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ROYAL AIRCRAFT ESTABLISKMENT 

TfiE CEnTTRE SIXTION SHAPE OF SVEE'I' TAPE-D WINGS 
WITH A LII'33AR CHCRDWIS3 LOAD DISTRZBUTION 

by 

J.C. Cooke, &A. 

The method of Webcr 
? 

is used to find the shape of the centre section 
of a swept tapered wing to produce a load distribution which changes linearly 
from unity at the leading e6.,ge io zero at the trail5ng edge along any chord. 
An approximation for this distribution is used in order to make the integrals 
tractable. These intepals are evaluated and the downwash calculated. B 
reasonably accurate qpoximate formula for the downwash is derived, and the 
results are illustrated by a few examples, giving downwash and angles of 
twist. 
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1 INTRODUCTION 

Weber' gave formulae for the shape of the centre section of a swept 
untapered wing to produce a given load distribution at supersonic speeds. In 
particular she dealt with a constant load and also a constant spanwise but 
linearly varying chordwise load distribution. Similar information is required 
for tapered wings. 

In this Note we obtain formulae for centre section downwash distribution 
due to a swept-back tapered wing with subsonic leading and trailing edges and a 
linear chordwise load distribution. Standard linear theory methods lead to a 
singul,arity at the centre section. This difficulty is avoided here by the 
method given in Ref.1. Some of the integrals involved are very complicated, 
so ,an approximation is used for the load distribution and tested for the case 
MO = 1 for which the integrals for the exact form of the load distribution can 

be evaluated. The error is found to 'be small, even for a fairly extreme 
sweep-back and taper, and it decreases with increasing Mach number. 

The algebra is tedious and much of it is omitted here. The result is 
com@icated but we give an approximate form which had slight error in the 
examples tested. Results were worked out for a series of wings with leading 
edge sweep varying from 55’ to 75’ and various tapers. Angles of twist were 
also worked out for the same series. 

We do not deal here with a constant load distribution, because in this 
case the results do not depend on taper, but o&y on the leading edge angle of 
sweep, and are worked out in Ref.l. 

2 THE VELOCITY PCTENTIAL AT TIIE: CENTR.3 SECTION 

We take x,y,z as a right handed co-ordinate system, the x axis in the 
direction of the undisturbed stream, y being spanwise. If the load 
coefficient is &(x,y) the velocity potential at the centre section is given by 

3v $5(x,0,2$ = --g 5 x'yy' x-x' dx' dy' 
(Y'2+z2)E(x-xt)2- p2y'2 - p2z2 13 ' 

Where p2 = Mf- 1, V. is the ve1oci-Q at infinity and MO the free stream Mach 

number. 

The integral is to 'be taken over that part of the wing for which y' > 0 

and (x-x') > P(y"+z2+ that is over the part of the wing lying between the 
leading edge and the Kaih fore cone from the point (x,O,z). 

The range of integration is divided into two parts, the limits being 

jr' lying between 0 and x'/tan qm , 

x' lying between 0 and x., 

for the first part, and 

y' lying between 0 and ~(x-x')~ -P 2 z2&P, 

xt lying between x I and x-Pz 
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for the second p/art, where x, 
1 is given by 

B2 2 x, /tan2 yIIE = (x-y > 2- /j2"2, 

(pm being the angle of slve?F at the leading edge. 

We suppose here that, ?rithin the 
integration, th 

area covered by the range of 
e leading edge is straight. 

3 T1K LOAD IXSTHI~UTION 

We shall suppose that the veiue of JZ charrges linearly from anity at 
the leading edge to zero at the trailing edge as vre travel along any chord. 
We take the length of the chord at the centre section to be unity. Hence 
me have 

e( x,y) = I -&(y) 

vzhere c(y) is the local chord and S = x- ~yijtarl "r;E1. Since 

C(Y) = I .t lyltan vTE -lyltan yLE, where qTB is the trailing edge angle of 

sweep, WE: find that 

It alas found that the form (1) led to integrals of such a complicated 
nature that they could not be evaluated simply except in the case K = I. 

