NA.E. \&ibrany.
C.P. No. 37

10303
A.R.C. Technical Report

NATIONAL AEROFN:
2. ESin.3LISHMENI

LJBKARY

MINISTRY OF SUPPLY
AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Wind Tunnel Tests on a Griffith Meteor Model (without suction)

By

D. A. Clarke, B.sc.(Eng.), A.C.G.I.

Crown Copyright Reserved

ROYAL AIRCRAFT ESTABLISHMENT

Wind tunnel tests on a Graffath Meteor Model (without suction)
by
D.A. Clarke, B,Sc. (Eng.) A.C.G.I.

SUMMARY

Tests were made on a $1 / 7.5$ scale model of the Meteor wath Graffith wang wathout suction in the High Speed Wind Tunnel. Lift, pitching moment, rolling moment were measured at incidences up to the stall, at alleron angles up to 14°. A Reynolds number range of 1.2×10^{6} to 4.6×10^{6} was covered at Mach numbers not greater than 0.2 .

The maximum lift coefficient was 1.08 at $\mathrm{R}=4.4 \times 10^{6}$. This is nearly 0.2 hagher than the value measured on the Meteor I. 1 Alleron control was good, $\left(-\frac{\partial C_{\ell}}{\partial \xi_{G}}\right)_{C_{L}}$ being about 0.005 at low incıdences and falling to about 0.004 at $\mathrm{C}_{\mathrm{L}}=0.8$. No bad trim or stability. changes were found.

LIST OF CONTEN'SS
 Page

1. Introduction 3
2. Detalls of Tests 3
3. Results and Discussion 4
4. Conclusions 5

Referençes 6

LIST OF TABLES
Table
Model Particulars I
Details of Griffith Section II

Vaiues of Rolling Moment III

LIST OF ILLUSTRATIONS
General arrangement of Griffith Meteor 1
Effect of Reynolds number on maximum lift coefficient 2a
Griffith Wing Section $\quad 2 b$
Effect of Reynolds number on lift 3
Comparison of laft curves of Graffith Meteor and Meteor I 4
Comparison of Pitching Moments (with and without tailplane) on Graffith Meteor and Meteor I

Measured Rollyng Moments at $R=4.6 \times 10^{6}$ $5,6,7$8

Effect of Reynolds number on aileron power
Effect of Reynolds number on alleron power 9

The Griffith Meteor differs from the Meteor I in havang suction on the wings outboard of the nacelles, the wing section of this part being of 16% Griffith section (Table II). Information was required on the control characteristics in the event of fallure of the suction, and measurements of $C_{I_{m a x}}$ and alleron power were therefore made on a $1 / 7.5$ scale model in the R.A.E. High Speed Tunnel in November 1945 and May 1946.

2 Detanls of tests

2.1 Model and Rig

The $1 / 7.5$ scale wooden model was tested w th $W 2 B$ nacelles fared at entry and exit. It was supported by two struts just outiooard of the nacelles and a rear strut which entered the fuselage from below. Neither bracıng wares nor strut guards were used.

2.2 Range of tests

In the first tests laft and pitching moment were measured at ancidences up to the stall, at low Mach numbers, at Reynolds numbers of $1.2 \times 10^{6}, 2.5 \times 10^{6}, 4.4 \times 10^{6}$. The model was tested in the followang conditions:-
(a) Complete model, $\eta_{T}=-1^{\circ}, \eta=+1^{\circ}$
(b) Complete model, wathout tazlplane.

Allerons were fitted for the second tests and rolling moments were measured for the following cases:-
(c) Complete model, without tallplane, $\xi=0^{\circ}$
(d) Complete model, wathout tallplane, $\xi=5^{\circ}$
(e) Complete model, wathout tallplane, $\xi=10^{\circ}$
(f) Complete model, without tailplane, $\bar{\xi}=14^{\circ}$.

