3 referring to corditions on the upper and lower sides 
respeotively of the wing and wake. (6) and (7) are valid if either shock 
waves are absent from the region defined by the limits of the double integral 
or the shouk waves present in this region are parallel to the y axis. For a 
symetrical profile (ya) shows that (A$)qzo is zero while, from (4) and (gb), 

= 2 cc h' (C) . 

(6), (7), (8a) and (8b) now lead to 
. 

u(x,o) = 0 $$ Y.~--% $.- 

y=o (7op dx s 
'h' 6%) dC" 

(x - tp 
0 

(10) 

for 



~b,O) = a 

69 
x 

y=o 
d 

dx 

for h < 0 ¶ 

o being the aerofoil chord. 

(other 
(IO) and (11) have been derived from (2) without further approximations 
than a restriction on the orientation of shock waves). h is an 

unspecified oonstant. 
function of x, 

Spreiter arad Alksne7 now replace this oonstant by a 

i.e. by (Y + 1) M', u'(x,O) . 

They further assume that, in the integrand of the double integral, 

= (lff ” 1) u(x,o) 

In other words they assume that QCE is equal to ($ ) everywhere. 
Abbreviating u(x,O) to u, (10) and. (II) becarce 

XXpO 

for positive u1 , a& 

03) 

for negative ul. 
to ref.7; 

These approximations are discussed in detail in the appendix 
the excellent agreement with experiment is sufficient justification 

for making them. 
-6-- 



the ae!~~~i~?u%~e 
are non-linear ordinary differential equations foru on 

(13) will not be considered further in this 
it can be treated in*the same way as (12). The solution of (12) is 

section; 

u = 
1-e 

(y+l)< + 

$ $“3 
0 

T2'3 

'/3 $13 

[i" [aJ h' @2) d; 3' .q'3 (,4) 

(Y + 1) EQ x* o (5 - 9 

with x* an undetermined constant. Vhen 

x 3 X* 

142 
u becomes - 

Y 

. which is the value of u at the sonio point on the usual transonicr approxi- 
mation. (14) gives an infinite value for uf at x = x* unless x* is chosen 
to be the value of x for which 

. 05) 

(14) can be used only so long as u* is positive. The above derivation of 
(121, where uf must be positive, an-3 (93), where u1 must be negative, shows 
that there is no possibility of overcoming this restriction. 

The facztor 

$/3 

(y + I)'/3 18'3 0) 

. outside the square brackets in (14) 9 
hold for this solution. 

means that tne transonic similarity rules 
In addition, when (14) is used to find the variation 

of 1ooalMaah number with x it is found that, approximately, the variation is 
independent of M 03' This phenomenon, which has been observed in experiment 

and has been comnented on before 10 , is picturesquely named the Wach number 
freeze". 

The biconvex aerofoil provides an interesting example. The equation 
of this profile is 

Y = 22 x (I - 5, 



T being the thickness chord ratio. 
from solving (15); hence 

The location of the sonic point comes 

(14) leads to the f' allowing expression for u 

v3 $/3 

(Y + 1 )'/J Iv?'3 w  

-89+8 $ 0 1 2+$ “3 
(46) 

This result is shown in ref.7 to compare very well with experiment. 

Spreiter and Al,ksne7 describe another technique for the solution of 
(2) which applies when the flow is either subsonic everywhere or supersonic 
everywhere. The function which is regarded first as a constant and then as 
a function of x only is now 

. 

Applied to supersonic flows this approach leads to the differential equation 

ut = - 
r 

[(Al) -k ;u+l)Al~ h” 
l 

w w 

On integration this gives 

l-M2 
u = 

(y+lJW&? + w 

c k+l) 2 u - (A)1 3'2 + $ ?; (y+l) Iif 
7 

z/3 
w 0 W 

(h;-h') (17) 
J I 

where u. and ht, are values of u and h supposed given at a point x = x0* 

approximation to the result obtained by 
required in this note at a later stage. 