0 

Consequently the approximation 

e(x,y) = -I - (x - lyjtan y&(1 -I- ElyI + c2y2) 

The forms (?) and (2) agree alon:, tk.e centre line and along the leading 
edge, but for extreme tapers the e:Qression s is not small. The greatest 
value of ey kthii~ the range of integration for X0 = 1 ~~511 be 

(tan VU- tan qm)/tan Ye, but it will be less for nigher ikch numbers. 

Big.? shavro curves of constat & for leading edge and trailing edge svreeps of 
70' and 45O respectively. Only the p,art of the vting bekeen the leadint, edge 
and the Mach fore cone at the centre section trailing edge need be considered, 
and it is seen that for &? = 1.2 the error is small. 

0 

In the case I$ t ? it is possible to viork out the integrals for both 
load distributions. O Fi&2 shozs the errcr introduced in the dovmvash by 
taking the approximate value (2) for 4 instead of the true value (1) for a 
$Cng of section R.A.E. 101, 6$% thickness chord ratio, with (pm = 70°, 

%E = 45O. Fig.j suggests that for Jto = 2.2 the error Trill be considerably 

less than that shov\m inE'ig,Z, since most of this error \lould seem to come 
from the triangular area bekeen the Mach lines for Ivi = 1.0 and MO = 1.2. 

0 

Even vrith the approximate load distribution the labour of evaluating 
the integrals is heavy though straightforward. 



. 

B2g2 
= (x-x') 2 I p' z2 , Y' = g sin 0, T = tanvm, (3) 

md we have 

xl 

J 

si.n-'(x'/gT) 

(x-x')dx' 
s 

z x', y')dO 
2 2 2 cl & sin 0 +z 

0 0 

X--PZ $7t 

+ 

J 

(x-x')dx' 
e(x’ ,y ')a6 

2 2 2' 
g sin O+z 

We let 

sin-'(x'/gT) &7E 

Gn = 
J 

S+dO G' = 
i 

ylndt3 
, > n 

ts ' sin2 Q + Z' g 2 sin2 6 + z2 l 

0 
0 

. . . . (4) 

G 
0 

- A by-’ 9 , where S2 = T*[(x-x~)~- F2 z2] -p2 x’2, 

G2 = sin-l (xl/g T) - z2 Go , 

. 

% 
= g-(S/PT)-z2G, , 



where 

xl 

I, = 
/ 

(x-x')iT GA + (I-xf)Go]dx~ , 

0 

“I 
I, = 

J 
(x-x')(TG2- xt Gq)dxt , 

0 

xl 
r 

I  = 

3 
J 

(x-x’)(T G3-x’ G2 )dx’ , (51 - 

0 

ma 1; , I,' , 
9 <are the same as I,, 1,‘ zmd I 

2' 
~5th tile lirk~ts changed to 

x andx-Pz, 1 and with G replaced by G:. iiIe have 

I2 
= TR+-', - -$e2T(No-No)d2-xl?, +FzL, , 

-6- 



where 

“1 
hi 

'n n = 
J 

X log (X-X')T- s &' 
( x-x' T+S > 

0 

Nn = 
s 

‘n 
X log x-x' - pg dx' , 

x-x' +?g 
0 

X-P.% 

Nn’ = 

i 

‘n 
X log ,x-x’ - PF;&’ 

x-x’ $ @g Y 

“I 
% = J (x-x')" sir.-' (xf/Tg)dxf 9 

0 

X-P2 

I 1 
En = 7L 

s 

‘n X dx’ , 

5 

“I 
R = 

i 
(x-x’)g dx’ , 

0 

X-P.25 

R’ z 

J 

(x-x’) g dx’ ) 

xl 

xl 
v = s (x-x’)S dx’ a 

0 
(6) 



We note that R. and IGo' only occur in the combination iT f iv ' . The 
0 0 

saxe a-&$plies to l\T1 and N,* , R and RI. 1 Tl~se integrals are evaluated in 

Appendix 3. 

We shall also make use of integrals 

tieber' evaluated Jj and J2. Kn is evaluated in Appendix 3. we 
give in Appendix & derivatives of some of tilese integrals which v&l1 be 
required in what follows. 

