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S-VlhMARY -- 

This report is concerned with the calculation of the crossflow 
velocity profiles in the lsminar boundary layer on an infinite swept wing. 

A brief survey, of the early attempts to solve the problem, is 
given first. 

In our early work we tried to obtain the crossflow by calculating 
the chordwise and spanwi;e solutions. The chordwise solution was first 
attempted with a method due to Truckenbrodt. This failed, and eventually 
the chordwise solution was obtained with a method due to Dr. Head, which 
gave good .acsuracy. The spanwise solution was solved by an extension of 
a method due to Sinha. 

It was soon found that although these solutions were of good 
accuracy in themselves, in the region we were considering their small errors 
combined to give as much as 50-lOC$ error in the crossflow. 

It was then realised that the crossflow must be determined 
directly. An equation was obtained for it, ivhich also depended on the 
chordwise solution. Dr. head's methad gives the chor&vise solution to 
sufficient accuracy for this purpose. 

The method of solution finally adopted was to form a difference 
equation for the crossflov: and determine the increments in the crossflow 
across a chordwise step. The accuracy obtained by this approach was quite 
reasonable, 5s shown by comparison with Pfenninger's exact solution. 

The method uses graphical differentiation to solve the partial 
differential difference equation for the crossflow, and is able to cope with 
discontinuities in velocity gradient or suction distribution. Only one 
approximation is used in this method and this enables the solution to 
proceed at reasonably large steps. 

The solution was started at 3C$ chord, since no difficulty was 
anticipated at stagnation, and also as the region of immediate interest was 
just before and after the beginning of suction. 

However, me later f?und that at stagnation the method broke down, 
since the.crossflow changed rapidly and the approximation used was not good 
enough. A better approximation was substituted, the equation slightly 
rearranged, and the method changed to one of integration. This gave 
reasonable results, but the process was very slow, Once away from the high 
leading-edge crossflow, the differential method could be used again, 

One purpose of the method is to obtain the crossflow accurately 
enough for its stability to be determined. This may be done by moans of a 

criterion/ 
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criterion which relates the second derivative of the profile at the wall 
to an inflectional Reynolds number based on the distance of the inflection 
point from the wall and the velocity at the inflection point of the profile. 
An extended treatment is given in the section dealing with stability, 

The crossflow profiles obtained are good enough to measure the 
above stability parameters. 

Also of interest is the determination of the suction distribution 
required to stabilise the flow over an infinite swept wing having a given 
pressure distribution. 

In the Appendix an alternative solution of the stagnation problem 
is given which proves to be a more rapid method. 
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Introduction 

The critical value of Owen's crossflow Reynolds number (125) 
which was established for the stagnation zone of a swept wing created tilt; 
impression that full-chord laminar flow over a swept wing would lead to 
uneconomically large suction quantities. Thus it appeared that application 
of boundary layer control to stabilizc a laminar flow would be restricted 
to straight wings of relatively low critical B&h number, 

It is to the credit of the Limed-can research group under 
Dr. Pfenningd to have shown by exact calculations that the Owen criterion 
had not a unique value for the whole ohord of the wing. They showed that 
its critical value depended not only on the thickness of the boundary layer 
and the peak value of the crossflow velocity but also on the shape of the 
crossflow velocity profiles. Moreover they could show that the flow Could 
be stabilized in an adverse pressure gradient with moderate suction 
qusuztities. 

Pfenninger obtained exact solutions of the boundary-layer 
equations by extensive computation with an IBv1 high-speed digital computer. 

Taking the same wing CXC-L~ sweep as Pfenninger, and the same 
pressure distribution and. suction distribution (A, case) we developed an 
approximate method for obtaining the crossflow profiles, which needed nothing 
more complicated than a desk machine for computation. 

Ve are grateful for having these e:;ac& solutions available to use 
as a yardstick, as WC feel that progress would have been slow without them, 
and a critical assessment of the accuracy of the results mould have been 
impossible. 