3 EXTENSION? TO ROUND-NOSED l?RO.?'ILES 

Because of the existence of the '*Mach number freeze", flows with a 
free stream Mach number of unity only will be discussed in the rest of this 
note: (14) becomes: 
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Spreiter and Alksne 7 considered sharp-nosed profiles only, and for these x*, 
the position of the sonic point on the aerofoil, is given by (15). The 
pressure distribution can then be obtained, from (18). The problem of tran- 
sonic flow over a symmetrical round-nosed profile is the subject of this 
section, 

The difficulty arising when the method of seotion 2 is applied to a 
round-nosed profile can be seen by considering the profile whose equation 
is: 

. . i 

y c- 'Z -f 
0 

2 (c - x) $ 

it has a sharp trailing edge and a maximum thickness of 

at x = -?. C. 3 

From (3) 

2h'(x) = (f$e3($ . 

The inner integral of (18) becomes 

1. 3n 4 E&L-- --y 2 4 0-i 

and the differential coefficient of this is 

. -zr G 
The left hand side of (15) -is, fnerefore 

and this equation nc longer gLves a value for the position of the sonio 
point. (18) becomes 



u = 
3 (f3 -&y [  (5) - ($-) ]  “3 l (20) 

Although (15) has failed to provide a value for x': it is shown in the next 
se&ion that it does give a value for x* when the incidence is not zero. 
As the incidence tends to zero so does x*; hence, xx: in (20) is taken as 
zero. It is known8 that, for some round-nosed aerofoils, the sonio point 
is, in fact, very close to the leading edge; in fact, profiles whose sonio 
point is not close to the leading e.?ge are not universally in favour. The method of Spreiter and ALksne7 applied to sharp-nosed aerofoils'also breaks 
down near the leading edge (( 16) shows that u has a logarithmic infinity 
there). It is, therefore, likely that having the sonic point, for round- 
nosed aerofoils, at the leading edge will not make the results any less 
useful than those obtained in ref.7. (20) 'b ecomes 

u = 
T2/3 x 913 

go ' 0 

The method desoribed in section 2 cannot always be extended so easily 
to round-nosed profiles. The following equation describes a quite 
unexceptionable profile. 

Y = ‘t i 

it has a sharp trailing edge and a maximum thickness of F at x = $c. 

For this profile, using (IS), 

j/3 

0 v3 
u = 2s ' (21) 

(15) again failing to provide a value for x%. It is not possible to put x* 
equal to zero in (21) and there is no obvious method for obtaining a 
plausible valuelfor X::, Henoe, profiles whose expansion about x = 0 contains 
terms in both x2 and x cannot yet be treated by the simple method discussed 
in this note. However, such profiles usually have undesirable features in 
the pressure distribution near the leading edge. 

The above extension of the method of section 2 to round-nosed aerofoils 
is now applied to a prof'le, JPL.491, which has been investigated experimeti 
tally by Holder and Cash 8 . This profile has the equation 
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of and s are equal to V.LpoV inohes and 0.34-l inches respectively, and 8 is 
3.024’. The chord of the aerofoil is 9 inches, so that the profile is not 
olosed at the rear erd. Reasons for the choice of this profile are given 
in ref. 8; it has a thickness chord ratio of 0.o4.18 and its maximum thiok- 
ness oocurs at x = 0.209 c. Hear the leading edge,. from (22), 

iLY dx = 0.0380 ($ [1 - 20.3 ($) + l ]  
l 

The faotor of 20.3 is muoh too large for a "small disturbanoeW theory and 
so the profile has been slightly modified. Fig.1 shows the actual values of' 

(full line) and the modification made (dashed line), The modification 
confined to a region near the leading edge, where the method described 
breaks down anyway. Even there, the differenoc between the two curves 
Fig.1 is not excessive. 

(4% with x* put equal to zero, has been used to calculate the 

pressure distribution fram (3 - &+f+ 0.4, and the result is plotted 

iS 
here 
of 

in 

Fig. 3 (full line), In this figure values of F, where p is static pressure 
0 

and. PO stagnation pressure, are plotted against 5. The formula for pEin 
0 

terms of u (the free stream Mach ntier being one) is, negleoting squares 
and higher powers of the incremental velocities, 

cl m w) = 0,528 (1 - ‘-4 u, 

$ depends on local Mach number only, the free stream Mach number not 

azpearing explicitly; 0.528 is the value of F at the sonict point. The 
0 

numbers come from putting y = 1.4, this value being used in all the numerical 
caloulations. Also shown ig Fig.3 are some of the experimental results 
obtained by Holder and Cash . Ther is fair agreement with exFez5men-L The 
sonic point is shown experimentally 8 to be at x = 0.018 o; if this value 
is chosen for x* instead of zero, u at x = 0.1 c differs by % from the value 
first obtained. The difference in $. is less than I$. 

