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SUMMARY

A technique developed by Spreiter and Alksne for determining the
pressure distribution over a two-dimensional sharp-nosed aerofoil moving at
a speed in the transonic range is extended to the case of a round-nosed
aerofoil, If there are no shocks before the trailing edge, Sinnott’'s method
can be used for calculating the pressure distribution over the rear part of

the wing, The method is applicable to a round-nosed aerofoil at incidence,
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1 INTRODUCTION

The determination of the transonic flow over an arbitrary two~dimensional
aerofoil has long been one of the most exasperating unsolved problems of aero-
dynemics, The partial differential equation for the velocity potential is
simple, the boundary corditions can be set up without difficulty, and the
problem is of considerable practical importance, In spite of all this the
results obtained were, until recently, socanty.

Two main methods had been tried, the hodograph method and the integral
equation method, In the first of these the (non-linear) differential
equations of motion are transformed so that the velocities become the indepen-
dent variables while the spatial coordinates become the dependent varisbles,
The transformed equations are linear and solutions of them can be built up
by superposition, A descrigtion of this theory forms the major part of
Guderley's interesting book , which also contains a camprehensive list of
references, The greatest difficulty in the use of the hodograph method is
that the boundaries in the physical plane, along which data are prescribed,
are, in general, unknown in the hodograph plane. This has restricted the
use of the hodograph method to studies of transonic flow over wedges and
flat plates; there is no lack of guch studies, An extension to flow over
curved surfaces might be possible by a "trial and error" process, but such
a process would be most laborious,

The integral equat%on.method originated with Oswatitsoh2 and was
eleborated by Gullstrand”, In this method, (almost a method of despair;,
the differential equations of motion are transformed into a (non-linear
integral equation, some approximations are made to the integrand, a guess
at the velooity distribution over the aerofoil is made, and a solution is
obtained by iteration, Another elaboration of Oswatitsgh's method was
given by Spreiter and Alksne™, As in Gullstrand's work” the technique
permits the calculation of the position and strength of shock waves on the
aerofoil, Agreement with the few experimental results available is unexciting.
The integral equation method is preferable to the hodograph method since
curved profiles can be treated, but it is tedious to apply and the effects of
the approximations introduced are not easy to estimate,

A third approach to the solution of the problem is also due to
Oswatitsch., Some work by Behrbo is based on a suggestion of Oswatitsch
that a factor of a term in the differential equations be taken as an une
determined constant, The equations then become linear and a solution %s
obtained with one arbitrary constant, A paper by Oswatitsch and Keune
contains a method for determining this constant in the axisymmetrioc ocase,

The examples included there show that Oswatitsch's suggestion can lead to
useful results, A recmarksble paper by Spreiter and Alksne/ has recently
appeared which is based on an ingenious refinement of Oswatitsch's suggestion,
The method described there leads to a simple analytical expression for the
pressure distribution over an arbitrary profile, and the results are in
striking agreement with experiment,

The present note briefly describes the work of Spreiter and Alksne7,
and extends it to round~-nosed profiles and profiles at incidence, The
methods are applied to a profile which has been extensively investigated by
Holder and CashS,

2 THE WORK OF SPREITMR AND ATLKSNE

A brief description only7is given here: the interested reader is
referred to the original paper’ for a full treatment.



The problem is to determine the steady transonic flow over a two-
dimensional, thin, symmetrical profile, Cartesian coordinates, x and y,
are introduced, with origin at the nose of the profile; the line of symmetry
of the profile is part of the x axis, and the y axis is normal to this, The
X direction coincides with the free stream direction, The speed of the free
stream is U‘oo and the Mach number is Mg. Even when shock waves are present

the flow may be assumed to be irrotational; since the aerofoil is thin, a
disturbance velocity potential, ¢, may be introduced, such that

x velocity
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while y velocity ) = U v , (1v)
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the suffixes denoting partial derivatives, u and v may be termed "incremental
velocities", ¢ satisfies the following non-linear second-order partial
differential equation:

bo-(ren g g = B-1)s (2)