Notation __pm- - 

C = chord in flight direction 

-d = chord pcrpcn&i.cular to leading edge (chordwise direction) 

2D” = dissipation term in the energy equation of Head's method 

= 2f’* (&,‘< $??).a( if) 

H = ratio of displsccment thickness to momentum thickness = 6*/0 

H, = ratio of enorgy thickness to momentum thickness = E/O 

8 = profile parameter used in Head's method = 

m = profile parameter used in Head's method = 



uob.nr /v u- 
n= crossflow velocity in boundary layer = ---we------ / _- - - 

(Pi- tanar)S \ V. U J 

U 

N = -i-e = S-T 

UC 
Bo = flight Reynolds number = -??- 

V 

UC 
RE = chordwise Reynolds number = -0, 

U 00 = flight velocity 

u. = chordwise component of flight velocity = U, cos I' 

U = local chordwise outer flow velocity 

c = u/u 
0 

u = chordwise velocity in boundary layer 

vO 
= spanwise component of flight velocity = U sin r co 

v = spanwise velocity in boundary layer 

IV 

m = vertical velocity in boundary layer 

x = distance round surface in chordwise direction 

2 = distance vertical to surface 

z 
-$ 

= Rc z/c 

3 
Z" 

P = angle between chordwise direction and outer flow streamline 
direction 

r = angle of sweep 
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6 = boundary layer thickness 

6" = chordwise displacement thickness = 
J 

71 - T) a2 
0 

"al 
& = chordvtisc energy thickness = 

i 
T (1 -T?)az 

0 

"co 
0 = chordwisc momentum thicktlcss = 

J 
T(1 - T) dz 

0 

ovi 

h = - 2 = " & \y 
0 

lJ 

e2 au ati 
A = -." LO = t* I- 

v&c 'ax 

V = c0e"ficicnt of kinematic viscosity, 

Suffix IO' dcnotGs vslucs of a quantity tskcn at the surface, i.e., 

Suffix 'I' dcnotcs values of a quantity tal;cn izt the bcginninp of a 

Suffix '2' dcnotcs values of a. quantity taken at the end of a step. 

z 0 zz 

step 

The crossflon is the component of flow in the boundary layer, 
which is parallel to the body surface and normal to the outer flon streamline. 
It has an important influence on the stabilitjr of the boundary layer. 

fis.(i) Plow in the boundary 
layer. 

F'(id Flow at the edge of the &_I 
bounaary layer. 

From Fig.(i) 
V U 

n = v co9 p - u sin p z -- V. cos p - - U sin /3 

vO 
U 

From Fig.(ii) 
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2. 

For an infinite wing, the boundary laycr equations may be 
separated into (a) an independent chordwise equation and (b) a spanwise 
equation, which depends on the chordwisc solution. 

/" u Since the crossfloq is proportional to \ -- - - it seemed 
iv0 u > 

reasonable in our early work to evaluate 
obtain n. 

u/U then v/V0 and hence 

2.1 The chordwise- solution_ 

2.1.1 Truckenbrodt's method ---__n_____l- 

Of the various methods svailablc, a method due to Truckenbrodt', 
was decided on, since it could he used equally well in regions with or 
without suction. Since the lnethod gave us no means of determining a 
velocity profile, Thwaitcs' cubic profile 775s used. 

Agreement was fair over the non-suction region. Honcvcr, when 
the method was extcndcd inte th,e sucked region Nith advcrsc pressure gradient, 
it broke down since it predicted separation at about 831; chord, which from 
Pfcnningerts results did not occur, Ic was clear that the method was unable 
to give reliable results in the prcscnce of an adverse pressure gradient. 

2.1.2 Extcnslon of Truckenbrodt's method -a---- -a-. cm e-*1__ 

It ?-gas decided to cxtend thti curves in Truckcnhrodt's work so as 
to cope with high suctions and adverse pressure gradients. This work was 
nearing completion, when Dr. Head drcm our attention to the method which he 
had developed. Y/ark on the extension of Truckenhrodtts method was stoppod 
and Dr, Head's method adopted. 