0 

The profile is one in which u passes through a maximum and, as has 
been mentioned already, the technique fails when u' = 0. Henoe, (18) cannot 
be used beyond the point of maximum u; in faot, its value becomes doubtful 
at some point before this. To obtain an estimate of the Pressure distribution 
over the whole profile, Sinnott's methodlo has been used. This method, whiuh 
applies also to profiles at incidence, assumes that the flow quantities are 
known at the "crest" of the profile, i.e. at the point where y has its maxi- 
mum value. Simple wave theory is used to obtain a first approximation for 
the quantities over that part of the profile downstream of the West, (17) 



being the appropriate equation, This approximation gives pressures which 
are too low, since it neglects the compression waves resulting from reflec- 
tions at the sonic line, An estimate of the latter effect can be obtained 
by considering the flow at sonic speed over a double wedge, the solution of 
which is known~~. Simple wave theory predicts that all the flow quantities 
are constant from the crest onwa&.s, in particular, that w, the Prandtl- 
Meyer angle, is constant. In Fig.2, Aw (the difference between the true 
value of w and the value of w on sirr@e wave theory) divided by the value 
of this quantity at the trailing edge is plotted against t, where 

x-x 
t m = c-x m 

9 

xm being the value of x at the crest. The same quantity is plotted for the 
two profiles 

Y = 27 0 [($-(f2] , 

and Y = 27x l-$ 
( > 

. 

(17) and (18) ‘? ,ave been used to obtain these two curves. Fig.2 suggests 
that the distribution of 

against t for the double wedge can be used for any profile, Allthatremains 
is to obtain an estimate for the true value of w at the trailing edge, so 
that (AU), e can be determined. A result due to Holder12 provides the 

required e%rmte; it states that the flow quantities at the trailing edge 
are such that, when the flow is deflected by an oblique shock through an 
angle corresponding to the slope at the trailing edge, the downstream Mach 
number is 1.08. This result gives a good approximation even when the profile 
is at incidence, The procedure recommended by Sinnottl" is, therefore, to 
obtain o downstream from the crest by simple wave theory, to obtain the true 
value of w at the trailing edge by Holder's resultq2, and then to use the 
curve in Pig.2 corresponding to the double wedge in order to correct the 
results of simple wave theory. This procedure gives the dashed curve in 
Fig.3; the agreement with experiment over most of the profile is satisfactory. 

4 .pROPI~S AT INCDmJCE 

Since (5) is a linear equation, lifting and non-lifting effects can be 
considered separately. In this section lifting effects are oonsidered, 

is zero and 



is the integral of the loading from the leading edge to E (apart from a 
constant factor). For brevity (Agi),l=O is written as g(C). (6) b enomes 

(23) 

Differentiating (23) with respeot to y and putting y = 0 leads to an 

integral equation for g(G), (since y 
0 y yso 

is known from the aerofoil geometry). 

This integral equation can be solved without difficulty, and u x,0) 
t 

is obtained 
by differentiating g(x). The result is precisely the same as 12), with 
h'(e) being the slope of the profile at g (the slopes on the upper and lower 
surfaces are now the same since the aerofoil is assumed to have no thickness). 
There is no need to give the details of the preoeding mathenvltios, beoause 
the following argument shows that the result must be true. (5) is a para- 
bolicr equation and, for positive h, the influence of a disturb-e at a 
point can be felt downstream only of that point. It follows that the flow 
over the upper surface is i ndependent of the lower surfaoe and vice versa. 
Hence, the flow over the upper (or lower) surface can be determined by 
regarding it as the upper (or lower) surface of a sFetrioa1 profile. This 
means that (14) cran be used to obtain the flow over the upper surface of any 
Frofile (provided that 1; h'(C) is the slope of the up er surface) and over 
the lower surface of any profile (provided that -z ht P c) is the slope of the 
lower surfaoe). Once the step from (12) to (14) has been made lifting and 
non-lifting effects can no longer be separated. 

