

An Approximate Method for Calculating the Laminar Boundary Layer on an Infinite Swept Wing with Arbitrary Velocity and Suction Distribution

By

A. W. Lindfield and H. G. Pinsent

July, 1957


#### Abstract

An Approximate Method for Calculating the Laminar Boundary Layer on an Infinite Swept Wing with Arbitrary Velocity and Suction Distributions


- By -
A. W. Lindfield and H. G. Pinsent


## SUMMMARX

This report is concemed with the calculation of the crossflow velocity profiles in the laminar boundary layer on an infinite swept wing.

A brief survey, of the early attempts to solve the problem, is given first.

In our early work we tried to obtain the crossflow by calculating the chordwise and spanwise solutions. The chordwise solution was first attempted with a method due to Truckenbrodt. This failed, and eventually the chordwise solution was obtained with a method due to Dr. Head, which gave goodaccuracy. The spanwise solution was solved by an extension of a method due to Sinha.

It was soon found that although these solutions were of good accuracy in thenselves, in the rogion we were considoring their small errors combined to give as much as $50-100 \%$ error in the crossflow.

It was then realised that the crossflow must be determined diroctly. An cquation was obtained for it, which also depended on the chordwise solution. Dr. Head's method gives the chordwise solution to sufficient accuracy for this purposo.

The method of solution finally adopted was to form a difference equation for the crossflow and determine the increments in the crossflow across a chordwise step. The accuracy obtained by this approach was quite rcasonable, as shown by comparison with Pfenninger's exact solution.

The method uses graphical difforentiation to solve the partial differential difference equation for the crossflow, and is able to cope with discontinuities in velocity gradient or suction distribution. Only one approximation is used in this method and this enables the solution to proceed at reasonably large steps.

The solution was started at $30 \%$ chord, since no difficulty was anticipated at stagnation, and also as the region of immediate interest was just before and after the boginning of suction.

However, wo later found that at stagnation the method broke down, since the crossflow changed rapidy and the approximation used was not good enough. A better approximation was substituted, the equation slightly rearranged, and the method changed to one of integration. This gave reasonable results, but the process was very slow. Once away from the high leading-edge crossflow, the differential method could be used again.

One purpose of the method is to obtain the crossflow accurately enough for its stability to be determined. This may be done by moans of a
criterion which relates the second derivative of the profile at the wall to an inflectional Reynolds number based on the distance of the inflection point from the wall and the velocity at the inflection point of the profile. An extended treatment is given in the section dealing with stability.

The crossflow profiles obtained are good enough to measure the above stability parameters.

Also of interest is the determination of the suction distribution required to stabilise the flow over an infinite swept wing having a given pressure distribution.

In the Appendix an altermative solution of the stagnation problem is given which proves to be a more rapid method.

## CONTENTS

## Summary

Introduction
Notation

1. The Crossflow
2. First Attempts at Solution
2.1 The chordrise solution
2.1.1 Truckenbrodt's method
2.1.2 Extension of Truckenbrodt's method
2.1.3 Method due to Dr. Head
2.2 The spanwise solution
2.2.1 Sinha's me thod
3. Present Method of Solution
3.1 The crossflow equation
3.1.1 Derivation of the crossflow equation
3.1.2 The difference equation
3.1.3 The boundary conditions
3.2 Solution of the crossflow equation
3.2.1 Preliminaries
3.2.2 Using the method
3.2.3 Discontinuities in suction or velocity gradient
3.2.4 Size of step possible
4. Starting at Stagnation
4.1 The chordwise solution
4.2 The crossflow solution
5. Continuing the Solution away from Stagnation
6. Determination of Stability
7. Conclusions

References
Appendix
Figs. 1 - 19

## Introduction

The critical value of Owen's crossilow Reynolds number (125) which was establishod for the stagnation zone of a swept wing created the impression that full-chord laminar flow over a swept wing would lead to uneconomically large suction quantities. Thus it appeared that application of boundary layer control to stabilize a laminar flow would be restricted to straight wings of rolatively low oritical liach number.

It is to the credit of the American research group under Dr. Pfenninger ${ }^{5}$ to have shown by exact calculations that the Owen criterion had not a unique value for the whole chord of the wing. They showed that its critical value dcpended not only on the thickness of the boundary layer and the peak value of the crossflow velocity but also on the shape of the crossflow velocity profiles. Moreover they could show that the flow could be stabilized in an adverse pressure gradient with moderate suction quantities.

Pfenninger obtained exact solutions of the boundary-layer equations by extensive computation with an IBM high-speed digital computor.

Taking the same wing and sweep as Pfenninger, and the same pressure distribution and suction distribution ( $A_{1}$ case) we developed an approximate method for obtaining the crossflow profiles, which needed nothing more complicated than a desk machine for computation.

We are gratoful for having these exact solutions available to use as a yardstick, as wo feel that progress would have been slow without them, and a critical assessment of the accuracy of the results would have been impossible.

## Notation

$c=$ chord in flight direction
$\bar{c}=$ chord perpendicular to leading edge (chordwise direction)
$2 D^{*}=$ dissipation torm in the energy equation of Head's mothod

$$
=2 \int_{0}^{\delta / \theta}\left(\begin{array}{c}
\theta \\
- \\
U
\end{array}\right)^{2}\left(\begin{array}{l}
\partial u \\
- \\
\partial z
\end{array}\right)^{2} d\left(\begin{array}{c}
z \\
- \\
\theta
\end{array}\right)
$$

$\mathrm{H}=$ ratio of displacement thickness to momentum thicleness $=\delta * / \theta$
$\mathrm{H}_{\varepsilon}=$ ratio of onorgy thicknoss to momentum thickness $=\varepsilon / \theta$
$K=W_{o} /\left(\frac{d \bar{U}}{d X}\right)^{\frac{1}{2}}$
$2=$ profile parameter used in Head's method $=\frac{0}{U}\binom{\partial u}{\frac{-}{\partial z}}_{0}=t^{* \frac{1}{2}}\binom{\partial T}{\frac{T}{\partial Z}}_{0}$
$I=\frac{d W}{d X}\left(\frac{d \bar{U}}{d X}\right)^{\frac{1}{2}} / \frac{d^{2} \bar{U}}{\partial X^{2}}$
$m=$ profilo parameter usod in Hoadts method $=\frac{\theta^{2}}{U}\left(\frac{\partial^{2} u}{\partial z^{2}}\right)_{0}=t^{*}\left(\frac{\partial^{2} T}{\partial Z^{2}}\right)_{0}$

