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'I'he purpcse cf t2i.s note is tc en$ole the crack prcpagation propti&ies 

Of :&et r:aterial to be dete:~!;i.nr:d in a nuch ma-e eccnomkLl m,y than has 

hitherto been possible. This objective ir; sought by e:dxM3..shing simple 

formulae fcr ccrreiating tlw resuIts for small flat sheet ~pecimiens under 

ti:nsi.cn cr cylincl.ricaIt specimens under intern& pressure, with those for 

larger but similar specimns, and for ccrrclating results for a flat sheet 

with tLose fcr tht corresponding (i.e. the sme flat sheet rolled into a 

cylirider) cyliidric2.1 sheet xmder the same te~~~ion produced by internal 

pmssure. 
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-I INTRODLCTIOT -. 

It will be agreed that in spite of intensive experimental work there is 
still much to be learnt abcut the mechanism of crack propagaticn in thin sheet 
material. There are a number of facts that are known with certainty. Ye know, 
for example, that the behaviour of a crack - the tray it extends under repeated 
application of tensile forces across it aad the ustable length it can reach 
before it finally self-propagates at speed - depends profoundly on the material 
of the sheet, Apart, hwiever, from expecting ductile materials to give better 
results than those less ductile, there is no quantitative basis upon v&ich to 
estimate the perfcrmance of a material by reference to its specification. It 
is also knovgn that, under the same nominal applied tensile stress, a crack 
propagates faster and has a lower unstable ler?gth when the tension is induced 
by pressure in a cylindrical shell than when it is directly applied to a flat 
sheet. Mcreover, fcr the s,ame hoop stress, a crack becomes more ready to 
spread as the radius of the cylinder is reduced. 

It follows from the abcvc remarks IAct, in the abswcc of correlating 
factors, the behaviour of a crz~.ck in 3 p~~~~*'~ IGUuurc cabin of 2 particular diameter 
can only be determined by carrying out a test on a cylinder of equal diameter 
and identical sheet material. By the sam token an estimate of the crack 
behaviour in the skin of a wing m&es it ileceSSLXPJ to carry out tests on a 
corresponding extent of flat sheet. Sucll multiplication cf 'ad hoc' tests is 
highly uneconomic and wasteful of time and &fort. What is obviously required, 
and v?hat appears to be to some extent feasible, is the establishment of ucrre- 
lating fnctcrs that will allow tE:e results cf tests carried out on a flat sheet 
to be applied with some confidence in forecasting ihe behaviour of a sheet of 
the some materiel built into a pr cssure cabin of any diameter - and vice versa. 
It is with the object cf suggesting methods - based on a @ysical interpretation 
of hitherto unexplained experimlental resul-ts - for obtaining such factors that 
the present note is put fcrward. The phrase "same material" is underlined 
because it is not thought po ssible in the present state of knowledge to ccrre- 
late the behaviour of a sheet of one material v;ith that cf a sheet of a 
different material on the b risis either of their chemical composition cr their 
material properties. Xroct experiment ap;scars here to be t:lc only guide. It 
is, however, reascnablz to cxpcct that, if cne material is shown by experiment 
to have better crack properties than another when both are tested as flat 
sheet, the same superiority will be shown T&en both are built into pressurised 
cylinders. 

The behaviour of cracks in flat sheet ;-Jill be considered first. An 
important question that needs to bc considered is the degree to which, for 
the same applied stress, sheet thickness affects the results. If the sheet 
dots not buckle in any way it is reasonable to sujposc that a state of plane 
stress exists, i.e. the stress remains sensibljr ccnstant acrcss the thickness. 
In that event one wculd not expect sheet thickness tc cntel* into the problem 
so lcng as the nominal ap$Lied stress remains the same* Experiment seems to 
confilm this e::fJectation not cnly for flat sheet', 
cylindrical shells2,3. 

but also for pressurised 
It czn be assumed, thcrefcre, that in mz&ing a SG aale 

model of a flat sheet or cylinrdrical s;~ecimcI1, -iAwe is nc real need to scale 
down the sheet thickness ccrrcspondingly. OM: is confirmed in this view by 
the fact that, for sheets c-f zofiluar&le thickwss under unifcrm tension in one 
direction, one would not expect the stress coizentratiori factcr nt a circular 
hole to be ether than the expected three-to-we value whatcvur their actual 
thicknesses, se lcng as ii1 each casi: the boundaries of the sheet arc far cncugh 
away frcm the hcle. 
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2.1 Small hole or crack in large cxpansc cf’ sheet 

If we consider a small hole with a smooth boundary - round cr oval 
for example - in a large expanse of sheet in -<{hi& the stress is uniform, 
it will readily be accepted that any departure from that uniformity cf stress 
is only lccal, and that at a good distance franl the hole the stress retains 
its original uniformity. Furthermore, subject to the hole being small com- 
pared with the size of the sheet, the stress distribution around the hole 
should, to a different scale, be exactly the same whatever its size; and 
this should be true whether the local stress reaches beyond the elastic 
range cr not. To fix ideas we may ccntemplate a circular hcle in can infinite 
expanse cf sheet in simple tension. As the hole is enlarged the disturbed 
area becomes progressively wider, but the stress distribution over that area 
remains the same. It follm{s that trio such c::panseS cf sheet rrith circular 
holes of different size would be expected tc fail at the same nominal applied 
tensile stress. 

i 

If, however, the stress disturbance is caused by a narrow slit cr crack 
lying across the direction of tension, it is nc lcnger pcssible 'cc ensure 
geometrical similarity between the short crack and the long crack. This is 
particularly true at the extremities cf the crack where, if it has been 
fcrmed naturally - by the extension of a shorter crack for example - its 
sharpness is the same whatever its length. As a result cne would expect the 
sheet, under a progressively increasing applied stress, to fail at a-lower 
stress for the longer than for the shcrter crack, and one would also expect 
the difference to be greater the greater the ratic between the crack lengths. 

Suppose, for example, that a short crack of length Go in a large sheet 

(which simulates a crack in an infinite sheet) leads to failure cf the sheet 
under an applied stress d . A crack cf length 2 e. would be expected to cause 

failure at a lower stress - 6~~) say, as a result cf the end radii cf the 

crack not being ccrrespondingly doubled. Doublin the crack length thus 
reduces the failing stress in the ratio (co - "co cr r (say). If the 

crack is again doubled to a length of 4 to a reduction ratio of r* wouldbe 

expected. 

On the basis of the above argument the relaticn between failing stress 
and crack length is known for all crack lengths once the reduction caused by 
a single increase is known. Suppose, under the effect cf a short crack of 
length 4 across the line of tension, the experimentally observed nominal 
applied Bailing stress (the uniform stress, i.e. rem&c from the crack) is 
b. and that an increase in crack length from &o to neo is observed to reduce 

the failing stress to rGoe It follows that, if the crack length is increased 

to any length x, where 

(1) 

the failing stres s ccrrespondingly falls from ~'4~ to ox, where 

G 
X 8 

-= r 

GeO 
. (2) 

-4- 



Prom (1) 

1% (“/q 
u = 

log n 
(3) 

and therefcre, from (2) 

which gives the failing stress d x for any length of crack in terms cf the 

reduction factor r initially oi3tained. 