2.3 Corrections

The usual corrections have been applied for strut interference. The struts came directly in front of the allerons, but at low speeds strut interferences are known to be small so that their effect on rolling moment is probably negligable. Theref'ore no strut correction was applied to rolling moment.

The usual corrections for tunnel constraint were made to the incidence, pitching moment and speed, but the rolling moment was left uncorrected. This correction to rolling moment would probably amount to less than 3% in the worst case. Values of rolling moments have not been corrected for asymmetry in the model or tunnel flow.

Pitching moments were transferred from the strut centres to the Meteor I CG position at $0.310 \overline{\mathrm{C}}$.

In order to make thesc results darectly comparable with those for the Meteor I, the values given in Reference 1 have been corrected for blockage5, and strut interference by tho prosent methods. This accounts

3 Results and Dascussion

$3.1 \quad{ }^{\mathrm{C}_{\mathrm{I}_{\max }}}$

The Graffith Meteor has a CImax of about 1.08 at $R=4.4 \times 10^{6}$, as compared with 0.92 for the Meteor I. This dafference may' be attributed mainly to the greater thickness of the Graffith section. The Griffith Meteor nacelles were faired whereas those of the Meteor I were open, but this is expected to have littie effect on the result. It may also be noted that the surface of the Graffith wing model was much smoother than that of the Meteor I.

A change in the slope of the lift curve occurs at about $C_{L}=0.6$ (Fig. 3). This agrees with results obtained 3 at the N.P.L. on a 16% Griffith wirig of infinite aspect ratio, at a Reynolds number of 0.47×10^{6}. The effect is not so noticeable an the present tests, as the section was conventional inboard of the nacelles. The reduction in slope can be seen from the following table:-

$R \times 10^{-6}$	$\left(\frac{d C_{L}}{d a}\right)$ per degree	
	$C_{I}<0.6$	$C_{I}>0.6$
1.2	0.072	0.060
2.6	0.077	0.065
4.4	0.075	0.067

This effect is explaned in Reference 2 as a forward movement of the transition point.
$3.3 \frac{d C_{m}}{d C_{工}}$
The pitchang moment curves in Figs.5, 6, 7 show simılar changes of slope at $C_{I}=0.6$, both with and without the tazlplane. Values for $R=4.4 \times 10^{6}$ are summarised below:-

	$\left(\frac{d C_{m}}{\frac{d C L}{}}\right)$	
	$\mathrm{C}_{L}<0.6$	$\mathrm{C}_{\mathrm{L}}>0.6$
Wath tazlplane	0.055	0.028
Wathout tazlplane	0.122	0.163
Dafference	0.177	$\overline{0.191}$

The increase in tailplane effectivoness is produced directly by the change in mainplane lift curve slope. Changes at $C_{I}=0.6$ of $\left(\frac{\partial \varepsilon}{\partial \alpha}\right)$ are inappreciable as the tailplane is not behind the Griffith portion of the wang.

No serious tram or stability changes arise from these effects.

$$
3.4 \quad \mathrm{CM}_{0}
$$

The value of $\mathrm{C}_{\mathrm{M}_{0}}$ is between $\overline{0} .028$ and $\overline{0} .032$ ($\mathrm{F}_{1} \mathrm{gs} \cdot 5,6,7$) over the range of Reynolds numbers used, which is about the same as for the Meteor I.

3.5 A.leron power

Fig. 8 gives the values of rolling moment for various aileron angles, for lif't coefficients up to the stall, at the highest Reynolds number used. Table III gives the values for all Reynolds numbers. Fig. 9 shows the aıleron power for lif't coefficients up to $C_{L}=0.8$. The values are gaven as mean slopes for the range $\xi=0^{\circ}$ to 14°, as the C_{ℓ} v. ξ curves were almost linear.

