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SUMMARY

The method of Webur1 is used to find the shape of the centre section
of a swept tapered wing to produce a load distribution which changes linearly
from unity at the leading edge Lo zero at the trailing edge along any chord.
An spproximation for this distribution is used in order to make the integrals
tractable., These integrals are evaluated and the downwash calculated. A
reasonably accurate sprnroximate formula for the dowrwash is derived, and the
results are illustrated by a few examples, giving downwash and angles of

twist.
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1 INTRODUCTION

Wéber1 gave formulae for the shape of the cenfre section of a swept
untapered wing to produce a given load distribution at supersonic speeds. in
particular she dealt with a constant load and also a constant spanwise but
linearly varying chordwise load distribution. Similar information is required
for tapered wings.

In this Note we obtain formulae for centre section downwash distribution
due to a swept-back tapered wing with subsonic leading and trailing edges and a
linear chordwise load distribution. Standard linear theory methods lead to a
singularity at the centre section. This difficulty ig avoided here by the
method given in Ref.1. Some of the integrals involved are very complicated,
50 an approximation is used for the load distribution and tested for the case
Mo = 1 for which the integrals for the exact form of the load distribution can

be evaluated. The error is found to be small, even for a fairly extreme
sweep-back and taper, and it decreases with increasing Mach number.

The algebra is tedious and much of it is omitted here. The result is
complicated but we give an approximate form which had slight error in the
examples tested. Results were worked out for a series of wings with leading
edge sweep varying from 55° to 75° and various tepers. Angles of twist were
also worked out for the same series.

We do not deal here with a constant load distribution, bccause in this
case the results do not depend on taper, but only on the leading edge angle of
sweep, and are worked out in Ref.1.

2 THE VELOCITY POTENTIAL AT THE CENTRE SECTION

We take x,y,z as a right handed co-ordinate system, the x axis in the
direction of the undisturbed stream, y being spanwise. If the load
coefficient is C(x,y) the velocity potential at the centre section is given by

Al o(x' ,y") (') dx! dy!
#(x,0,2) = —= 2 2 2 2 12 2 .50
(v “+s9){(x")"- 8%y " -8 2"}
where 62 = M;2—1, VO is the velocity at infinity and MB the free stream Mach
number,
The integral is to be taken over that part of the wing for which y! > O

1 X .
and (z-x') > B(y 2+22)2, that is over the part of the wing lying between the
leading edge and the Mach fore cone from the point (x,O,z).

The range of integration is divided into two parts, the limits being

y' lying between 0 and x'/tan Prm s

x' lying between O and x,

for the first part, and
A N2 o2 2%
y' lying between O and {(x~x')“ -8 z"12/8,

x! lying between x, and x =Bz

...3..



for the second part, where z, is given by

)2— ﬁd 22

2

2 2 2
7 x, /tan gy = (x—-x,‘

(pI_E being the angle of swesp at the leading edge.

) We guppose here that, within the area covered by the range of
integration, the leading edge is straight.

3 TIE _LOAD DISTRISUTION

We shall suppose that the velue of £ changes linearly from unity at
the leading edge to zero at the trailing edge s we travel along anv chord.
We ;clake the length of the chord at the centre section to be unity. Hence
we have

1 -&/c(y)

1

’:’(X,Y)

vhere ¢(y) is the local chord amd & = x = |y|tan ®p+ Since
cly) = 1+ lylta.n Prm -ly!tan Prg where P is the trailing edge angle of
sweep, we find that

x = |7]tan ¢
T 1=y [(tan ¢, - tan o)

6(-7(:3’) = 1

. (1)

It was found that the form (1) led to integrals of such a complicated
nature that they could not be evaluated simply except in the case MO = 1.

Consequently the sprroximation

2 2
€z,y) = - (x=lyltan o) (1 +elyl+ 5% (2)
was adopted, where & = tan Prig ™ tan P+

The forms (1) and (2) agree along tre centre line and along the leading
edge, but for extreme topers the expression € is not small. The greatest
value of ey within the range of integration for MO = 1 will be

(ten g~ ten q),m)/’t;an 9rg» Pub it will be less for nigher Nach numbers.

