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SUMMARY
Electrenic equipment has been installed in the R.AJD. six-degree-of-
freedon flutter simlater which enables the damping of a flutter problem at
alrspeeds below the critical iluiter speed to be obtained more readily than
was oossible with previcus methods.  The thecry of the method, details of

the instellation and results cbtained with it are given.
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1 INTRODLCTION

The measurement of the damping of the medes of cscillaticn of an air-
craft Tlying at ajrspeeds below the critical flutter speed is of importance
to desisners because the trend of damping with spaed can supply a warning of
the ap_proacn to flutter. Furthermore, low absolute values of damping are
undesirable since prclenged oscillaticn in particular modes might then occur
Cau"mg discomfort to the aircrew and passengers and having a deleterious
effect on the airframe itsell.

\ theoretical investigotion of the behaviour of an aircraft in flight
can be made cn an analogue computer, for example, by using the R.A.z,
Flutter Cimulater! but existing methcds of cbtaining the danping in each
mode have been found difticult in operation if a vcascnably accurate es ytimate
is requireda A superior technigue for measuring the damping in particular
medes of a flutter problem is described belew, and detalls of the necessary
circuit modificaticns fer applicaticon of +the *nf‘thcd with the RJAE. six-
degree-of -frecdom simulator are given. Scme results cbtalned with the
modified system are precentecd and discusseds

2 DAMPING IN W70 PLUTTER PROBLEM

The equations relating to flutter in n degrees of freedom expressed in
the notation used for the R AT, Plutter Siaulater are:d-

7 = ". Y 2 1 -—
A 1X1+(B11V+D )A +(G v i 1)X1+"'+A1nxn+(B111V+D1n)‘{n+(c1nf +E’§n)xn = 0
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For this system there ave n "resonance" frequencies (or latent rocts)
asgociated with the n coupled modes of oscillation. , I the sclutions tc
these equations are taizen to be of the form x = Xoe then the n roots in A

are cbtained frcam the climinasnt:-
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The damping feor each root variecs with airspeed and typical curves of damping
against airopeed arc given in JMig.ts  TFlutter begins at velocity Ve where the

damping in a particular mode beccres zerc (mcde 1 in tais case).
As the term "damping" has different interpretations the definition used

here will be ocutlined. The equaticn of a damped harmonic cscillation can be
given in the feorm:-



x = xe (3)

where x, XO are the amplitudes at time t = t, t = O and N is comwlex, i.e.

(“A'"+3\")s A" is the freqguency of oscillaticn in radians per second and A!
is the "time decay constant" which determines the rate of decay of the
oscillation referred to time, A convergent oscillaticn would have A!
positive,

The damping factor of a decaying cscillation (Fige1) is defined either

by the logarithmic decrement A which is the logarithm of the ratio of
successive amplitudes giving:=-

t
A = Z’K%T (Zi‘)

or by the factor b, the ratio of the damping present to the critical damping
given by:-

A Al
b£-2—7t_:-7?'— (5)

provided b is small.

1
It should be noted that A" = (1-1:1‘2)2 A where M is the undamped

natural frequency.

The current technique for the measurement of demping on the flutter
simulater is by using the sinusoidal driving unit in either of the following
methods:-

(i) tune the unit to the mode frequency required, cut it off sharply
and count the nunber of cycles to half amplitude;

(ii) obtain an amplitude-frequency curve in the vicinity of the mode
frequency and calculate the damping from the frequency increment
between the maximum and half meximum amplitude peints.

Beth these methods have serious disadvantages. In the first place it is
difficult to adjust the excitation so that a 'pure' mode is excited. It is
alsc difficult to cut the driving unit without injecting spurious frequencies
and exciting cther modes; and to obtain a reliable amolitude frequency curve
requires great care in maintaining steady conditions while the measurements
are ‘taken. In the case of modes which have nearly coincident natural
frequencies, damping measurement by these techniques is virtually impossible.
For these reasons a more simple and direct method of measuring damping would
be useful.

3 THE FRINCIPLE OF DAMPING CONTROL

The methed is based on a technique suggested by Woed and Hansford2 for
use in the sclution of flutter prcblems cn mnalcgue computers. It consists of
modifying the purely capacitative feedback of all integrating amplifiers by
the additions of parallel resistive feedbacka

Assuming that the amplifier gain is large so that the input error currents
are negligibly small, the relation between input and output voltages for the
integrator circuit shoewn in Fig.2a is given by:-
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V. = - 7=V

in S ‘out
s |
Y = - . dt,
Vout 134 j vln
Kst o
i2 . - . ) S AN - nd =.;l;‘:-
With an input voltage of the ‘Olm'vin = VO e and T 3
Ay . (6)

v = -
out T A, in
a3

The civecuit for onc-degree-or-Lreedom oscillation is shown schematically in
Pig, 3, including the integrating awplifiers 2 and 3, W“hen the [eedback
paths are quoted in bterms or thelr conductances (which arc proportional to
the inertia, damping and stifiness coeflficicnts) summation of currents to the
input of amplifier 1 gives:-