Up to $C_{L}=0.3,-\left(\frac{\partial C_{l}}{\partial E_{0}}\right)_{C_{L}}$ Increases slightly. This as followed by a reduction with increasing lift coefficient but even at $C_{L}=0.8$, it has not f'allen below 0.0038 per degree. Tho possibility of a reduction in alloron power at hagh C_{L} as referred to in Reforence 2, but the measured effects are not large enough to be scrious. From an examination of C_{L} values it appears that the ailoron is equally effective up or down.

The alleron power was considerably greater than that of the Meteor I, for whach the estimate of 0.0028 has been given 4 .

4 Conclusions
Betwoen $R=1.2 \times 10^{6}$ and 4.6×10^{6} the maximum lift coefficient and aileron power are greater with the Griffith wing than for the standard Meteor I.

Although the laft curve slope changes at $\mathrm{C}_{\mathrm{L}}=0.6$ no serious stability or trim changes are produced.

No.	Author	Trite, etc.
1	Mair, Hutton and Gamble	High speed wind tunnel tests on the Meteor I. R \& M 2504. October, 1945.
2	Richards and Walker	13' $\times 9^{\prime}$ wand tunnel. tests on a Grifficth aerofoll. Part IV. Lift, drag, pitching moments and velocity distributions. R \& M 2148. March, 1.944.
3	Burge	Laft and pitching moment on a model Grafifiths aerofoll with flap. ARC.7178. Nov., 1943. (Unpublished)
4	. Husk	Alleron performance tests carried out on Gloster F9/40 aurcraft No. DG 208. ARC. 8675. Feb., 1945. (Unpublıshed)
5	-	Addendum to R.A.E. Report No. Aero. 1833. R.A.E. Report No. Aero.1833a. Dec., 1943. ARC. 7679.

TABLE I

Model Particulars

Graffirth Meteor ($1 / 7.5$ scale model)

Full Scale

Model Scale

WIng

Gross area	376.3 sq.ft.	6.69 sq.ft.
Span	43.1 ft .	5.750 ft .
Standard mean chord	8.73 ft .	1.16 ft .
Section Inboard of nacelles	EC 1240/0640	
Section outboard of nacelles	Grafficth 16\%	(t / c)
Dihedral inboard of nacelles	$+10$	
Dihedral outboard of nacelles	$+60$	
Angle of chord to fuselage datum inboard of nacelles	$+3^{\circ} 50{ }^{\prime}$	
Angle of chord to fuselage datum outboard of nacelles	+30 $28{ }^{\prime}$	

Ta工1
Tail volume coefficient 0.45
Alleron

Distance of hinge behind L.E.	0.745 c
Distance of hinge above chord lane	0.009 c
Distance of gap behind L.E.	0.750c
Area of one aileron behind hinge line	

C.G. Position

Height above wing root chord
(Mcasured 1^{r} to W.R.C.) $\quad 1.03 \mathrm{ft} . \quad 0.14 \mathrm{ft}$.
Distance behind I.E. of W.R.C.
(Measured // to W.R.C.)
Distance behand L.E. of mean chord
3.66 ft.

MEIEOR I (1.7 .5 scale model)
WIng

Gross area
Span
Standard mean chord
Section at tip
Angle of chord to fuselage datum

374.6 sq.ft.	6.66 sq.ft.
43.0 ft.	5.735 ft.
8.71 ft.	1.16 ft.
EC $1040 / 0640$	
+30501	