To find the dowwash ?ve differentiate $ with respect to x. 

We shall divide the result into three parts, expressed as the 
coefficients of .a', .5*I and ~2. The coefficient of so -i&l1 be the same as 
for an untapered wing with the load distribution 8 = '1 -e as worked out in 
Ref.1, but will be relzated here for completeness. 

5.1 The sc term - 

Ve have 

= p ' Tz(Xo-No)+Lo-L+-T zH'+Fd'-F1'). 0 

Hcrlce we have, diffcrcntiatinb ;-:ith rcspoct to z ,and inserting the 
values of the various quantities from the appendices, 

&bti - 
v. a!3 - 

(:-x)(T2-P”)$:c - T”(x Jp2 T2 Ji) - TE 

-In 2 1xD+G2z &! + s 2T4(x Jj-J2), 

which agrees with Webor's result. E, Q and D arz given in equations (8) 
beloiv. 

5 .2 The a' term 

Tilis term's contribution is given by 

9 = zp-'(I,+I,,) 
0 

[(x-h)F;- F,' 1 . 



Hence we have 

. 

. 

2nu 
sv a2 = -3.2(T2432)f.4:;2T2(xJ2+z2T2J,) 

0 

-xexT+ 5x 4 E+$(x 2 Z@2a2)D+2zxQ . + 2 

5.3 The s2 term 

This term's contribution is given by 

2= 
E2 v 

zP-'(12+I;) 

0 

= zp-l T &RI)- 2-I 
P2 

- $- dT(l&o-No-Ko')+ ;(P2-xPl ) 

$ z2L, +-$z@-‘(P;-xFq )+$z2F,’ . 

Hence we have 

K + d (2T2-4i2) 
' L6(T2-p2) 2 

-2T4z4(xJ,-J2) 

+ 2 7’~ 43 x2+ 2 p2 z2) + E c -Tx2 

6(r2-p2) 
+ 2Tz2 

3 

+$Txz2D - 32 (~x~+~P~z~)Q. 

In these results 

E = (x?+2 z2 )G, Q = tsn 
-1 zT x-E 

-jp D = 1% x+E $ 

K. is given in equation ('IO) below, and Jq and J2 are evaluated in the 

Appendix to Ref.1. 

6 APPROXI%WIONS 

(8) 

J, and J2 are complicated functions. However, in the cases considered, 

namely section R.A.E. ?Ol with thickness/chord ratio of 6$, and M 
0 

= 1.2, it 

was found sufficient to use the ap33roximation.s given by Weber, valid when 
z/x is small. 

It was also found sufficient to ignore terms of order z2 log 2 and 
hi&her orders in E, D ar.d Q. The only term where it was not safe to make 

-Y- 



the approximation z/x small was in E;,. It led to large errors near the 
leading edge, and so K. was evaluated in full. 

If these ai?proximations are made the final result for the downwash is 
given by the equation 

iG!L&L 
v a2 

13j5j 

0 

= (I-x)T lo@ 2x - XT + (l-x)(~~-fi~)K~+-?,-a (T2-P*)z 

+ e2 i-- Tx3 P'd 2 

1 6(T2-p2) + g--& Ko+L"X , 
3 

K = 
0 (p”-;“)$ 

log 
@1x2+ (Tf-/32)z2j 1 

T  x _ (T2-fj2)~(x2+2 & H ’ 

Par constant unit load distribution the result is 

27; a& .--- 
v. az 

= (T2-~2)i(o- T2(xcJ2 + z2P2J,) 

and so the result for a load distribution of the form A+BE/c may be 
obtained from equations (9) and (14) by Priting 

7 TEE ANGl.3 CP !FWI,sT 

Tile a-n&e of twist 

c = A+ B -23(1-E/c). 

"T is obtained from the relations 

x 

'Je show these tangles In Fig.,!+.. 

