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SUMMARY

This report is concerned with the calculation of the crossflow
velocity profiles in the laminar boundary layer on an infinite swept wing.

A brief survey, of the early attempts to solve the problem, is
given first,

In our ecrly work we tricd to obtain the crossflow by calculating
the chordwise and spanwise solutions. The chordwise solution was first
attempted with a method due to Truckenmbrodt, This failed, and cventually
the chordwise solution was obtained with o method due to Dre. Head, which
gave good .accuracy. The spanwise solution was solved by an extcnsion of
a method due to Sinha,

It was soon found that although these solutions were of good
accuracy in themselves, in the region we were considering their small errors
combined to give as much as 50~1006% error in the crossflow,

It was then realised that the crossflow must be determined
dircetly. An equation was obtained for it, which also depended on the
chordwise solution. Dr. Head's method gives the chordwise solution to
sufficient accuracy for this purposc.

The method of solution finally adopted was to form a difference
equation for the crossflow and determine the incrcements in the crossflow
across a chordwise step. The accuracy obtained by this approach was quite
rcasonable, as shown by comparison with Pfenninger's ecxact solution.

The method uses graphical diffcerentiation to solve the partial
differential difference equation for the crossflow, and is able to cope with
discontinuities in velocity gradient or suction distribution. Only one
approximation is used in this method and this enables the solution to
procecd at reasonably large steps.

The solution was started at 30% chord, since no difficulty was
anticipated at stagnation, and also as the region of immediate interest was
Just before and after the beoginning of suction.

However, wc later found that at stagnation the method broke down,
since the, crossflow changed rapidly and the approximation used was not good
enough. A better approximation wos substituted, the equation slightly
rearranged, and the method changed to one of integration, This gave
reasonable results, but the process was very slow, Once away from the hign
leading~edge crossflow, the differential method could be used again.

One purpose of the method is to obtain the crossflow accurately
enough for its stability to be determined, This may be done by mcans of a
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criterion which relates the second derivative of the profile at the wall

to an inflectional Reynolds number based on the distance of the inflection
point from the wall and the velocity at the inflection point of the profile.
An extended treatment is given in the section dealing with stability.

The crossflow profiles obtained are good enough to measure the
above stability parameters.

) Also of interest is the determination of the suction distribution
required to stabilise the flow over an infinite swept wing having a given
pressure distribution.

In the Appendix an alternative solution of the stagnation problem
is given which proves to be a more rapid method,
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Introduction

The oritical value of Owen's crossflow Reynolds number (125)
which was establishcd for the stagnation zone of a swept wing created the
impression that full-chord laminar flow over a swept wing would lead to
uncconomically large suction quantities. Thus it appeared that application
of boundary layer control to stabilize a laminar flow would be restricted
to straight wings of relatively low critical liach number.

It is to the credit of the American research group under
Dr. Pfenninger” to have shown by exact calculations that the Owen criterion
had not a unique value for the whole chord of the wing. They showed that
its critical value dcpended not only on the thickness of the boundary layer
and the peak valuc of the crossflow velocity but also on the shape of the
crossflow velocity profiles. Moreover they could show that the flow could
be stabilized in an adverse pressure gradicnt with moderate suction
quantitics.

Pfenninger obtained exact solutions of the boundary-laycr
equations by extensive computation with an IBM high-speed digital computor,

Taking the same wing and sweep as Pfenninger, and thc same
pressure distribution and suction distribution (A ocase) we developed an
approximate method for obtaining the crossflow profiles, which needed nothing
morc complicated than a desk machine for computation.

We arc grateful for having these exact solutions available to use
as a yardstick, as we fcel that progress would have been slow without them,
and a critical assessment of the accuracy of the rcsults would have been
impossible.

