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S~~~~U~Y -- 

The two-dimensional f'loi~ considered is that of an ideal, 
compressible fluid bounded by two rigid, non-conducting, parallel walls 
of infinite extent. A shock wave normal to the rigid boundaries divides 
the flop unto subsonic and supersonic regimes. In the supersonic region 
a normal static temperature variation, which is sectionaily invariant 
but fluctuates periodically with time, when convected through the S~OC'K 

wave results in a perturbation of the flow in the subsonic region. By 
assuming that the magnitude of the fluctuations of the static temperature 
are small an expression for the acoustic pressure fluctuation in the 
downstream part of the gas is deduced. 

Introduction _I-- 

Experimental evidence obtained in recent years has fi-rmly 
established the fact that a large increase in jet noise arises when the 
jet is running beyond or at least close to its choking condition. 

POWed , Burgers*, Ribnerj, Lighthill and many others have endeavoured 
to explain analytically how this large increase in jet noise occurs. 

The outcome of their investigations suggests in general that any one of 
the upstream fluctuations of entropy, pressure and vorticity, on being 
convected through a shock-wave system, o rrive rise to all three modes of 
disturbances in the subsonic downstream region. 

The analysis contained herein is an advance on a paper by 
Pcwell' in that it considers two-dimensional motion, but it concerns 
itself with the acoustic disturbances produced downstream due to the 
convection of entropy fluctuations only through a normal shock wave. 

The analytic model chosen for investigation consists of a 
two-dimensional bounded channel within which supersonic and subsonic 
flows are separated by a normal shock wave. The boundaries are tlzro 
parallel rigid non-conducting walls of infinite extent. An upstream 
static temperature fluctuates in a periodic manner about a mean V&UC. 
This gives rise to disturbances of the normal shock wave profile which 
in turn produces a sound field within the subsonic downstream region 
'The mean value of the upstream static temperature is dependent only on 
the co-ordinate normal to the channel centre line and is symmetric about 
this centre line. As the reduced equations governing the flow are linear 
the perturbation of the downstrc>-am flop due: to bhe mean value of the 
upstream static temperature is SL, -ln&rable from the unsttiady perturbation 
due to the fluctuations of the upstream static: temperature about the mean 
value. 
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Notation 
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speed of sound 

specific heat at constant pressure 

width of channel 

Mach number 

static pressure 

velocity vector 

density 

symbol denoting rarefraction wave; arrow denotes direction 

absolute temperature 

velocity parallel to channel centre line 

perturbation of the speed of sound 

perturbation of static pressure 

perturbation velocity vector 

r' - suffix denoting supersonic &gime 
S = 

2- suffix denoting subsonic rdgime 

t time variable 

U perturbation of velocity parallel to channel centre line 

V perturbation of velocity normal to channel centre line 

*, Y orthogonal Cartesian co-ordinates 

Y ratio of specific heats 

F perturbation of density 

Theory 

The physical state contemplated in the theoretical investigation 
is shown in Fig.1. The origin of the co-ordinate system used in this 
analysis is located on the centre line of the channel at the undisturbed 
shock front. 

The unsteady equations expressing conservation of mass, momentum 
and energy are, for an ideal gas 

DR 
-- + R div 0 = 0 . ..(I) 
Dt 

Dg 1 
-- + -gradP = 0 
Dt R 

. ..(2) 

DP DR 
-- I p -- = 0 l l l (3) 
Dt Dt 

where/ 
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D a 
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Following a linear trcatmcnt for two-dimensional flow or an ideal 
comprcssiblc fluid4, the flow variables downstream of the shock may bc 
written as 

F, + p(xyt), lx, -I- dxyt>, 'I2 + ~(icyt>, @z + ti(xyt) 

where the components 
Equations (I), (2) 

of the velocity vector arc u2 + u(xyi), v(xyt). 
and (3) then simplify to the form 

dP 
-- +-I?, &iv< = 0 
dt 

ai 1 
-- + -- gr?Ld p = 0 

. ..(6) 
dP dP 

!2 -- - iI -- 
2 

= 0 
at dt 

d a a 
where -- E -- + u, --. 

dt at ax 

Zlimination of p and C; yields the pressure perturbation equation 

d2P 
--- 
S.-t2 

- 31; d iv.grad p = 0 ..* (7 

. . . (4) 

.  l .  (5) 

where the non-dimensional co-ordinates 

4. x ** = x/D, y" = y/D, T = U$/D 

are used in the expanded form. In the remainder of this work the suffix 
2 on the Mach number, M,, and velocity, U,, will be omitted. 