Y being the ratio of the specific heats of the fluid, The boundary conditions
that the solution of (2) must satisfy are that the incremental velocities
vanish at infinity and that the given profile be a streamline., If the
equation of the profile is:

y = ©h(x) (3)

where h is of order one and T is a constant of the order of the thickness chord
ratio of the profile, the boundary condition may be written, in simplified
form:

y = o, 6, = Tht (%) ()

the prime denoting differentiation, The equations giving the changes in
the incremental velocities across a shock also take on a simplified form in
transonic flow4; since they are not needed in this note, there is no point
in giving them here,

(2) may be written

=M = 0L a0 g n g = 2w (9)

where A is an unspecified constant. The right hand side is regarded as a
given function of x and y, f(x,y), although it is a known function only
when (2) has been solved., (5) can be solved by the use of Green's theorem,
the solution being
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for positive A, and
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Por negative A, & and M are running coordinates corresponding to x and y
respectively, o is the "unit heat source",
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¢ = 0 if ;c—%—g < 0 (8p)
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suffixes u ard £ referring to conditions on the upper and lower sides
respeotively of the wing and wake, (6) and (7) are valid if either shock
waves are sbsent from the region defined by the limits of the double integral
or the shock waves present in this region are parallel to the y axis. For a
symrmetrical profile (9a) shows that (A¢)n—-0 is zero while, from (4) and (9b),

<A %%)1:0 = 2an (8) .
(6), (7), (8a) and (8b) now lead to
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o being the aercfoil chord,

(10) and (11) have been derived from (2) without further approximations
(other than a restriction on the orientation of shock waves), A is an
unspecified constant. Spreiter and Alksne! now replace this constant by a
function of x,
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l.e. by (v + 1) 1 u'(x,0) .

They further assume that, in the integrand of the double integral,
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In other words they assume that ¢g§ is equal to (¢xx>y-o everywhere,
Abbreviating u(x,0) to u, (10) and (11) become

u =

4 /X w @, (%) (12)
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for positive u', and

T . L /C h' (&) dg (1 _Mi) (13)
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u =

for negative u', These approximations are discussed in detail in the apperdix
to ref,7; the excellent agreement with experiment is sufficient justification
for maeking them, ¢



(12) and (13) are non-linear ordinary differential equations for u on
the aerofoil surface, (13) will not be considered further in this section;
it can be treated in the same way as (12). The solution of (12) is
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with x* an undetermined constant, When
x = x*
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u becomes
(r +1) ﬂ
o0

which is the wvalue of u at the sonic point on the usual transonioc approxi-
ma.tion, (11+) gives an infinite value for u' at x = x* unless x* is chosen
to be the value of x for which
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(14) can be used only so long as u' is positive, The above derivation of
(12), where u' must be positive, and (13), where u' must be negative, shows
that there is no possibility of overcoming this restriction.

The factor

/3
V173 3273

(¥ +1
9

outside the square brackets in (14) means that the transonic similarity rules
hold for this solution. In addition, when (14) is used to find the variation
of local Mach murber with x it is found that, approximately, the variation is
independent of Mm. This phenomenon, which has been observed in experiment

and has been commented on beforew, is picturesquely named the "Mach mumber
freeze",

The biconvex aerofoil provides an interesting example, The equation
of this profile is

X
y = 2'FX(1""‘6‘)



T being the thickness chord ratio, The location of the sonic point comes
from solving (15); hence

x* =

o

(14) leads to the following expression for u
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This result is shown in ref,7 to compare very well with experiment,

u = +

Spreiter and A'_Lksne7 describe another technique for the solution of
(2) which applies when the flow is either subsonic everywhere or supersonic
everywhere, The function which is regarded first as a constant and then as
a function of x only is now

(v +1) M ¢ .
Applied to rupersonic flows this approach leads to the differential equation

—_ h" .
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On integration this gives
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where u, and h(') are values of u and h supposed given at a point x = X

(17) is, in fact, the transonic approximation to the result obtained by
simple wave theory; it will be required in this note at a later stage,