This applies only so lcng as the crack length is small compared with 
the width of the sheet. As soon as it becomes an appreciable fraction of that 
width the stress at points remote fran the crack can no longer be assumed to 
remain constant as the crack grows, and a stage is soon reached where the 
reduction in failing stress calculated un the gross area is almost entirely 
due to the reduction in the net cross-sectional area of the sheet, and where 
equation (4) becomes irrelevant. 

The only reliable way of checking the validity of the relation given by 
equation (4) is to compare the failing stresses of two sheets of different 
size, but of the same shape. As a matter of interest, however, use will also 
be made of the alternative but less reliable method of comparing, as indicated 
above, the failing stress of a wide sheet with short cracks of different 
lengths. 

2.2 Similar cracks in similar sheets 

Ve choose two sets of results from ,amcng the available data, one 
American and one British. The first set is taken Prcm a papert by M&vily 
et a&which quotes experimental results fcr lxo sheet specimens, one I.2 in. 
wide and 36 in. long and the other 35 in. wi,de and 36 in. long. The widths 
are thus in the ratio j:l, but the lengths are the same. dewever, so long as 
the cracks are well below half the length, the error in not having the length 
properly scaled has been shcfan experimentally by Harpur5 not tc be important. 

The results given in Table I have been taken from Pigs. IO and 11 of 
McXvily's paper4 and shovv the nominal failing stresses fcr the two sizes of 
sheet against corresponding crack lengths. 

TABLl3 I -- 

(Sheet material 2O24-T3) 

Crack length (including 
central hole) as s 

sheet width 

IO 52 b2 0.81 
20 1~6 32 0.7 

;: 36 26 il .5 0.72 0.72 
45 I z.5 

i 
( 20 0.73 
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It is not possible here to make comparisons of failing stress fcr a 
crack length (including central hole) less than l/l2 the sheet width because 
the central hole fcrthe 12 in. sheet takes up l/l2 of the total width. It 
is unfortunate for cur purpose here that in these experiments the same size 
of central hole - 1 in. diameter - was made in both the 12 in. and the 35 in. 
sheet. Thus, whereas the figure of IO per cent in the first row cf the abcve 
table is nearly al.1 accounted for by the central hcle in the case cf the 
12 in. sheet, less than half of it is so ccccuntcd for in the 35 in. sheet. 
Similarity between the two sheets for crack lengths between IO and 15 per cent 
of the sheet width is not, therefore, achieved. That presumably is the reason 
why the stress ratio givei in the last column is slightly higher fcr the 
shortest crack length. For the longer crack lengths the stress ratio is 
fairly constant so that an average value can be taken of about 0.73. 

According to the argument already put forward, if' the crack-end radius 
for the larger sheet had been made greater then that for the smaller sheet 
in the proper 3:l ratio we should expect the same failiT@ stress and, there- 
fore, a stress ratio of unity. The drop in failing stress from unity to 0.73 
is consequently to be attributed to lack of scaling up the crack-end radii in 
the proper ratio. 

Following the analytical approach implied by equations (I) to (4) we 
are now in a position to estimate the failing stress corresponding to any 
size of crack in any size of (similar) sheet of the same material. Thus, let 
o. be the applied stress at failure for a crack extending a certain percentage 

width of a sheet of width ho and let this stress fall to roe when the sheet 

(and correspondingly the crack) is increased in size in the ratio n. It then 
follows that, for a similar sheet cf width x and crack length x/&o times 

greater than that in the sheet of width 4 o, the failing stress is given by 

In the Present case we have 

n = 3, r = 0.73, "o = 12 

and therefore 

o- x = 

a 

* 7,e":o:3 . . (6) 

If therefore it is desired to estimate the applied failing stress 
(by which is always meant the applied stress at failure) ox for a sheet 

100 in. wide (and length of the same order) fcr any percentage width of 
central crack, we write 

= 0,731'93 = 0.55 (7) 

where co is the applied failing stress for a 12 in. sheet with the same 

percentage crack length. I 
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A crack of 30 in. for example in the 100 in. wide sheet is a 30 per cent 
crack, and from Table I VJB see that a 30 per cent crack ccrresponds to a 
failing stress of 36,000 ILb/in.2 in a 12 in. sheet. The failing stress for 
the same percentage length of crack in the 100 in. sheet is therefore, by 
equation (7), 0.55 of 36,000 or 20,003 lb/in.2. 

Results are also given in Table 3 of Ref. 3 for the same sizes of 
sheet in material to specification 7075T6. A smooth curve through these 
gives the values shown in Table 2 below. 

TABIZ 2 

(Sheet material 7075T6) 

Crack length (including 
Failing stress (lb/in.2 on 

hole) 
gross area) 4 1000 

central as 
sheet width c 

$ of Stress-reductior - 
12 in. sheet 35 in. sheet Ratic 

-- 

8.4 0.52 
IO 0.59 
A.5 39 u, 0.61 
20 32 19 0.6 
25 26.5 15.2 O"58 

22.5 13 0.59 
20 12 

I 
0.6 

____.- 
. 

This shows that trebling of sheet size and crack length fcr sheet 
material 7075-T6 reduces the failing stress to an average of about 60 per cent 
of that for the smaller sheet. The corresponding figure for sheet material 
2024~T3 as found above is n per cent. 

Thus, as well as having much lower absolute values of applied stresses 
at failure than 2O&-T3 sheet for the same percentage crack length, 7075-~6 
sheet suffers a greater reduction in failing stress with increased size than 
2024~T3. Following equation (6) and taking Table 2 as a basis", WC can write 
the failing stress crx for any width x of sheet to Specification 7O75-T6 and 

for any percentage crack length in the form 
flog X/l2 

j 

. 

o- = ~ob6) 
i log 3 / 

Y 
X 

(8) 

For example, again taking a 30 in. crack in a 100 in. wide sheet, we 
find the failing stress to be 

?oo = lo3xz&o.6) = 8.1+ x IO3 lb/in.'. (9) 

(i/here the figure of 22.5~10~ is taken from Table 2). 

* This is a rough basis because the experimental work was never designed for 
the purpose of evaluating the scale effect for the particular material. 
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One notes that the applied failing stress fcr the same crack length 
in the same size sheet to Specification 2O&-T3 as found above is more than 
three times greater. 

