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Power Spectrum Analysis of Gust Loads on 
the Con-et Ving and Tailplane 

D.T. Jones M.A., B.Sc. 

This report describes an analysis of measurements of normal 
acceleration and stress recorded on Comet aircraft while flying in 
continuous turbulence at high ati low altitude. It is found that 
the increments of normal acceleration at the centre of gravity ard 
of stress in the wing and ttil are affected by resonance, the 
vibrations of the wing and tail being forced by the turbulence. 

Estimates are given of the amplifying effects due to the 
resonance. It is found that amplifications are proportionately 
greater in the stresses than in the simultaneously recorded normal 
accelerations at the centre of gravity. 
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1 In-&oduction P;rp- 

In July 1954 a series of flight tests was made on a Comet aireraft 
at the Royal Airoraft Establishment. Scme of the tests were concerned 
with the effect of gusts on the aircraft and. in these tests measurement8 of 
normal aocelcration and structural stress were taken while the aircraft 
was flown straight and level in turbulent air. This report describes one 
of the methods used to analyse these measurements. The same methed was 
also used to analyse similar measurements obtained from an earlier routine 
flight made by the De Havilland Aircraft kmpany. The object crf the 
analysis was to estimate the effects of the natural oscillatory motions of 
the aircraft on the normal acceleration and stress. 

. 

. 

. 

llnc ~%n-lplituifes of those m&ions and the corresponding stresses 
in&aced in the structure are increased by resonance. As the increases 
c)ccKr at the natural frequencies of the aimraft ran analysis of the average 
a..plitudc into its frequency co,?lponents is made in order to reveal the 
presence of 4,he increases and to assess their magnitudes. This analysis 
shows that the contributions to the average amplitude at the structural 
frequencies are greater than they would be if there were no resonance. 
The excesses can be estimated and give a measure of t& amplification. 
In this renorf excesses due to the natural fundamental motions of the 
wing ‘and t"ail structures only .are considered.. The short duration of 
the recor& does not allow the effects of rigid body motions which 
occur at comparativel+y 10:~ frequencies to be included. 

The"average" used in the analysis is not the usual arithmetic mean 
of increments (t&en without regard to sign), but the mean of the squares 
of increments. This ouantitg is known as power. It is a convenient 
quantity for, ‘as will be shovVr:, the power of a complex wave form is equal 
to the sum of the powers of the harmonic components, whatever the phase 
relationship between the components may be. 

2 @thcd of analysis 

. 2. I Data 

Instruments were instcalled in Comet aircraft G-ANAV to record normal 
acceleration at the centre of gravity of the aircraft, normal acceleration 
ttt tlif3 %CXi. 1 and bending moment (via strain records) at the root of the 
tailplane ?:rlli.le the aircraft was flying in turbulent air. These variables 
were recorded simultaneously as continuous traces on a roll of paper, The 
records were taken at low altitude, i.e. between 4,000 and 6,000 ft. The 
following diagrcem shows a portion of a typical record. For clarity only 
one trace is shown. 
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A record taken on Comet C-ALYT by the De Havilland Aircraft Company 
while the aircraft was on a routine flight at an altitude of 37,500 ft 
was also available for an,aQsis. Traces of wing spar stress, tail stress 
and normal acceleration were recoiled in the same manner as on the R.A.E. 
rezords. 

2.2 Method of reading traces 

To find the mean square value (i.,e( the power) of a variable and to 
obtain information required for the analysis of the power into its spectrum, 
the values assumed by the variable at successive short intervals of time 
were measured and recorded* These measurements were obtained from traces 
taken in continuous turbulence for periods of between one and three minutes 
and the intervals between the measurements were not more than half the 
period of the highest frequency component likely to be significant. It 
was thought that structural frequencies above 10 cycles per second would 
not be significant. Readings were therefore taken at intervals of 
one-twentieth of a second. 

. 

The distance x of a point X on a trace (shown in the above diagram) 
from a datum line at tima t is typical of the measures that were taken. 
The measures actually required for the analysis were, of course, incre- 
mental values, such as y, from the mean but it was found more convenient 
to read initially from the datum line. This datum was at constant distance 
from the mean of each trace and a simple adjustment was made in calculations 
to ch,ange the values as read into incremental. values from the mean. 