$$
\begin{aligned}
& N=\frac{v}{V_{0}}-\frac{u}{U}=S-T \\
& \text { Ro }=\text { flight Reynolds number }=\frac{U_{0}{ }_{\nu}^{\infty}}{\nu} \\
& \mathrm{R} \overline{\mathrm{C}}=\text { chordwise Reynolds number }=\frac{\mathrm{U}_{0} \overline{\mathrm{C}}}{\nu} \\
& S=\frac{V}{V_{0}} \\
& T=\frac{u}{U} \\
& t^{*}=\left(\begin{array}{c}
\theta \\
- \\
c
\end{array}\right)^{2} R_{c}=\binom{\theta}{\bar{c}}^{2} R_{\bar{c}} \\
& U_{\infty}=f l i g h t \text { velocity } \\
& U_{0}=\text { chordwise component of filight velocity }=U_{\infty} \cos \Gamma \\
& \mathrm{U}=\text { local chordwise outer flow velocity } \\
& \bar{U}=U / U_{0} \\
& u=\text { chordwise velocity in boundary layer } \\
& V_{0}=\text { spanwise component of flight vclocity }=U_{\infty} \sin \Gamma \\
& \mathrm{v}=\text { spanwise velocity in boundary layer } \\
& W=R_{c}^{\frac{1}{2}} W / U_{\infty} \\
& \mathrm{W}=\text { vertical velocity in poundary layer } \\
& x=\text { distance round surface in chordwise direction } \\
& X=x / c \\
& X^{*}=\ln \left(\begin{array}{c}
\frac{d \bar{U}}{} \overline{d X}
\end{array}\right) \\
& z=\text { distance vertical to surface } \\
& Z=R_{c}^{\frac{1}{2}} \quad z / c \\
& Z^{*}=Z\left(\frac{d \bar{U}}{d X}\right)^{\frac{1}{2}} \\
& \beta=\text { angle between chordwise dircction and outer flow streamline } \\
& \text { direction } \\
& \Gamma=\text { angle of sweep }
\end{aligned}
$$

$$
\begin{aligned}
\delta & =\text { boundary layer thickness } \\
\delta^{*} & =\text { chordwise displacement thickness }=\int_{0}^{\infty}(1-T) d z \\
\varepsilon & =\text { chordwise energy thickness }=\int_{0}^{\infty} T\left(1-T^{2}\right) d z \\
\theta & =\text { chordwisc momentum thickness }=\int_{0}^{\infty} T(1-T) d z \\
\lambda & =-\frac{W_{0}}{\nu}=-t^{* \frac{1}{2}} W_{0} \\
\Lambda & =\frac{\theta^{2}}{v} \frac{d U}{d x}=t^{*} \frac{d \bar{U}}{d X} \\
\nu & =\text { coefficient of kinematic viscosity. }
\end{aligned}
$$

Suffix ' 0 ' denotes values of a quantity taken at the surface, i.c., $z=0$
Suffix 11 ' denotes values of a quantity talion at the beginning of a step
Suffix ' 2 ' denotes values of a quantity taken at the end of a step.

## 1. The Crossfliow

The crossflow is the component of flow in the boundary layer, which is parallel to the body surface and normal to the outer flow streamline. It has an important influence on the stability of the boundary layer.


Fig. (i) Flow in the boundary layer.

Fig. (ii) Flow at the edge of the boundary layer.

From Fig. (i)

$$
n=v \cos \beta-u \sin \beta=\frac{v}{V_{0}} V_{o} \cos \beta-\frac{u}{U} U \sin \beta
$$

From Fig. (ii)

$$
\begin{aligned}
& U \sin \beta=V_{0} \cos \beta=\frac{U V_{0}}{\left(U^{2}+V_{0}^{2}\right)^{\frac{1}{2}}} \\
& \therefore n=\frac{U V_{0}}{\left(U^{2}+V_{0}^{2}\right)^{\frac{1}{2}}}\left(\frac{v}{V_{0}}-\frac{u}{U}\right)=\frac{U}{\left(U_{0}^{2}\right.} \bar{U}+\tan \Gamma \\
&\left(\tan ^{2} \Gamma\right)^{\frac{1}{2}}\left(\begin{array}{cc}
v & u \\
V_{0} & - \\
U
\end{array}\right)
\end{aligned}
$$

## 2. First Attompts at Solution

For an infinite wing, the boundary layor equations may be soparatcd into (a) an independont chordwise equation and (b) a spanwise equation, which depends on the chordwiso solution.

$$
\text { Since the crossfloq is proportional to }\left(\begin{array}{cc}
v & u \\
\hdashline & - \\
V_{0} & U
\end{array}\right) \text { it scencd }
$$ reasonable in our carly work to cvaluate $u / v$ then $v / V_{o}$ and hence

obtain $n$.

### 2.1 The chordwise solution

### 2.1.1 Iruckenbrodt's method

Of the various methods available, a method due to Truckenbrodt ${ }^{1}$, was decided on, since it could be uscd equally well in regions with or without suction. Since the method gave us no means of determining a velocity profilc, Thwaites' cubic profile was uscd.

Agrecment was fair over the non-suction region. However, when the method was extondod int the suckod region with adverso prossure gradiont, it broke down since it predicted separation at about 83 , chord, which from Pfonringor's results did not occur. It was clear that the mothod was unable to give reliable results in the proconce of an adverse pressure gradiont.

### 2.1.2 Extuns:on of Truckenbrodt's method

It was dociaded to extend the curves in Truckonbrodt's work so as to cope with high suctions and adverse prossure gradients. This work was noaring complotion, when Dr. Head drow our attontion to the mothod which he had developed. Work on the extension of Truckenbrodt's method was stopped and Dr. Head's method adopted.

### 2.1.3 The muthod duc to Dr. Head

This is a two parametor systom, using the momentum and cnorgy integral equations ${ }^{2}$. The method is accurate, giving momentum trickness to within about 1 or 2,0 and giving excellent velocity profiles on comparison with Pfonninger's cxact solutions (Iigs. 1 and 2). This was truc cven in the adverso pressure gradient region. If necossary the accuracy could be furthor improvod by reconstructing the working charts with grcater precision.

### 2.2 The spanvise solution

At first, in conjunction with tho Truckonbrodt method for the chordwise flow, the spanwise flow was dotormined by a mothod duc to Rott and Crabtree ${ }^{3}$, but this method could only bo used for zoro suction. Again a Thwaites' cubic velocity profile was taken. Tho crossil. ow profilc obtained in this manner was poor, and no boundary layer thickness was given due to the 'cut off' offect of tho cubic profiles (Fig. 3 ).