Fig.1 shows curves of constant ¢ for leading edge and trailing edge sweeps of
70° and 45° respectively. Only the part of the wing between the leading edge
snd the Mach fore cone at the centre section trailing edge need be considered,
and it is seen that for Mo = 1.2 the error is smell.

In the case M_ = 1 it is possible to work out the integrals for both
load distributions. Fig,2 shows the errcor introduced in the downwash by
taking the approximate value (2) Tor € instead of the true value (1) for a
wing of section R.A.FE. 101, &b thickness chord ratio, with Prp = 70°,

Cop = 45°.  Fig.1 suggests that for M= 1.2 the error will be considersbly

less than that shown in Fig.2, since most of this error would seem to come
from the triangular area between the Mach lines for Mo = 1.0 and Mo = 1.2,

Even with the approximate load distribution the labour of evaluating
the integrals is heavy though straightforward.
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L SVALUATTON OF THE INTEGRALS

We write
22 2 2 2 2 .
B7g" = (x-x")"-8"2", y' = g sin 6, T = ten 9,
and we have
X e
1 sin (x'/gT)
N 2 t f
2nB¢ _ (x-x')dx* Yx',y')ae
2V 2 .2
o} g sin 0 +z
o o
x-Bz 57
2 1 '
+ (x-x')dx! (x,7')d8 .
2 .2 2
g sin 0+ 2
%y o
We let
.= L
sin  (x'/gT) Z T ’
t n
o ytae o' = y do
= 3 ¥ -
n g2 sin® © + z° o g2 sin” 6 + z
o o]
LN N )
By Apperdix 1 we have
B -1 x' (x-x') 2 n2e0. 2 a2 2 2 '2
Gro T a(x-x! zS » Where 8 T i(xx) P z} b=

G, = sin—J&(x'/gT)-zzGo s

2
Cy = g - (8/BT) -z G
Gt = ok )

o) Sulz-zt)

(3)



6! = -

1 2(x-x") log x-x'+Pg °’
Gl = js?E’ZZGO’ ,

G = g—zz(}’

3 (I

2709 - LT 20 -
ay_ T+l + 3(11.11) + € (\i[lg') ,
where
*1
I, = j (z-x') T Gy + (1—32'}(}0}63{' ,
o
*1
= ot ot .
I, = / (x‘i)(TGZ £ Gj)o.x s
0
1
I; = / (x=x')(Tay-x' G, Jax! (5)
0
and I, I1‘ 5 I2' are the same as I, I, and IZ’ with the limits changed to
x, and x =Bz, and with G replaced by G'.  We have
I, = Bz'1 {%TZ(MO-NO)a-LO—Lig s
I = 3Bz (LazN +F'-T0),
M i . - 7 S\
I, = TP TRzL QB(M,‘ 111) s
- 1 —— — T Law
11’ = zT{(x Bz)Fo' 1'1'}4-281\1' ,
I = TR-p 1 v-1psT (M -N)+P,~xP, +62L
2 ) ‘ o o772 1 S

I} = TR'+ 3B TN + 57! -xF') + LBz,



where

iy
n

Nt
s}

43

N

i1
\
N‘
5
[ —
O
jue)
N
Rk
CRE
R332
+ 11
it

%
13
- / x P log E2E =68 gy
x-x'+Bg
o
x~B gz
- ln E_xf__ 6
/ pd logitz?rgidx',
Xy
& n -]
= / (X“X') sin (x'/Tg)dX',
0
x-Bz
= ’Kf x'ndx‘ »
*4

- [1(”')5 axt (6)



We note that NO and I\IO' only occur in the combination No + 1\'0' .

same applies to N

Appendix 3.

We shall also make use of integrals

Weber1 evaluvated J

£

4 and N1', R and R'. These integrals are evaluated

4 and J,. KP is evaluated in Appendix 3.

The

in

We

give in Appendix ). derivatives of some of these integrals which will be

required in what follows.

5 DOWNWASH

To find the dowmwash we differentiate ¢ with respcct to z.

We shall divide the regult into three parts, expressed as the

coefficients of &°

, €1 and €%, The coefficient of &° will be the same as

for an untapered wing with the load distribution € = 1 -& as worked out in
Ref.1, but will be repeated here for completeness.