2.1.3 The m.z!!hod due to Dr, Head ---.-*-.A--- --- 

This is a trio parameter systcz!, 
integral equations2. 

using the momentum and energy , 
The method is accurate , giving momentum tnickness t0 

within about 1 or 2;s and giving exccllcnt velocity profiles on comparison 
with Pfcnninger's exact solutions (Yigs.1 and 2). This was true c-ven in 
the adverse pressure gradient region. If i2cccSSary th e accuracy could be 
further improved by reconstructing the working charts nith greater precision. 

2.2 The ~anvjise solution -R_. s-y* we - ulfm- 

At first, in conjunction with the Truckcnbrodt method for the 
chordwise flow, the spanwise flow was 
Crabtrec3, 

dotirmin&l by a method duo to Xott and 
hut this method could only bc used for zero suction. Again a 

Thwai tc s * cubic velocity profile was taken. The crossflow profile obtained 
in this manner was poor, and no boundary layer thickness was given due to the 
'cut off' effect of the cubic profiles (Pig.3). 

2.2.1 Sinha's method 

Dr. Hcad drew our attention to Sinha's Ph.D thcsis4, in which a 
method of solving the spanwise boundary layer momentum equation, using the 
one-parameter Schlichting profiles was &scribed. The ncthod r[as found to 
give reasonable results in the non-sucked region. Hozevzr, the crossflon 
profiles wore about 207; in error rshcn compared T>Iith the Pfcnninger solution 
(Fig&). This one-parameter method was unable to cope with a discontinuous 
change in velocity gradient or sue-Lion distribution. 
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It was decided to extend Sinha's method to a two-parameter system 

and use a spanwise energy equation as well as the momentum equation. The 
method thus became somewhat like Head's chordwise method, 

The Schlichting profiles were still used to evaluate the functions 
needed to produce the charts required. To obtain velocity profiles, it was 
assumed that they were two parameters, of the type used by Iiead in the 
chordwise flow and therefore given by his charts. By this method, good 
results were obtained through the discontinuities and the spanwise velocity 
profiles when checked with Pfcnningerts solution were reasonably correct. 

It was found that there was some tendency in the suction region 
for the spanwise profiles of Pfenninger's solution to be of a different 
type to those of his chordwise solution (Fig,T). 

The crossflow profiles when compared with Pfcnninger's were found 
to be very much in error (Fig,G), It was realised that the present approach 
in the regions being considered was inadequate since the small errors in the 
u/U and v/V, profiles were sufficient to make the error of’ their differonce 
of the same magnitude as the crossflow itself. 

With this in mind, a method was developed which would give the 
crossflow directly, 

In the Appendix, it will be shown that we can use the earlier 
approach near stagnation. 

39 -Iu_ Present Method of Solution ep__y ---- __ 

It was originally thought that it would not be practically possible 
to use the method of calculating chordwise and spanwise solutions to obtain the 
crossflow, In the Appendix, the latest work shows that this method might be 
used from stagnation since the magnitude of N is about 0.2 and the errors 
are acceptable on this value. These errors could be considerably reduced by 
increasing the accuracy of IIeadls charts. 

3.1 Tlze crossflow eation - ---* F 
3.1.1 Derivation of the Crnssflow cc;:?,tion --am_D_n___ - * 3 _-.a * ---s--A __L--yx__a 
The boundary layer equations for an infinite wing are:- 

au au dU a2 u 
Chordwise u -- + vt -- = u -- + v --- 

ax a2 do az2 
dV av a2 v 

$annise u -- + vq -- z v m-m L-e 
ax a2 a z2 

au all 
Continuia -- + -- = 0 . ...* -a.-- 

ax al, 

.*e (2) 

.e. (3) 

Making these equations non-dimensional me obtain 

aT aT 
Chordwise -CT y_I n_-- -- -I- w -- cc (1-p)f'li.5"__' 

ax az ax az2 
.*. (la) 

as as a2 s 
UT -- + w -- = --- 

ax az azZ 

a(FT) aw 
----I + WC = 0 

ax az 

. . . (25) 

l .e (35) 

where T = u/u s = v/v,. 