These figures serve to illustrate the general trend of the scale effect 
for the two materials concerned, but,cwing to the central hole being the same 
size in the 12 in. and 35 in, wide sheets, they cannot be taken as providing 
reliable data for use in quantitative calculations. A carefully carried out 
set cf tests on two sheets with linear dimensions in the ratio 3:1 (say) 
should, however, prcvide a firm basis for calculating the scale effect that 
could then be used for estimating the failing stress of any size of (similar) 
sheet in the same material, 

L 

The second set of results we shall quote are taken from experiments' - 
carried out for the Ministry of Supply by the Bristol Aircraft Company. The 
experimental values shown in Figs.1 and 2 for sheet material to Specification 
D.T.D.746 are typical in general character of others obtained fcr aluminium 
alloy sheets to other specifications. The pcints plotted in these figures are 
the actual experimental values and the smcoth curves have merely been drawn in 
by eye to represent as nearly as possible the average failing stress for each 
crack length. Fig.1 refers to a sheet 20 in. x IO in. x 0.04 in. and Fig.2 
to a double-size sheet 40 in. x 20 in. x 0.04. in. The few ex-erimental values 
that were obtained on a sheet 40 in, x 20 in. x 0.08 in. she;{ that they differ 
to a negligible extent from those for the same sise sheet of half the thickness. 
There is, therefore, no cockling effect s o that, apart from the crack-end 
radii, the dimensions of the two sheets are effectively in the ratio 2:l. 

Table 3, which is based on the smceth curves of Figs.1 and 2, shcws the 
failing stresses for the two sheets at various crack lengths. It also shows 
in the last column the failing stress in the larger sheet as a fraction cf I 
that for the smaller. This fraction varies from 0.76 to 0.64 abcut an average 
value of approximately 0.8. According, therefore, to the theory put forward 
here, the effect of not scaling up the crack-end radii when ether dimensions 
are doubled is to reduce the failing stress by scme 20 per cent for sheet to 
Specification D.T.D.746. 

3 TAHX 

(Sheet material D.T.D. 7461 

Failing stress (average on ! 
Crack length gross area stress, larger sheet 

Sheet width Sheet Sheet > stress, smaller sheet 
2O"xlO"xO. 04" 4O"x2O"xO.O4" = Stress-reduction ratio 

0.15 46 35 0.76 
0.2 36.3 28 0.77 
0.25 30.5 u, 0.78 
0.3 26.6 21.5 0.8 
0.35 23.7 19.7 0.83 
0.4 21.4 18 0.84. 
0.45 19.5 16 0.82 
0*5 -17.8 14.7 0.82 
0.55 16 13 0.81 
0.6 14.2 11.5 0.81 
0.65 12.5 10 0.8 
0.7 10.7 ,“:z 0.79 
0.75 a.8 0.79 
0.8 
o.a5 i ::; 1:; 

0.78 
0.73 

0.9 3.7 2.8 I 0.76 
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Using equation (5) at~!~. putting r equal to 0.8 and n equal tc 2, we 
express the failing stress G x fcr a sheet of any width x in the fcrm 

o- 
X 

7 

= 0.8 (10) 

where co is the corresponding failing stress fcr the smaller sheet. 

Thus, fcr a three-to-one increase in size cf sheet, the failing stress 
falls to 

of that for the smaller sheet. 

This stress-reduction ratio fcr D.T.D.746 for a scale-up in sheet size 
of 3:l may be compared with the ccrresponding reduction ratio of 0.73 for 
sheet material 2O24-T3 and 0.6 for 7075-T& This makes the scale effect for 
D.T.D.746 slightly more proncunced than fcr 202!+-Tj sheet material, but much 
less pronuunced than for 7075-T6. 

2.3 Reduction of failinK stress m-m. --- 7- due to increasiq crack length 
in wide sheet -- 

As suggested in paragraph 2.1, an increase in length of a short crack 
in a large sheet is approximately equivalent to the same percentage increase 
in a crack of any length in ‘an infinite she&. In either case the stress at 
points remote from the crack is sensibly unchanged and so would be the stress 
concentration were the crack-en5 radii scaled up in proportion. It f CllOWS 

that doubling the size of a shcrt crack in a large sheet should have much the 
same effect in reducing the failing stress as doubling the size of crack and 
sheet at the same time. This peint can be checked against the experimental 
results by noting, for example, tne effect of increasing a short crack length 
in the 35 in. wide sheet to Specification 7075-lT6 whose failing stress against 
crack length is given in Table 3 of Ref. 4. 

From this it is seen that doubling tile crack-1ength)which always includes 
the central hole) from 0.05 of the sheet width tc 0.1 drcps the failing stress 
from 51 per cent to 38 per cent of cult i.e. to 0.74 of its value before 

extension. The ccrresponding effect of' scaling up both sheet and crack in the 
ratio 2:l is seen from equation (8) to be 

(0.6) = 0.72 02) 

The Tao figures are, therefore, in fair agreement. 
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A similar calculation can be made for G.T.D. 74.6 on the basis cf the 
results quoted in Table 3. Taking the 4.0 in. x 20 in. sheet and the two 
crack lengths 0.2 and 0.25 of sheet width, we find the failing-stress- 
reducing factor tc be given by 

= 0.63 (1.2 

for a doubling of the crack length, 

This compares with the value 0.77 in the last column of Table 3 cbtained 
by scaling up sheet and crack together. The lower figure is to be expected in 
view of the reduced net cross-section. 

2.4 General remarks on cracks in flat sheet 

It seems fair to conclude from the abcve observations that 

(a) In a sheet subjected to a uniform tensile stress along edges that 
are parallel to a central crack the value of the failing stress progressively 
drops as the size scale increases, i.e. as the length cf the crack and the 
linear dimensions of the sheet are increased in the same ratio. This is mcst 
clearly shown when sheets of the same shape but different size are tested. 

(b) Theoretically an increase in the length of a crack in a sheet of 
infinite size is equivalent to an increase in scale and shculd lead tc the 
same drop in failing stress. This seems to be borne out by the few tests 
that have been made on short cracks in large sheets. 

(c) The scale effect noted in (a) abcve, once determined for a 
particular scale ratio, can be found at once fcr any ether scale ratio by 
a simple fcrmula so long as the She&S are of the same material. 

(d) The magnitude cf the scale effect depends upon the specification 
of the sheet material. It is somewhat greater fcr 1>.~.~.74.6 than for 
2O&-T3 and much greater fcr 7075-T6. 

(e) It seems reasonable to suppose that the cause of the scale effect 
here noted is the fact that, as the crack length and sheet size are scaled 
up proportionately, the sharpness of the crack extremities (i.e. the crack- 
end radius) remains unchanged end, therefore, in relation to the crack length, 
becomes mere prcnounced. 

3 CRACKS IN PRE'SSWm CYLI?XD3RS 

In passing from flat sheet under uniform tensile stress to circular 
cylinders under the hoop stress caused by internal pressure we need to con- 
sider two distinct aspects of the matter. In the first place we are interested 
in comparing the behaviour cf cracks in cylinders of the same shape, but 
different size in order to see whether the same scale effect is present as 
that already noted fcr flat sheet. In the second place is the problem cf 
ccrrelating the behaviour of flat sheet under tensile stress with that of the 
same sheet formed into a cylinder under an equal hoop stress. 