5.1 The €© term

We have
-1 1)
= zP (IO+IO J

=z

Heace we heve, differcntiating with rcspect to

: Tz(MO-NO) +L,-L, + (-7 z N!'+F —-F,") .

values of the various quentities from the epyendices,

2ro$  _ (1-—;;)(1‘2-62)KC" T?'(x J2+;:Z T2J1) -TE

~—

e

which agrees with Weber's result. E, § and D are given in equations (8)

below.
5.2 The el term

This term's contributicn is given by
258 26-1(I1+I¥)

eV
o]

fl

-8 =

287" TP, -T ZZLO—%Z(I\§1~N1>+ Jz—zN,l'+71§z

T D+0%2 § + 22t (x Jy- J2) s

E1T{(rﬁz)F$-

7z and inserting the

1
By

[



Hence we have

T 9% _ 1 2, 2,02 22y 3 2.2 2,2
BVO ik QTKng 3z°(T 6)}+2“T(XJ2+Z T J1)

..7tsz+%E+~‘4—(x2+%6252)D+2sz .

5.3 The c° term

Thig term's contribution is given by

2zé _ L™ (1'2+12'

= zf T(RR)——E—J?T(M-N—INM 6(P xP)

2, 1 -1 IR 1 1 2y
+zL1+zzB (I’Z xF, )+22F1.
Hence we have
2n_ 24 ( 820 3%z 2 2 Lo L
2" 5y = K5+ =5 (27“-B )}-ZT 2 (xJ,I-Jz)
v, L6(°-62)

2
+ %wz(3x2+262z2) + E {-~:——T~2c-§-)- + ZTZZ}

+%sz2D - %z (3x2+2 6222)69 .

In these results

- 2 42 2 -1 =T x-B
B o= (202 2)F Q = tan Z=, D = log—%, (8

K is given in equation (10) below, and J, and J, are evaluated in the

Appendix to Ref.1.

6 APPROXTMATTONS

J 1 and J , are complicated functions. However, in the cases considered,

namely section R.A.E. 101 with thickness/chord ratio of &%, and MO = 1.2, it

was found sufficient to use the approximations given by Weber, valid when
z/x is small,

It was also found sufficient to ignore terms of order z2 log z and
higher orders in E, D and 4. The only term where it was not safe to make

-9 -



the approximation /% smsll was in KO. It led to large errors near the

leading edge, and so KO was evaluated in full.

If' these approximations are wade the final result for the dovmwash is
given by the equation

2% 3¢ - (4.)m 1.0 Blal o ow ) (252 4 A (22
T Sz (1-x)T 1log Do xT + (1-x) (1B )K.O-!- 7% (T7-B%)z
I £ 3
+ e‘i:gleog ~~,§‘_;c-z*l+ﬁx2+%x2’fk’ —ﬂxsz
~ g 2 7
2 T
+ € i_— s + B,)sz Ko+%'rnzx2} s (9)
6(T7-p%)  6(T°=p%)
where
2 imP p2y 2
K - 1 los ng + (T -3 )Z z . (,10)

= 5T T 5T
© (Tz—ﬁa)‘2 Tx- (T2—52)2(x2~£32 z") 2

For congtant unit load distribution the result is

2% 93 2 a2y, 2 2.2
-?/-i:- -'g'z = (T -'B )1{0"‘ T (X. J2 + 7 T J1)
o (TZ*BC)KO-P T log %1;%-[- (11)

and so the result for a load distribution of the form A+BE /c may be
obtained from equations (9) and (11) by vriting

£ = A+B-B(1-E/c).

7 THE ANGLE CF TWIST

The angle of +twist e is obtained from the rclations
1 3
)1, (5,0 = | 2l gy,
o

We chow these angles in Fig.lh.
8 DISCUSSION

The main purpose of this paper is to put on record the values of
integrals required in the computation of the downwash at the centre section
of' tapered swept wings with constant spanwise load distribution, where the
standard methods of linear theory lead to singulariiies and so break down.
Unfortunately the exact linesr load distribution cannot be used without
producing very complicated integrals. Consequently an approximation has
been made by means of which the integrals are calculeble, though the work is

- 10 -



tedious. The approximation could have been further extended to terms of
higher than the second order in e (= tan @LE-wtan @TE) and the integrals

could still have been evaluated, but the extensions seemed scarcely
necessary at the Mach numbers and sweeps and tapers of interest in this
connection. Indeed, Fig.3 shows that over the first 4Ok of the chord the
untapcred case (& = 0) gives a sufficiently accurate approximation. The
second correction term proportional to 2 only gives a correction greater
than O.5% of the untepered value at points very close to the trailing edge,
where there is a logarithmic singularity in any case. The first correction
term (proportionsl to &) gives very much greater corrections amounting to
about 50k at 0.9 chord, and rising omwards frow there. It accounts almost
entirely for the divergencies of the curves from the untapered case.