As many thousands of these measurements had to be taken a machine* 
was devised to assist in the reading. The machine embodies a reading head. 
An operator using the machine brings a cursor which formed part of this 
head to cover in turn the successive points on the trace (Fig. I). As 
each point is covered the measurement (i.e. the distance from the datum 
line to the cursor) is automatically sensed in the reading head and, when 
the operator presses a switch is recorded as a set of holes in a Hollerith 
card. In this way measurements were taken easily ar?d quickly and 
recorded in a form which was immediately suitable for subsequent calcula- 
tions on Hollerith machines. 

. 

2.3 Power spectrum 

A continuous trace of norm,al acceleration or stress taken when an 
aircraft is flying through turbulence ha a random irregular appearance 
and it is impossible to discern any single fluctuation in the trace which 
can be regarded as atypical one. Vie m.n, however, take the average of 
the increments as a measure of the general intensity of the stress or 
acceleration increments. The siqlest average would be the arithmetic 
mean of the increments (taken v&thout regard to sign) measured at equal 
intervals of time. This average is easy to compute but is not suitable 
for our analysis. For this v,e need the average of the squares of the 
inorements, a quantity kno~m as the mean scluam, variance or power. 

The power of a complex wave form (such as a trace of normal acceler- 
ation or stress in turbulence) is simply related to the powers of the simple 
harmonic wave forms of which the complex form is assumed to be composedr 

. 

* This m‘achine was designed by Ltathematical Services Department and Instru- 
mentation Department, R.A.E. in response to a request by Structures Department, 
R.A.E. It was first used for the analysis 0 f Comet continuous trace records. 
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It c2n be shown (see Appendix I) that if a complex form y(t) is the sum 
of n simple harmonic wave forms and can be written as -4 P(t) = z 4, sin (Wk t + $kj -J 
where the A's are the amplitudes, ->he uts are the frequencies and the 
$'s are the phases of the components, 

h2 
then the power of the k'th component 

is -&- and the power of y(t) 
2 

n 
- % 

2 
9 p(t) = =---I - \ 

4 2 

This result is of fundamental importance. It means that if a 
number of simple harmonic wave forms are uombined to produce a complex 
form, the power of this form is equal to th? sum of the powers of the 
components, t&~&ever the phase relationship between the components may 
be. 

If we have a complex wave form c0mposed of a given finite number of 
components at frequencies of say I, 2, . . . . . . . n cycles per second and 
the pcwers of the components are known we oan represent the total power 
by a block diagram such as the following 

If the blocks are of unit width the areas of the blocks represent 
the powers of components having frequencies represented by the mid- 
points of the block widths, and the total area represents the total 
power. In a complex wave form such as a continuous trace of stress in 
turbulence there may be a very large number of components. In a complete 
analysis of such a trace the block widths would be very small and the 
heights of the blocks i.e. the ordinates would represent the density of 
power at frequencies given by the abscissae. The diagram would be 
approximately an area under a continuous curve:- 



The total area again represents the total power and the power due 
to components at frequencies between any two prescribed frequencies, say WA 
andW2 is given by the shaded area. 

The calculation of the power spectrum of a complex wave which may 
contain a large number of components at u&nom frequencies is based on the 
recently developed theory of generalised harmonic anelysis2. The oelcula- 
tion is usually made in two parts. The first is to find the auto- 
correlation function (see Appendix I) of the variable havin 

t 
the complex form, 

that is the normal acceleration or stress increment. If y t) represents the 
value at time t the autocorrelation function R(z) is defined as 

1 c y(t) l y(t + 4 

n n+ao 

When this function has been evaluated the next stage is to compute the 
power spectrum as the Fourier transform of the function. It can be shown 
(see Appendix I) that if, as before, a complex form y(t) is represented as 

y(t) = 2Ak sin (Wk t + $k) 

then 4x 2 
R(T) = - . CO8 0 

2 k 

or if we put p(U) for an element of power 

frequency range w to W + do , then 
in the 

00 

R(z) = 
i 

p(W) dw CO8 'k 

0 

and by a Fourier transform 

ce 

I 

R('t) coswT S 

0 

Hence the power in a frequency band of width o - 6~ to u +6 0 

= 2- R(z) cos w% !(sir&)/~ Id% . 
s 
0 

When the autocorrelation function has been found this relationship 
can be used to give estimates of power within any prescribed bands of 
frequency. 