8 DEKXJSSION 

(9) 

The main pbose of this paser is to put on record the values of 
integrals required in the computation of the davnwash at the centre section 
of tapered swept wings with constant spanprise load distrib.&ion, where the 
staMard methods of linear theory lead to oingular5.ties and so break down 
ULnfortunately the exact linear load di. stribution carrot he used without 
producing very com@icated integrals. Consequently an aplroximation has 
been made by means 03 which the integrals are calculable, though the work is 

- 10 - 



tedious. The approximation could have been further extended to terms of 
higher than the second order in E (= tan 'pU -tan cp,) and the integrals 

could still have been evaluated, but the extensions seemed scarcely 
necessary at the Mach numbers and sweeps and tapers of interest in this 
connection. Indeed, Fig.3 shows that over the first 4@b of the chord the 
untapcred case (E = 0) gives a sufficiently accurate approximation. The 
second correction term proportional to c2 only gives a correction greater 
than 0.s of the untapered value at points very close to the trailing edge, 
where there is a logarithmic singularity in any case. The first correction 
term (proportional to s) gives very much greater corrections amounting to 
about 5C$ at 0.9 chord, and rising onwards from there. It accounts almost 
entirely for the divergencies of the curves from the untapered case. 

Pig,3 shows the docNnwash for an R,A.E. 101 section with thickness/chord 
ratio of 670, at a Mach number of 1.2 for various sweeps and tapers. Fig,4 
shows the corresponding angles of twist required. It appears that taper 
increases the angle of twist required to maintain the linear load distribution 
for a given mean sweep. 

a 

b 

C 

C(Y) 

D 

E 

E 11 

&! 

G/n' 

T2- fi2 

-T2 x 

qy2(& (32 z2 ) 

local chord 

log s 

(x”43’ ,2 j+ 

defined by equations (6) 

p-' 1 (x-x* ) 2- @2 z2+ 

defined by equations (4) 

I,,$ 912 defined by equations (5) 

Jn defined by equations (7) 

R n defined by equations (7) 

G%Yj load coefficient 

L defined by equations (6) 

M 
0 

Mach number of the free stream 

K,N,F defined by equations (6) 

- II - 



V defined by equations (6) 

'TE 

ta&:: T//E) 

defined by equations (6) 

[T2+x$-p 2 z2 ] _ /32x’ 3; 

tan 8 

velocity of the free stream 

Cartesian CO-ordinates, x axis doi= the centre section chord, 
y axis Sp.lY~llse, z axis upwa..ds 

3 2 
defined by P-x, = T2[(x-x1) 2 - p* z* 3 

thickness distribution along the centre section 

XT pz 

angle of twist at wing root 

( f-,)S iG 

-tan vu -) tan (pm 

defined by equation (3) 

x-IYI -km q-J 

velocity potenti& 

angle of sweep at leading edge 

iU'@e Of sweep at trailing edge. 

NO -0 

I 

Author 

Weber, J. 

Title, etc. 

The shape of' the centre part of a sweptback wing 
vlith a required load distribution. 
R. & X. 3098. 
K&y 1957. 



J 
n 

Gn t: 
F; sinn 8dt) 

g2 sin2 0 + 2 ' 
J32g2 = (x-xq2.-p 2 z2 

where the liinits are 0 to sin -'(x'/gT)f or G, and 0 to -$-n for G1;. 

Hence, on writing t = tan 0, we hzve 

On putting in the limits we have 

where 

T’i (x-d) 2-p222 p2”*2 . 

g sin 0 a0 2x 
g2+ .z2 - g2 CGS2 6 

Hence vre ham 

2 
G2 = 

i 
g, 

sin2 8d.0 z2 

I gL sin2 e +.z2 
=. 

g2 sin2 8 + z2 > 
dO -1 0-z2Go. 

- 13 - 



Hence 

G2 = szm * 4 (x'/T~)-z*G~, G; ‘7c = -2 - z2 Go’ . 

Similarly, for the indefinite SntegraS 

G3 = - g cos 0 - e* G, 

and hence 

we have 

% 
z g -(S/PT) - z*G, > G; = g - z2 G,( . 

- ‘I& - 



TXE INTEGRALS W 

These integrals will be required in what follows. 