A wedge at inoidenoe provides a simple example. The wedge at zero 
incidence has the equation y = zx up to a point of disoontinuity in slope, 
This point must be the sonic point; the slope of the profile after it is 
irrelevant. From (18), 

0 f .1/3 
u = 

a result which is shown in ref.7 to agree well with a more exact 
11 solution . 

If the wedge is now assumed to be at an incidenoe a, the formula for u on 
the upper surface beoomes, (since the slope of this surfaoe is s - a), 

For the lower surface the sign in front of a must be changed. This result 
is obtained so simply and is so plausible that the complete lack of agreement 
with the known solution13 is saddening. The reason is simply that the method 
used in this note does not allow for interferenoe between the upper an.3 lower 
surfaces; since the flow is subsonia over both surfaces, interference between 
them must ooour. On the other hand, in the flow over a flat plate at a 
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positive incidenoe the flow over the upper surface is supersonic everywhere. 
The slope of the lower surface is a, where a is the incidence of the plate 
and so, on the lower surface, 

This result is a close approation to the known solution ", the small 
difference arising because there CI is a certain amount of spillage at the 
leading edge. The flow over the upper surface cannot be obtained by the 
present method, since u1 is always negative there. These results suggest 
that, if the interference between upper and lower surfaces is small, then 
the present method works satisfactorily. Since the part of the profile 
where the flow is subsonio extends to only a very small peruentage of the 
chord for some round-nosed profiles, it seems likely, therefore, that the 
method can be applied to such profiles at incidence. As stated in section 3, 
profiles for which this is not true are of little importance. 

The technique can be illustrated by considering the profile defined 
by (19) at a positive incidence a, The slope of the lower surface is then 
given by 

Henoe, 

so that (15) no-w provides a value for xQ, the sonic point on the lower 
surface 

. 

(24) _ 

At zero incidence x* = 0 as was stated without proof in sect'on 3; as a 
increases so does x*, in agreement with experimental results s (18) now . 
gives, for the lower surface 

2 

0 

l/3 
u = 

7c 
.-+ p$ ($- r,(g$‘*+ 3 ($ + 

(25) 
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s is some difficulty in obtaining a value for x* on the upper surface. 
gives the formula 

9 (26) 

and the solution of this is again given by (25). The presence of the minus 
sign in (26) is, however, a little peculiar; in addition, (25) leads to 
the conalusion that the sonic point moves backwards as the incidence 
increases, which is contrary to experimental result&. Hence, it is proposed 
to put x* = 0 on theaupper surface for all positive incidences; since the 
sonic point is known to move towards the leading edge with inoreasing inci- 
dence it seems unlikely that this approtination will provide results less 
satisfaotory than those obtained for zero incidence. 
surface, neglecting terms of order (a/~)* 

Hence, on the upper 

For an arbitrary round-nosed profile the technique oan be summarised 
as follows. For the lower surfaoe, h'(E) in (18) is to be replaaed by 

h'(S) + $ 
0 

, as in (241, while x:> is the solution of (I 5) with this modified 

form of h'(E) inserted. For the upper surface h*(g) in (18) is to be replaaed 

by h'(g) - ; 
0 

, while x* is taken to be zero. 

The technique has been applied to the profile of (22) at VariOuS 

incidences (0.5O, 1.0' and I, so), and the results (pagainst :) are shown 
0 

in Figs.4 to 9, (full lines). The curves are drawn up to t = 0.4, except 

for the lower surfaoe at 1.5' incidence. There the curve goes up to the 

orest (at : = 0.52); in the other figures the crest occurs before $s o.r, 

The dashed curves come from using Sinnott's method 
10 described in the 

previous section. Some of the experimental results ibtained by Holder an3 
Cash8 are also shown; the agreement is again reasonable. The figures show 
that a z 1.5' has the least satisfactory agreement; oalculations for higher 
incidences would probably be of little use. 

. 5 DISCUSSION 

As a result of the theoretical methods described in this note pressure 
distributions at sonic speed over the section NFL.491 have been satisfactorily 
predicted for a range of incidenoes (0' to I. 5'). Nevertheless, there are 
still many features of transonic flow over tmo-dimensional aerofoils which 
the present methods are unable to explain, and it is the purpose of this 
secltion to discuss these features. 