3 EXTENSION TO ROUND-NCSED FPROFILES

Because of the existence of the "Mach number freeze", flows with a
free stream Mach number of unity only will be discussed in the rest of this
note: (14) becomes:
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Spreiter and Alksne7 considered sharp-nosed profiles only, and for these x*,
the position of the sonic point on the aerofoil, is given by (15). The
pressure distribution can then be obtained from (18). The problem of tran-
sonic flow over a symmetrical round-nosed profile is the subject of this
section,

The difficulty arising when the method of section 2 is applied to a
round-nosed profile can be seen by considering the profile whose equation
is:

1
\Z
y = T <’§') (C - X) H (19)
it has a sharp trailing edge and a maximum thickness of
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1
at x = 3 C.

From (3)

2nt(x) = <%)§-3<§>% .

The inner integral of (18) becomes
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and the differential coefficient of this is

Laad o
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The left hand side of (15) is, therefore

3
4o? ’

and this equation no longer gives a value for the position of the sonic
point, (18) becomes
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Although (15) has failed to provide a value for x* it is shown in the next
section that it does give a value for x* when the incidence is not zero,

As the incidence terds to zero so does x*; hence, x* in (20) is taken as
zero, It is known® that, for some round-nosed aerofoils, the sonic point
is, in fact, very close to the leading edge; in fast, profiles whose sonioc
point is not close to the leading edge are not universally in favour. The
method of Spreiter and Alksne! applied to sharp-nosed aerofoils also breaks
down near the leading edge ((16) shows that u has a logarithmic infinity
there), It is, therefore, likely that having the sonic point, for round-
nosed aerofoils, at the leading edge will not make the results any less
useful than thoce obtained in ref,7, (20) becomes

. %.(g>1/3 z-—fE§§T7§ <§i;/3 ‘

Y

The method described in section 2 cammot always be extended so easily
to round-nosed profiles., The following equation describes a quite
unexceptionable profile,

e
1]
a
Q
N
"
noj=
|
1
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—

it has a sharp trailing edge and a maximum thickness of %F- at x = e,

For this profile, using (18),

2@ s m®)” e

Y

(15) again failing to provide a value for x*%, It is not possible to put x*
equal to zero in (21) and there is no obvious method for obtaining a
plausible value,for x*, Hence, profiles whose expansion about x = O contains
terms in both %2 and x cannot yet be treated by the simple method discussed
in this note. However, such profiles usually have undesirable features in
the pressure distribution near the leading edge.

The above extension of the method of section 2 to round-nosed aerofoils

is now applied to a prof§1e, NPL. 491, which has been investigated experimenm
tally by Holder and Cash®, This profile has the equation

o[ et
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o! an% s are equal to 9.409 inches and O, 341 inches respectively, and © is
3,024 ., The chord of the aerofoil is 9 inches, so that the profile is not
closed at the rear emd. Reasons for the choice of this profile are given
in ref,8; it has a thickness chord ratio of 0,0418 and its maximum thick-
ness ooccurs at X = 0,209 ¢, Near the leading edge, from (22),

oo (2 [1-ms(@)en]

The factor of 20,3 is much too large for a "small disturbance" theory and
so the profile has been slightly modified., Fig.1 shows the actual values of

1
x\* &y
c dx

(full line) and the modification made (dashed line), The modification is
confined to a region near the leading edge, where the method described here
breaks down anyway., Even there, the difference between the two curves of
Pig.1 is not excessive,

gle

(18), with x* put equal to zero, has been used to calculate the
pressure distribution from f— = 0 to f-: 0.4, and the result is plotted in

Fig.3 (full line), In this figure values of 59- , where p is static pressure
)
and P, stagnation pressure, are plotted against -i-c- « The formula for p-R- in
o
terms of u (the free stream Mach nunber being one) is, negleoting squares

and higher powers of the incremental velocities,

.