### 2.2.1 Sinha's method

Dr. Head drew our attention to Binha's Ph.D thesis ${ }^{4}$, in which a method of solving the spanwise boundary layer momontum equation, using the one-parameter Schlichting profiles was doscribed. The nethod was found to give reasonable results in the non-sucked region. Howevor, the crossflow profiles were doout $20 \%$ in exror when compared with the Pforminger solution (Fig.4). This onc-parameter method was unable to cope with a discontinuous change in velocity gradiont or suction distribution.

It was decided to extend Sinha's method to a two-parameter system and use a spanwise energy equation as well as the monentum equation. The method thus became somewhat like Head's chordwise method.

The Schlichting profiles were still used to evaluate the functions needed to produce the charts required. To obtain velocity profiles, it was assumed that they were two paramoters, of the cype used by Head in the chordwise flow and therefore given by his charts. By this me thod, good results were obtained through the discontinuities and the spanwise velooity profiles when checked with Pfonninger's solution were reasonably correct.

It was found that there was some tendency in the suction region for the spanwise profiles of Pfenninger's solution to be of a different type to those of his chordwise solution (Fig.5).

The crossflow profiles when compared with Pfenninger's were found to be very much in error (Fig.6). It was realised that the present approach in the regions being considered was inadequate since the small errors in the $u / \mathrm{J}$ and $\mathrm{v} / \mathrm{V}_{0}$ profiles were sufficient to make the error of their difference of the same magnitude as the crossflow itsclf.

With this in mind, a method was developed which would give tho crossflow directly.

In the Appendix, it will be show that we can use the earlier approach near stagnation.

## 3. Fresent Method of Solution

It was originally thought that it would not be practically possible to use the method of calculating chordwise and spanwise solutions to obtain the crossflow. In the Appendix, the latost work shows that this method might be used from stagnation since the magnitude of $N$ is about 0.2 and the errors are acceptable on this value. These errors could be considerably reduced by increasing the accuracy of Head's charts.

### 3.1 The orossflow equation

3.1.1 Dorivation of the cxncsflow cciation

The boundary layer equations for an infinite wing are:-


Making these equations non-dimensional we obtain

| Chordwise | $\bar{U} T \frac{\partial T}{\partial X}+W \frac{\partial T}{\partial Z}=\left(1-T^{2}\right) \frac{\partial \bar{U}}{\partial X}+\frac{\partial^{2} T}{\partial Z^{2}}$ | $\ldots(1 a)$ |
| :--- | :--- | :--- |
| Spanwise | $\bar{U} T \frac{\partial S}{\partial X}+W \frac{\partial S}{\partial Z}=\frac{\partial^{2} S}{\partial Z^{a}}$ | $\ldots(2 a)$ |
| Continuity | $\frac{\partial(\overline{U T})}{\partial X}+\frac{\partial W}{\partial Z}=0$ | $\ldots(3 a)$ |

where $T=u / U \quad S=v / V_{0}$.
Subtracting equation (1a) from (2a) and writing $\mathbb{N}=S-T$ we obtain

$$
\bar{U} T \frac{\partial N}{\partial X}+W \frac{\partial N}{\partial Z}=\frac{\partial^{2} N}{\partial Z^{2}}-\left(1-T^{2}\right) \frac{d \bar{U}}{d X} \quad \ldots\left(L_{r}\right)
$$

Equation (4) is tomed the 'IJ-oquation'. $N$ is the quantity we wish to determine, since the crossflow $n$ at any shordwise station is proportional to N 。

The $N$-equation itself could be used in a step-by-step process, in which one could obtain an approximate $\mathbb{N}$ from an extrapolated $\partial \mathbb{N} / \partial X$. A better approximation for $\partial N / \partial X$ could then be obtained by substituting $N$ back in the $N$-equation. It was found, however, that it was more accurate to calculate the increment in $N$ (i.e., $\Delta N$ ) for a step and add this to the $N$ at the beginning of the step, since a large error on $\Delta \mathbb{N}$ would in general be an acceptable error on N.

A difference equation was therefore derived from the $N$-equation.

### 3.1.2 The difference equation

If we denote a step in $X$ by $\Delta X$, and denote values at the beginning of the step by a suffix '1' and values at the end of a step by a suffix ' 2 ', then we can write down the two equations
and

$$
\begin{aligned}
& \bar{U}_{2} T_{2}\left(\frac{\partial N}{-\bar{N}}\right)_{2}+W_{2} \frac{\partial N_{2}}{\partial Z}=\frac{\partial^{2} N_{2}}{\partial Z^{2}}-\left(1 \cdots T_{2}^{2}\right)\binom{\frac{d \bar{U}}{-}}{d X}_{a}
\end{aligned} \quad \ldots(4 a)
$$

Now subtract (4b) from (4a) and writing

$$
\begin{aligned}
& \Delta N=N_{2}-N_{1} \quad \Delta\binom{\partial N}{-\bar{X}}=\binom{\partial N}{-\bar{X}}_{2}-\binom{\partial N}{-\bar{X}}_{1} \\
& \Delta(\bar{U} T)=\bar{U}_{2} T_{2}-\bar{U}_{1} T_{1} \quad \Delta W=W_{2}-W_{1} \\
& \Delta\left[\left(1-T^{2}\right) \frac{\bar{U}}{\overline{d X}}\right]=\left(1-T_{2}^{2}\right)\binom{\bar{d} \bar{U}}{\overline{d X}}_{2}-\left(1-T_{1}^{2}\right)\binom{\bar{d} \bar{U}}{\overline{d X}}_{1}
\end{aligned}
$$

we have

$$
\begin{equation*}
\bar{U}_{2}^{2} T_{2} \Delta\left(\frac{\partial N}{\overline{\partial X}}\right)+\Delta(\bar{U} T)\left(\frac{\partial N}{-}\right)_{\partial X}+W_{2} \frac{\partial \Delta N}{\partial Z}+\Delta W \frac{\partial N_{1}}{\partial Z}=\frac{\partial^{2} \Delta N}{\partial Z^{2}}-\Delta\left[\left(1-T^{2}\right) \frac{d \bar{U}}{d X}\right] \tag{40}
\end{equation*}
$$

which becomes after rearrangement,

This is the equation used to evaluate the crossflow. It should be noted that it is ex. .

### 3.1.3 The boundary conditions

It has been found useful to consider both equation (4) and equation ( 4 c ) evaluated at the boundary, i.e., $Z=0$.