The reliability of autocorrelation functions, and therefore the 
reliability of power estimates, depends on the length of the records 
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from which they are computed. The reliability also increases with 
increasing band width. This is reasonable, for suppose that estimates 
of powers for a number of narrow band widths adjoining one another are 
obtained.. These estimates will err randomly on either side of the 
true values. Xf the estimates are combined to give a single estimate 
for a wider band width comprising the narrow ones the result will clearly 
be more reliable as the component errors will tend to nullify one another. 
A detailed discussion of this point is given in Reference 3+ 

3 Results 

3.4 Spectra from low altitude flight records 

Several records of normal acceleration at the centre of gravity of 
the aircraft and bending moment at the root of the tailplane were obtained 
during the R.A.E. test flights at altitudes between 4,000 ft and 6,000 ft+ 
The forms of the spectra obtained did not vary very much between one flight 
record and another. Fig. 2 and 3 show typical power spectra of normal 
acceleration an3 tailplane bending moment obtained from simultaneous 
recordings of the two variables. When the records were taken the aircraft 
was flying in oontinuou, - turbulence for 160 seconds at an altitude of 
6,000 ft and the aircraft speed was 200 knots E.A.S. To obtain the 
autocorrelation function values of normal acceleration and bending moment 
were read at intervals of '/20 sec. 

The power of normal acceleration decays rapidly as the frequency 
increases from 0 to 10 cycles per second, but there is a slight peak at 
between 2 and 3 cycles per second, that is at the fundamental frequency 
of the wing. There is also a smaller peak at about 5 cycles per second, 
the fundamental frequency of the tail. The power of normal. acceleration 
therefore appears to be only slightly affeoted by resonance at the wing 
and tail frequencies. 

For tailplane bending moment there is a slight peak at the wing 
frequency and a larger one at the tail frequency. Assuming uniform 
decay in power with increasing frequency when there is no resonance we 
find that the area above the broken line represents the contribution to 
total power due to resonance. The ratio of the whole area to the area 
below the line therefore gives m estimate of the amplification in power 
due to resonance. For the tailplane bending moment this ratio is about 
1.3. As standard deviation is the square mot of power, the standard 
deviation of bending moment increments is amplified by a factor of about 
I.14 (= dl.3). These estimates depend on the position of the broken line, 
In Fig. 3, 4, 5 and 6 the lines have been drawn in positions judged to be 
reasonable as representing the uniform decay in power which would be 
expected in the absence of resonance peaks. Precise accuracy is not, 
of course, claimed for the positions adopted. 

3.2 Spectra from hi& altitude fli&~t record 

Fig. 4. 5 and 6 show power spectra of normal acoeleratim, tail@nEe 
strsss ai?d wing stress o'ctained from simultaneous rccordi_ngs of these khree 
variables. The records were taken while the aircraf?t was flying through 
continuous turbtil@Xe for 200 seconds at an altitude of 37,500 ft. The 
speed was 200 knots E.A.S. 

It can be seen that the spectrum of normal acceleration deoays rapidly 
on the whole as the frequency increases, but that two peaks occur, one at 
the wing frequency and the other, a considerably smaller one, at the tail 
frequency. The amplification in power is about 1.20 and the amplification 
in standard deviation is about 1.10. 
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The power spectrum of wing stress is in striking contrast to the 
power spectrum of normal acceleration. There is avery large peak at the 
wing frequency and the- amplification in power is about 2.0. The ampli- 
fication in standard deviation of wing stress increments is thus about 
1.41. Practically the-whole of this resonant contribution occurs at the 
wing frequenoy. 

The power spectrum of tailplane stress has two very large peaks, 
one at the wing frequency and the other at the t4.1 frequency. The 
amplification in power is estimated to be about 2.90 ard the amplification 
in stand- deviation about 1.70. 