2\
2 - < ) (1 ~ya) = 0.528 (1 = 1.4 u)
o]

Y + 1

;9—- depends on local Mach number only, the free stream Mach mmber not
o
appearing explicitly; 0.528 is the value of -l:f-— at the sonic point, The
o
nunbers come from putting v = 1.4, this value being used in all the numerical
calculations., Also shown in Fig.3 are some of the experimental results
obtained by Holder and Cash®, There is fair agreement with experiment, The
sonic point is shown experimentally® to be at x = 0,018 ¢; if this value
is chosen for x* instead of zero, u at x = 0,1 ¢ differs by 5% from the value
first obtained, The difference in T)E. is less than 1%
o

The profile is one in which u passes through a meximum and, as has
been mentioned already, the technique fails when u' = O, Hence, (18) cannot
be used beyond the point of maximum u; in fact, its value becomes doubtful
at some point before this, To obtain an estimate of the pressure distribution
over the whole profile, Sinnott's method10 has been used, This method, which
epplies also to profiles at incidence, assumes that the flow quantities are
known at the "orest" of the profile, i.e, at the point where y has its maxi-
mum value, Simple wave theory is used to obtain a first approximation for
the quantities over that part of the profile downstream of the crest, 17)

- 411 -



being the appropriate equation, This approximation gives pressures which
are too low, since it neglects the compression waves resulting from reflec-
tions at the sonic line, An estimate of the latter effect can be cobtained
by considering the flow at sonic speed over a double wedge, the solution of
which is knownl?, Simple wave theory predicts that all the flow quantities
are constant from the orest omwards, in particular, that w, the Prandtl-
Meyer angle, is constant, In Fig,2, Aw (the difference between the true
value of w and the value of w on simple wave theory) divided by the value
of this quantity at the trailing edge is plotted against t, where

X - X

m
t - Py
c ~ X 4
m

xm‘being the value of x at the crest, The same quantity is plotted for the

SENORCAI

and y = 2¢x(1-—-f§> .

two profiles

(17) and (18) have been used to obtain these two curves, Fig.2 suggests
that the distribution of

Aw

iAw;t,e.

against t for the double wedge can be used for any profile, All that remains
is to obtain an estimate for the true value of w at the trailing edge, so
that (A(JJ)Jc e, Con be determined, A result due to Holder12 provides the

required estimate; 1t states that the flow quantities at the trailing edge
are such that, when the flow is deflccted by an oblique shock through an

angle corresponding to the slope at the trailing edge, the downstream Mach
number is 1,08. This result gives a good approximation even when the profile
is at incidence, The procedure recommended by Sinnott10 is, therefore, to
obtain w downstream from the crest by simple wave theory, to obtain the true
value of w at the trailing edge by Holder's resu1t12, and then to use the
curve in Fig,2 corresponding to the double wedge in order to correct the
results of simple wave theory, This procedure gives the dashed curve in
Pig.3; the agreement with experiment over most of the profile is satisfactory,

L PROFITIES AT INCIDENCE

Since (5) is a linear equation, lifting and non~lifting effects can be
considered separately. In this seotion 1lifting effects are oonsidered,

&),

is zero ard

-2 -



(48, o

is the integral of the loading from the leading edge to & (apart from a

constant factor), For brevity (A¢)n—0 is written as g(€), (6) becomes

#xy) = & fx 50 (35) e -1 fo [Xo—f(a,magdn (23)

[o] 00 "m0

Differentiating (23) with respect to y ard putting y = O leads to an
integral equation for g(&), (since (%) is known from the aerofoil geometxry).
y=0

This integral equation can be solved without diffioulty, and uéx,O) is obtained
by differentiating g(x). The result is precisely the same as (12), with
h'(E) being the slope of the profile at E (the slopes on the upper and lower
surfaces are now the same since the aerofoil is assumed to have no thickness),
There is no need to give the details of the preceding mathematios, because
the following argument shows that the result must be true. (5) is a para-
bolic equation and, for positive N\, the influence of a disturbance at a
point can be felt downsiream only of that point, It follows that the flow
over the upper surface is independent of the lower surface and vice versa,
Hence, the flow over the upper (or lower) surface can be determined by
regarding it as the upper (or lower) surface of a symuetrical profile, This
means that (14) oan be used to obtain the flow over the upper surface of any
nrofile (provided that T h'(E) is the slope of the upper surface) and over
the lower surface of any profile (provided that ~% h'?i‘;) is the slope of the
lower surface), Once the step from (12) to (14) has been made lifting and
non-1ifting effects can no longer be separated,