Subtracting equation (la) from (25) and writing 1‘3 = S - T WC obtain 

i?T 
ard 31\: a2 R dc -- f w -- = --- - (1 I qf ) -- 
ax az azS 

* . . (4) 
dx 

Equation (4-) is "corned the t!&-Cy.lat~ion' . 
to determine, 

N is the quantit:y we wish 
since the crossflon n 

to N. 
at any ahordwise station is proportional 

me/ 
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The N-equation itself could be used in a step-by-step process, 
in which one could obtain an approximate N from an extrapolated &?/aX. 
A better approximation for aS/aX could then be obtained by substituting 
N back in the N-equation. It was found, however, that it was more accurate 
to calculate the increment in N (i.e., AiV) for a step and add this to the 
N at the beginning of the step, since a large error on AN would in general 
be an acceptable error on N. 

A difference equation was therefore derived from the N-equation. 

3.1.2 The difference equatio2 

If we denote a step in X by AX, and denote values at the 
beginning of the step by a suffix '1' and values at the end of a step by a 
suffix t2i, then we can write down the two equations 

a24 a2N 
+ Wa m-t = ---% - (1 -- !$ ) 

az az2 

and 
aN a%i 

v,Tl +Wl e-1, = --"--(I-~) 
az az2 1 

.*. b-a) 

l .e (4%) 

Now subtract (&b) from (&a) and writing 

AN = N -N1 
2 

A (CT) = ii2'& - cl T, AW = 17 - W, a 

L- 
dG - 

A (I-!I?)-- 
dx -l 

= (l-7!) (fj -(I-~)(~) 
a 1 

we have 

am 
+ Wa --- + AW !% = :?!! 

du 
-Ar(,@) -- 

az az az2 L dx I 
l ** (4c) 

which becomes after rearrangement, 

aN 
A / -- = w-e- 

i ax > 

I 

c 

aa AN am 
---I -Iv2 --- -A\7 

u, T2 az2 az 
" -A(6T)( ;)1-A[(,-7?; :]I (5) 

This is the equation used to evaluate the crossflow. It should be 
noted that it is ex, . 

3.1.3 The boundary conditions 

It has been found useful to consider both equation (I&) and 
equation (4.~3) evaluated at the boundary, i.e., Z = 0. 

The following boundary conditions have been used, 
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(i) From equation (k 

(;;jo = Tfo(yz),+f 

( $). = vio( $), 

( f2Jo = -(~j,-t(~~~)~~[~tjl,~~~ 

(ii) From equation (4c) 
IC 

1 

For zero suction (W2)o = 0 and (AW)o = 0. 

3.2 Solution of the crossflow equation -.w___L___f_ 

3.2.4 Preliminaries -- 

To obtain the chordwise solution, 5 and dB/dX will have already 
been determined. 

For the crossflow solution, it will be necessary to determine over 
the whole chord, the functions 

T, W, and also CT and (1 - 'I?) -- 
dx 

T is determined directly by the use of Head's charts and W is 
determined from the continuity equation. 

Thus w  = w. - 

Plots of T and W versus X with Z as parameter are required 
so that these functions may be determined with reasonable accuracy at any 
value of X required. 

3.2.2 gsing tne method --- 

Writing equation (5) again 

A(:)= +? [ ?; - VL:; -&y ; -&8T)(z)L -f(,-9f) g j ] . . . (5) 

me/ 
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The object of the method is to evaluate everything on the RJ1.S. 
of (5) and hence we are able to obtain the increment to aN/aX across the 
step, and thus the increment in K. 