We define 

17, = i ( 
dX’ 

32 
od 

X?PZ -X’S ’ 

where the suffixes I and 2 are associated with the upper and lower signs 
respectively, ~3~3 

S2 T2{(x-x') 2_@22 ]+?$2 '2 = = ax +2bx'+c 

where 

a = T2-p2, b = -T2x, c = T2(x2- F2z2) . 

It can be shown by the substitution y = -l/(a-x) that 

dx 1 -? 

(a-x)(ax2+2bx +c)' 
= - sin 

(aa+b)(a-x')+ Pf 

9 
1 

(a-x')(b2-ac)' ' 

1 

where p, = (-aa2-2b a-c)3, if terms under the square root signs are 

positive, as they are here. 

If we suppose a = x+ PG , and note that in our integral the limits 
are from 0 to x,, where x, satisfies ax,2+2bx,+ c = 0, and in fact 

xl = 
-b - (b2,+c )& 

a t 

xe find that p, = a p, and 

2 
1 T?,,2 = a~ 

i 
sin -1 (aa+b)(a-x,)-aa -2bcr-c+aXA2 +2bx,+c 

, 
(a-x,) (b2-ac)T 

-1 
- sin 

-ba-c 

a(b2 
- . 

-ac )" 3 

- 15 - 



In the first term we have 

convenience, It has of course 

Hence 

Appendix2 

inserted the term 2 ax +2bx sc for 
1 1 

the value zero. 

i 

-1 -ax 
sin 1 -b -ba-c 

(b2- ac)s - sine' (b2-ac )4 ] 

where 

Q = tan’ ZT i (x2+2 z2)F e 

- 16 - 



TH!3 EWEGRALS K, L, &i, N, P, F, R A!X3 V 

“I *I 
K. = 

J 
c?xl= 

s 
0 

J 

dX’ 
f 

( 
'2 

a.* 
0 

-I- 2b x' + cp 

1 I “I ._- 
ZZ a2 log {ax' + b+a'(ax "+2bx'+c) ] -& 

0 

= (T2-;2)9 Loi3 
Pyx2+ (T2-g2)z2$ 

XT -  (T2+2)+(x2+2 z2 )g l 

If me use the formula 

I, = x" dx 

(ax' + 2bx+c)' 

1 m-l = -* (ax2+2bx+c) $ _ (2m-1)b _ (m-1)~ I I 
ma m a m-l ma m-2 ' 

we find that 

2 22& 
K, = -T(x -P z ) XT 

2 

T2-p2 + T2 - F2 
K,, 

K2 = 
T2 

2(T2-p2) 
i3xK, -(x2-P2z2)Ko] , 

K = 
3 

T2 2 [5xK2- 2(x2-p2z2)K j 
30’~I3 ) 

I ’ 

- 17 - 



Appendix 3 

-!ZT 2 = $xX, 
x' (x-x' > dx 

(xl2 + a2 T2)S 
- F2z 

on integrating by parts, and rearranging the right hand side. The first 
integral may be writtenxJ2 -J 

3' 
where 

“I 

Jn = 
,+I dxt 

0 
(x’2 l + z2T2)S 

J4 and J2 are evaluated in the Appendix to Ref.1. Jj may be 

expressed in terms of J, and K,; in fact it is easy to see that 

J3 
= Iso -z2T2J 

1 l 

In the second integral the coefficient of l/S is split into partial 
fractions and Appendix 2 used. We obtain 

Lo = &XX, -zT2(xJ2 +z2T2J,)+-&+xQ + z(T2-B2)Ko , 

where Q is given by equations (8). 

L,, may be evaluated in the same way as Lo. The result is 

L, = 5 7T x, 2 -+~TE+$ gT4(x J, - J2)+~~~zx-~2zxKo -+(x2+ P2z2)Q , 

where E and. Q are given by equations (8). 

In order to find MO we consider 

5 
J log {(x-x')T t S{dx' . 

0 

. 

On integrating by parts and rearranging the right hand side this 
integral. may be written 

- 18 - 



xl xl 
x3 log i(x-xl)T{ -r- 

J 

x'.Tdx' 
s t P2 

0 

Hence m have 

MO = i' logp&jg dx' 

0 

x1 dx' = -2T s 

-2xT + 
J 

+ 2z2T3 - ( = 
J 

x-x' dx' 

s(x12+ 2 2& 

= - 2xTK,+22 2$(xJ, - J2) . 