Notation
¢ = chord in flight direction
¢ = chord perpendicular to lcading cdge (chordwise direction)
2D* = dissipation term in the encrgy equation of Head's mcthod
2
[ GIEG)
o 3] \ 0z \ 0
H = ratio of displaccment thickncss to momentum thickness = &%/8
Hé = ratio of cnergy thickness to momentum thickness = g/0
/, du
K = WO/\ -~
/ ax
8 , ou 1 o oT
£ = profile paramcter uscd in Head's mcthod = - < - > = t¥2 < —-'>
U\ oz /o 0Z /o
@il U %'"d?ﬁ
8¢ , °u ,
m = profilc paramecter uscd in Head's method = -~ < — > R >
U\ az° Az /o

n/
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Uoﬁ tanI‘ /V u -
crossflow velocity in boundary layer = =—==——mm——=- —— - - >

v u
V0 U

Uec
flight Reynolds number = ===

v
UOE
chordwise Reynolds number = ===
v

v

Vo
u
U
6 .3 B \2
()%= (5) ™
c [ °
flight velocity
chordwise component of flight velocity = U; gos T
local chordwise outer flow velocity
U/U0
chordwise velocity in boundary layer
spanwise component of flight veclocity = U sin T
spanwise velocity in boundary laycr
i
R? w/U
s} ©

vertical velocity in boundary layer

distance round surface in chordwise direction

x/8
, du

o 7)

distance vertical to surface

)

z

RZ z/c
av \ &

z<--—
ax

angle between chordwvise dircction and outcr flow strecamlinc
direction

angle of sweep
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§ = boundary layer thickncss

[ae]
8% = chordwise displacement thickncss = f (1 - ’I‘) dz
0

" Q0
e = chordwisc cnergy thickncss :] T -T) dz
o

=]
8 = chordwisc momcntum thickness =/ (1 - T) dz

&)
6WO 1
A = momem = ow t¥2
0
1%
6* qu au
A:——'——;—_t*—-
v dx o aX

v coefficient of kincmatic viscosity.

1

Suffix 'o' denotes valucs of a quantity taken at the surface, i.c., Z = 0
Suffix '1' denotes values of a quantity taken at the beginning of a step
Suffix '2!' denotes values of a quantity taken at the end of a step.
1. Ihg Crossflow

The crossflow is the componcnt of flow in the boundary layer,

which is parallcl to the body surfacc and normal to the outer flow streamline.
It has an important influcnce on the stability of the boundary laycr.

/ OUTER FLOW STREAMLINE

vig, (i) TFlow in the boundary Tip.(ii) TFlow at the cdge of the
i Fig.(
layer. boundary layer.

From Fig.(i)

v u
n = veos f-usingf = - Vocos/a"--Usinﬁ

v U

From Fig.(ii)
uUv

Usin g = V_ cos f = =w==—-- 9.......1.

(B + V)=
— -UVO <V u> UOITItanI‘ <v u>
e S e j.: - = - ———

@+ \ vV U (@ + ten® TVE\V, U

2./



2. First Attcempts at Solution

For an infinite wing, thc boundary laycr cgquations may be
scparated into (a) an independent chordwisc equation and (b) a spanwise
equation, which docpcnds on the chordwisc solution,

v u
Since the crossflog is proportional to ( —_—— - it scencd
\V. U
o

rcasonable in our carly work to cvaluate u/U then v/V_ and hence
obtain n. °

2.7 The chordwise solution

2,11 TIruckenbrodt's mcthod

Of the various mcthods availablc, a method due to Truckenbrodt1,
was decided on, since it could be uscd equally well in regions with or
without suction. Since the method gave us no mcans of determining a
velocity profilc, Thwaitcs' cubic profilc was uscd.

Agrcement was fair over the non-suction region. However, when
the method was cextended inte the sucked region with adversc pressure gradicnt,
it broke down sincc it predicted scparation at about 83,0 chord, which from
Pfenningerts results did not occur., Ic was clear that the mcethod was unable
to give reliable results in the prescnce of an adverse pressurc gradicnt.

2.1.2 Extens'on of Truckenbrodt's mcthod

It was dceided to cxtend the curves in Truckenbrodt's work so as
to cope with high suctions and adversc pressure gradicnts.  This work was
ncaring complction, when Dr. Head drew our attention to the method which he
had developed. Work on the extension of Truckenbrodt!s mcthod was stoppcd
and Dr. Hcad's mcthod adopted.