The experimental data necessary fcr discussing these matters is contained 
in a paper by Peters and Kuhn2 who carried out tests on some fifty-eight 
unstiffened cylinders made up of sheet to Specification 2O&-T3 and 7075-T6. 
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3.1 Failing stresses in>linders cf different sizes -- 

A salient conclusion from the experLments carried out by the above 
authors is that sheet thickness is not a relevant parameter so lcng as the 
hoop stress is kept constant. 

They varied the skin thickness of a particular cylinder aver the range 
0.006 to 0.025 in. without changing any other parameter than the internal 
pressure, which was adjusted SC as to maintain a constant hoop stress, and 
found the ncminal failing stress to be practically unaffected. It can be 
concluded from this that the cylindrical sheet in these experiments must have 
been approximately under 'plane-stress1 conditions. 

Twc sizes cf cylinder were used, one 3.6 in. radius and 20 in. long and 
a larger cylinder %!+I+ in. radius and 74 in. lcng. Thus the ratio cf the two 
radii - four to one - was slightly different from the ratio cf the lengths, 
which was 3.72 to I. If we can legitimately assume this small discrepancy in 
the length ratio to be unimportant, we can compare the behaviour of cracks cf 
length ratio 4 to I and expect to obtain identical results except for the 
scale effect introduced by the constant crack-end radius. 

On plotting the experimental results given in Ref. 2, it is found that 
for each cylinder size and each material a fairly smooth curve can be drawn 
through the plotted pcints. The following tables have been obtained by 
reading off from these smooth curves. 

iSheet material 2024-T3) 
. 

Unstable crack Failing hoop-stressi I 
length (in.) lb/in.2 + 103 Stress-reduction 

Cylinder Cylinder Cylinder Cylinder ratio 

c 

diennleter diameter 

--!- 3.6 0.5 0.3 I.5 1 in. II+.4 4 6 2 1.2 in. 

diameter diameter 

3.6 40 30.6 13.3 19.5 in. 14.4 a+.0 30.5 10.0 14.0 in. 0.8 0.78 0.72 0.75 ' I ;gd !k P 
2 i 8 9.7 8.0 I 0,82 e1 -4 

&eet material 7075-T6) --- 

Unstable crack 
length (in, 

l--l--- 

Cylinder Cylinder 
diameter diameter 
3.6 in. 'r4.4 in. 

0.3 1.2 
0*5 
0.75 ; 
I 4 
I.25 I 5 

Failing hoop-stress 
lb/in.2 + IO3 IP--- Stress-reduction 

Cylinder Cylinder ratio 
diameter diameter 
j.6 in. 14.4 in. 

32.5 
25 
19 
15 
12.2 
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We note from these tables that scaling up cylinder size and crack 
length in the same ratio has the effect of reducing the ncminal failing 
hoop-stress in both materials, 
Specification 7075-T6. 

the reduction being more pronounced for 
This is in accordance with what has already been 

observed and reccrded in Tables I and 2 fcr flat sheets. There the average 
stress-reduction ratios for 2O&-T3 and 7075-T6 materials and a size scale 
of 3:l are 0.73 and 0.6 respectively. Using equaticn (6) we find the 
ccrresponding stress-reduction ratio fcr a &:I size scale for these two 

materials to be 0.73 1% 4/w 3 & 0 . 61°t? b-bog 3 i.e. 0.60 and 0.53 res- 
pectively. These are somewhat lower than the ratios (0.77 ,and 0.7 &spec- 
tively) obtained above for the same sheet material in cylindrical form. It 
must be remembered, however, that apart from the fact that the flat sheet 
specimens had central holes, they ;7erc also -;iii;hou'c the buckling-prcvcntin, 
action of the longitudinal tension present in tile cylindrical specimens. 

RELATIOK BXVWEXN TLX8 FiZLIXG TiZNSILE STPXSS IN A FLAT SHEXT A?2 
TKE FAILIXG XOOP STFESS I8 A CXLIND~RiiREPiA CRACK CUTS ACROSS 
THE DIRECTION OP TEi$SION 

-- 

It has been shown above that, once me have obtained by experiment the 
stress-reduction ratio for two similar flat sheets (of the same material) 
with similar cracks, we can estimate the failing stress in any similar sheet 
whatever its size. The failing hoop stress of a pressurised cylinder can be 
found in the same way based on the experimental values fcund by testing two 
similar cylinders of different sizes. 

What has not so far been discussed is the scccnd problemmentioned in 
para. 3 above, i.e. the relation between the failing tensile stress of a flat 
sheet with a given length of crack end the failing hoop stress of the same 
sheet (with the same crack) rolled up intc a cylinder and subjected to internal 
pressure. At first glance these two stressec L) might be expected to be equal. 
In point of fact, however, as Peters and Kuhn have shcwn in Ref. lc, they are 
far from equal. These authors found that, as the length of the flat sheet - 
and hence the circumference of the corresponding cylinder - was reduced, the 
failing hcep stress in the cylinder fell far short of the failing tensile 
stress in the flat sheet. They wese unable tc explain this phenomenon snd 
expressed the opinicn that "the strong effect cf curvature is not explained 
by known theory", and that "the physical nature of the curvature correction 
is obscure at present". 

They failed to point out that,slthough they were unable to explain this 
strong effect of curvature, it was, nevertheless, an effect to be expected, 
For it is known from straightforward dimensional theory that, if two similar 
structures of different size are subjected to similarly distributed lcads, 
the stresses induced are identical hcwcver complicated the structures may be. 
It fellows that two similar cylinders with similar disccntinuities - circular 
holes for example - will have identical stresses under equal internal pressures. 
Thus if each linear dimension - length, diameter, sheet thickness and diameter 
of circular hole - of the larger cylinder is n times that of the smaller, the 
stresses should everywhere be identical under the same pressure; but, on our 
assumption of 'plane stress' in the sheet, the stresses in the larger cylinder 
will remain unchanged if we reduce its sheet thickness in the ratio l/n and 
reduce its internal pressure in the SW ratio, YJe have ndw two cylinders, 
with the same sheet thickness and the s;?~llc hocp tension, in which, acccrding 
to dimensional theory; the stresses are identical in spite of the fact that 
the larger cylinder has a hole dimcter n times that of the other. Thus, in 
comparing the results for the two8sizes of cylinder, the authors should , 
have expected the same failjng stress not for cracks of the same length but 
for crauks proportional to cylinder size. 
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4 . = length of crack 

If the experimental results obtained by them fcr the two sizes of 
cylinders tested are compared on the latter basis, the strong curvature-effect 
they refer to disappears, leaving only the comparatively small discrepancy 
consequent upon the incorrect scaling of the crack-end radii. The result 
according to this, is that curvature has a small beneficial effect rather 
than a large deleterious effect on the nominal failing stress. 