Steady l%rturbation --"- ." 

The total pressure perturbation may be regarded as the sum of 
two parts: (i) h ,t d t e s ea y perturbation of the downstream flow due to 
the mean of the upstream static temperature and (ii) the unsteady 
perturbation due to the time fluctuations of the upstream static 
temperature about the mean value. 

In the steady case, equation (7) reduces to 

In order to solve this equation it is necessary to obtain an expression 
for p at the shock front in terms of the disturbing axcnt which, in 
this case, is the upstream static temperature variation, T(y). This 
temperature variation ITI~J~ be represcntcd by 

T(y) = To[l + 'I" (y)], T'(y) << -1. 

The Mach number of the flow along ;1 Zcncral streamline in the subsonic 
region of the channel is then given by 



neglecting O~T1(y)a]. The P rcssurc ratio across an oblique shock wave, 
correct to the first order of the inclination of the shock to the 
y-axis is given by 

~~p,+Pbv) 2Y Y-1 
-------- = --- $ - --- 

% Y+l YeI 

where . ..(I@ 

pa 2Y Y-1 
-- = --- j,1; - --- . 

pi Y-f-1 Y-r-1 

Hence, from (9) and (IO) the pressure perturbation in the subsonic region 
at the shock front is given by 

Pbd = 
2y@P, 

- ------ T' (Y>. 

In what follows this boundary condition will be taken on the y-axis, 
i.e., the above boundary condition will be interpreted as 

Y+l 

P(0 Y) = 
2y$ Pi 

- ------ T'(Y). 
Y+l 

assuming a static temperature distribution within the 
:;gpgty Q 1 which is symmetric about y* = 0 the pressure 
perturbation at the undisturbed shock front may be written in the form 

PC0 Y> = 
2~11; FL O3 

- ---w-e 
tl y+l 1 

TA cos 2nxy*. 

n=O 
This condition together with that at infinity, i.e., p(xy) -+ 0 as 
x* 3 03 are sufficient to uniquely determine the solution of (6) by the 
method of separation of variables. Thus, the steady pressure perturbation 
of the downstream flow due to the mean of the uPstream static temperature 
is given by 

2Y 
P(xy) = - --- p& 

Y+l 

co 

c z-l=0 
lp 2nX 

TA exp f - --- , 

i- D 

2nx 
--- Y* 
D 

. ..(n) 

The isobaric contours of the subsonic region for the particular 
case when the upstream static temperature profile is given by a simple 
cosine wave are shown in Fig.2. 

Unsteady Perturbation 

In this casl: the downstream perturbation, which is due to the 
oscillation of the temperature variation about the mean, satisfies equation 
(7). As in the steady case, the condition at the shock front is applied 
along the line x = 0 and on the assumption that the inclination of the 
shock to the y-axis is small. This is justified provided that the 
variation of upstream static temperature is small5. It remains to 
investigate the interaction problem of a shock lr?ave with a temperature 
gradient in the x-direction constituted by a number of plant entropy waves 
parallel to the normal shock wave, the shock wave being taken to move 
into a fluid which is at rest. Fig.3 illustrates this physical situation 
in the x,t-plant where 6x is taken to be sufficiently small such that the 

static/ 
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static temperature profile in the x-direction can be represented 
approximately by a continuous function. In developing this argument it 
is also necessary to assume that reflection, refraction and small 
alterations in strength of the resulting pressure wave system, on being 
convected through the subsequent entropy wave, is sufficiently small to 
be neglectcdh. 