2+1¢3 The mothod duc to Dr. Head

This is a two paramctcr systcm, using the momentum and cnergy .
intcgral cquationsZt The method is accurate, giving momcntum thickness to
within about 1 or 20 and giving cxccllcent velocity profiles on comparison
with Pfenninger's cxact solutions (Figs.1 and 2). This was truc cven in
the adversc pressurc gradient rcgion. If nceccssary the accuracy could be
further improved by reconstructing the working charts with grcater precision,

2.2 The spanwisc solution

At first, in conjunction with the Truckenbrodt method for the
chordwis¢g flow, thce spanwisc flow was dctermined by a method duc to Rott and
CrabtreoB, but this method could only be used for zcro suction. Again a
Thwaites' cubic velocity profile was taken. The cross{low profilc obtained
in this manner was poor, and no boundary layc: thickness was given duc to the
‘out off' cffect of the cubic profiles (Fig.3).

2.2.17 Sinha's nethod

Dr. Head drew our attcention to Sinha's Ph.D thosish, in which a
method of solving thc spanwise boundary laycr momentum equation, using the
onc~parancter Schlichting profiles was described. The mcethod was found to
give rcasonable rcsults in the non-sucked rcgion.  However, the crossflow
profilecs wore about 20% in crror when comparved with the Pferminger solution
(Fig.h). This onc~parameter ncthod was unable to cope with a discontinuous
change in vclocity gradicnt or suction distribution,

1t/
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It was decided 4o extend Sinha's method to a two=-parameter system

end use a spanwise energy equation as well as the momentum equation. The
method thus became somewhat like Head's chordwise method.

The Schlichting profiles were still used to evaluate the functious
needed to produce the charts rcquired. To obtain velocity profiles, it was
assumed that they were two paramecters, of the type used by Head in the
chordwise flow and therefore given by his charts. By this method, good
results were obtained through the discontinuities and the spanwise velocity
profiles when checked with Pfenninger's solution were rcasonably correct.

It was found that there was some tendency in the suction region
for the spanwise profiles of Pfenninger's solution to be of a differcnt
type to those of his chordwise solution (Figo5).

The crossflow profiles when compared with Pfenninger's were found
tn be very much in error (Fig.6). It was realised that the present approach
in the rcgions being considered was inadequate since the small errors in the
u/U and v/V, profiles were sufficient to make the ecrror of their differcnce
of the same magnitude as the crossflow itsclf.

With this in mind, a method was developed which would give the
ecrossflow dircctly.

In the Appendix, it will be showm that we can use the earlier
approach near stagnation,

3 Present Method of Solution

It was origiuslly thought that it would not be practically possible
to use the method of calculating chordwisc and spanwise solutions to obtain the
crossflow. In the Appendix, the latcst work shows that this method might be
used from stagnation since the magnitude of N 1is about 0.2 and the errors
arc acceptable on this value. These errors could be considerably rcduccd by
increasing thce accuracy of Head's charts,

3,1 The crossflow equation

3+1.1 Derivation of the crncsflow ccountion

The boundary layer cquations for an infinite wing are:-

3u du au Py
Chordwise Um= 4 @ == = Uwet y = eos (1)
dx dz dx d7F
ov dv P
Spanwisec U ==+ W o= = Y - oo (2)
ox 3z P
ou  ow
Continuity --+ - = O e (3)
dx dz
Making these equations non-dimensional we obtain
. oT 3T av e
Chordwise UT = + W= = (1 = T®) o= 4 ——m oo (12)
X 3% ax oz
_ 98 3s s
Spanwise UT == + W == = - veo (2&)
X 0Z 3Z°
3(UT) oW
Continmiity — ==—m- == =0 voe (32)
oX 0Z
where T = uw/U S = v/V..
Subtracting equation (1a) from (2a) and vriting N = 8 - T we obtain
. ON N 2% 1 au
UT - + W om= = - (1 "'Tg) - ves (2;.)
oX 0Z 0Z® aX

Equation (4) is tormed the ‘W-cquation's N is the guantity we wish
to determine, since the crossflow n at any shordwise station is proportional
to N,

The/
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in which one could obtain a
A better approximation for
N back in the N-equation.
to calculate the increment
N at the beginning of the
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self could be used in a step~by-step process,
n approximate N from an extrapolated N/dX.
dN/3X could then be obtaincd by substituting
It was found, however, that it was more accurate
in N (i.e., AN) for a step and add this to the
step, since a large error on AN would in gencral

be an acceptable error on HN.
A difference equation was therefore derived from the N-equation.