Fig.? shows the dowmwash for an R.A.E. 101 section with thickness/chord
ratio of 6%, at a Mach number of 1.2 for various sweeps and tapers. Figel
shows the corresponding angles of twist required. It appears that taper
increases the angle of twist required to maintain the linear load distribution
for a given mean swecep.

LIST CF SYMBOLS

a TQ- 52

b —T2 be

c T2631B2 z2)

c(y) local chord

E (X2-52 2 );’_

I defined by equations (€)
g g1 { (e )2 - g2 ZQ}%

G ,G defined by equations (L)

I,5Iy,I, defined by equations (5)
J defined by equations (7)
K defined by equations (7)

ox,y) load coefficient

L defined by equations (6)
MO Mach number of the free stream
M,N,P defined by equations (6)

- 11 -



9

R,R!

LIST OF SYMBCLS (Contd.)

tan (27 /B)

defined by equations (6)
[Tzi(x-oc')z-ﬂz 22 i- ﬁ2x' 2]_2—
tan ©

tan QEE

derined by equations (6)

velocity of the free stream

Cartesian co-ordinates, x axis along the centre section chord,
Yy axis spamvise, z axis upwards

defined by 62}%2 = T2{(x—x1)2-ﬁ2 22}

thickness distribution along the centre section

¥ Bz

angle of twist at wing root

(1»102-1)%

tan Prg tan P

defined by equation (3)

X - ]yl tan (PLE

velocity potential

angle of sweep at leading edge

angle of sweep at trailing edge.

REFERENCE

Author Title, etc.
Weber, J. The shape of the centre part of a sweptback wing

with a required load distribution.
R. & M, 3098,
Moy 1957.



APPENDIX 1

THE G INTEGRALS

2 2

n . 2
sin” €+ 2z

n n
ai 2 2 2
el ~/§ 7 ed@g: B7g® = (z=x')"-PB"z
g

where the limits are O to sin_1(x'/g T) for G, 2nd O to +x for Gl

Hence, on writing t = tan 6, we have

o5 1
1 (PP g
= seeereesT otan .
O « ) Z
z(z74g%)%
On pubbing in the limits we have
L B =1 x! (x-x! _— Bx
Go = z(x-x" tan zS8 Go = 2z(x-x!
where
2 t
s° - Tzi(x—x‘)z-'ﬁgzgz-ﬁ x 2 .
& = f gsin 640 _ / g sin 640
= ; = 2 2 2
L .zl ga‘ sin2 <-)+z2 g2+z ~g cos 6

.
log (g2+22)2 - g cos
Y R B oo T
2(z-x") (gz-l-zz)2 + 3 cos 6
Hence vwe have
. B %’ ! )T = 8 x-x'-Bg )
G’n = 2(z-x") Llog =x')T+8S tog x-x'+Pg{ ?

B x~-x' =By
.’_—: - e
e 2(x-xt) tog TRy Bg

t

g2 sin® 64d6 / 2> ~
Gy = 2 . 2 2 = ( T2 2 5 )88 =
J g sin® 0 +z g sin O+2

- 13 -



Appendix 1

Hence

G, = sin ! (x'/Tg)-zzGO, G} = —;-7\:-'220—'.

Similarly, for the indefinite integral we have

2
G3 = - gcos b=z G1
and hence
G—3 = g-(S/BT) -z G1, Gr3 = g-2 G1 .

- '”_‘_..



APPENDIX 2

THE INTEGRALS W

These integrals will be required in what follows.