The following boundary conditions have been used.
(i) From equation (4)
(ii) From equation (40)

$$
\left(\frac{\partial^{2} \Delta N}{\partial Z^{2}}\right)_{0}=\left(W_{2}\right)_{0}\left(\frac{\partial \Delta N}{\partial Z}\right)_{0}+(\Delta W)_{0}\left(\frac{\partial N_{1}}{\partial Z}\right)_{0}+\Delta\left(\frac{\partial \bar{U}}{\partial X}\right)
$$

$$
\begin{equation*}
\left(\frac{\partial^{3} \Delta N}{\partial Z^{3}}\right)_{0}=\left(W_{2}\right)_{0}\left(\frac{\partial^{2} \Delta \mathbb{N}}{\partial Z^{2}}\right)_{0}+(\Delta W)_{0}\left(\frac{\partial^{2} \mathbb{N}_{1}}{\partial Z^{2}}\right)_{0} \tag{7}
\end{equation*}
$$

For zero suction $\left(W_{2}\right)_{0}=0$ and $(\Delta W)_{0}=0$.

### 3.2 Solution of the crossflow equation

### 3.2.1 Preliminaries

To obtain the chordvise solution, $\bar{U}$ and $d \bar{U} / d X$ will have already been determined.

For the crossflow solution, it will be necessary to determine over the whole chord, the functions

$$
T, W \text {, and also } \bar{U} T \text { and }\left(1-T^{2}\right) \frac{d \bar{U}}{d X}
$$

$T$ is determined directly by the use of Head's charts and $W$ is determined from the continuity equation.

$$
\begin{equation*}
\text { Thus } W=W_{0}-\int_{0}^{Z} \bar{\partial} \bar{X}(\overline{U T}) d Z \tag{8}
\end{equation*}
$$

Plots of $T$ and $W$ versus $X$ with $Z$ as parameter are requircd so that these functions may be determined with reasonable accuracy at any value of $X$ required.

### 3.2.2 Using the method

> Writing equation (5) again
$\Delta\left(\frac{\partial N}{\partial X}\right)=\frac{1}{\vec{U}_{2} T_{2}}\left\{\frac{\partial^{2} \Delta N}{\partial Z^{2}}-W_{2} \frac{\partial \Delta N}{\partial Z}-\Delta W \frac{\partial N_{1}}{\partial Z}-\Delta(\bar{U} T)^{\prime}\left(\frac{\partial N}{\partial X}\right)_{1}-\Delta\left[\left(1-T^{2}\right) \frac{d \bar{U}}{d X}\right]\right\} \ldots(5)$

$$
\begin{aligned}
& \times\left[\frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)_{1}\right]_{0}-\left[\frac{\partial}{\partial X}\left(\frac{\bar{U}}{t^{* \frac{1}{2}}}\right)\right]_{2}\left(\frac{\partial \Delta N}{\partial Z}\right)_{0}-\Delta\left[\frac{\partial}{\partial X}\left(\frac{\bar{U} \ell}{t^{*} \frac{1}{2}}\right)\right]\left(-\frac{\partial N_{1}}{\partial Z}\right)_{0}-2 \Delta\left(\frac{e^{2}}{\frac{d \bar{U}}{t^{*}}} \frac{d X}{\partial X}\right)
\end{aligned}
$$

$$
\begin{align*}
& \left(\frac{\partial^{2} N}{\partial Z^{2}}\right)_{0}=W_{0}\left(\frac{\partial \mathbb{N}}{\partial Z}\right)_{0}+\frac{\partial \bar{U}}{\partial X} \\
& \left(\frac{\partial^{3} N}{\partial z^{3}}\right)_{0}=W_{0}\left(\frac{\partial^{2} N}{\partial z^{2}}\right)_{0}  \tag{6}\\
& \left(\frac{\partial^{4} N}{\partial Z^{4}}\right)_{0}=W_{0}\left(\frac{\partial^{3} N}{\partial Z^{3}}\right)_{0}-\frac{\partial}{\partial X}\left(\frac{\bar{U}}{t^{*} \frac{1}{2}}\left(\frac{\partial N}{\partial Z}\right)_{0}+\frac{2 \bar{U} V}{t^{* \frac{1}{2}}}\left[\frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)\right]-\frac{2 \ell^{2}}{-\frac{d \bar{U}}{t^{*}} \frac{-}{\partial X}}\right.
\end{align*}
$$

The object of the method is to evaluate everything on the R.H.S. of (5) and hence we are able to obtain the incremont to $\partial N / \partial X$ across the step, and thus the incroment in 10 .

The problem of starting from stagnation conditions will be doalt with later, so for the prosent scotion, it will bo assumed that we know $N=N_{1} ; \frac{\partial N}{\partial Z}=\frac{\partial N_{1}}{\partial Z}$ and $\frac{\partial N}{\partial X}=\left(\frac{\partial N}{\partial X}\right)_{1}$ at the boginning of a step.

We also know $\bar{U}_{2} T_{2}, W_{2}, \Delta W, \Delta(U T)$ and $\Delta\left[\left(1-T^{p}\right) \frac{d \bar{U}}{d X}\right]$. Thus everything is knowr except $\frac{\partial \Delta N}{\partial Z}$ and $\frac{\partial^{2} \Delta N}{\partial Z^{2}}$.

We now make an approximation for $\Delta N$ on the R.H.S. of equation (5). The approximation taken was

$$
\begin{equation*}
\Delta N=\left(\frac{\partial N}{--}\right)_{\text {extrapolated }} \Delta X \tag{9}
\end{equation*}
$$

$\left(\frac{\partial N}{\partial X}\right)_{\text {extrap. }}$ was obtained from a running plot of $\frac{\partial N}{--} \quad$ versus $X$ with $Z$
as parameter. We were able to write $\frac{\partial \Delta N}{-\sim}=\frac{\partial}{\partial Z}\left(\begin{array}{c}\partial N \\ - \\ \partial X\end{array}\right)$ extrap. $\Delta X$.
$\frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)_{\text {extrap. }}$ was plotted and smoothed and thus $\frac{-\partial^{2}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{\text {extrap. }}$ was obtained. This was also plottod and smoothed. The differentiations were carricd out graphically. On multiplying by $\Delta X$ wo obtain $\frac{\partial \Delta N}{\partial Z}$ and $\frac{\partial^{2} \Delta I}{\partial Z^{2}}$.

In order to draw the graphs of thesc derivatives near $Z=0$, the boundary conditions of (7) were used.