TABLE II

Details of Graffith Section

$\left(\frac{x}{c}\right)$	$\left(\frac{y_{1}}{c}\right)$	$\left(\frac{\mathrm{y}_{2}}{\mathrm{c}}\right)$
0.0050	0.01162	0.01006
0.0075	0.01436	0.01218
0.0125	0.01877	0.01543
0.0250	0.02703	0.02117
0.0500	0.03887	0.02881
0.0750	0.04791	0.03431
0.1000	0.05512	0.03872
0.1500	0.06750	0.04557
0.2000	0.07692	0.05076
0.2500	0.08433	0.05477
0.3000	0.09005	0.05781
0.3500	0.09424	0.06000
0.4000	0.09693	0.06135
0.4500	0.09811	0.06185
0.5000	0.09768	0.06143
0.5500	0.09546	0.06000
0.6000	0.09111	0.05734
0.6500	0.08427	0.05310
0.7000	0.07305	0.04653
0.7100	0.07012	0.04478
0.7200	0.06631	0.04282
0.7300	0.06301	0.04057
0.7400	0.05846	0.03788
0.7450	0.05509	0.03624
0.7500	0.05132	0.03402
0.7550	0.04816	0.03180
0.7600	0.04548	0.03016
0.7700	0.04080	0.02745
0.7800	0.03696	0.02517
0.7900	0.03361	0.02316
0.8000	0.03050	0.02135
0.8200	0.02538	0.01820
0.8500	0.01900	0.01427
0.8800	0.01387	0.01103
0.9000	0.01099	0.00915
0.9200	0.00846	0.00743
0.9300	0.00732	0.00662
0.9500	0.00524	0.00508
0.9750	0.00295	0.00316

(See Fig.2)
(Both Ailerons)

	$\xi= \pm 0.1^{\circ}$		$\xi= \pm 4.9^{\circ}$		$\xi= \pm 9.8^{\circ}$		$\xi= \pm 14.1^{\circ}$	
	$\mathrm{C}_{\text {I }}$	C_{ℓ}	C_{L}	C_{ℓ}	${ }^{\text {C }}$	${ }^{\circ}$	${ }_{\text {c }}$	${ }^{\circ} \ell$
$\begin{aligned} & \mathrm{R}=4.6 \times 10^{6} \\ & M=0.15 \end{aligned}$	-0.094	0.0048	-0.089	0.0299	-0.084	0.0519	-0.083	0.0743
	0.133	0.0038	0.129	0.0303	0.144	0.0518	0.135	0.0745
	0.368	0.0022	0.370	0.0289	0.364	0.0510	0.339	0.0725
	0.583	0.0026	0.578	0.0251	0.567	0.0440	0.543	0.0623
	0.778	0.0029	0.778	0.0231	0.773	0.0410	0.750	0.0592
	0.910	0.0027	0.914	0.0234	0.911	0.0402	0.886	0.0575
	0.974	0.0021	0.977	0.0230	0.971	0.0392	0.951	0.0561
	1.031	0.0019	1.033	0.0227	1.026	0.0387	1.022	0.0551
	1.052	0.0012	1.059	0.0202	1.056	0.0374	1.037	0.0522
	1.039	0.0035	1.044	0.0232	1.047	0.0379	1.018	0.0563
$\begin{aligned} & \mathrm{R}=3.8 \mathrm{xl} 0^{5} \\ & \mathrm{M}=0.20 \end{aligned}$	-0.089	0.0037	-0.093	0.0298	-0.085	0.0511	-0.077	0.0695
	0.135	0.0034	0.140	0.0290	0.144	0.0550	0.138	0.0752
	0.364	0.0026	0.372	0.0300	0.367	0.0537	0.350	0.0743
	0.580	0.0039	0.583	0.0257	0.564	0.0449	0.540	0.0618
	0.773	0.0029	0.775	0.0238	0.767	0.0418	0.749	0.0584
	0.905	0.0035	0.906	0.0232	0.901	0.0404	0.882	0.0559
	0.962	0.0020	0.964	0.0221	0.958	0.0394	0.941	0.0557
	1.014	0.0024	1.014	0.0219	1.008	0.0390	0.965	0.0546
	1.013	0.0016	1.024	0.0209	1.015	0.0371	0.994	0.0538
	1.012	0.0025	1.012	0.0218	1.019	0.0232	0.987	0.0536
$\begin{aligned} & R=2.9 \times 10^{6} \\ & M=0.15 \end{aligned}$	-0.089	0.0042	-0.091	0.0292	-0.086	0.0516	-0.073	0.0694
	0.318	0.0043	0.139	0.0304	0.133	0.0543	0.134	0.0764
	0.367	0.0033	0.362	0.0308	0.366	0.0531	0.356	0.0771
	0.578	0.0034	0.565	0.0265	0.557	0.0451	0.539	0.0641
	0.719	0.0034	0.765	0.0237	0.764	0.0406	0.741	0.0596
	0.897	0.0038	0.899	0.0248	0.891	0.0403	0.872	0.0572
	0.972	0.0036	0.956	0.0239	0.948	0.0406	0.927	0.0555
	1.012	0.0031	1.011	0.0226	1.000	0.0390	0.984	0.0512
	1.022	0.0020	1.025	0.0204	1.016	0.0360	1.002	0.0615
	1.010	0.0036	2.009	0.0177	1.006	0.0342	0.984	0.0508
$\begin{aligned} & \mathrm{R}=1.2 \times 10^{6} \\ & \mathrm{M}=0.15 \end{aligned}$	-0.092	0.0051	-0.082	0.0289	-0.079	0.0476	-0.082	0.0624
	0.124	0.0053	0.133	0.0307	0.131	0.0512	0.124	0.0688
	0.351	0.0053	0.357	0.0308	0.357	0.0541	0.355	0.0703
	0.564	0.0034	0.563	0.0281	0.544	0.0486	0.533	0.0636
	0.735	0.0032	0.743	0.0253	0.736	0.0426	0.727	0.0562
	0.852	0.0050	0.855	0.0242	0.852	0.0400	0.840	0.0542
	0.894	0.0039	0.884	0.0217	0.879	0.0384	0.860	0.0525
	0.852	-0.0008	0.886	0.0180	0.890	0.0338	0.875	0.0495
	0.830	0.0022	0.836	0.0220	0.842	0.0367	0.829	0.0510
	0.846	0.0027	0.857	0.0206	0.852	0.0371	0.844	0.0515