3.1.2 The difference equation

If we denote a step in X by AX, and denote values at the
beginning of the step by a suffix '1' and values at the end of a step by a
suffix '2', then we can write down the two equations

_ N o, N, ab
U‘;‘, T2( hadnd > + W2 0 s g = ———— - (1 had T: )( ""> K (L}-&)
\8X/, 3% 3Z? X /,
_ N aN, N , au \
and UiTi( —-) + W === = e - (1 - T?)& —-) ees (4b)
X/, 3Z 9z A\ a
. 1
Now subtract (Ab) from (La) and writing
oN N 3N
A = N - a =Y = (=) -f -
2t oX oX \ ox
2 1
& (UT) = U, T, - U T, o= W~
du — i) du
A[ﬁ-mﬁ)--“: (1-T§)<--\-(1-1§)<-—>
ax ax /, ax/,
we have
- , N _ N dAN 3N 9% AN au
UETQAK "'> + 4(UT) ( -—) + W =+ AW = meem = r(1-r19) -
30X X /, oZ 37 CYA L ax
s (15-0)
which becomes after rearrangement,
2 -
, o 1 *AN oAN N R\ - au —
A.\ 5}2 = = s W e SO e -A(UT)( --> -0 L(H[e; --J} (5)
UT Loz oz Y/ X /, ax

This is the equation used to evaluate the crossflow.
noted that it is exc

It should be

3+1.3 The boundary conditions

It has been found useful to consider both equation (&) and
equation (4c) evaluated at the boundary, i.e., 2Z = O.

The following boundary conditions have been used,

(1)/



(i) From equation (L)

2 ’\ I
S A
37 /o ° \ aZ,/o ax
3N *N
Y - (5) L ©
By o\ a2 /o
3* N 3 ,U ON 06 —a , ON - %? au
(). - (G SRGLES
37 /o o oX t*i/ o t*z dz\ 3X Llo +t* X

(i1) From equation (4c)
3® AN
(7).
3% AN
)
3% AH
5.

(W, ) (aAN\ + (W) élji—- + 0 fU
Do( ) (), (3)
9% AN- O° N, |
s (5 @0 () e
3 AN 3N Ve ~ o 3N Ue
. (580 () Bl
a7° °\azhb 2loz \ox/lo £¥Z
3 SN\ -] —d ,Ue N\ BMN /Ue 2 au
GCEOIGEGEIG GEIEG3)

For zero suction (W;)o =0 and (AW)O =

1)

1

i

%+2 Solution of the crossflow equation

3,21 Preliminaries

To obtain the chordwise solution, U and dU/d8X will have already
been determined.

For the crossflow solution, it will e necessary to determine over
the whole chord, the functions

_ ay
T, W, and also UT and (1 = ) -
ax

T 1is determined directly by the use of Head's charts and W is
determined from the continuity equation.

z 0
Thus W = W_ —fo 5% (UT) az eee (8)

Plots of T and W wversus X with 2 as parameter arc requircd
50 that these functions may be determined with reasonable accuracy at any
value of X required,

34242 Using the mcthod

Writing equation (5) again
an 1 3% AN AAN o,  _ N ~ av -
A( —-> — { e = W e =l e (0T -—> —AL“—TB) - J} eee (5)
X i) L5 dZP oz 37 \oX /1 ax

Thq/
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The object of the mcthod is to evaluate everything on the R.H.S.
of (5) and hence we are able to obtain the increment to 6N/5X across the
step, and thus the incrcment in N,

The problem of starting from stagnation conditions will be dealt
with later, so for thc present scction, it will bc assumed that we know

ON  ON, oN /'aN-
N=DNg--=+-~and -— = -—’> at the beginning of a step.
0Z 32 aX \ oX
_ au
We also know U T,, W,, AW, A(UT) and A{—(“I-TQ) —-J « Thus
ANl 3° AN
everything is known except =-- and ==-=,
% dz?