Thus for zero-suction, $\frac{\partial^{2} \Delta N}{\partial Z^{2}}=\Delta\left(\frac{d \bar{U}}{\overline{d X}}\right)$ and so the starting
slope of the graph of $\frac{\partial \Delta N}{\partial Z}$ is known and thus the curve may be drawn in the $\partial 2 \quad \partial^{2} \Delta N$
best position. Similarly for the graph of $\frac{-\infty}{\partial Z^{2}}$ we have a starting slope
of zero.
If there is suction, then the best combination of wall derivatives must be taken to satisfy the boundary conditions and the plotted points for $\partial \Delta N \quad \partial^{2} \Delta N$
$\overline{-\lambda}$ and $-\frac{-}{\partial Z^{2}}$. Where necessary it was considered to be more inportant to satisfy the boundary conditions than to follow the points of $\frac{\partial \Delta N}{\partial Z}$ and $\frac{\partial^{2} \Delta N}{\partial Z^{2}}$ near $Z=0$.

If a running plot of $\frac{\partial N}{\partial} \bar{X}$ versus $X$ for each $Z$ is kept (Fig.7)
it is a simple matter to compute $\Delta N$ and hence $N$. It was found sufficient to calculate the $\Delta \mathbb{N}$ from the trapezium rule but alternatively it might be determined more accurately by integration. To proceed to the next step, a new starting value of $\frac{\partial N}{\partial \bar{Z}}$ will be required.

This will in fact be $\partial N_{2} / \partial Z$.

Thus

$$
\frac{\partial N}{\partial Z}=\frac{\partial N}{\partial Z}+\Delta\left(\frac{\partial N}{\partial Z}\right) \div \frac{\partial N}{\partial Z}+\frac{1}{\partial Z}+\frac{\partial \Delta N}{\partial Z} \quad \ldots(10)
$$

Since we were interested in the region of suction with an adverse pressure gradient, we started the solution at $30 \%$ chord. As suction started at $63 \%$ chord, the method had a good trial in regions of non-suction and suction. The results of the calculations are given in Figs.8, 9 and 10.

### 3.2.3 Discontinuities in suction or velocity gradient

These could be dealt with by fairing the curves so that no discontinuity occurred. However, since the object was to compare calculated results with Pfenninger's exact solutions, it was decided to accept the discontinuities. The results proved to be quite satisfactory, although the discontinuity in $\partial N / \partial X$ was infinite.
3.2.4 Size of step

From the running plots of $\partial N / \partial X$ versus $X$, one can decide on the step size.

If the $\partial \mathbb{N} / \partial X$ plots have a large curvature then a small step size must be used, so that the approximation $\Delta N=\binom{\partial N}{\overline{\partial X}}_{\text {extrap. }} \Delta X$ is a reasonable one for the step.

If the $\partial N / \partial X$ plots are nearly linear then quite large steps can be made. It should be noted that the step size does not depend on the shape of the curves of $T, W, T T$ or $\left(1-T^{2}\right) \frac{d \bar{U}}{\bar{X}}$.

It is now realised that an unnecessary number of steps were taken in the non-sucked region and that the work from $X=0.3$ to $X=0.6311$ could have been completed in about 5 steps. In the sucked region, when the calculation had reached $X=0.65$, it was decided to try some large steps, and the calculation was taken to $X=0.90$ with steps at $X=0.65,0.67$, $0.7,0.8,0.9$. Thus two steps of 10,0 were tried.

As can be scen from the results (Fig. 10) the original calculated points at $X=0.7,0.8$ and 0.9 are in error at the peak of the crossflow profile and at the tail end. It can be seen (Fig.11) that this is due to the sudden change in shape of the $\partial N / \partial X$ plots and theroforc the approximation
$\Delta N=\binom{\partial N}{\bar{\partial} \bar{X}}_{\text {extrap. }} \Delta X$ breaks down.
We decided to try and converge these results. Mean curves of $N$ were drawn through the circle points, and derivatives with respect to $Z$ obtained graphically. The N-equation (4) was then used to obtain a new $\partial N / \partial X$. A mean $\partial N / \partial X$ was taken between the original calculated $\partial N / \partial X$ and the new one (this mean is shown in Fig.12) and $\triangle N$ computed from it. This converged the peaks (Fig. 10 - crosses) but the tail ends were unaltered.

This tail end effect was found to be due to the chordwise solution being inaccurate there. This was partly because of the neod for more accurate charts, but mainly because it was found to be difficult to road off values accurately from Head's charts in this part of the chordwise calculation.

## 4. Starting at Stagnation

We now consider how to start at stagnation. We will consider first the more general case with suction.

### 4.1 The chordwise solution

The chordwise solution may be obtained with the use of Head's
charts.
To obtain the stagnation values of $\ell, m$, we have to solve the equation - (obtained from the momentum and energy equations)

$$
\ell+2 m+(2 \ell-1) 2 D^{*}-3\left(m+\ell^{2}\right) H_{\varepsilon}+\left(m+\ell x 2 D^{*}\right) H=0 \ldots(11)
$$

where for this 2 parameter system $2 D^{*}, H, H_{\varepsilon}$ are functions of $\ell$ and $m$.
This has been solved approximately for suction cases.
The suction parameter is given by

$$
\begin{equation*}
\lambda=\frac{\ell+\mathrm{m}(\mathrm{H}+2)}{\ell(\mathrm{H}+2)-1} \tag{12}
\end{equation*}
$$

while the boundary condition is

$$
\begin{equation*}
\frac{1 d \bar{U}}{W_{0}^{2}}-\bar{X}=\frac{-(m+l \lambda)}{\lambda^{2}} \tag{13}
\end{equation*}
$$


Therefore the boundary condition is $\frac{1}{K^{2}}=-\frac{(m+e \lambda)}{\lambda^{2}} \quad \ldots(13 a)$
The stagnation curve of $\ell$ and $m$ is a single line, therefore all quantities, i.e., $\lambda, H, H_{\varepsilon}, 2 D^{*}, m . \Lambda$ and $K$ can be defined entirely in terms of $\ell$.

Thus, once the parameter $K$ is known, $l$ is known and thus the whole stagnation solution is known (Figs.13, 14 and 15). The velocity profile is determined from Head's charts.