The most satisfactory result of the present theory is that it is 
possible in many cases to prediot the pressure distributions over both sharp- 
nosed and round-nosed profiles from a point near the leading edge to a point 
beyond the crest, with a knowledge of the aerofoil geometry only. The theory 
fails for sharp-nosed profiles at incidenoe and for round-nosed profiles the 
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equations of which contain terms in both $ 
0 

2 
and t in an expansion about 

X 
-= a 0. It is difficult to envisage a sirnil; extension (not empirical) of 

the theory to cover either of these two cases; neither case is of importance 
at the present time. 

The method of Spreiter and filksne7 breaks down at the point on the 
du profile where dx - becomes zero. Sinnott's method IO has been used to etiend 

the pressure distributions up to the trailing edge. This method makes use 
of an empirical result due to Holderj2, which enables the flow quantities at 
the trailing edge to be determined. That an empirical result must be used 
is a defect of the method described in this note; further work on the 
problem of extending the pressure distribution up to the trailing edge is 
planned. 

The region close to the leading edge cannot be treated by the present 
method.. For a symmetrical profile at zero incidence there is a stagnation 
point at the leading edge; the stagnation point is on the lower surface 
close to the leading edge for a symmetrical profile at a positive incidence. 
NQ "small disturbance" theory can be expected to apply in this region; (the 
present theory predicts an infinite pressure at the leading edge for a sharp- 
nosed profile, and sonic pressure for a round-nosed profile). The pressures 

are seriously in error in a small region only; at the point t = 0.05 the 

theoretical predictions are already in agreement with experimental results. 

The present method gives incorrect results in the region of the 
trailing edge also. Examination of Figs.3 to 9 shows that, in general, the 
experimental pressures begin to fall near the trailing edge while the theoreti- 
oal results continue to increase steadily. This is due to the slightly blunt 
trailing edge, which was ignored in the calculations. 

The above discussion deals with flows at Mach number one only. It was 
stated in section 2 that the pressure distribution at a Mach number different 
from one can be obtained theoretically from the distribution at sonic speed 

because of the existence of the "Mach number freeze". Since F can be 
0 

expressed as a function of local Mach number alone, (i.e. the free stream 

Mach number does not e,xplicitly appear in the relation connecting 
iFd 0 

local Mach number), it follows that the theoretical curves in Figs.3 to 9 
are the same for Mach nl&mbers other than one. This is not in good agreement 
with the experimental results. Because the open area of the slotted walls 
used in the experiments of Ref.8 was too large for interference-free flow in 
two-dimensional tests, the "Mach number freeze" would, however, be expected 
to be less pronounced than in free air. 

There remains the problem of determining the position and strength of 
shocks on the profile. In general a shock first appears at a free stream 
Mach number just above the critical Mach number; as the free stream Mach 
number is increased the shock moves back and, at sonic speed, it is at (or 
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very near) the trailing edge, The present theory apparently offers no 
possibility of predicting either the position or the strength of a shock. 
This particular problem may well be very complicated; Holder and Cash8 
find that the increase in pressure across the shock is less than would be 
obtained by using the Rankine-Ilugoniot relationships. It is possible that 
an inviscid theory is not sufficient to solve the problem. 

This section has been largely a catalogue of unsolved problems, some 
of which present great difficulties, although they may perhaps be traotable 
by empirical methods. Eowever, the pressure distributions over a large 
class of &harp-nosed and blunt-nosed profiles at sonic speed can now be 
predicted, and this is an advance on the position a year ago. 

0 

0’ 

f (X,Y) 

dX,Y) 

h 

M w 

P 

PO 

S 

t 

U 
W 

U 

U 
0 

V 

X 

X 
m 

X 
0 

X* 

a 

LIST OF SX'BCLS 

aerofoil chord 

defined after equation (22) 

written for (A$)V=, 

defined by equation (3) 

free stream Nach number 

statio pressure 

stagnation pressure 

defined after equation (22) 

(x - xmVb - xm) 

free stream speed 

defined by equation (la) 

u(x, 0) 

defined by equation (lb) 

Cartesian coordinate defined in section 2 

position of crest of profile 

point on profile at which flow quantities are given 

position of sonic point on profile 

Cartesian coordinate defined in section 2 

incsidence 

ratio of specific heats 

defined by equation (9a) 

- 17 - 



LIST OF SYMBCXS (Contd.1 

defined by equation (Yb) 

difference between true w and simple wave w 

running aoordinate corresponding to y 

defined after equation (22) 

arbitrary constant (see section 2) 

running ooordinates corresponding to x 

defined by equations (8a) and (Gb) 

defined after equation (3) 

defined by equations (la) and (lb) 

Prandtl-Meyer angle 

Suffixes u and 4 denote upper and lower surfaces respeatively 

Suf'fix t.e. denotes trailing edge 

2 

3 

4 

5 

6 

7 

AlXlh0r 

Guderley, K.G. 