We now make an approximation for AN on the R.H.S. of cquation (5).
The approximation taken was

oN .
AN = < ""') AX LN (9)
0% /extrapolated

oN oN
< -‘) was obtained from a running plot of =~ versus X with 2
extrap.,

oX 83X
AN 3 oN
as paramcter. We were able to write === = == ( - ) AX.
3z 3z \ X extrap.
0 ol 32 on
—— < ——‘> was plotted and smoothed and thus === & > was
aZ \ oX /extrap. o7 X /extrap.
obtained. This was also plottcd and smoothed. The differcntiations were
AN 3% AN
carried out graphically. On multiplying by AX we obtain =-- and ~----,
3% 9Z?

In order to draw thc graphs of thesc derivatives necar 2 = 0, the
boundary conditions of (7) werc used.

3% AN au
Thus for zero-suction, =w=-= = A ( -—:) and so the starting
LY ax
JAN

slope of thc graph of =--- is known and thus the curve may be drawn in the
oz 32 AN

best position. Similarly for the graph of —me= we have a starting slope

dZ

of zero.

If therc is suction, then the best combination of wall derivatives

mzst be tqun to satisfy the boundary conditions and the plotted points for
oAN o~ AN

--= and =--- ., TWhere necessary it was considered to be more important to

0% dZ? 2
oAN 9~ AN
satisfy the boundary conditions than to follow the points of === and —===
37 Y

near % = 0O,

. o
If a running plot of gﬁ versus X for each Z is kept (Fig.7)

it is a simple matter to compute AN and hence N, It was found sufficicnt
to calculate the AN from the trapezium rule but alternatively it might be
determined more accurately by integration, To proceced to the next step, a

new starting value of gg will be recquired,

This/
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This will in fact be 9N, /3%,

oN oN olN oN OAN
Thus 2o ks A< > PR S ves (10)
0Z 0Z 07 0% a7

Since we were interested in the region of suction with an adverse
pressure gradient, we started the solution at 30% chord. As suction started
at 63% chord, the method had a good trial in regions of non~suction and
suction, The results of the calculations are given in Figs.8, 9 and 10.

342603 Discontinuities in suction or velocity gradient

These could be dealt with by failring the curves so that no
discontinuity occurred. However, since the object was to compare calculated
results with Pfenninger's exact solutions, it was decided to accept the
discontinuities, The results proved to be quite satisfactory, although the
discontinuity in aN/8X was infinite.

%e2o4 Size of step

From the running plots of &N/0X versus X, one can decide on the
step size,

If the oN/3X plots have a large curvature then a small step size

ol
must be used, so that the approximation AN = < - AX is a

oX /extrap.
reasonable one for the step.

If the ON/dX plots are nearly linear then quite large steps can
be made. It should be noted that the step size doer not depend on the shape

of the curves of T, W, OT or (1 -~ T) %% .

It is now realised that an unnecessary number of steps were taken
in *he non=-sucked region and that the work from X = 0.3 to X = 0,6311
could have been completed in about 5 steps. In the sucked region, when the
calculation had reached X = 0,65, it was decided to try some large steps,
and the calculation was teken to X = 0,90 with steps at X = 0.65, 0.67,
0.7, 0.8, 0,9. Thus two steps of 10\ were tried.

As can be scen from the results (Fig.10) the original calculated
points at X = 0.7, 0.8 and 0.9 are in error at the pesk of the crossflow
profile and at the tail end. It can bc seen (Fig.11) that this is due to
the sudden change in shape of the 0N/3X plots and therefore the approximation

3N
AN = ( --) AX bresks down,
oX /extrap.

We decided to try and converge these results. Mean curves of N
were drawn through the circle points, and derivatives with respect to Z
obtained graphically. The N-equation (4) was then used to obtain a new
ON/dX. A mean ON/8X was teken betwsen the original calculated oN/oX and
the new one (this mean is shown in Fig.12) and AN computed from it. This
converged the peaks (Fig.10 - crosses) but the tail ends were unaltered.