We will still require starting values of $t^{*!}=\frac{d t^{*}}{d X}$ and $H_{\varepsilon}^{\prime}=\frac{d H \varepsilon}{d X}$. First we determine $\ell^{\prime}$ and $m^{\prime}$. These arc given as the solution of the linear equations.

$$
\begin{aligned}
& {\left[2 \lambda+(\ell+\lambda) K^{2}+(5+2 H) \lambda^{2}-\Lambda\left(2 \lambda+\ell K^{2}\right) H_{l}\right] e^{\prime}+\left[(5+2 H) \lambda+K^{2}-\Lambda\left(2 \lambda+\ell \mathrm{K}^{2}\right) H_{m}\right] m^{\prime} } \\
&=\left[\{(2+\bar{H}) \ell-1\}\left(\mathrm{K}^{2}-2 K L\right)-\ell K I-\lambda\right] \Lambda \frac{\mathrm{d}^{2} \bar{U}}{d X^{2}} / \frac{d \bar{U}}{d X} \cdots(14)
\end{aligned}
$$

and

$\left.+\left[\{\ell-\lambda-\Lambda(H-2)\}\left(2 \lambda+\ell K^{2}\right) H_{\varepsilon_{m}}-\Lambda\left(2 \lambda+\ell H^{3}\right) H_{\varepsilon} H_{m}+2 \lambda(H-1) I_{\varepsilon}+\left(H_{\varepsilon}-1\right) K^{2}-\left(2 \lambda+\ell K^{2}\right) 2 D_{m}^{*}\right]\right]_{m}$

$$
=\left[l(I-1) I_{\varepsilon}-\left(\mathrm{II}_{\varepsilon}-1\right)\right]\left(\mathrm{R}^{2}-2 K \mathcal{L}\right) \Lambda \frac{d^{2} \bar{U}}{d X^{2}} / \frac{d \bar{U}}{d X} \ldots(15)
$$

where $H_{\varepsilon_{\ell}}=\frac{\partial H_{i}}{\partial l}, H_{\varepsilon_{\mathrm{m}}}=\frac{\partial H_{\varepsilon}}{\partial \mathrm{m}}$ and similarly for H and $2 \mathrm{D}^{*}$ and thesc can all be obtaincd from Head's charts. Thon
and $\quad t^{* 1}=\frac{-2 \lambda\left(m^{2}+\lambda e^{1}\right)}{\left(2 \lambda+2 K^{2}\right) \frac{-}{d X}}-\frac{2 \lambda(\lambda+c \mathrm{KL})}{2 \lambda+e \mathrm{~K}^{2}} \frac{\mathrm{a}^{2} \overline{\mathrm{U}}}{d X^{2}} /\left(\frac{\mathrm{d} \overline{\mathrm{U}}}{\mathrm{dX}}\right)^{2}$
The starting value of $t^{*}$ is given by $t^{*}=\Lambda /\left(\frac{d \bar{U}}{\partial \overline{d X}}\right)=\frac{\lambda^{2}}{W_{0}^{2}}$
charts.
Starting values of $H_{\varepsilon}, H$ and $2 D^{*}$ arc roadily obtainod from Mcad's
For zoro suction, wo have from the charts
$\ell=0.3674 \quad \mathrm{~m}=-0.0876 \quad \mathrm{~F}_{\varepsilon}=1.6368 \quad 2 \mathrm{D}^{*}=0.4301$
$H=2.1946$


### 4.2 The crossilow solution

The chordwise and N-equations arc
and

$$
\begin{align*}
& \overline{U T} \frac{\partial T}{\partial X}+\mathbb{W} \frac{\partial T}{\partial Z}=\left(1-T^{2}\right) \frac{d \bar{U}}{\partial X}+\frac{\partial^{2} T}{\partial Z^{2}}  \tag{1a}\\
& \bar{U} T \frac{\partial \mathbb{N}}{\partial X}+\mathbb{W} \frac{\partial \mathbb{N}}{\partial Z}=-\left(1-\mathbb{R}^{2}\right) \frac{d \bar{U}}{\partial X}+\frac{\partial^{2} N}{\partial Z^{2}} \tag{1}
\end{align*}
$$

and the continuity equation is

$$
\begin{gathered}
-14- \\
\frac{\partial(\overline{U T})}{\partial X}+\frac{\partial W}{\partial Z}=0 \quad \text { i.e., } \quad \bar{W}=W_{0}-\int_{0}^{z} \frac{\partial(\bar{U} T)}{\partial X} d Z \quad \ldots(3 a)
\end{gathered}
$$

At stagnation $\bar{U}=0$.
If wo consider equations (1a) and (4) at stagnation, together with the continuity equation, we obtain after maling the transformation
$Z^{*}=Z\left(\frac{d U}{d X}\right)^{\frac{1}{2}}$

$$
\begin{align*}
& \frac{d^{2} T}{d Z^{*^{2}}}+\left(\int_{0}^{Z^{*}} T d Z^{*}-K\right) \frac{d T}{d Z^{*}}+\left(1-T^{2}\right)=0  \tag{19}\\
& \frac{d^{2} N}{\partial Z^{*^{2}}}+\left(\int_{0}^{Z^{*}} T d Z^{*}-K\right) \frac{d N}{d Z^{*}}-\left(1-T^{2}\right)=0 \tag{20}
\end{align*}
$$

Purther, if we differentiate equations (1a) and (4) with respect to $X$ and then take stagnation conditions, we obtain, using the transformations

$$
\begin{align*}
& X^{*}=\ln \binom{\bar{d} \bar{U}}{\bar{d} \bar{X}} \\
& Z^{*}=z\left(\frac{\partial \bar{U}}{d X}\right)^{\frac{1}{2} i}  \tag{21}\\
& -\frac{d^{2}}{-Z^{* 2}}\left(\frac{\partial T}{\partial X^{*}}\right)+\left[\int_{0}^{Z^{*}} T Z^{*}-K\right] \frac{d}{d Z^{*}}\left(\frac{\partial T}{\partial X^{*}}\right)-3 T-\frac{\partial T}{\partial X^{*}}+2 \frac{d T}{d Z^{*}}\left[\int_{0}^{Z^{*}} \frac{\partial T}{\partial X^{*}} d Z^{*}\right] \\
& =\left[L-\frac{1}{2} K+\frac{1}{2} \int_{0}^{Z^{*}} T d Z^{*}\right] \frac{d T}{d Z^{*}} \cdots \tag{22}
\end{align*}
$$

$$
\begin{align*}
& =-2 T \frac{\partial T}{\partial X^{*}}+\left[L-\frac{1}{2} K+\int_{0}^{Z^{*}}\left(\frac{1}{2} T-2 \frac{\partial T}{\partial X^{*}}\right) d Z^{*}\right] \frac{d I}{d Z^{*}}  \tag{23}\\
& \text { where } K=W_{0} /\left(\frac{d \bar{U}}{\overline{d X}}\right)^{\frac{1}{2}} \text { and } L=\frac{d W_{0}}{d X}\left(\frac{d \bar{U}}{\overline{d X}}\right)^{\frac{1}{2}} / \frac{d^{2} \bar{U}}{d X^{2}} \text { as before. }
\end{align*}
$$

With zero suction and suction gradient at stagnation, the equations (19), (20), (22) and (23) become indopendent of $K$ and $L$, and so may be solved once and for all.