4 Discussion 

4.1 Main results 

The main results of the analysis are as follows:- 

(i) Amplifications occur in the power of normal acceleration at the centre 
of gravity and in the wing and tail stresses. These amplifications are 
at the natural frequencies of the wing and tail in bending. 

(ii) These resonant amplifications are proportionately greater at high 
altitude than low altitude. 

(iii) The resonant snplifications in the power of wing stress and tail stress 
are greater than the proportional amplipication in normal acceleration at 
the centre of gravity. 

(iv) The numerical values obtained for the amplifications suggest the adoption 
of factors whioh might be applied to estimates of stress based on measurements 
of acceleration taken at the centre of gravity. The results have, however, 
been obtained in turbulence of very low intensity and further work should be 
dane to cheek their validity at higher intensities of turbulence. 

4.2 Effect of altitude 

The amplifications in normal acceleration increments and stress increments 
are much greater at high altitude than low altitude. This striking difference 
appears to be consistent with the difference in aerodynamic damping. At the 
high altitude of 37,500 ft the damping is very much less than at 6,000 ft and 
it is therefore inevitable that there will be a marked difference in resonance 
effects. 

403 Comparisons between normal accelerations and stresses 

‘An important point of difference between the spectra is the difference 
between the amplification of normal acceleration on the rxe hand and wing 
and tail stresses on the other. The results show that the amplifS.cation of 
wing md tail stress increments is greater than that of normal acceleration 
increments. These results may be summarised as follows:- 

Low altitude flight 
(R.&E.) 

Amplification in Standard Deviation of 

Normal Act. Wing Stress Tail Stress 
at c.g, 

Very slight No data 1.14 

I 1.10 1.41 I.70 

-89 
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The conclusion is that the effects of resonance on stress increments 
are only slightly reflected in the normal acceleration at the centre of 
gravity, 

We have seen that in the high altitude flight the standard deviation 
of normal acceleration near the centre of gravity is slightly dfected 
by resonance at the wing frequency while the standard deviation of wing 
stress is much more affected, The ratio of "resonant" standard deviation 
to the "non resonantlt stsndard deviation was found by the power spectrum 
analysis to be 1.41 for wing stress and 1.10 for normal acceleration at 
the centre of gravity. It follows that estimates of increment in wing 
stress derived from increments of normal acceleration at the centre of 
gravity in the conventional way without regti to resonance should be 
substantially less than the true values. The ratios given above indicate 
that for the flight condition in which the measurements were taken a 
conventional esti ate of the standard deviation of stress should be 
multiplied by L&L = 1.29 to obtain more accurate values. 1 ? 

1 *IO 
A direct check on this result has been made. From measurements 

taken in single manoeuvres in calm air the increment in wing stress 
corresponding to a given increment of normal acceleration was found. 
This result was used to compute a wing stress corresponding to the 
measured standard deviation of normal acceleration. This computed 
wing stress might be expected to agree with the measured standard 
deviation of wing stress (if the difference in resonance effects noted 
above were not present), In fact the ratio of measured stsnd 
deviation of wing stress to the computed value was found to be 4‘ 3 
about 1.34,~~ value which does not differ greatly from the valu 
1.29 estimated above from the power spectrum analysis. 

The results show that the ratio of stresses induced in the wing and 
tail to the normal acceleration at the centre of gravity are greater at 
high altittie than at low altitude. These ratios were obtained in 
turbulence of very low intensity and the stresses measured were very low 
and quite insignificant in relation to the static strength of the wing 
and tail. There is, however, no evidence that these ratios, or ratios 
of the sama order, would or would not hold good in turbulence of higher 
intensity. If they were to hold good we might expect the chances of 
static failure in a patch of severe high altitude turbulence would be 
greatly increassd. For instance let us suppose,for illustrative 
purposes cnlyrthat the aircraft is in a patch of turbulence of a 
severity such that the standard deviation of tailplane stress increment 
is calculated (from c.g. acceleration measurements excluding resonance 
effects) to be a quarter of the design value. The chance of exceeding 
the design value of stress can easily be computed to be about 0.00003. 
If, however, the standard deviation of tailplane stress is, due to 
resonance, actually 1.5 times as great as the calculated value, the 
chance of exceeding the design vslue is 0.005 i.e. 150" times as great 
as when the amplification due to resonance is not included. It thus 
appears that the consequences of resonance can be important and that 
records for power spectrum analysis covering a range of altitudes and a 
variety of turbulence intensities should be obtained. 