This tail end effect was found to be due to the chordwise solution
being inaccurate there. This was partly because of the necd for more accurate
charts, but mainly becausec it was found to be difficult to rcad off values
accurately from Head's charts in this part of the chordwise calculation,

o/
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4. Starting at Stagnation

We now consider how to start at stagnation. We will consider
first the more general case with suction.,

4.1 The chordwise solution

The chordwise solution may be obtained with the use of Head's
charts.

To obtain the stagnation values of £, m, we have to solve the
equation ~ (obtained from thc momentum and energy equations)

¢+ 2m+ (26 - 1)20% - 3(w+ €°)H + (n+ x 2D¥)H = 0 ... (11)
where for this 2 parameter system 2D*, H, He are functions of ¢ and m.
This has been solved approximately for suction cases,

The suction parameter is given by

¢ + n(ll + 2)

7\’ 2 e e e e eo e (12>
¢(H+2) -1
while the boundary condition is
1 au - (m + 2n)
—— e I~ tatmbadalodel alol ] L ) (13)
Woax A2
o)
o 40 F av_ , aU\g /&7
We define K = W /Q}-- and L = ~--= < - > —
0.
/ dx ax ax/ / ax?
1 (m + &0)
Therefore the boundary condition is E; = = e eee (13a)
X S

The stagnation curve of ¢ and m 1is a single linc, thercfore
all quantities, i.e., A\, H, He’ 2D*, m.s A and K can be defincd entirely in
terms of 4.

Thus, once the paramcter X is known, £ is known and thus the
whole stagnation solution is known (Figs.13, 14 and 15).  The velocity
profile is determined from Head's charts,

dat*
We will still rcquire starting values of t#!' = =~-= and
dX
dr
Hé = --2, First we determine &' and m'. These arc given as the
aX

solution of the linear equations.

[20+ (640 )R + (54+2H)A2 —A (ON+£ K2 )He Je 14+ (5+2H)A+KR A (ALK )Hm]m'

EU /40
= [ {(2+H)e~1} (K ~2KL)~LKL-A]A -—;/-- oo (1)
a®/ &

and/
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[ {en-a(H-2) (24282 )11, €+(1—M{5 ) (A48 )118+x fon (1= )He-&-(HS “)EE 1-( 2B )QD’(’; let

+[ fe-N-A(H~-2) }(2n+2RE Ham—A(?,KwKG )IEEHm+2x(zi-1 )IIO+(H€—1 VB = (2N+L 82 )ZD;fl]m‘

oH
€

-~ —

ol

H

where eg =

21l be obtained from Head's charts,

oH
’ Ham -

om

It
€

AN CAFYVAD)

g, ¢ + I

and similarly for H

Then

n!
1

and 2D%

&0 /au

(e (=) =(i =1)] (R =LA wmm /== vy (15)
€ € dXP’// ax

and thesc can

eee (16)

2A(A+eKL) &T [/, AU \?
and ¥ = e . mm———— / ( - ) e (17)
du LK dx®y ax
(oN+EKE ) =
dX
Al A2
The starting value of +t* is given by +* = A/ -- ) = - cee (18)
/on dX W
o}
Starting valucs of He, H and 2D* arc rcadily obtaincd from ilcad's
charts,
Por zcro suction, we have f'rom the charts
4 = 0.3674 n = -0,0876 Ha = 1.6308 2D* = 0,4301
*T Au &T /dU
H= 2,196 Lt = 0.01737 ===/ ~= m!' = =0,0138 ==/ ==
¥ ax ax?, ax
&y
ax? a*T jau 0.0876
W= =0,07379 =—=z=-= H! = 0,0066 ===/ == ¥ = —mezm-
s &0 \2 e/ ax au
& ax / &x
be2 Ihe crossilow solution
The chordwisc and N-cguations arc
_ a7 T av - &7
U == + Wer =2 (4 = ) == 4+ == veo (12)
)4 3% ax oz
_ o N au  o*u ‘
and U e + W == = = (1=T®) ~= 4 ——- ceo (4)
3% 37 ax 3z
and the continuity equation is
3(ur) /
_____ /
>



a(UT) oW z a(UT)
..... te= = 0 dees, T o= W -/ -t az ver (32)
X 3z o 30X

At stagnation U = 0.