The problem of starting from stagnation conditions will be dealt 
with later, so for the present section, it will be assumed that we know 

i3N aNL dN ’ aN, 
N = I$, -- = C- and -- z f -- 

\ > 
at the beginning of a step. 

az az ax ax i 

We also know e2 Ts , Viz, AW, A(UT) and A [(I-!I@) f ] . Thus 

am a2m 
everything is known except --- and ---- . 

az dZ2 

We now make an approximation for AN on the R.H.S. of equation (5). 
The approximation taken was 

was obtained from a running plot of -- versus X with Z 
ax 

am 
as parameter. We were able to write --- = A.X. 

az extrap. 

a2 1 aN was plotted and amoothed and thus --- -- 
i ) 

1Kl.S 
aza ax extrap. 

obtained. This was also plotted and smoothed. The differentiations were 
am a2 Ai'J 

carried out graphically. On multiplying by AX we obtain --- and ----. 
23Z az2 

In order to draw the graphs of these derivatives near Z = 0, the 
boundary conditions of (7) were used. 

Thus for zero-suction, ---- = A 
az2 

and so the starting 

am 
slope of the graph of --- is known and thus the curve may be drawn in the 

az 
a2m 

best position. Similarly for tho graph of ---- we have a starting slope 

of zero. aza 

If there is suction, then the best combination of wall derivatives 
must be t,aken to satisfy the boundary conditions and the plotted points for 
aAN a2m 

e-0 and ---- . 
az az2 

Where necessary it was considered to be more important to 

aAN a2 AH 
satisfy the boundary conditions than to follow the points of --- and ---- 

az az2 
near Z = 0. 

aN If a running plot of ~2 versus X for each Z is kept (Fig.7) 

it is a simple matter to compute AN and hence N. It was found sufficient 
to calculate the AN from the trapezium rule but alternatively it might be 
determined more accurately by integration, To proceed to the next step, a 

aN new starting value of 82 will be required. 

This/ 
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This will in fact be arj,/aZ; 

Thus 
ap3 

2 --- = 
az 

dN 3AN 
z$ q-m I + --I 

az a2 
.*. (10) 

Since we were interested in the region of suction with an adverse 
pressure gradient, we started the solution at 3C$ chord, As suction started 
at 63% chord, the method had a good trial in regions of non-suction and 
suction. The results of the calculations are given in Figs.8, 9 and 40, 

3.2.3 ?iscontinuities in suction or velocity gradient -__I_- 

These could be dealt with by fairing the curves so that no 
discontinuity occurred, However, since the object was to compare calculated 
results with Pfenninger's exact solutions, it was decided to accept the 
discontinuities. The results proved to be quite satisfactory, although the 
discontinuity in api/ax was infinite. 

3.2.4 Size of step 

From the running plots of aN/aX versus X, one can decide on the 
step size. 

If the M/aX plots have a large curvature then a small step size 

ar\;, 
must be used, so that the approximation Iv\J = -I 

( J 
AX iss 

3X extrap. 
reasonable one for the step. 

If the aN/c3X plots are nearly linear then quite large steps can 
be made, It should be noted that the step size doe: not depend on the shape -- 

of the curves of T, TV, fiT or (I - !I!) g . 

It is now realised that an unnecessary number of steps were taken 
in the non-sucked region and that the work from X = 0.3 to X = 0.6311 
could have been completed in about 5 steps. In the sucked region, when the 
calculation had reached X = 0.65, it was decided to try some large steps, 
and the calculation was taken to X = 0.90 with steps at X = 0.65, 0.67, 
0.7, 0.8, 0.9. Thus two steps of 10,~; were tried. 

As can be seen from the results (Fig.10) the original calculated 
points at X z 0.7, 0.8 and 0.9 are in error at the eak of the crossflow 
profile and at t&e tail end. It can be seen (Pig.11 that this is due to P 
the sudden chango in shape of the alY/aX plots and therefore the approximation 

aN \, 
AN= -- 

( i 
AX breaks down. 

ax extrap. 