* A result such as this must, of course, be considered agsinst a 
background of operational information on turbulence intensities, Turbulence 
is known to occur rarely at high altitudes and it might be found that the 
chance of encountering a turbulent patch of the intensity assumed in this 
example is negligible. Furthermore it must be emphasised that all the 
amplification factors in this report are obtained from turbulence of low 
intensity and that values for high intensity turbulence are not known. 



4.4 Resonance and fatigue endurance 

The effect of resonance is to amplify loads snd therefore to reduce 
fatigue endurance. Some of the data usually required for estimating 
fatigue endurance are the numbers of times that peak loads of given valuea 
are exceeded. If the power spectrum of a loading process is known these 
data can be derived from it. It has been show&95 that if $ (w) is the 
spectral density (i.e. the ordinate of the power spectrum) and N(y) is the 
number of times that a peak value greater than a given value y (or numerically 
greater than a value - y) occurs then 

where Sis the standard deviation and 

Applying the formula to the power spectra obtained from the high 
altitude flight we obtain the result shown in Fig. 7. The continuous 
line, the broken line and the dotted line give the number of times per 
second that peaks of wing stress, tailplane stress and normal acceleration 
exceeding given values of these quantities occur. To facilitate comparison 
the abscissae are in units of standard deviation of the quantities. It CBn 
be seen that in this standard masure peak values greater than a given 
wing stress (in units of standard deviation) cccur about 1.7 times as often 
as the corresponding vslue of normal acceleration and 
greater than a given tailplane stress occur about 1.4 
corresponding value of normal acceleration. 

that peak values 
times as often as the 

We thus see that the rate of occurrence of peak stresses calculated 
from normal acceleration data are an underestimate. In addition, as we 
have already seen, the values of the calculated stresses may themselves be 
too low. 

5 Conclusions 

The general level of increments in normal acceleration at the centre of 
gravity and of stresses in the wing and tail in turbulence are affected by 
resonance, the vibrations of the wing and tail being forced by the turbulence. 
These amplifications are greater at high altitude than at low altitude. This 
is consistent with what may be expected from the comparatively low aerodynamic 
damping at high altitude. 

The prcporticmal amplifications in the standard deviation of wing ti 
tail stress increments are found to be greater than the proportional ampli- 
fication in stsndard deviation of normal acceleration increments at the 
centre of gravity. The results suggest that for high altitude (about 
40,000 ft) the amplification factors of the standard deviation of the wing 
and tail stress increments are about 1.4 and 1.7 respectively. At low 
altitude, about 4,000 - 
tail and is about 1.15. 

6,000 ft the factor has only be obtained for the 
These factors are derived from data in turbulence 

of low intensity and could be used in fatigue calculations. 

There is no evidence to show that the suggested factors would be 
applicable in turbulence of high intensity. They could not be claimed 
to be valid for considerations of static strength in turbulence. More 
data and further analysis are required to check the results and to find the 
magnitudes of resonant effects in various intensities of turbulence. 
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its 
has 

The power of a complex wtve form is equal to the sum of the powers of 
simple harmonic components . For suppose that one of the components 
the form 

yk(t) = 4( sin bkf + $4 

the power of this fo,rm is 

A; = lim - f !bea *‘.I! -T 

I- cos(2q$+2#lJ dt 
2 

T 
L 
2uk 

i T 

sin 2 Okt cos2 Q 1 
A 

2 

the 
The power of the oomponent is thus half the square of the amplitude of 

wave form. By an extension of the above, if a complex wave form is 

AETE~MXXI 

The Power and Autocorrelation Function of a Complex Wave form 

sin2(ukt + $2 dt 
-T 

composed of a number2 of simple harmonic waVe forms, that is 

y(t) = % sin b+t * 6J 

+ A2 sin (w2t + $*) 

. . *  .  .  .  .  .  l .  .  .  .  .  ‘ .  .  .  .  