If we consider equations (1a) and (4) at stagnation, together with
the continuity equation, we obtain after making the transformation
/

aU\%
- o(3)
ax

T < aT
e+ (JETAZE = K) e+ (1 =) = 0 eee (19)
dz*Q o dz*
&#N « dN

and ceem b (f2TQZ* = K) mem = (1= T) = O .es (20)
az*2 o 7%

Purther, if wc differentiate equations (1a) and (4) with respect
to X and then take stagnation conditions, we obtain, using the transformations

-~

av | |
X* = e,n< -} |
dK .
_ “ [ R W) (21)
v \ &
ZF = Z( —
ax
& , T - d ,or 3T aT ~ z* oT
_—“K ---) + [fo Taz* - K] ---( ---) - 3D -t 2 ---U —— dZ*‘J
az*® \ ax* az¥ \ ax* dX* azs o ax*  _
/z* aT
= [L - 3K + 5 DAZ* | w—= .. (22)
Jo az*
& N . L 4 s oN
and ———- —--) + [IO TAZ* = K] === --—) - T w—-
az* \ ox* az* \ OX* oX*
oT z¥ 3T arr
= - 27 —--+|-L——32K+/ <—;—T—2~-->dz* —— ees (23)
oX* 0 X* VAL

v AU\ & ar , U\ /€T
where K = Wo,/< -—‘) and L = === < —-— >// ~== as bcfore.
7 \ &X ax ax /- ax®

With zero suction and suction gradient at stagnation, the equations
(19), (20), (22) and (23) become indcpendent of K and L, and so may be
solved once and for all.

The first two have already been solved by other workers, c.g., the
chordwise cguation is effectively the stagnation Falkner-Skan equation.,

We have approximately solved the cquations for JT/3X¥ and dx/0%%
by graphical and numcrical methods for the case with K =0 and L = O,

5./
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5. Continuing the Solution away from Stagnation

(For thc alternative method now being uscd, sce Appendix).

The differential method broke down in the stagnation region since
0N /0X was changing too rapidly for the approximation taken for A to be
valid.

The difference equation (5) may be re-written as

9% AN AN oN - , 3N
e = T e - A’W( --> = AL(1 - T) --J UT --> eee (24)
RV 3% 0% /4 X

We now make the following approximation for AN

o [(E) e (E)

{( Tj) -m& >} .. (25)

Wherc Xk is a constant introduced to give consistency between the
boundary condition from equation (24), i.e.,

(ﬁﬁ =%§> e (26)

37 Jo ax

il

and that obtained after differcntiating the N-equation with rcspect to X,

The boundary condition for the differentiated N-cquation is

L}(‘“’NJ@ veu (27)

From equation (25) we have

(55, - BL(E) Jre-o[5(5) )=

Substituting this in equation (26) and using equation (27) we have

dgﬁ' U, \
k<--—> +(1-—k)<-—-> S
ax® /y aR /g AX
au \
_ &7 &\ A( i )
1eCay < "'""'> - kA ( - = emmem—— e
axt /, ax® ) AX
au \
Al ==
&ET < dx)
(5%
k = - eeo (28)
#FU -

(For/
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(For the case where the curve of dﬁ/dX varies linearly k = %).

N

(ax)a

?#  ,oN. 3 , AN\ U,T, ,ON. =k ~ 3%, ON 3 ,oN
O O AERHEEREG)
az2<ax>2 3z \ 3x /> (4=k)ax \ ox /» 1-k Lo\ ax /. ° az\ ox

e LICIRTES dx] -ia( ;) ] e

Equation (29) is solved by a graphical step-by-step method. An

Substituting AN into egquation (24) we cobtain an equation for

P, oN
approximate determination of =-- { -— > is made and hence we obtain
a7 \ ox 3
9 , oW N -
approximations t0 == ~= ) and < --) « Putting these back into
82 \ 90X /» 0X /2

3® , 8N .
equation (29) we obtain an better approximation to - < - ) and thus
9z oX /a3

proceed step-by~step until complete consistency is obtained between the
integrating and computing processes.