Oswatitsch, K. 

Gullstrar& T.K. 

Spreiter, J.R., 
Alksne, A. 

Behrbohm, H. 

Oswatitsch, K., 
Keune, F. 

Spreiter, J.R., 
A&me, h.Y, 

LIST OF REFEEXES 

Title, etc. 

Theorie Schallnaher St&mngen, 
Springer, 1957. 

gie Ges~hwindigkeitsverteilung bei Lokalen 
Uberschallgebieten an flachen profilen, 
Z&M, Vo1.30, Jan/Feb, 1950, pp.17~24. 

The flow over symnetrical profiles without 
incidence at sonic speed, 
Km hero TN. 24, 1952. 

Theoretical prediations of pressure distributions 
on non-lifting airfoils at high subsonic speeds. 
NACA Report 1217, 1955. 

NZherungstheorie des unsyrrmetrischen Schalldurchgangs 
in einer Lavaldiise. 
ZAXh4, vol.30, April 1930, pp.lOl-112. 

The flow arourd bodies of revolution at Maoh nlmiber 
one. 
Proceedings of Conference on HighSpeed Aeronautias, 
Brooklyn, Jan.1955, pp.11 3-130. 

Thin airfoil theory based on approximate solution 
of the transonic flow equation. 
N&A T.N.3970, May, 19.57. 

- 18 - 



9 

10 

17 

12 

13 

14 

Author 

LIST-X? l?lDEXXNC3S (Contd&, 

Title, eta. 

Holder, 0 .W. , Experiments with a two-dimensional aerofoil 
Cash, R.F. designed to be free from turbulent boundary-layer 

separation at small angles of incidence for all 
~dach numbers. 
R ,c, M 3100, August, 1957. 

K&m&n, Th. van Section A of “General Theory of High Speed 
Aerod,ynamics". 
Ed. Sears, W.R./O.U.P. 1955. 

sinnott, C.S. On the flow of a sonio stream past an aerofail 
surface. 
J.Aero/Space Sciences, March, 1959. 

Guderley, G., The flow over a wedge profile at Mach number 1. 
Yoshihara, 1~. Journal of Aeronautical Sciences, Vol.97, Nov. 1950, 

pp.723-7356 

Holder, D.W. Note an the flow near the tail of a two-dimensional 
aerofail moving at a free stream Mach number close 
to unity. 
C.P.188, June, 1954. 

Guderley, G., Two-dimensional unsymmetria flow patterns at Mach 
Yoshihars, H. number 1. 

Journal of the Aeronautical Sciences, Va1.20, 
Nov., 1953, pp.757-768. 

Guderley, G, The flow aver a flat plate with a small angle of 
attack at Mach number 1. 
Journal of the Aeronautical Sciences, Vo1.21, 
April, 1954, pp.261-274. 

-19 - 

TT.f.2078 C . . f.YM . X3 - Printed Cn Gleclt %-itch 





00 

00 

0 

-00 

-00 

-00 

\ K \ 

C 

\ 

I ( 

, . 

FOR SECTlObJ NPL 491 __ 

FIG. I. SLOPE OF AEROFOIL SECTION NPL 491. 



0.6 

0.4 

L 

C 

DOUBLE WEDGE, 

FIG. 2. ERROR IN c3 CAUSED BY USING SIMPLE 
WAVE THEORY DOWNSTREAM OF CREST. 

(THIS DIAGRAM IS EXPLAINED IN SECTION 3> 

, . 



