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EZectrcnic: equipmt>nt has been installed in the R.A.C. six-degree-of- 

freedom flutter xixulator* which erlables the clamping cf a flutter prGbhn at 

airspeeds belw the critic& i'l.u*Lter speed to be obtained more readily than 

was -3oscible with pmxi.cus methods. _- The thecry cf the method, details of 

the instdL3tion and results cbtained with it are given. 
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1 IWi!RGB1;CTION 

The measurement of the dznping rJ-f' the rncdes cf oscillation of sn air- 
craft flying at airspeeds below the critical flutter speed is cf' i.mportmCe 

tc desis~ers because the trend of da@ng with speed c‘an supply a warning of 
the apjjroach tc flutter. Furthermore, low absolute values of damping are 
undesirable since prclcnged oscillation in particular modes might then occur 
causing discond'ort to the aircrew and passengers and having a deleterious 
effect on the airframe itseX. 

. 

A theoretical investigation cf the behaviour of an aircraft in flight 
can be made cn m analogue computer, for exam@e, by using the R.A.L. 
Flutter Cimulatcr' but existing methods cf cbtairring the d~r_pi.ng in each 
mode have been found difficult in operation if a lzcasonably accurate estimate 
is reuLuired, A superior technique for measuring the dam@ng in particular 
1IiCd.e S cf a flutter problem iu described belcw, and details of the necessary 
circuit modifications for application of the methcd :iith the R.A.E. six- 
degree-of-freedom d simulator arc given. Scnx results cbtained with the 
mozified system are preXntr;d and discussed. 

The equations relating to fluiter in n d.e.grees of freedom expressed in 
the notation used for the R.A.B. Tlutter Si(;lulatcr are:- 

= 0 .e..*.. ..e**.. 

An,~,+(Bn,v+Dn,)~~+(cn,v2~En,)x,+...+A~~~~~+(B~v+D~)~n+(C~v2+Enn)xn = 0 . * 

. . . . . . (I) 

For this system there are n "resonance" frequencies (or latent roots) 
associated with the n ccupled modes of oscillation. If the solutions tc 
these equations aze taken to be of the fcrm x = Xoe ht thm the n roots in h 
are cbtaiued frcin the climinant:- 

A,‘h2*(B,1”+3’,)h+c,‘v~~+;1’ ...... A,nh2+(B,nv+DIn)h+C,11v2+E,n 

............ = 0. 

An,h2+(Bn,v+Dn,,;M1,v2+En, ...... Armh2+(B ~+Dr&C~~v~+Enn nli 
...... (2) 

'The damping for each root varies with airspeed 2nd typical curves of damping 
against airspee: are given in 2Ti.g.l. Flutter begins at velocity vf where the 
damping i21 a p,articular mode becc'T:~cs zerc (mcde I in this case). 

As the term "damping " has dii'ferent internretations the definition used L 
here will be outlined. 'ihe equaticn uf a d,qed harmonic cscillation can be . g;lvcn 1~1 the fcrm:- 
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x = x eht c (3) 

where x, Xo are the amplitudes at time t = t, t = 0 and h is complex, i.e. 
(-IL' +jX" ) . Xtl is the frequency of oscillation in radians per second and X' 
is the "time decay constant" which determines the rate cf decay of the 
oscillation referred to time. A convergent oscillaticn would have 1' 
positive. 

The damping factcr of a decaying oscillation (3'ig.l) is defined either 
by the logarithmic decrement A which is the logarithm of the ratio of 
successive amplitudes giving:- 

A=2+ ot-) 

or by the factor b, the ratio of the damping present to the critical damping 
given by:- 

b A A' 
C2'R=h" (5) 

provided b is small. 

It should be noted that A" = (1-b')' h"n where Ai is the undamped 
natural frequency. 

The current technique for the measurement of damping on the flutter 
simulator is by using the sinusoidal driving unit in either of the following 
methods:- 

@> tune the unit to the mode frequency required, cut it off sharply 
and count the number of cycles to half smplitude; 

(ii) obtain an amplitude-frequency curve in the vicinity of the mode 
frequency and calculate the damping from the frequency increment 
between the maximum and half maximum amplitude pcints. 

Beth these methods have serious disadvantages. In the first place it is 
difficult to adjust the excitation so that a 'pure' mode is excited. It is 
alsc difficult to cut the driving unit without injecting spurious frequencies 
and exciting other modes; and to obtain a reliable atm$itude frequency curve 
requires great care in maintaining steady cenditicns while the measurements 
are taken. In the case of modes which have nearly coincident natural 
frequencies, damping measurement by these techniques is virtually impossible. 
For these reasons a more simple and direct method cf measuring damping would 
be useful. 