The above attempt at clarification is, it may.be noted, of little 
assistance in solving the problem cf correlating flat-sheet results with 
those for corresponding cylinders (i.e. 
sheet). Por, 

cylinders made by rolling up the flat 
in order to deduce the nominal failing stress for a cylinder of 

infinite radius (representing the flat sheet case) from the results for 
cylinders of finite size, we have necessarily to contemplate cracks of infi- 
nite length in the infinite cylinder. 

To overcome this difficulty use can be made of a simple empirical 
formula evolved by Peters and Kuhn to correlate experimental results for 
flat sheets with the results they obtained fcr their two cylinder sizes. 

According to this formula the stress concentration at the end of a crack 
in a cylindrical sheet is given by 

where O‘f = stress concentration in the corresponding flat sheet 
( i.e. the resultant stress at the crack-end) 

04) 

r = radius of cylinder 

k = empirical constant 

For materials 2024-T3 and 7075T6 they found the empirical constant k to have 
the same value, i.e. rk.6. At failure the stress given by equation (14) must 
equal the ultimate stress of the material (r u1t. so that we write 

where G o is the nominal applied stress (i.e. average stress on grcss area of 

cross-section) at failure. It follows that 

Thus, if we know the stress-concentration factor 

also know the value of the constant k we can, for any length of crack and any 
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radius of cylinder, derive the failing hcop stress from the failing tensile 
stress of correspcnding flat sheet ob tained by opening out the cylinder to 
form a plane sheet. 

As already mentioned, formula (12) is purely an empirical relation that 
happens to fit the experimental results obtained fcr the two materials 2CXY+-'1'3 
and 7075T6. Having no rational thecretical basis it cannot be applied with 
any confidence to other materials. I deed Peters and Kuhn, on the basis cf 
certain tests carried out by Griffith g on glass bulbs, issue a warning that 
formula (12) may be ef limited sccpe ald "should not be applied to other 
materials without cheek tests fcr verification". 

Among the purposes of this note is to put formula (14) cn a rational 
basis and so enable one to answer the question whether the constant k is 
likely or not to have much the sa1,1e value for all structural materials. 

The essence cf relation (14) is that the added stress concentration 
around the crack extremities as a result of converting a flat sheet into the 

times that in the flat 

sheet, i.e. it is directly proportional to the length 4 of the crack and 
inversely proportional tc the radius r of the cylinder. The following argu- 
ment, in conjunction with tne analysis given in the Appendix, in the first 
place demonstrates that this experimentally obtained relation is in accordance 
with theoretical considerations. In the second place it demonstrates that the 
value of the constant k shouid be much the same for all materials. This 
second conclusion is in conflict with Peters' and Kuhn's interpretation of 
Griffith's experiments on glass bulbs - a pcint that will be discussed later. 

4-f Basic armnt cf analysis in Appendix 

Fig. 3 

Fig. 3 shcws part of a cylinder of radius r under an internal 

pressure PO* Before the crack A'OA appears the hoop tension is constant 

everywhere and has the value por per unit length cf generator. Imagine now 

that a crack AA' is made in the skin, but that the hoop tension originally 
present across the two edges of the crack is maintained by an external 
agency so that (assuming no leakage) the hoop tension is nowhere changed. 
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Tiire now assume a rigid sleeve to envelop the cylinder, \rJhich sleeve, 
while constraining the skin in the region of the crack against any radial 
expansion, allows free circumferential displacement. In the presezce of 
this constraint the external agency maintaining the original hoop tension 
acrcss the edges of the crack is next remcved. In other wcrds we apply a 
hoop Lo=ression p r I__- (per unit length) across the edges of the crack, which 
compression, by d$fusion into the surrounding area, diminishes in value 
with distance from the edges in the same way as in a flat sheet. ks a result 
of this and the prevailing curvature of the sheet a radial presslne amcunting 
IJo P, in the immediate vicinity of the free edges of the crack - and pro- 
gressively smaller pressures vfith increasing distazlce from the crack - is 
applied to the ccnstraining cylindrical sleeve, which may be ccnsidered kept 
in balance by a uniformly low pressure over the opposite side cf the cylinder. 
!Che ‘plane stress' distribution over the disturbed region BB'C'DI 'WIG (including 
the stress concentrations at A and A') is now identical with that in the 
ccrrcsponding* 

---- 
flat sheet under an applied tension par per unit length and a 

Cross tension of por J2. 

To obtain the additional stressen G Fresent in the cylindrical sheet, but 
absent from the corresponding flat slzet, we need now to find the effect of 
removing the constraining envelo&g sleeve'%:": while the original pressure p, 

and the compressive forces at the crack edges are still maintained. Remcving 
the sleeve, however, is equivalent to applying an additional internal pressure 
over the region Bi3~E51 '6' of the same amount as the external pressure previously 
applied by the sleeve. This additional ;oressure is everywhere in direct pro- 
portion to the ~UG&LUI~ value cf such pressure, namely p, clcse to the crack 

edges. In the absence of ccntinuity cf the sheet across the arcs AB, A'B' the 
area ABA'B' v:rsuld fold back &cut the line 13D1 without any resistance. As it 
is, the pressure lcad cn this arcs. induces an additional hcop tension fcrce 
that, in the absence 02 the era&;, would be carried straight across the line 
AA'. Because OS the crack, however, the heap load cacross AA' has tc be by- 
passed across AC ait?. A'C' in the sLame v:ay as the original hoop tension force 
par 4 already treated. 

2ie knP2 from general princi$es cf stress diffusion that, in the flat 
sheet case (i.e. with the radial constraint still cperative), the stress 
disturbance prcduced by the crack extends in the circumferential directicn 
a distance proportional to the length 4 (say) of the crack. It follows from 
what has been said abcve that the excess prcO,, ~oc:ure (induced by remcval of the 
constraint) extends the same distance. This means that the total load due to 

, 

By'ccrresponding flat sheet'wc mean the sheet obtained by cpening out the 
cylindrical sheet after cutting all along -the generator diametrically 
opposite the crack. 

It is interesting to note that there is an allusion in Ref. 3 to some 
experiments carried out by the Douglas Aircraft Cc. in which the effect 
of such a sleeve was measured in tezms of resistance to fatigue. The 
following is quoted from Rcf, 3 (para. 27). "In c:le unpublished test by 
Douglas Aircraft Co., a crack in a cylindrical specimen was covered by a 
plexiglass sheet to prevent excessive bulging cl" the crack lips. Without 
the plexiglass radial support to the edges of the crack a specimen failed 
at X2.&7 cycles at a hocp stress ef 4130 p.s.i., but with the support a 
O~ii~ilar specimen at the saii;ile stress tcok 39,875 cycles befcre failure. 
This gives further indication that the problem in a cylindrical structure 
under pressure is very different from a flat tension specimen containing 
a crack". 
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the excess pressure over the region BB'B,B,' is proportional to d2 and to 
the maximum value po of the excess pressure. Ye can thercfcre write 

Excess pressure load Q = k,p,e' 05) 

where k is a factor that, depending as it does on the pressure distribution 

over thl region AA,B,'B, (Fig.3) is directly dependent cn the pressures on 
the constraining sleeve and henci on the 'flat-sheet' stress distribution 
over that regicn. It is dependent therefore on the ratics 4/r and r/L of 
crack-length tc radius and cf radius te cylinder length L. 