We decided to try and converge these results. Mean curves of Tu' 
were drawn through the circle points, and derivatives with respect to Z 
obtained graphically. 
aN/ax. 

'The N-equation (le) was then used to obtain a new 
A mean W/$X was taken between the original calculated aN/dX and 

the new one (this mean is shown in Fig.12) and AN computed from it, This 
converged the peaks (Fig.10 - crosses) but the tail ends were unaltered. 

This tail end effect was found to be due to the chordwise solution 
being inaccurate there. This was partly because of the need for more accurate 
charts, but mainly because it was found to be difficult to read off values 
accurately from Headfs charts in this part of the chordlvise calculation. 
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4. Startins at Stagnation 

We now consider how to start at stagnation. We will consider 
first the more general case with suction. 

4.4 The chordwise solution .L- - ---.- -u_y__y 

The chordwise solution may be obtained with the use of Head's 
charts. 

To obtain the stagnation values of 4, m, we have to solve the 
equation - (obt ained from the momentum and energy equations) 

4 + 2m + (24 - 1)2D* - 3(1x + 4?)Hc + (m + 4x 2D*)H = 0 ..* (I?) 

where for this 2 parameter system 2D*, I-1, He are functions of 4 and m. 

This has been solved approximately for suction cases. 

The suction parameter is given by 

e + m(II + 2) 
h = ----------I- 

4(H+ 2)-'I 
. . . 02) 

while the boundary condition is 

I dfj - (m + a) 
u m.. = m-------a- 
'"'"0 dx x2 

. . . (‘i3) 

aw 
We define K = W. andL=--c 

i ax 

I (m + 4X) 
Therefore the boundary condition is -- = - ---m---w 

P ?L2 
a.. (13a) 

The stagnation curve of 4 and m is a single line, therefore 
all quantities, i.e., h, H, H E> 2D*, m. A and K can be defined entirely in 
terms of 4. 

Thus, once the pLaramcter K is known, 8 is known and thus the 
whole stagnation solution is known (Figs.13, Ilk and 15). The velocity 
profile is determined from Head's charts* 

dt* 
We will still require starting values of t*' = --- and 

dx 
92 H; = --- o First we determine 4' and m'. These are given as the 
dx 

solution of the linear equations. 

d26 hu 

= [ I(2+~)~-13(~-2~~)-eE;L-h]A --- / -- 
fi2/ a 

oII (14) 

and/ 



(pfi /dD 

= [e(ii-l)iI~-(i~c-l) J (Ic2-2y;L)A ---,’ __ . . (q5) 
dP/ a 

al -1 be obtained from Head's charts. Irho 

and 

16 = II& 
e 

4' $ II, m' 
m 

j a5 , x2 
The: starting value of t* j.sg,it,renby -l;* = Aj -- = -.. 

i ) / \ax VP 
0 

*.. (18) 

Starting values of Ijg, I-1 and 2IP arc r&Ely obtnincd from ;iczd's 
charts. 

For zero suction, WC have fron the charts 

43 = 0.3674 ~1 = -0~0876 HE = I.6368 2i):x =o d 4301 

The chordxise and N-ecpations arc 

3T dT dfi d2T 
ET -- + TJ -- = (1 - P ) -- + --- 

a% 32 dx a&? 

an d 
a8 3N 

621 I- + ,g -- = 
3x 6Z dx az2 

.*. (In) 

..a (:+.) 

and tile continuity equation is 



- 14 - 

a (GT) aw e @T) 
w---w + -- = 

ax az 
0 i.e., Y = Wo - 

J 
v-c-- dz 

0 3X 

At stagnation V = 0. 