We define

dx!
Vo = / (x+¥Bfz -x")8 2

where the suffixes 1 and 2 are associated with the upper and lower signs
respectively, and

2

15 1
s° = TZ{(x-x‘)z— - % @ ax 4+2bx'+c

i

52 22}

where

i

: 2
a = TZ—BZ, b = -sz, c Tz(xz—ﬁ zz) .
It can be shown by the substitution y = 1/(a-x) that

(aa+b)(a—x‘) + B2

/ ‘:L = -B.— ulll ;1 s
(a-x) (ax +2bx +c)? 1 (a—x‘)(b -ac)?

2 A
where 61 = (~aa"™=2ba-c)?, if terms under the square root signs are

positive, as they are here.

If we suppose o = x+PB =z, and note that in our integral the limits
are from O to X5 where %y satisfies ax, +2b X+ o= O, and in fact

1
z

_ =b- (bz-—ac )
1 7 a ?

X

we find that B’I = af, and

(aoc+b)(oc—x1) ~ag’ —2bcc—c+ax12 +2bx, +o

W = "‘1"“ {Q’il’l ™
1,2 P (oz--xdl)(“b;‘i--ac)E

. =1 -—ba-c }
~sin  —F T .
a(p“-ac)?

- 15 -



Appendix 2

In the first term we have inserted the term ax,lz + 2bx1+ ¢ for

convenience, It has of course the value zero.

Hence
- o {sin-1 -ax, —b1 - gig! =ba-o }
1,2 op (b2— ac)? (b2—ac )2

4
= '&'B" (%‘7‘:-Q):
where
qQ = tanq z212 .
(x°-B“2°)2

- 16 -



APPENDIX 3

THE INTEGRALS X, L, M, N, P, F, R AID V

1 1t 21
= 22 log fax'+b+a®(ax “+2bx'+c)?}
(o]
2
_ 1 log Bix” 4 Cl‘f—B )22} .
= I I 5 .2 2.8
(7°-p%)2 x - (12-p%)2(x2-p% 22)2
If we use the formula
m .
I - X dx .
n (ax' +2bx+c)?
1 -4 2 & (2m-1)b (m-1)c
= == " (ax“+2bx+c)? - — Im—1 - S Im—2 s
we find that
A
-T(XZ-BQZZLQ % T° K
K o= 7 Yo 2 o
1 72 - ° 7%~ B
- 2 22
K2 = 55T EBXK’j-(X -7z )Koz s
2(T°-p%)
T2 2 .2 2
K, = —3—5= {5xK,-2(x"-8"27)K 1 .
3(1°-£%)

- 17 -



Appendix 3

x
1
- ] T |

L = / tan1—}£—12c—2c-_l 4 x!
o] zd

c

2 2 (x-x')dx 2 xlz dx!
= p7xy -zl "5 2.3 "Bz/ 5 5 3
(x “+2z°7°)8 {(x-x')"=~p"2" 5

on integrating by parts, and rearranging the right hand side. The first
integral may be written xJ2 - J3 s Where
*1

P [ x' 21 gyt
= : .
(x 2, 2P )s

e}

Jy and J2 are evaluated in the Appendix to Ref.1. Jf, may be
expressed in terms of 9y and K ;  in fact it is easy to see that

J, = Ko—zszJ

3 1

In the second integral the coefficient of 1/S is split into partial
fractions and Appendix 2 used. We obtain

L, = = X, -sz(xJz 222 3 Y+tnBr-xQ + z(Tz—BZ)KO ,

where Q is given by equations (8).

L1 mey be eveluated in the same way as L,  The result is
2 g2 2
L, = bnxl-3sTE+b ATxd, - I+ nbax-Faxk ~Hx+ 6 2)Q,

where B and Q are given by equations (8).

In order to find MO we consider =

x1 -

/ log §{(x~x')T *s}adx'.
o

On integrating by parts and rearranging the right hand side this
integral may be written

- 18 -



Appenaix 3

x X
1 1 12
x'Tdx! 2 x —4ax!
- + e
%, log E(X X1)T} —-[ g B '/ {(x—x‘)'l‘ iS}S y
1) (s}
Hence we have
x4
- x=x)T -3 t
M, = f tog %x—x'gms ax

o}

i

t
x! dx? x 2(x—x‘)dx'
=2l [ =g~ 2T 15 2
S(x “+z TZ)

i

{ a T | !
- 2xT /——-—‘éx + 22500 (x,f,; )dzx
S(x “+z T2)

]

2
- 2xTK +22z TB(xJ1 - J2) .