It has been shown in the Appendix - equation (38) - that, if a sheet 
ring of width b and radius r. under internal pressure p o is further subjected 

over an arc roO equal to 8 in length, where 0 is small (< 40' say) ccmpared 

with 180°, tc a radial load Q no greater than b &p, (equilibrated by a uni- 

form pressure over the cpposite half cf the ring) the extra pull cr hoop load 

in the ring is equal to Q/2. 

If now, in Fig.3, we imagine the arcs BB, and BIB,' extended into com- 
plete circles, they may be considered as rc?resenting the edges cf a sheet 
ring of width & subjected tc a unifcrm internal pressure p, and lccally tc 

an excess pressure load Q, that, acccrding to equation (15), is directly 

proportional tc poC2. Since the ring is broken along the crack AA' the 

pressure load Q, as already explained, is transferred tc the adjoining areas 
beyond the bcundaries of the "ring", and there gives rise to a total hoop 
force acrcss AC and A'C' cf amount, 
to Q/2. 

according to the above argument, equal 
This is in addition to, but distributed in a way very different -w 
hoop force g,r 8 that is distributed over AC and A'C' as in a flat from, the 

sheet and 

The 
the force 

that also must be by-passed. 

maximum hoop tension due to each eccurs at A (Fig.3). That due to 
por8 may be smitten in the form 

cTA) 
1 

(46) 

where I? : 
i 

9 ;) is a function cf the length -2 cf the crack as a fraction of 

the radius and of the ratio of cylinder radius tc cylinder length. Division 
by 4 is necessary because the length AC (ald A'C') over which the hoop fcrce 
is by-passed is propcrticndl to 4. 
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The ccrrespcnding hoc-p tension caused by the hcop fcrce Q, which has a 
very different distribution* over AC, may similarly be written in the form 

(TA) 
2 

=f$z.pe2 f 43. 
\ > 0 

Tne total. hoop tension at A is thus 

P”,Z 
TA = (TA) -t (TA) ( > = 3’ ($ ’ $Po+ +(fJF(; , ~j ]i l 

(47) 
1 2 

As already noted the resultant pressure-load Q is the integral of 
pressures whose distributicn over the region BB'B,'B, (Fig.3) (by removal 
of the constraining sleeve) is identical with the distribution uf 'flat sheet' 
compression forces (with constraining sleeve present and comprression forces 
applied to the edges cf the crack), On this basis the ratio 

f($! > ;)/F(: , :) can be regarded as a constant k independent of both 

ratios 4/r and r/L. Equation (17) may thus be written in the fcrm 

TA = (TA) 
flat sheet 

. 

08) 

* This 'very different' distribution is caused (in the writer's opinion) 
by the quite different mechanisms by which the 'flat-sheet' load pord 

and the local pressure load Q are transmitted round the crack. The 
former takes place by familiar stress diffusion in the plane of the 
sheet, but the latter, since bending of the sheet is a negligible factor, 
must be transmitted by membrane forces that perforce must be directed at 
an angle to the crack direction and therefore in a direction along which 
the sheet curvature is smjll (depending as it does on the square of -the 
23 im of that angle). Only thus can the very large vaJ-ue cf the experi- 
mentally derived constant k (i.e. 4.6) be explained. 
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Since the stress ccncentration at the crack-end A is directly pro- 
portional to the hoop tension at A 

= @A) 
flat sheet 

When the pressure p, in the cylinder 

i / 
1 *&i~ 

r l 
(19) 

reaches bursting value CL1 becomes 
equdl to the failing stress d ult for the sheet material, so that, under these 

conditions, 

pr 

where d = - 
0 

= nominal hoop stress in cylinder, 
t 

and t = sheet thickness. 

(20) 

Thus 

(Oo)at failure = 

This is identical with the empirical,relation (120) deduced by Peters 
and Kuhn directly frcm experiment, and in which they found k to have the 
vslue 4.6. 

An important point to note in equation (19) is that the expressicn for 
~7 is A independent of the size cf' the cylinder and remains the same so Long as 

the ratio '/r is the same. This is because the scale effect is completely 
taken acccunt of in the leading factor (CA) 

flat sheet' A further point that 

is fundamental in regard to this equation is that any effect of sheet material 
on the value of oA is also taken acmunt of in that factor. That is why the 

constant k is tidependent of sheet materiLL. 

442 Effect of axial tension in pressurised cylinders 

The biaxial character of the stress in a pressurised cylinder does not 
affect the value of the constant k. This is because it is derived as the 
result of comparing a cylinder under biaxial stress with a flat sheet under 
the same biaxial. stress. What we are after however is the relation between 
a flat sheet in simple tension and the corresponding pressurised cylinder 
under the same (hoop) tension and an axial stress cf half that snnount. 

For a constant stress ratio (here 2:l) we can express the stress 
concentration at the crack end A in a flat sheet in the form 

OA(biaxial stress) = k' c A(simple tensile stress) 
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with the result that equation (19) becomes 

. 

b*) 
cyl. 

= cc*> 
(flat sheet biaxially stressed) 

simple tensile 

Because, however, the longitudinally applied stress gives rise to 
practically no stress concentration at the crack end, and what stress it 
does produce normal to the crack direction relieves rather than accentuates 
that due to the main tensile stress, the value of k' is very nearly, but 
slightly less than, unity. The result is that, on introducing the factor k' 
in the denominator of equation (20a) we find the applied failing stress co 

to be slightly increased in the ratio l/k'. By assuming k' to have unit 
value, i.e. by deriving the ccnstant k by directly comparing the cylinder 
failing stress with that of the corresponding flat sheet in plain tension, 
we ensure that formula (20a) gives a slightly conservative estimate of the 
failing stress for a cylinder. 

5 POINT'S CWll?IEE BY THE TiEF:C!~TIC& TPSATlv'iKNT 

With the empirical formula of Peters and Kuhn now established on a 
theoretical basis, it becomes possible to derive certain conclusions that 
were previously inadmissible. 

The main conclusion is that the constant k, already found by Peters 
and Kuhn to be identical for two widely different aluminium alloys 2024-T3 
and 7075%T6, is likely to be the same for all structural materials and for 
al.1 sizes of cylinder. This view is put forward in sgite of the results 
quoted by the above authors from the work of Griffith en glass bulbs and 
tubes. They found the results for glass tubes to be somewhat inconclusive 
because of the small range of tube diameters covered. In Griffith's 

experiments on glass-bulbs, however, in which $ varied from 0.2 to 0.9, 

they found the quantity I + F 
( > 

to differ from unity by only 4 per cent at 

most, so giving, by equation (20a), a nominal failing stress d o only 4 per cent 

less than that for the corresponding flat sheet. If k had the same value, 

namely 4.6, for glass as for the two aluminium alloys, the factor 1 + F 
( > 

would amount to (I + 4.6 x 0.9) or 5.14, which, if used in equation (20a) 
gives a nominal failing stress cf abeut l/5 of that for the corresponding 
flat sheet. In other words, to make the fcrmula agree with experiment, the 
value of k fcr glass should be (0.04 + 5.14) or less than one-hundredth of 
its value for the two alloys. 