If wc consider equations (la) and (4) at stagnation, together with 
the continuity equation, we obtain after making the transformation 

au,& 
/ 

z* = z -- 
i I dx 

and 

d2 T dT 
-w-w dz”2 + (J,z*TrE~ 4) ---+ (I -‘p) = 0 

dzJ* 

d2N dN 
-I-- + (~,z*TdZ" - K) --- - (1 - ls) = 0 
dz"2 dz" 

.*. (19) 

*.. (20) 

Further, if we differentiate equations (la) and (4) with respect 
to X and then take stagnation conditions, we obtain, using the transformations 

X” 

. . . . (21) 

. . 
d 

+ [/EL Ta* - Kj --- 
aT 
I-- + 2 --- 

dZ* ax:: 

= 
c 

L - 41~ + $1 
z* aT 

TdZ* 
JO 1 --- . . (22) 

az" 

3T I- 3T aIT = - 2T --- + L L - +K + - 2 --a > 1 dz” --- 
dX* 3x4’ dz* 

. . . (23) 

where K = W ,' and L = --2 
dx 

as before. 

With zero suction and suction gradicnt at stagnation, the equations 
(lP>, @oL (22) and (23) become independent of K and L, and so may be 
solved once and for all. 

The first two have already been solved by other workers, e.g., the 
chordwise equation is effectively the stagnation Fslkncr-San equation. 

We have approximately solved -the equations for aT/aX* and &C/3:;" 
by graphical and numerical methods for the case with K = 0 and L = 0. 

5./ 



5. Continuin_gthc Solution axaz from Sta&nztion _-w- *z---m m L----a 

(For the alternative method now being used, see Qpendix). 

The differential method broke down in the stagnation region since 
aiu/aX WLS ch,anging too rapidly for the approximation taken for c\I?J to bc 
valid. 

The difference equation (5) may be re-written as 

24) 

We now make the following approximation for AR 

. . . (25) 

?vhe x-c k is a constant introduced to give consistency between the 
boundary condition from equation (24), i.e., 

l .  .  (26) 

and that obtained after differentiating the N-equation with respect to X. 

. 
l.e., 

The boundary condition for the differentiated M-equation is 

. . . 127) 

Substituting this in equation (26) and using equation (27) we have 

A ! ?I! 
k + (1 

idx -----mm- 
AX 

. -..-a..---- 

Ax 

l k= . . ----u---*------c--- 

A 

. . . (28) 
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(For the case where the curve of dij/dx varies linearly k = 4). 

Substituting AI7 into equation (24) we obtain an equation for 

Equation (29) is solved by a graphical step-by-step method. An 

a2 
approximate determination of --- f 

* aN 
-- 

aza \ ax 
is made and hence we obtain 

a 

approximations to Putting these back into 

equation (29) we obtain an better approximation to --- and thus 

proceed step-by-step until complete consistency is obtained between the 
integrating and computing processes. 

The constants of integration are chosen so that 

= 0 at Z = 0 and / 
\ 

40 as Z-00 . 

b ,’ aN 
It is not possible to ensure that -- 1 -- 

az\ ax > 
+ 0 as Z + 00 

2 
aa aN 

except by altering the curve for --- -- 
( 1 aza ax 2 

at the outer edge. Using 

this process, the solution is helped to converge more quickly. 
obtained by this process is given in Fig.16. 

A comparison 

6. Determination of Stability v--s * -uI 

Professor Owen first suggested the Reynolds number based on the 
peak crossflow velocitjr and the thickness of the crossflow profile as a 
criterion for the magnitude of the crossflow. This Reynolds number was 
denoted by x. It was found that for flow in the vioinity of a leading edge, 
the laminar boundary layer broke down if the value of this criterion exceeded 
a certain value (about 125) and this was accepted as a critical value. In 
the well known example of the rota-tin 
observed to be higher (about 330). 

g disc the critical value of x was 

Pfenninger, in extensive calculations of crossflow profiles and 
their stability in regions of favourable and adverse pressure gradients and 
both with and without suction, showed that the critical value of x depended 
to a marked degree on the shape of the crossIflow profile and adopted the 

value of 
a2 (n/n-> - 
u-u--u--u- 

I a(2/6J2 0 
as a shape parameter. 