If we similarly integrate by parts we find that

_ 2.3 _ 2.2
M, = xTK + 2 T (xJ2 K +z T J1).

x~B z

- ' -
N_+N ' = j log X=X =B g4

x-x'+Bg
o)

On making the substitution x-x' = Bzcosh 6 we obtain in a straight-
forward way

NO+NO' = Dx +2E,

where D and E are given in equations (8).

-19 -



Appendix 3

In a similar way we obtain

_ 2 2 2
N+ N = iD(2x°+ B8z )+-§Ex.

On integrating by parts and rearranging the right hand side we have

X

1
P, = / (x-x') sinq(x'/Tg)dx'
o

2_g2 2 | 22 .\ hh
_ —-}ﬂ(x—x1)2+%6/x B™z° - xx ax'+ 1B Bz x(x-x') -B' 2 axt.

) 5 i(x—x‘)z -p% 22 is

We split the last integral into partial fractions and use Appendix 2,
and obtain

Byo= =dn(eex )+ 4816727 )k - K J+k w2

In a similar way we find that

P2 = e % m(x—x1)3+% B{XBKO-F (BZZZ- 2X2)K1+ XK2;+";‘ Bj ZBQ-
We obtain at once
x-Bz 1
R+R' = %/ (xx") {(x=x")? - PP JF ax!
o)
= B/38,

where E is given in equation (8).

“4

t
V = / (x-x')sdx ,

O

- 20 -



t
where 82 = ax 2+2b:»c’ +C, a = Tz— 32, b = -XTZ, c = (x2-32 z2 )TZ.
Hence
x, 5
Voo / (ax ® +2bx' +c)(x-x!)dx’
= [ L
(ax 2r2bx! +c)?

)

it

- aK3+ (ax—zb)K2+ (20 x~c) K,+cxK_,

<3
!

L2 .2 2 2.2 U ol .
— ETj {X "'2‘3 22 - BZ .1»2 5 } + Tzﬁ 2X2 {XZ-I- (TZ"'BZ)ZZIKO,
3(r°-g7)  2(2°-8%) 2(1°-B%)

using the values of the K's found at the beginning of this Appendix, E being
given in equation (8).

- 21 -






APPENDIX 4

DERTVATIVES OF K, L, M, N, P, R AND V

By differentiating the integral and rearranging the right hand side we
have

o Ly %, 2 x' (x-x')d x 2 [ x'(x-x')d x'
52 * P 2 5 o, T N
((x=x')"= B2} 8 (x “+2°77)8

On splitting the first integrand into partial fractions and using
Appendix 2, we obtain

+ (TZ—Bﬁ)KO + 3B - T9(x J,+ £ 7 )

In a similar way we find

oL ox
1 1 2 2 L 2
dz = %ﬂx'l -—é?“TE"‘ ﬁ XKO'*'%WBX"B ZIQ+TZ(XJ1-J2) ¢

By differentiation we find irmmediately, from the integrals, that

3 3
3 - 27 z(xa1—J2) s
oM

1 o } 202
so = 2T z(xJ2 K, + 27T J1_)

Ve may differentiate the results of Appendix 3 to obtain at once

(N oenr) = 22 3 vy 12 xE
57 (N+ W) ) = ==, 57 (M N') = £6%2D+ ==

By differentiating the integral we have

o P 6x1

1 4 _
dz Qﬂ(xx'l) dz

+ B2 j (x-x!) x'dx!'
{( 8

x-x')? - g% 22 }
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Appendix 4

On splitting the integrant into partisl fractions we find, using

Appendix 2,

6P1 ) 6x1
dz © §7E(X_x1) 02

- B3ZKO+%7§B2Z .

Similarly we obtain

P , ax1
- TQ:ﬂ(x—x’l) dz

+ 5321K1 + BBZBQ .

We have directly

-2 Y = -Baz
32 (R'i-R) = BzE.

On differentiating the integral we find that

%4

(x-x') BZ 02,

oV /
= - 1 1
92 5 (ax %+2bx'+c )2

dx!

2 2
= ~-B°7T z(xKO K1) .

Finally by direct differentiation we find that

aKo - . zxT

- s
6K1 - . zIE
0 Z X2+ (T2~62) 22
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