+ % Sk-h (‘k-b + fi”k> 

+ .  .  .  .  .  . . * . . . . . * . . .  

+ h sin (writ + $n) 
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it follows that the power 

The component powers of y2(t) cannot easily be calculated directly 
from a record but they can be derived from a function of the record known as 
the autocorrelation function. If y(t) represents the value of the v&able 
measured from the mean at time 4 the autocorrelation function R(T) is 
defined as 

L - 
n' z 

y(t) l y(t+-d 

n+- 

The autocorrelation function is thus the mean value of the produce of 
the value of the variable quantity with the value T seconds later 

For the trace shown in the above diagram the autocorrelation functia for any 
given value of z would be found by taking the sum of products such as 

. 

YW l Jo’ +4 

y( t ” )  .  y( t ”  + T) etc. 

for a very large number 2 of values of i and dividing the sum by zg The 
autoaJrrelation function for a given value ofz is very similar to the corrd-= 
ation coefficient used in statistics. It gives a measure of the agreement 
between two sets of values separated by an interval 1;, thus when C= 0 the 
agreexxx3nt is the sum of products has the greatest 
the value R(0 P 

erfect, 
is greater than any other value of R(T). 

possible value, snd 
R(0) is also the 

total power, for 

R(O) = ; )7y(t) . y(t) 

I =- z - Y2W 
n 

Values of R(z) can be plotted against 'G and a continuous line drawn through 
the plotted points is sn zztpproximzrtion to the autocorrelation function. The 
autocorrelation function Or a variable such as structural stress in turbulence 
usually decays at first as 7; increases ard fluctuates about zero with 
deoreasing ~g.ituae:- 
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The above diagram shows atypical autocorrelation fun&ion. 

form:- 
If, as before, one of the simple harmonic components has the 

its autocorrelation function is 

4E 2 r T 

= lfm- T 
l'+w 2T 

cos w$ - & @ sin&3Jkt+W; + 2#d 

I -T 

2 
= n CO6 w?; 

2 

By an extension of the above the autocorrelation fun&ion of the 
complex form 

YW = R(z) = 
--I 

- iS the power due to one of the components. 
2 

If we assume that 

we have an infinitely large number of components we msy write p(W) for the 
power density at frequency w and p(w) dw for the element of power due to 
components in the rango w to w + dw. R(z) can then be expressed as 

01 
R(r) = 

s 
p(w) d&J co9 w7; 

0 
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By aFourier transform 

00 

P(W) = $ 
6 

R(T) cos wd d-c 

0 

It can be deduced that the power in a frequency bands of width w - 6~ 
tow+ 60 

. 
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FIG. 2. POWER SPECTRUM OF NORMAL ACCELERATION 
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FIG. 3. POWER SPECTRUM OF BENDING MOMENT AT 
TAILPLANE ROOT (LOW ALTITUDE.) 
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FIG. 4. POWER SPECTRUM OF NORMAL ACCELERATION 
IN FRONT FUSELAGE (HIGH ALTITUDE) 
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SPEED: 200 KNOTS E AS. 
A.U.W. : 80,000 LB. 
ALT. : 37,500 FT. 

WHOLE AREA REPRESENTS TOTAL 
POWER =15.6X10’ LB INS. 

STANDARD DEVIATION =I*25 X IO’LB 

FIG. s. POWER SPECTRUM OF BENDING MOMENT AT 
TAILPLANE ROOT (HIGH ALTITUDE) 
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I I I SPEED: 215 KNOTS EAS. 

t---H WHOLE AREA REPRESENTS POWER 
OF STRESS =2-94 X IO5 P.S.I. 
STANDARD DEVIATION =S*4 X IO* I? S. I. 

FIG. 6. POWER SPECTRUM OF WING SPAR STF?ESS 
(HIGH ALTITUDE.) 
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Y :VALUE OF VARIABLE IN UN\TS OF STANDARD DEVIATION. 

FIG. 2 RATE OF OCCURRENCE OF PEAK VALUES. 
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