The first two have already been solved by other workers, e.E., the chordrise equation is effectively the stagnation Falkner-Skan equation.

We have approximately solved the equations for $\partial T / \partial X^{*}$ and $\partial n / \partial X^{*}$ by graphical and numerical methods for the case with $K=0$ and $L=0$.

## 5. Continuing the Solution away from Stagnation

(For the alternative method now being used, see Appendix).
The differential method broke down in the stagnation region since $\partial N / \partial X$ was changing too rapidly for the approximation taken for $\Delta y$ to be valid.

The difference equation (5) may be re-written as

$$
\frac{\partial^{2} \Delta N}{\partial Z^{2}}-W_{2} \frac{\partial \Delta N}{\partial Z}-\Delta W\left(\frac{\partial N}{-}\right)_{1}=\Delta\left[\left(1-T^{2}\right) \frac{d \bar{U}}{d X}\right]+\Delta\left(\begin{array}{l}
\left.\overline{U T} \frac{\partial N}{\partial X}\right) \quad \ldots(24)
\end{array}\right.
$$

We now make the following approximation for $\Delta N$

$$
\begin{align*}
\Delta N & =\left\{k\left(\frac{\partial N}{\partial X}\right)_{1}+(1-k)\left(\frac{\partial N}{\partial X}\right)_{2}\right\} \Delta X \\
& =\left\{\left(\frac{\partial N}{\partial X}\right)_{2}-k \Delta\left(\frac{\partial \mathbb{N}}{\partial X}\right)\right\} \Delta X \tag{25}
\end{align*}
$$

Whero $k$ is a constant introduced to give consistency between the boundary condition from equation (24), i.e.,

$$
\begin{equation*}
\left(\frac{\partial^{2} \Delta \mathrm{~N}}{-\frac{\partial Z^{2}}{}}\right)_{0}=\Delta\binom{\mathrm{d} \overline{\mathrm{U}}}{-\bar{X}} \tag{26}
\end{equation*}
$$

and that obtained after differentiating the N-equation with rospect to $X$.
The boundary condition for the differentiated N-cquation is

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial Z^{2}}\left(\frac{\partial \mathbb{N}}{\partial X}\right)\right]_{0}=\frac{d^{2} \bar{U}}{\partial X^{2}} \tag{27}
\end{equation*}
$$

From equation (25) we have

Substituting this in equation (26) and using equation (27) we have

$$
k\left(\frac{d^{2} \bar{U}}{-X^{2}}\right)_{1}+(1-k)\left(\frac{\bar{d}^{2} \bar{U}}{--\overline{X^{2}}}\right)_{2}=\frac{\Delta\left(\frac{\partial \bar{U}}{\bar{d} \bar{X}}\right)}{\Delta X}
$$

i.e.,

$$
\left(\frac{\mathrm{d}^{2} \overline{\mathrm{U}}}{\overline{d X^{2}}}\right)_{2}-k \Delta\left(\frac{\mathrm{~d}^{2} \bar{U}}{-\overline{d x^{2}}}\right)=\frac{\Delta\left(\frac{d \bar{U}}{\bar{X} \bar{X}}\right)}{\Delta X}
$$

$$
\begin{equation*}
\therefore \quad k=\frac{\left(\frac{d^{2} \bar{U}}{\frac{d X^{2}}{2}}\right)_{2}-\frac{\Delta\left(\frac{d \bar{U}}{\bar{d}}\right)}{\Delta X}}{\Delta\left(\frac{d^{2} \bar{U}}{d X^{2}}\right)} \tag{28}
\end{equation*}
$$

(For the case where the curve of $\mathrm{d} \overline{\mathrm{U}} / \mathrm{dX}$ varies linearly $\mathrm{k}=\frac{1}{2}$ ).
Substituting $\Delta N$ into equation (24) we obtain an equation for
$\binom{\partial \mathrm{N}}{-\mathrm{X}}_{3}$
$\frac{\partial^{2}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{a}-W_{2} \frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)_{a}-\frac{\bar{U}_{2} T_{2}}{(1-k) \Delta X}\left(\frac{\partial N}{\partial X}\right)_{2}=\frac{-k}{1-k}\left\{\frac{\partial^{2}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{1}-W_{2} \frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)\right\}$
$+\frac{1}{(1-k) \Delta X}\left\{\Delta W\left(\frac{\partial N}{\partial Z}\right)_{1}+\Delta\left[\left(1-T^{2}\right) \frac{d \bar{U}}{d X}\right]-\bar{U}_{1} T_{1}\left(\frac{\partial N}{\partial X}\right)_{1}\right\}$
Equation (29) is solved by a graphical step-by-step method. An
approximate determination of $\frac{\partial^{2}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{a}$ is made and hence we obtain
approximations to $\frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)_{2}$ and $\left(\frac{\partial N}{\partial X}\right)_{2}$. Putting these back into
equation (29) we obtain an better approximation to $\frac{\partial^{3}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{a}$ and thus
proceed step-by-step until complete consistency is obtained between the integrating and computing processes.

The constants of integration are chosen so that
$\left(\frac{\partial N}{\partial X}\right)_{2}=0$ at $Z=0$ and $\left(\frac{\partial N}{\partial X}\right)_{2} \rightarrow 0$ as $Z \rightarrow \infty$.
It is not possible to ensure that $\frac{\partial}{\partial Z}\left(\frac{\partial N}{\partial X}\right)_{a} \rightarrow 0$ as $Z \rightarrow \infty$
except by altering the curve for $\frac{\partial^{2}}{\partial Z^{2}}\left(\frac{\partial N}{\partial X}\right)_{2}$ at the outer edge. Using
this process, the solution is helped to converge more quickly. A comparison obtained by this process is given in Fig. 16.

## 6. Determination of Stability

Professor Owen first suggested the Reynolds number based on the peak crossflow velocity and the thickness of the crossflow profile as a oriterion for the magnitude of the crossflow. This Reynolds number was denoted by $X$. It was found that for flow in the vicinity of a leading edge, the laminar boundary layer broke down if the value of this criterion exceeded a certain value (about 125) and this was accepted as a critical value. In the well known example of the rotating disc the critical value of $\chi$ was observed to be higher (about 330).

Pfenninger, in extensive calculations of crossflow profiles and their stability in regions of favourable and adverse pressure gradients and both with and without suction, showed that the critical value of $\chi$ depended to a marked degree on the shape of the crossilow profile and adopted the value of $\left[\frac{\partial^{2}\left(n / n_{\max }\right)}{\partial(z / \delta)^{2}}\right]_{0}$ as a shape parameter.