There is a simple expl=anatioA to account fcr this apparent discrepancy 
and hence to confirm the view that the factor k for glass is unlikely to be 
different fram that for any ether structural material. 
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It will be recalled that the hoc;2 tensions produced in sheet cylinders, 
extra to those in the ccrresponding flat sheet, came about as a result of 
removing the envelcping sleeve that resisted the outward radial forces caused 
by releasing the tensile forces holding the edges cf the crack together. 

Consider now what hapTens when the pressurised vessel takes the form of 
a bulb - a spherical bulb let us say. As before, if the edges cf the crack 
are held together by an outside agency the hoop tension - criginally uniform 
over the whcle surface remains unchanged, but at a. value half that of the 
cylinder of the same radius. This is because the pressure in the bulb is 
resisted half by the hcop tension across the direction cf the crack and half 
by the hoop tension in the same direction as the crack. 

Before removing the external constraint holding the crack edges together 
we introduce, as before, an enveloping (new spherical) surface to prevent any 
radial displacement consequent upon the local internal pressure caused by 
applying the compressive edge stresses required to cancel the external con- 
straint. The important point, however, is that this local pressure - unlike 
the ccrresponding pressure in the cylinder - never comes into action so far 
as the enveloping surface is concerned. Vhat happens is that, as the hoop 
tension acrcss the crack goes out of acticn the hoop tension in the direction 
of the crack is doubled. Instead of the hoop tensions in the two directions 
taking equal shares of the pressure, the hoop tensicn in the direction of the 
crack now takes it all - accompanied mcrecver bg radial displacements at the 
crack edges that are negligible compared with these at the crack edges cf the 
corresponding cylinder. In other words there are no extra stresses round the 
crack ends caused by the local pressure induced by rtmoval of the constraining 
surface. The stress concentratiorp LU around the crack ends are, therefore, 
practically the same as those fcr the parallel case of the flat sheet. 

6 CONCLUSIONS 

The conclusions to be draTa1 frcm the above work (and the references 
mentioned) may be swrmarised as fallows. 

6.1 The failing stress cf thin sheet under tensile forces across a crack 
is largely independent of its thickness whether the sheet is flat or con- 
stitutes the skin of a pressurised cylinder. It depends heavily, however, 
on the sheet material. 

6.2 Ccmpariscn of results fer similar flat sheet specimens (sane planform, 
and crack lengths proportional to the linear dimensions) shows that there is 
a scale effect - different for different materials - that m-&es the larger 
specimen fail at a laver applied stress than the smaller. 

6.3 That it is a true scale effect is indicated by the shape of the curve 
that has applied stress at failure for ordinate and crack length as abscissa. 
Jlnen the crack is still short compared with the width cf the sheet, so that 
the stresses at distances from the crack large compared with its length are 
relatively unaffected as the crack extends, 
given by equation (1+). 

the curve folloP4s clcsely that 

6.4 The amount of this scale effect is readily obtained by comparing the 
applied stresses at failure cf two similar sheet specimens (with stiilar 
crack lengths) that are substantially different in size. Once this is 
obtained for a particular sheet material the aTplied stress at failure of 
any size of sheet (of the same 
formula such as (l+). 

shape and material) can be estimated from a 
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6.5 A similar scale effect occurs in pressurised sheet cylinders with 
cracks. Once this is evaluated by comparing two similar cylinders (with 
similar cracks) the stress at failure for any size of (similar) cylinder 
and any length of crack can be estimated from the curve of stress at failure 
against crack-length for one of the original cylinders. 

6.6 For corresponding flat sheet and cylindrical specimens the scale 
effects referred to in (6.4) and (6.5) above should thecretically be the 
same for the same material. 

6.7 The relation (12b) between the nominal stress at failure for a flat 
sheet in plain tension ‘and for the same sheet rolled up to form a pressurised 
cylinder with the same hoop tension and 
cally by Peters and Kuhn2, 

same crack length was obtained empiri- 
The theoretical basis for this relation (based on 

the analysis in the Appe-ndix) has here been established and makes it possible 
to judge whether the empirical const,ant k included in formula (12b) is likely 
to vary appreciably from one material to another. 

6.8 On the basis of the theoretical considerations discussed above one would 
not expect the empirical constant k in equation (12b) to vary much from one 
structural material to another. The results quoted by Peters and Kuhn* from 
Griffith's work on glass tubes and bulbs, which seem at first sight to indi- 
cate that the value of k for glass is less than cne-hundredth of that for 
aluminium alloys, have here been explained and the apparent small value of k 
shown to be caused by the double curvature of the glass bulbs. Fcr glass 
tubes there is no reason to suppose that k has a different value from that Of 
any other material. The constancy of the factor k widens the scope of the 
formula and therefore greatiy enhances its usefulness. 

6.9 As a result of the abcve points the curve of failing stress against 
crack length for a large unstiffened cylinder can be derived from that of a 
similar small cylinder by using the scale effect for the particular material, 
and the curve for the small cylinder can in turn be derived frcxn that of the 
'corresponding ' flat sheet by using formula (20a). The result is that the 

behaviour cf a large cylinder can be estimated from that of a small flat 
sheet. An alternative procedure v~ould be to use formula (20a) tc derive 
first the failing stress cf the large cylinder from that of the 'ccrresponding' 
flat sheet and secondly to derive the failing stress of the latter from that 
of a similar smaller flat sheet by using the appropriate scale effect. 

6.10 As stated in the introduction the main purpose of this note is to 
enable tests on crack-prcpagation in sheet metal structures to be carried 
out with greater economy - to enable the nominal stress at failure for large 
flat sheets and cylinders to be deduced from results, obtained quickly and 
cheaply, for small sheets and cylinders, and to enable results for cylinders 
to be obtained from tests on flat sheets. The f'ormulae derived above would 
seem to go some way towards achieving this end. 
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. 

?.m?&CT OF LOCAL IJ!5CXEAsE OF PADIAL 

PRESS-i ON LOCi;L HOOP TiDSIO:\r 

Pig. A.1 

We consider first the hoop 
tensions in a unit length of a 
pressurised cylinder made of thin 
sheet. Vie treat, in other words, 
the two-dimensional problem of the 
pressurised ring of unit width. 
The upper half of this is repre- 
sented in Fig.A.1 by the semi- 
circle A&~'. The ring is initially 
under an internal pressure, and 
hence a force per unit arc of po, 

and the problem is to determine 
the new hccp tensions introduced 
as a result cf ap lying a further 
pressure (p, - p, P of abcut the 

same magnitude as p, over the 

arc BB' that makes the resultant 
local pressure equal to p,' 

It will be seen later that the conclusions reached from this analysis 
are not affected by the simplifying boundary ccndition that the points A and 
A' are fixed in position. It will alsc be shown later that it is legitimate 
to neglect the bending stiffness of the sllcet forming the ring, which may, 
therefore, be regarded as an inextensible membrane. 