1 I I I 

I 
I 
I 

h “I 
” 

I 

I I I I 

I I 
I I 

. ” . ” I -‘- I -‘- 

0 
0 

l--i--- 
-!--l-- 

: 
I 
I 
I 

I 

I 

I 

t 



x Moo=/-035 
Q Moo=O-999 
0 Moo=0*948 

- 

Moo=1 

--e-w Moo=1 

9 

IG. 4. THEORETICAL AND EXPERIMENTAL TRANSONIC PRESSURE 
DISTRIBUTIONS ON THE SECTION NPL 491.05’ INCIDENCE, UPPER SURFACE. 

(e 0 = STAGNATION PRESSURE) 

l 
D L 



0.6 

X 

0 

a 

----- 

Moo ~I-035 
M 00 = 0.999 

(EXPERIMENT, f?EF 8) 

Moo =O-948 I 
~00 = I (THEORY Ew 18) 

-7 - --- Mao = I (fHEORY REF. IO) -t---- 

FIG. 5. THEORETICAL AND EXPERIMENTAL TRANSONIC PRESSURE 
DISTRIBUTIONS ON THE SECTION NPL 491. 0.5 INCIDENCE, LOWER SURFACE. 

(p 0 P STAGNATION PRESSURE) 



0.3 

0.4 

%o 

0.5 

- 

0 

x Moo = I.033 

0 Moot O-999 
(EXPERIMENT, REF. 8) 

- a Moo-O.937 1 -/ 

Moo = I (THEORY EQN. 18) 

-a--- Moo= I (THEORY t=m 10) 
I - 

j0 

;; 

I 
0.1 C > c 0.3 0.L a - x/c 0 5 ( 5 ( 3‘ 7 ( 3-l 3 0.9 I*( 

IG. 6. THEORETICAL AND EXPERIMENTAL TRANSONIC PRESSURE 
DISTRIBUTIONS ON THE SECTION NPL 491. lo INCIDENCE, UPPER SURFACE. 

(&=~TAGNATION Pwssufx] 

I 



L 

Mae = I.095 
X Moo = l-033 
0 

Moo so.999 (EXPERIMENT, REF. 83 

0 M - = 0,937 

~00 =I (THEORY, Ew. 183 4 
tb 

I 
w---B M 00=1 (THEORY, REF: IO.) 

I T 

FIG. 7. THEORETICAL AND EXPERIMENTAL TRANSONIC PRESSURE 
DISTRIBUTIONS ON THE SECTION NPL 491. lo INCIDENCE, LOWER SURFACE 

(P o- -STAGNATION PRESSURE) 



05 

O-6 

“FIG. 8. “’ THEO;ETI& AND’tX;EI;Ri%ENTit TRAOP;SONI~ 

M-= I.030 

i 

(EXPERIMENT, REF 83 
0 M- = 0.999 
0 M-=0.952 

M 00 = I (THEORY, EQN. 183 

- - -- -- MW=I (THEORY, REF: 103 

- 

0.8 

C PRESSURE 
DlSTRIBUTlONS ON THE SECTION NPL 491.1-S* INCIDENCE, UPPER SURFACE. 

(f+STAGNATION PRESSURE) 

,  
* r * I ,  



, 

/ 

C 

n 
C 

C 

. 

I  

s. 9. O” THEOi 
bUTIONS ON 

Moo = k09f 
a 
5 ‘\ I 

Mao= I.030 \ 
Mm = O-999 
Mcro = 0.952 

J 

+ (EXPERIMENT REE8) 

M= = I, (THEORY EQN 183 
----- Mm = I, (THEORY REF. IO.) Cl 

I t 

(1 
Cl 

I I 1 

kTICAOi3 AND”*~X%$hENT& TRkkONlt? PRE: 
THE SECTION NPL 491. 15 INCIDENCE, LOWEI a- 

I 
PURE 

I.0 

SURFACE. 
(i-‘o = STAGNATION PRESSURE) 

I 







C.P. No. 456 
(20,677) 

A.R.C. Technical Report 

0 Crown Copyright 1959 

Published by 
HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
York House, Kingsway, London w.c.2 

423 Oxford Street, London w.1 
13~ Castle Street, Edinburgh 2 

109 St. Mary Street, Cardiff 
39 King Street, Manchester 2 

Tower Lane, Bristol 1 
2 Edmund Street, Birmingham 3 

80 Chichester Street, Belfast 
or through any bookseller 

Printed in Great Britain 

S.O. Code No. 23-90 I l-56 

C.P. No. 456 