A - DY o4 MY, BV, - CV = 0
v, o * Vg T Y,

5
also
V)F == -V 1\72
. 2
J5 = -V V3
A2
LAV, - (D+Bv)V2 + (B+Cv )v3 = 0 , (7)

Subssitution of equation (6) into (7) gives the eguation for a one-degree-of-
freedom oscillation:-

— ——

¢ + (Depv) T hg + (B+Cv

V, =0 (8)

AT A

[N

- ey

At
with the solution V1 = Vbe ® where Vb is the amplitude of oscillation at

time t = O,

Yhen the integrator is modified to the circult of Fig,2b the relation
between output and input voltage is modified to give:-

ov o+ out
out

With an input voltage of the form V. =7V e P this gives:-



Ietting
- - 2C
-3
and
Tf = RfC

. a in
"Vout'Ter_L . (9)
P Tf)

Substitution of equation (9) into (7) gives the equation for a one-degree-of-
freedom oscillation with Damping Control added:-

(A T2 {xp + %:}2 + [DeBv] « {xp . ;1;} + [E+Cv2]> v, = 0 (10)

t
where the solution V1 = Vbexp .

From the identity of equations (8) and (10) it follows that

A= A -, (11)

The solution of equation {10) is therefore:-

At At -(1/T0)t
v -_-voeP :Voese £

which is the solution of equation (8) factored by the exponential term
‘(1/Tf)t ) ) ) .
e s 1.8, the basic frequency of the solution is unaltered, The factor
introduced by Damping Control is by the definition of equation (5):-




1/

v

(12)
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The extension of Damping Control to a multi-degree of freedom problem
is stroightforward, Iig,) shows the circuit of a two degree of freedom
system, for which the flutter equations are:-

t 2 1 1 i, 2 |
LA T . e—— ; D B < T — ] + C v v +
S I B A T i 11 * 11 } 1 M+ T * i 11 1 } 1

T f
2
2 1 . A 2 .
}_AZZ To <7\ + "‘Tf—> + {DZZ + Bzzv} To <7\ + Tf) + {822 + Cop Vv }] V, = o]
®ov e (13>

with the time constants, 7 12 Tos in the respective degrees of freedom and

To €qual in sach,  Cosparison of equation (13) with equation (2) shows that

e root A_ is replaced by ?»p where

1
AL = N + T \
S Tf
Moo= N 5 (14)
bp = Tf 7\; »

o’

The extension to any number of degrees of freedom follows the same procedure,

The Damping Control can be made negative by reversing the sign of Rf. .
This is achieved by reconnccting R, to the opposite signed output
of the push-pull amplifiers used in the Flutter Simulator,

L MEASUREIZNT OF THE STABILITY O THE FLUTTER TQUATIONS USING DAMPING
CONTROL

A solution to the flutter equations generally consists of a convergent

or divergent harmonic oscillation, The rate of convergence or divergence is
-(1 /T )t

modified with Damping Control by the factor e and it follows that when

-8 -



Ké = 1/'5f the solution is zero damped, i,e., a steady oscillation,  The

frequency of the oscillation is then easily measurable and the damping
factor is given by

1
b = 4+ =
7\s TF

where TF is the value for zero net damping, Note that for an initially

convergent oscillation Damping Control must add negative damping to give a
steady oscillation, It was shown in section 2 that the flutter equations
in n degrees of freedom have n latent roots corresponding to n resonance
modes, Damping Control modifies all the roots and it follows that a zero
damped solution is obtained from an initially convergent solution when --1/’5f

equals ké in the mode with the longest time decay, i,e., the smallest value of
ké . If Damping Control is further increased, this mode becomes divergent

and no further useful results can be obtained,

The mode with the shortest decay time or highest value of A! can,
however, be determined by changing the sign of all the damping terms in the
original set of equations thus making the problem initially divergent, and
then finding the amount of Damping Control required to give a zero damped
oscillation, For this process the sign of the Damping Control will also
require changing, The sign of the damping terms can be reversed by
reversing the sign of the feedvacks from amplifiers 2 and L4 to amplifier 1
in each degree of freedom,

It is possible therefore to measure the damping in the modes with the
longest and shortest time decays, It does not necessarily mean however,
that these have the smallest and largest damping factors. Equation (5)
shows that a small value of A' for a low frequency mode may well correspond
with a higher value of b than that for a greater value of A' in a high
frequency mode, Close to the flutter speed, the lowest A! usually
corresponds with the lowest b but remote from the flutter speed this is not
necessarily so, However, for most flutter work, damping in the neighbour-
hood of the critical condition is required and in general Damping Control
will provide this result adequately,