Gregory found that if one plotted xcrit against the second 

derivative, a roughly linear relationship was possible. 

Lal;Lerl,y Owen has suggested a critical Reynolds number based on 
the distance of the inflection point from the wall, and the velocity at the 
inflection point of the pr*oPile (Fig.17). This has the advantage of 
reducing the range of variation of xcrit considerably. 

Thus for a profile to be stable, we require that the inflection 
Reynolds number should be less than the critical value corresponding to the 
second derivative of the profile at the wall. 

The problem of determining a auction distribution t-o give s-iable 
laminar flow for a given chordwise pressure distribution may be solved by 
the use of the above criterion. ,The stability parameters would be obtained 
from the crossflow profile and the firs;; boundary condition of the N-equation, 
The chordwise and crossflow solutions would proceed together, 

It has been seen that the method due to Dr. Hcsd %or solving the 
chordwise laminar boundary layer gives excellent results over the full 
chord, coping with discontinuities in velocity gradient and suction. 

The method of Sinha for solving the spsnwise flow also gives 
reasonable results, while the cxtcnsion of the met.llod cnablcs discontinuities 
to be overcome. 

The differential method of solving the crossflow gives acourate 
results and can bc quite ra1ji.d since Steps of 5,~ chord may be taken over a 
considerable part of the wing;, 

In the vicinity of stagnation, it was found that the crossflom 
could bu given wit:= rcssonsble accuracy by calculating the spanwise and 
chordwisc solutions separately, Likii G sccurac:J could bc increased by 
making improvcmcnts to the *+rorking char-'is of Head's method. 

In nearly all casts, the conpcrison of the velocity profiles with 
Pfenningers exact solution was quite favourable, the crossflow profiles being 
ob-tained accurately enough for their stability parameters to be de-tormined, 

It is felt that the method provides a simple and reasonably accurate 
way of ca1Culatin.g the laminar boundary layer for an infinite swept win{;, 

This work was carried out under the direction of Dr. G. V. Lachmann, 
Director of Research, Handley ‘Page Ltdo The authors would like to express 
their gratitude: to idr. J. 13. Edwards of the Research Departclent, Handley 
Page Ltd., Professor Owen of Manchester University and Dr. i'il. R. Hcad of 
Cambridge University who have frequently offered vsluablc advice; and also 
to the sssistancc given by Miss P. A. Lock, Research Department, 
Handlcy Page Ltd. 
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Recent Alternative Method Used to Obtain 
The Profiles Near Stagnation 

Since the method used in Section 5 was very slow, it was 
desirable to find .a quick way of calculating the crossflow in ihe vicinity 
of stagnation. 

On consideration, it was realised that irl the original calculations 
of the crossflow, where it was determined from the difference of spanwise and 
chordwise velocity profiles, we wer*e trying to obtain differences of the order 
of 0.06 and getting errors of about " 0,025. 

At stagnation, however, we require differences of about 0.20, and 
since these differences are large we felt that there would be a possibility 
of the method used in the original calculations succeeding. lj'e also found 
that for the spanwise solution the stagnation condition given by Sinha was 
incorrect, making the spanwise boundary layer, in our earlier work, too thick. 

With this condition corrected, the spanwise solution was calculated 
from stagnation back to 3077 chord. In this region tnere is no suction and 
the Blssius profile may be taken as a good approximation for the span&se 
profile. 

Profiles of N = were calculated at a number of stations 

and compared with Pfenninger's exact solutions, These are shorn in Eligs.lS 
and 19. It will be seen that agreement is reasonable even back to 30)0 chord. 
The approximate solution could be bettered if the accuracy of Head's charts 
were increased. 
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