If we similarly integrate by parts we find that 

M, c - xTI$+ z2T3(xJ2- Ko+z2T2J,). 

X-P2 

No+NoT = log ;I;; ; ;$dx' . 

On making the substitution x-x' = Pacosh 0 we obtain in a straight- 
formrdway 

No+N ' 
0 

= Dx+2E, 

where D and E are given in equations (8). 

-19 - 



Appendix 3 

In a similar way we obtain 

MpIy = $D(2x2+P2z2)+$ Ex. 

On integrating by parts and rearranging the right hand side we have 

P, = 
i 

(1 
0 

:- 

(, = -- :n 

x') sin-'(x'/Tg) d xt 

p2z2- xx' dx,*+p P2z2x(x-x') -P4z4 
S 2 

J 
axt. 

1 (x-x’> 2 - P2 z2 ]s 

We split the last integral into partial fractions and use Appenkix 2, 
and obtxin 

P, = -~~(x~x,)~+~P((x~-~~~~)K~-xK,~~$”P”~. 

In a similar way we find that 

We obtain at once 

R+R' = 5 
x-P 2 

i 
( x-x' 

0 

= E3/3 P, 

where E is given in equation (8). 

xl 
v = 

i 
(x-x')Sdx' , 

0 

- 20 - 
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Appendix 3 

where S2 = ax '2 
+2bx' +c, a=T 2- P2, b 2 =-XT, c = (x2-P2z2)T2. 

Hence 

x1 

i ( 

'2 
v = 8x +2bx'+c x-x' dx' 

1 
0 ( ax'2+2bx' +c)' 

= - aK3+(ax-2b)K2+(2bx-c)K,+cxKo, 

V = ET3 x2-P2z2 _ P2x2 

c 3 (T2-P2 > 2(T2-132)2 3 

$ T4P4x, $+ $~~~z~lKo, 

2(T2-42)z 

using the values of the K's found at the beginning of this Appendix, E being 
given in equation (6). 

- 2-l - 





DERIVATIVES OF K, L, M, N, P, R AFiD V 

By differentiating 
have 

the integral ar-d rearranging the right hand side we 

a =o 

T-G-= &x 

J 

x’ x-x’ d x’ 

2- P2z2 ] s 

- T2 x’ (x-x’) d x’ 
6 

i (x-x’) (xf2+ z2 T2)S 

On splitting the frirst integrand into partial fractions and using 
Appendix 2, we obtain 

a Lo a, 

xi-= 'T 7i-k --$ -I- (T2-&X0 + ;xP - T2(xJ2+z2T2Jj). 

In a similar way we find 

a Ll 
T 

-‘ -&xx axl 
1 -z-I TE- p2xKc+px - p2z Q +T4z2(xJ -J ) -I 2' 

E;r differentiation we find immediately, from the integrals, that 

a Ido 

--s-F = 2T3z(xJj-32) , 

aMl 
-xi-= 2T3z(xJ2-Kc+ z2T2Jj.) 

We may differentiate the results of Appendix 3 to obtain at once 

& (No+ N; ) = -$, 

By differentiating the integral we have 

)x'dx' 

2 - P2 z2 js ' 

- 22- 



Appendix 4 

On splitting the integrant into partial fractiors we find, using 
Appendix 2, 

apl - = -&-x(x-x, az 

Similarly we obtain 

> a x1 az- P3zKo+$“P’z l 

3 
az = 

3 x(x-x, )2 aXl 
x + p3zK, + P3z3Q . 

We have directly 

*(B+K') = 43~~. 

On differentiating the integral we fi.kl that 

x1 
av 

az = - i 

(x-x')P2 T2z l- dx' 

0 
( ax'2+2bx'+c)F 

= -P2T22i(xK 
0 

-I$) . 

FimiLly by direct differentiation we find that 

aKo zxT 
XT = - Elx2. (T2-F2)z2] ' 

a K1 zTE 
az = - 

x2+ (T’-P2) z2 l 
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