A note by Powell' and a subsequent report by Appleton 5 develop 
an expression for the acoustic disturbance produced by the passage of a 
single plane entropy wave through a normal shock VJ~VC. It was shown that 
within the limitations of the linear theory, the magnitude of the resulting 
acoustic disturbance was directly proportional to the magnitude of the 
tintropy disturbance and was given by 

6Pa = R,.GT,.Cp.o 

where 6T, is the static temperature change which defines the entropy 
wave in the fluid ahead of the shock, 6p, is the magnitude of the 
resulting pressure perturbation in the region behind the shock wave, and 
CT is a transmission coefficient dependent only on the shock wave Mach 
number (see Ref./;, Fig.7 for variation of o with 14). 

The change in the static prcssure behind the shock wave 
immediately after the general entropy wave designated by r (see Fig.3) 
has been convected through it, is given by tho expression 

Y 

This expression is true to within the degree of accuracy implied in the 
previous assumptions, i.e., terms such as hi. 6T are of second order 
importance and can thcreforc be neglL>ct&. If arsufficiently large 
nLunber of entropy waves are considered so that the static temperature 
profile in the x-direction can be represented by a continuous function, 
which will be assumed to be sinusoidal, then 6p2 may be written in the 
form 

6p, = RzCpoAT.e~ (i2nx/c). 

A transformation of the form x = U,t fixes the shock wave relative to 
a stationary observer. The pressure perturbation just downstream of the 
shock wave may then be written 

P2 = %Cpo-AT exp (iwt) 

where w = 27cuJc. 

The above argument has been developed for a one-dimensional flow 
system confined to an element of I&G shock front. However , provided that 
natural convection of the fluid in the supersonic region upstream of the 
shock wave is neglected and also that the disturbed shock wave remains 
normal to a first order approximation equation (12) may be generalised to 
give the pressure perturbation immediately downstream of the shock wave. 
Then AT is given as a function of the normal co-ordinate y. Thus, 
with XI upstream static temperature symmetrical about the centre line 
Y = 0, the downstream pressure perturbation at the undisturbed shock 
front may be written as 

where 

-7 z Y 
P(yt)-Fo = K Ed (iut> TA cos 2nn - 

D 
n=C 

K = R2CpoAT. 
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A general solution of equation (7) for simyple harmonic 
oscillations can be obtained following Temple7 to give 

P = exrp i(h7 + kc*) f(x*y*) 

where A 
fG 3 

= d/U, k = lM2/(l - M2), and the reduced pressure function 
satisfies the equation 

V2f = - n12f 

in the co-ordinate system x 
nf2 = haM2/(l - Ma). 

= y:/(q _ J&3+, y = y" and where 
This equation may be solved by separation of 

the variables. The particular solution of (7) which satisfies the 
boundary condition (13) and is finite for all values of x is then 
obtained in the form 

p(xyt) 
( 

jf” x z 
= Kexpiw t+ ---- - 

l-M2 U )L 
TA exp(- mx/D> cos (2nxy/D) 

n=O . . . (14) 
where K = R,CpcAT and 

?L21vra 
ma = 4y1y - ----. 

1 -Id2 
l .  l 05) 

Conclusion 

Equation (14) gives the magnitude of the pressure perturbation 
at any point in the subsonic downstream region due to periodic upstream 
static temperature fluctuations. The steady pressure perturbation of 
the downstream region due to the mean value of the upstream static 
temperature distribution is given by equation (II). As these are 
solutions of a linearised field the total downstream pressure perturbation 
is given by the sum of (II) and (14-). 

From equation (14) it is seen that the acoustic disturbances 
of the downstream region are attenuated only if m2 > 0. There is thus 
a critical frequency given by wo/2n satisfying ma = 0, i.e., from (15) 

ho u wO 
nU (1 - M")a 

-- - = we = -- -------- - 
271 D 2x D M ' 

Below this frequency acoustic waves rxan be propagated; above this 
frequency the wave undergoes attenuation. 
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