The constants of integration are chosen so that

( =1 = 0 at Z2 = 0O and -—:) +0 as Z> o
oX /2 X /s
& , ON
It is not possible to ensure that == == ) -0 as Z2 »
3z \ 3X /s

o® , oN
except by altering the curve for Y < --'> at the outer edge. Using
oZ X /a

this process, the solution is helped to converge more quickly. A comparison
obtained by this process is given in Fig,16,

6. Determination of Stability

Professor Owen first suggested the Reynolds number based on the
peak crossflow velocity and the thickness of the crossflow profile as a
eriterion for the magnitude of the crossflow, This Reynolds number was
denoted by X. It was found that for flow in the vicinity of a leading edge,
the laminar boundary layer broke down if the value of this criterion exceeded
a certain value (about 125) and this was accepted as a critical value. In
the well known example of the rotating disc the critical value of ¥ was
observed to be higher (about 330).

Pfenninger, in extensive calculations of crossflow profiles and
their stability in regions of favourable and adverse pressure gradients and
both with and without suction, showed that the critical value of % depended
to a marked degree on the shape of the crossflow profile and adopted the

3% (n/n -
value of l: ----------.J as a shape parametcr.
0

a(z/8)?

Gregory/
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Gregory found that if onc plotted Xorit against the sccond

derivative, a roughly linear relationship was possible.

Latterly Owen has suggested a critical Reynolds number based on
the distance of the inflection point {rom the wall, and the velocity at the
inflection point of the profile (Fig.17). This has the advantage of
reducing the range of variation of Xorit considerably.

Thus for a profile to be stable, we require that the inflection
Reynolds numbcr should be less than the critical value corresponding to the
second derivative of the profile at the wall,

The problem of determining a suction distribution to give stable
laminar {low for a given chordwise pressure disiribution may be solved by
the usc of the above criterion. The stability parameters would be obtained
from the cross{low profile and thc firsh boundary condition of the N-cquation.
The chordwise and crossflow solutions would proceed together.

7+ Conclusions

It has been secn that the method due to Dr. Hecad for solving the
chordwise lauinar boundary layer gives excellent rcsults over the full
chord, coping with discontinuitics in velocity gradicnt and suction.

The method of Sinha for solving the spanwise flow also gives
reasonable results, while the cxteonsion of the method cnables discontinuities
to be overcomc.

The differcntial method of solving the crossflow gives accurate
results and can be quite rapid sincce stecps of 5, chord may be taken over a
considcrable part of the wing.

In the vicinily of stagnation, it was found that the crossflow
could be given with reasonable accuracy by calculating the spanwise and
chordwisc solutions separatcly. This accuracy could be increascd by
making improvements to the working charts of Hcad's method.

In nearly all cascs, the coamparison of the vclocity profiles with
Pfenningers exact solution was quite favourable, the crossflow profiles being
obtained accurately enough for their stability paramcters to be determined,

It is felt that the nethod provides a simple and rcasonably accurate
way of calculating the laminar boundary laycr Tor an infinitc swept wing.
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APPENDIX

Recent Alternative Method Used to Obtain
The Profilec Near Stagnation

PN )

Since the method used in Section 5 was very slow, it was
desirable to find a quick way of calculating the crossflow in the vicinity
of stagnation,

On consideration, it was realised that in the original calculations
of the crossflow, where it was determined from the difference of spanwise and
chordwise velocity profiles, we were trying to obtain differences of the order
of 0.06 and getting errors of about * 0,025,

At stagnation, however, we reguire differences of about 0.20, and
since these differences are large we felt that there would be a possibility
of the method used in the original calculations succeeding. We also found
that for the spanwise solution the stagnation condition given by Sinha was
incorrect, making the spanwise boundary layer, in our earliler work, too thick.

With this condition corrected, the spanwise solution was calculated
from stagnation back to 30% chord. In this region thcre 1s no suction and
the Blasius profile may be token as a good approximation for the spanwise
profile,

Profiles of N = g= - =

VO U
and compared with Pfenninger's cxact solutions. These are shown in Figs.18
and 19. It will be scen that agreement is reasonable even back to 300 chord.
The approximate solution could be bettercd if the accuracy of Head's charts
were increased.

were calculated at a number of stations
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