A wedge at inoidence provides a simple example. The wedge at zero
incidence has the equation y = Tx up to a point of discontinuity in slope,
This point must be the sonic point; the slope of the profile after it is
irrelevant, From (418),

) 75 )

. 1
a result which is shown in ref,7 to agree well with a more exact solution 1.

If the wedge is now assumed to be at an incidence a, the formula for u on
the upper surface becomes, (since the slope of this surface is % = 0),

.. (_%)1/3 ‘(u)_?% <1og %%>1/3 .

(v +1)

For the lower surface the sign in front of o must be changed. This result

is obtained so simply and is so plausible that the complete lack of agreement
with the known solution?? is saddening. The reason is simply that the method
used in this note does not allow for interference between the upper ard lower
surfaces; since the flow is subsonic over both surfaces, interference between
them must occur, On the other hand, in the flow over a flat plate at a

- 13 -



positive incidence the flow over the upper surface is supersonic everywhere,
The slope of the lower surface is a, where a is the incidence of the plate
and so, on the lower surfaoce,

@ )

Y

This result is a close approximation to the known solution14, the small
difference arising because there is a certain amount of spillage at the
leading edge., The flow over the upper surface cannot be obtained by the
present method, since u' is always negative there, These results suggest
that, if the interference between upper and lower surfaces is small, then
the present method works satisfactorily. Since the part of the profile
where the flow is subsonic extends to only a very small percentage of the
chord for some round-nosed profiles, it seems likely, therefore, that the
method can be applied to such profiles at incidence, As stated in section 3,
profiles for which this is not true are of little importance.

The technique can be illustrated by considering the profile defined
by (19) at a positive incidence @, The slope of the lower surface is then

given by
1 |
AV [ \2
Th'(x) =47 \§> -3 f)i] + 0 (2y)
Hernoce,
ps
_@_j hi(E) @8 _m %
~ e b s 2
o]

s0 that (15) now provides a value for x*, the sonic point on the lower
surface

2
x* = "1—%‘ <%“> c . (25)
9r

At zero incidence x* = O as was stated without proof in sect%on 3; as &
increases so does x¥, in agreement with experimental results®, (18) now
gives, for the lower surface

e ko RGO
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is some difficulty in obtaining a value for x* on the upper surface,
gives the formula

F = -k (§) o : (26)

and the solution of this is again given by (25). The presence of the minus
sign in (26) is, however, a little peculiar; in addition, (25) leads to

the conclusion that the sonic point moves backwards as the incidence
increases, which is contrary to experimental resultsS, Hence, it is proposed
to put x* = O on th38upper surface for all positive incidences; since the
sonic point is known~ to move towards the leading edge with increasing inci-
dence it seems unlikely that this approximation will provide results less
satisfactory than those obtained for zerg incidence, Hence, on the upper
surface, neglecting terms of order (a/x)?

- @ e (R0 -0

For an arbitrary round-nosed profile the technique can be summerised
as follows, For the lower surface, h'(£) in (18) is to be replaced by

T
form of h'(E) inserted. For the upper surface h'(€) in (18) is to be replaced

h'(&) + <ﬁ> , as in (24), while x* is the solution of (15) with this modified

by h'(8) - <%> , while x* is taken to be zero.