5 TRACTICAL CIRCUIT INSTALLID IN THS R,A,D5. FLUITER SIMULATOR

Equation (9) gives the relation between input and output voltages of

the circuit of Fig,2b with the time constanu T, Tp s defined,

The time constant T is changed in the R,A,3, simulator by changing
both the feedback capacitors C and the input resistors R/S, The feedback
capacitors are changed simultaneously in all degrees of freedom by one
control giving overall frequency ranges of "times 1", "times 10" and "times
100", The input resistors R/S in each degree of freedom are also variable
in steps and provide freguency scaling factors of %5 % 1, 2 or L. These
scaling factors are used to make the numerical settings for the inertia and
stiffness terms as large as possible. TFor instance, if the stiffness term
in a degree of freedom were numerically equal to one guarter of the inertia
term, the practice would be to quadruple the stiffness term and use a
frequency scaling factor of & to maintain the original frequency of solution,
In these circumstances C h; in a given problem will have the same value

whatever the settings for overall frequency range or time constant in each



degree of rrecdom, The definition of the factor introduced by Damping Control
(equation (412)) shows therefore, that bp is inversely proportional to R .

When bp = O,Rf is infinite, so that Rf has to be variable from a high fixed

velue to infinity, This is most corveniently achieved by using & fixed high
value resistor Ry tapping into a varisble potentiometer R, on the output of
RA

i . =

the integrator amplifier as shown in Fig,5,  With this arrangement B, = 5

where Sf is the potentiometer setting, so that the damping control factor
3. Sf
and bp is directly proportional to N gince R%() is constant
]

in a given problem (provided Rf >> Rv).

b

The value of R% deternines the range of damping factor b_ which can be
added, When the machine is operating at a frequency such that C Kg =1
(i.e, the optimum design condition) bp maximum is 104 and 100/ respectively
for valucs of Ri of 10 megohms and 1 megohm, These ranges should be
adequate both For the investigation of low damped modes and for high damped

modes in the problem inverted as described in section l.

Since push-pull emplifiers are used in this simulator, twenty-four ganged
potentiometers are required for simultanecous equal settings in all six degrees
of freedom, These are ten-turn helical potentiomcters of value 50 kilohms
geared together in a central unit with provision for manual adjustment of the
setting Sf. Mso situated in the central unit is the range switch for

changing R% from 10 megohms to 4 megohm and a switch which operates a relay

in each of the six degrees of frecdom to invert the sensc of the feedback

lines R, and the sign of all damping terms in the problem, The circuit is
shown in ig, C. An indicator light is provided which is illuminated only
when the potentiometers RV are set at zero snd the sign-changing relays are

inoperative, This is the condition for operation of the simulator without
Damping Control (i,e, "normsl operation),

6 ToSTS ON DAVMPING CONTROL

6,1 Tests on individual degrces of freedom

The inertia and stiffness coefficients on all degrees of freedom were
set to their maximum values (unity), and the overall time constant set to
provide a circular frequency of 10 rads/sec, Tach degree of freedom was then
taken in turn and the damping coefficient varied in steps. The required
amount of opposing Damping Control to maintain the oscillation at constant
amplitude was then measured for each step, A typical example of the six
curves obtained is shown in Fig,7. These tests were suf'ficient to show that
the circuits were behaving as intended, and demonstrated the existence of
inherent damping factor error of approximately 0,55 of critical damping in
each degree of freedom,

This inherent error is due to losses in the circuit components, It is
variable with the frequency of the solution to a flutter problem, As the
setting of the Damping Control is also dependent on frequency it is not
possible to compensate for this error by installing a simple correction
circuit., Though small in itself the error can be significant since damping
factor values arourd 1/ of critical commonly occur in flutter solutions,

- 10 =



6.2  Application to binary flutter problem

A sample binary flutter problem originally considered by Broadbent and
Hartley) was investigated and the damping in each degree of freedom obtained
at a range of settings of the velocity control, The results are compared in
Pig.8 with the analytical curves of Ref, 3, the ordinates of which were
computed using "DEUCE", Reasonable agreement in damping values for both
roots is obtained,

6.3 Application to a quaternary problem

4 four-degree-of-freecdom problem for which dampings at sub-critical
speeds had already been computed on "DEUCE" was then tested on the Flutter
Simulator, In this case only dampings for the modes with longest and
shortest time decays can be obtained, In examining the mode with the
shortest time decay in this problem the damping range became restricted
because of the high frequency of the root (see section 5) and it was found
necessary to re-scale the problem, It may often happen, therefore, that a
wide separation of frequencies between modes with longest and shortest time
decays will necessitate different scaling for each condition, The results
are given in Fig, 9,

7 CONCLUSIONS

In a problem having many degrees of freedom the sub-critical damping for
the two modes with the shortest and longest time decays may be obtained by
this method of damping control. It is essentially a process whereby the
damping in these modes is reduced to zero, resulting in oscillations of
constant amplitude, The errors observed with the system installed in the
R.A.E, Flutter Simulator are considered to be acccptable for general
investigations of sub-critical damping for flutter problems, The control
equipment is convenient in use and the measurements arc presented as a scale
reading of a potentiometer setting which is casily converted to percentage
critical damping,
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