Gregory found that if one plotted $\chi_{\text {crit }}$ against the second derivative, a roughly linear relationship was posaible.

Latterly Owen has suggested a critical Reynolds number based on the distance of the inflcction point from the well, and the volocity at the inflection point of the profile (Fig.17). This has the advantage of reducing the range of variation of $\chi_{\text {crit }}$ considerably.

Thus for a profile to be stable, we reuuire that the inflection Reynolds number should be less than the critical value corresponding to the second derivative of the profile at the wall.

The problem of determining a suction aistribution to give stable laminar flow for a given chordwise pressure distribution may be solved by the use of the above criterion. The stability parameters would be obtained from the crossflow profile and the firs; boundery condition of the N-equation. The chordwise and crossflow solutions would proceed together.

## 7. Conclusions

It has been seen that the mothod due to Dr. Hcad for solving the chordmjse laninar boundary layer gives excellent results over the full chord, coping with discontinuities in velocity gradient and suction.

Tho method of Sinhe for solving the spanwise flow also gives reasonable results, while the oxtonstion of the metiod onables discontinuities to be overcome.

The differential method of solving the crossflow gives accurate results and can bo quite rapid sinco stops of $5 \%$ chord najy be taken over a considcrable part of the wing.

In the vicinity of stagnation, it was found that the crossflow could bo givon with roasonablo accuracy by alculating the spanwise and chordwiso solutions separatoly. This accuracy could bo incroascd by making improvemonts to the working charts of Head's method.

In nearly all cases, the comperison of the velocity profiles with Pfenningers exact solution was quite favourable, the crossflow profilos being obtained accurately cnough for their stability paramoters to be determined.

It is felt that the method provides a simple and reas onably accurate way of calculating the laminar boundary layer for an infinite swept wing.

## Acknomledsomonts

This work was carried out under the diroction of Dr. G. V. Lachmann, Director of Research, Hendley Page Ltd. The authors would like to express their gratitude to Jir. J. B. Edwards of the Rescarch Departinent, Hendley Page Ltd., Profossor Owen of manchester University and Dr. W. R. Head of Cambridge University who have frequently offercd valuable advico; and also to the assistance given by Fiiss P. A. Lock, Rescarch Department, Handloy Page Ltd.

## Roforences

## No. Author(s)

## Titre, etc.

1 Truckenbrodt Inst. fur Strbmungmechanik, T. H. Brounschwoig. Rep. No. 55/6a.

2 Head, H. R. Ar unpublished roport dealing with the solution of the two-dimonsional laminar boundary layer cquation.

3 Rott, N. and Simplificd laminar boundary lajor calculations for Crabtree, L. F. bodios of ruvolution and for yawod wings. Joumal of the Acronautical Scicnces - August, 1952.

4 Sinha, K. D. P. Ph.D. Thesis dealing with the solution of the spanwise laminar boundary layer equation.

5 Pfenninger, W. Noto on dosign problcms of swopt laminer suction wings. Ractz, G. S. and Northrop Aircraft Inc. Roport No.NAI-55-549. Brown, W. B. BLC-79.

- 19 -

APPENDIX
Recent Alternative Method Used to Obtain
The Profiles Near Stagnation
-.......
Since the method used in Section 5 was very slow, it was
desirable to find a quick way of calculating the crossflow in the vicinity of stagnation.

On consideration, it was realised that in the original calculations of the crossflow, where it was determined from the difference of spanwise and chordwise velocity profiles, we were trying to obtain dirferences of the order of 0.06 and getting errors of about $\pm 0.025$.

At stagnation, however, we require differences of about 0.20 , and since these differences are large we felt that there would be a possibility of the method used in the original calculations succeeding. We also found that for the spanwise solution the stagnation condition given by Sinha was incorrect, making the spanwise boundary layer, in our carlicr work, too thick.

With this condition corrected, the spanwise solution was calculated from stagnation back to $30 \%$ chord. In this region thore is no suction and the Blasius profile may be taken as a good approximation for the spanvise profìle.

$$
\text { Profiles of } \mathbb{N}=\frac{V_{0}}{V_{0}}-\frac{u}{U} \text { were calculated at a number of stations }
$$

and compared with Pfenninger's exact solutions. These are shown in Figs. 18 and 19. It will be seen that agreement is reasonable even back to $30 \%$ chord. The approximate solution could be bettercd if the accuracy of Hoad's charts were increased.


FIG.I. VELOCITY AND SUCTION DISTRIBUTION


FIG. 2. CHORDWISE SOLUTION


FIG. 3. EARLY ATTEMPT AT PROFILE COMPARISON AT $63 \%$ CHORD


FIG. 4. EARLY ATTEMPT AT PROFILE COMPARISON AT $50 \%$ CHORD


FIG. 5. SPANWISE SOLUTION


FIG. 6. EARLY ATTEMPT AT PROFILE COMPARISON AT $70 \%$ CHORD

FIG. 7. RUNNING PLOT OF $\frac{\partial N}{\partial X}$ FROM $X=0.3$ TO 0.63


FIG.8. PROFILE COMPARISON AT $50 \%$ CHORD




FIG. II. INITIAL PLOTS OF $\frac{\partial N}{\partial X}$ IN THE SUCTION REGION FORZ BELOW UNITY


FIG. 12. AS THE PLOTS OF FIG. II. BUT AFTER AVERAGING THE $\frac{\partial N ' s ~ A T ~}{\partial X}=0.7,0.8 \approx 0.9$


FIG. 13. CHORDWISE STAGNATION VALUE OF $\imath$ FOR ARBITRARY VELOCITY GRADIENT AND SUCTION



FIG. 15 CHORDWISE STAGNATION VALUE OF $\lambda$



FIG. 17. A CRITERION FOR THE STABILITY OF THE BOUNDARY LAYER WITH INFLEXION POINTS.



FIG.19. PROFILE COMPARISON FROM STAGNATION.

# C.P. No. 516 19.522| 

A.R.C. Technical Report

© Crown copyright 1960<br>Printed and published by<br>Her Majesty's Stationery Office<br>To be purchased from<br>York House, Kingsway, London w.c. 2<br>423 Oxford Street, London w. 1<br>13A Castle Street, Edinburgh 2<br>109 St . Mary Street, Cardiff<br>39 King Street, Manchester 2<br>Tower Lane, Bristol 1<br>2 Edmund Street, Birmingham 3<br>80 Chichester Street, Belfast 1<br>or through any bookseller<br>Printed in England