The technique has been applied to the profile of (22) at various

incidences (0,5°, 1,0° and 1,5°), and the results QgL-against f& are shown
0o
in Figs.k to 9, (full lines). The curves are drawn up to f-: 0.4, except

for the lower surface at 1.50 incidence, There the curve goes up to the
orest (at §'= 0.52); in the other figures the crest occurs before f»: 0.4,

The dashed curves come from using Sinnott's method1o, described in the
previous section. Some of the experimental results obtained by Holder and
Cash8 are also shown; the agreement is again reasonable, The figures show
that « = 1.5° has the least satisfactory agreement; ocalculations for higher
incidences would probebly be of little use,

5 DISCUSSION

As a result of the theoretical methods described in this note pressure
distributions at sonic speed over the section NPL,491 have been satisfactorily
predicted for a range of incidences (0° to 1,5°), Nevertheless, there are
still many features of transonic flow over two-dimensional aerofoils which
the present methods are unable to explain, and it is the purpose of this
seation to discuss these features,

The most satisfactory result of the present theory is that it is
possible in many cases to predict the pressure distributions over both sharp-
nosed and round-nosed profiles from a point near the leading edge to & point
beyond the crest, with a knowledge of the aerofoil geametry only. The theory
fails for sharp-nosed profiles at incidence and for round-nosed profiles the

- 45 -



2
equations of which contain terms in both (g) and % in an expansion about

~§ = 0. It is difficult to envisage a simple extension (not empirical) of

the theory to cover either of these two cases; neither case is of importance
at the present time.

The method of Spreiter and Alksne7 breaks down at the point on the
profile where'%ﬁ becomes zero. Sinnott's method10 has been used to extend
the pressure distributions up to the trailing edge. This method makes use
of an empirical result due to Holder12, which enables the flow quantities at
the trailing edge to be determined. That an empirical result must be used
is a defect of the method described in this note; further work on the
problem of extending the pressure distribution up to the trailing edge is
planned.

The region close to the leading edge cannot be treated by the present
method. For a symmetrical profile at zero incidence there is a stagnation
point at the leading edge; the stagnation point is on the lower surface
close to the leading edge for a symmetrical profile at a positive incidence.
No "small disturbance" theory can be expected to apply in this region; (the
present theory predicts an infinite pressure at the leading edge for a sharp-
nosed profile, and sonic pressure for a round-nosed profile). The pressures

are seriously in error in a small region only; at the point % = 0.05 the
theoretical predictions are already in agreement with experimental results.

The present method gives incorrect results in the region of the
trailing edge also. Examination of Figs.3 to 9 shows that, in general, the
experimental pressures begin to fall near the trailing edge while the theoreti-
cal results continue to increase steadily. This is due to the slightly blunt
trailing edge, which was igncred in the calculations.

The above discussion deals with flows at Mach number one only. It was
stated in section 2 that the pressure distribution at a Mach number different
from one can be obtained theoretically from the distribution at sonic speed

because of the existence of the "Mach number freeze". Since == can be

o
expressed as a Punction ¢f local Mach number alone, (i.e. the free stream
Mach number does not explicitly appear in the relation connecting gL and

0

local Mach number), it follows that the theoretical curves in Figs.3 t0 9
are the same for Mach numbers other than one. This is not in good agreement
with the experimental results. Because the open area of the slotted walls
used in the experiments of Ref.8 was too large for interference-free flow in
two-dimensional tests, the "Mach number freeze" would, however, be expected
to be less pronounced than in free air.

There remains the problem of determining the position and strength of
shocks on the profile. In general a shock first appears at a free stresm
Mach numbsr just above the critical Mach number; as the free stream Mach
number is increased the shock moves back and, at sonic speed, it is at (or



very near) the trailing edge. The present theory apparently offers no
possibility of predicting either the position or the strength of a shock,
This particular problem mey well be very complicated; Holder and Cash8
find that the increase in pressure across the shock is less than would be
obtained by using the Rankine-Hugoniot relationships, It is possible that
an inviscid theory is not sufficient to solve the problem,

This section has bsen largely a catalogue of unsolved problems, some
of which present great difficulties, although they may perhaps be tractable
by empirical methods, However, the pressure distributions over a large
class of sharp-nosed and blunt-nosed profiles at sonic speed can now be
predicted, and this is an advance on the position a year ago.
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