9.

FIG. I.

GRIFFITH METEOR
G.A. OF MODEL.

FIG. $2(a) \& 2(b)$.

FIG. 2 (a) EFFECT OF REYNOLDS NUMBER

ON MAXIMUM LIFT COEFFICIENT.

FIG. 2 (b) GRIFFITH SECTION.
max. $\left(\frac{t}{c}\right)=0.16$ AT 0.45 C .

FIG. 3.

EFFECT OF REYNOLDS NUMBER ON

LIFT. GRIFFITH METEOR.

COMPARISON OF LIFT CURVES OF GRIFFITH METEOR AND METEOR I.

FIG.5(a) \& 5(b).

FIG. $5(a)$.

FIG. $5(\mathrm{~b})$.
'COMPARISON OF PITCHING MOMENTS ON GRIFFITH METEOR AND METEOR I.

FIG. 6(a) \& 6(b).

FIG. 6 (a).

COMPARISON OF PITCHING MOMENTS ON GRIFFITH METEOR I.

FIG. $7(a) \& 7(b)$.

FIG. 7 (a).

FIG. 7(b).

MEASURED ROLLING MOMENTS ON GRIFFITH METEOR.

FIG. 9.

	$R=$	4.6×10^{6}
37×10^{6}	$M=15$	
\ldots	2.9×10^{6}	0.20
\ldots	1.2×10^{6}	0.15

EFFECT OF REYNOLDS NUMBER ON AILERON
POWER OF GRIFFITH METEOR.
published by his majesty's stationery offce
To be purchased from.
York House, Kingsway, London, w c 2, 429 Oxford Strect, london, w 1, PO Box 569, London, SE1,
13a Castle Street, edinburgh, 2 1 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Street, belfast,
or from any Bookseller
1951
Price 2s. 6d. net