Let r. = original radius of curvature 

= radius cf curvature under uniform pressure p, 

% = Em&le. BOC 

r, = new radius of curvature fcr arc BC' with centre of 
curvature at 0, 

9, = angle subtended by arc BB' at its centre 0, 
(making r,$, equal to roe,) 

r2 =I new radius of curvature over arc AT3 (and A'B') 

9'2, = angle subtended by arc Al3 at its centre O2 

PO = original pre,, p-ure in cylinder 

(p, - po) = additional pressure applied over the centralaro BB' 

Prom equilibrium considerations the centre O2 must lie on,the same 

straight line as the radius BO,. 

- 23 - 



Appendix 

By symmetry it is encugh to ccnsider the quadrant AC alone. The four 
variables r 1' ‘2J $3 $2 may be evaluated from four equations, which are 

derived as follows 

To keep the peripheral length constant we have 

VI + r2qi2 = r. $ . 

Far equilibrium at the juncticn B of the two arcs 

(23) 

por2 = p,r, 9 

and from geometrical ccnsiderations 

‘1% = 0 I  l 

rO (251 

Because A and A' are fixed in position, we have the further 
geometrical condition 

r2(sin $, + $2 - sin $,) + r, sin 41, = r. sin $ = r. . (26) 

Making use of equations (23), (U,) and (25) in (26) we obtain the 
following equation in the single variable U;, :- 

2 lsin 'm - $1 

0 

sin $,I + sin $, = 0 
-l 

or PA sin T 1 
po' 

$1 =8-I ’ 

(27) 

where 

For any given value cf 0, this equation can readily 

and errcr. Ve take the case in which we are particularly 
p, is twice p. and 0 I has varicus values. Per 0, = loo. 

m 

be solved by trial 

interested" where 

We find that 

$, = IT', r, = 0.589 r. 3 

9, = 68', r2 = 1.178 rc l 1 
(29) 

* See para. 4.1 of main text. 



Appendix 

The tension in the ring is therefore 

. 

T = por2 = p,rq = I.178 p,rO . 

The effect of doubling the pressure over the cmtral 2Oo of arc is thus to 
increase the original tensim P r o o by the fraction 0.178. 

It is tilportant to ncte that the angle which the tangent at A makes 
with the horizontal is given by 

(9, + $,I = 85’ 

i.e. only 5' off the vertical. This suggests at once m. easy apPrcsimate way 
for finding the new tensicn in the ring. 
at A makes 90' instead of the actual 8~ 

Ve mrely assume that the tangent 
r" with the hori.zo;ltal and that the 

change in the projection cf the central arc BE' ox the horizontal is ncg- 
ligible (i.e. that r, sin $-1 N ro sin 0,). 

In the present case the one assmptiol-1 introduces an error that is the 
difference between sin 90' and sin 850 i.e. an error of 0.4 per cent. The 
other assumption involves the very slight differences before and after 
applymg the extra Pressure (p,- po) in the qrojccticns m the horizontal of 

the arcs Al3 and BC. Yith these assumptions, the condition for equilibrium 
of the vertical f'crces may be mitten in the fcm 

T = P,ro sin 0, c pore (1 - sin 0,) (32) 

= porO (1 -k sin S,), if p, = 2p, , (324 

or T = pore (1.174) l (32b) 

Thus the approximate fractional increase in the hcop tension is 0.174 
as against the "correct" value cf 0.178, an underestimate of only 2:~ Per cent. 
For 0 A = 20" and with p, still twice po we obtain from equation (27) 

$1 
= 29.75’, r, = 0.673 r. 1 

0 i 
9, = 52.1 , r2 = -1.346 r0 

f 
(33) 

(+-#,I = I angle of tangent at A = 82' -- 

T = por2 = p,rl = q.346 Pore (34) 

a fraction increase of 0.3J+6. 

<j -  
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Appendix 

The approximate method gives by equation (32) 

n 
1 = p,r, (I + sin 20") = 1.342 p,r , (35) 

which makes this fractional increase equal to 0.X.2 as against the "ccrrect" 
value of 0.346 - an underestimate of I$ per cent. It is clear in fact that 
(assuming points A and A' fixed) the greater the extent cf the loaded central 
arc the more near to the trial-and-error azz.Ber the value given by equation(32) 
becomes; when this arc covers the whole semi-circle the two values are, of 

_ 

course, identical. 
9 

Heglect of sheet bending stiffness justified 

Since the change of curvature produced in the ring is now known the 
enera absorbed in bending the sheet is easily calculated and so also is 
the work done by the applied pressure. The relative magnitudes of these have 
been worked out for the above numerical examples and it is found that the 
bending energy constitutes a negligible proportion of the total. This fact 
justifies the criginal assumption that bending energy cf the sheet may be 
neglected in the present problem. 

What has been established so far is that, in the two-dimensional c&se 
of a ring the extra hoop-tension (per unit length of generator) caused by 
increasing the pressure from p, to p, over an arc 8 

1 
of the ring is given, 

according to equation (32), by the approximate formula 

(T - To> = (P, - p,) r. sin 0, 

= (P, - PO) r. 5 9 (36) 

where To = original hoop-tension p r o o before application of the excess 

pressure. 

If, over the arc BB' of Fig.Al, the applied excess pressure (p, -p,) 

is not constant we can by the above adjustment still espress the total pull P 
over the ring cross-section in the form 

P QC b(TC - To) 

e b [(q)c - po] roe, ("'i,"') (37) 

where (p,), is the pressure (constant along the generator) at the mid-point C 

of the arc BB'. This equation differs from (36) in bringing in the width b 
of the ring and substituting the 
equality. 

sign of direct proportionality for that of 
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Appendix 

. 

If, further, the angle 0 is small 
say) equation (37) takes the fdrm 

cmpared with yO" (less than 20°, 

where 

PCC b '7P,Jc - PO7 4J , 
: ! 

c = roe, . 

(38) 

This relation, according to the argument developed here, holds equally well 
even thcugh the pressure at C is net constant along the generate, so long 
as the excess pressure I(p,) - p,] , where (p ) now stands fcr the maximum 

value of p, in the generator'through C, 
'C 

is no greater than p,, which it is 

not in the practical case one is here interested in. This is because, under 
the stipulated conditions, the amcunt of the extra pull in the ring under a 
local radial load superposed on uniform internal pressure and equilibrated 
by a uniform reaction over the opposite half of the ring, is equal to half 
the amunt of that load. 
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