3 T:EE PRINCIPIZ OF DA-MPI~C COIUROL 
n 

The method is based on a technique suggested by Good and KansfordL for 
use in the solution cf flutter prcblems cn znalcgue computers. It consists cf 
modifying the purely capacitative feedback cf all integrating amplifiers by 
the additions of parallel resistive feedback. 

Assuming that the amplifier gain is large so that the input error currents 
are negligibly small, the relation between input and output voltages for the 
integrator circuit shcwn in Fig.2a is given by:- 
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vin = - CR fJ 
s out 

:Jith an irl2u-k voltage of the form Vii? = V. e 
52 and z c2 =T b 

v 
011t 

= -  &- Vin l 

s 

(6) 

The cixuit for onc- degree-02~fzreedom oscillation iu shown schematically in 
zl'iL~. 3, ~iuic=ILdi.ng the inteQ3.ti.n~; amplifiers 2 and 3, 'Zhen the fee&a& 
pa ti1:: are quoted in tCX?ms 01' their conductances (which are proportional to 
the inertia, timping r*nd stifPness coefficients) summation of currents to the 
input of amplifier I give:,:- 

also 

v 
h- - 

- -v v2 

v z. 2 
5 

-v v 3 

. . . AV , - (D+Bv)V2 e (E+Cv2)V3 = 0 . (7) 

Substitution ol equation (6j into (7) gives the equation for a one-degee-of- 
freedom oscillation:- 

with the solution 7, = Voe A2 
WtE f C V. is the amplitude of oscillation at 

time t = 0. 

Yhen the intewator is inodified to the circuit of Fig.2b the relation 
between output and YrI?ut voltage is modified to give:- 

v 
CT;T out 

out 
+---- = 

Rf 
- $Vin. 

:;Tith an input voltage oP the form Vin = Voe hpt this gives:- 
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Letting 

and 

I 

Vout in' 

=f = RfC 

'Gv out -'in 

. . 
l Vout = +J ’ (9) 

Substitution of equation (9) into (7) gives the 
freedom oscillation with Damping Control added:- 

equation for a one-degree-of- 

(.A T* pp + Q f [D-I-BvJ T pp + +] + [E+~v*]) V, = 0 (10) 

where the solution V = Voe hp t 
1 . 

Prom the identity of equcltions (8) and (IO) it follows that 

h 
P  

= As-$ l 

f  

The solution of equation (IO) is therefore:- 

5 = Voe lPt = Voe 
$t -('/Q)t 

e 

(11) 

which is the solution of equation (8) factored by the eqonential term 

-""f'," i.e. the basic frequent> e 1 - of the solution is unaltered, The factor 
introduced by Damping Control is by the definition of equation (5):- 
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The extension of Damping Control to a multi-degree of freedom problem 
is straightforward. pig.4 shows the circuit of a two degree of freedom 
system, for vhich the flutter equations are:- 

r 
f-11 3 2 x+2 

( > I;f 
2+ ID,, + B,,V ] z, (x t $)t i",, t c,, v21]v, + 

r- 2 1 2 
iA,2,5 ^+q ! ! 

/ I\ 
+ in,2 + B,2v 1 ‘c2 (h -I- -G + 

\ f i E 
x,2 .+ c,~ v"j7 v J2 =O 

.- 

+ b2* + t iE22+c22v2j 
I 

v2 = 0 

. ...* (13) 

with the time constants, 'G 72 , in the respective degrees of freedom and 

~~ equal in each. Comparlsk. of equation (13) with equation (2) shows that 
a root hs is replaced by hp where 

04) 

b=---&-. 
P I =f AS y 

The extension to any number of degrees of freedom follows the same procedure. 

The Damping Control can be made negative by reversing the sign of Rf . 
This is achieved by reconnecting Rf to the opposite signed output 
of the push-pull amplifiers used in the Flutter Simulator, 

A solution to the flutter equations generally consists of a convergent 
or divergent harmonic oscillation. Tne rate of convergence or divergence is 

-(I &)t 
modified with Damping Control by the factor e and it follows that when 
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?L; = l/'tf the solution is zero damped, i.e. a steady oscillation. The 
frequency of the oscillation is then easily measurable and the damping 
factor is given by 

I b-+- h" z s F 

where 1; p is the value for zero net damping. Note that for an initially 

convergent oscillation Damping Control must add negative damping to give a 
steady oscillation. It was shown in section 2 that the flutter equations 
in n degrees of freedom have n latent roots corresponding to n resonance 
modes. Damping Control modifies all the roots and it follows that a zero 
damped solution is obtained from an initially convergent solution when -l/~f 
equals Xi in the mode with the longest time decay, i.e. the smallest value of 

h; . If Damping Control is further increased, this mode becomes divergent 

and no further useful results can be obtained. 

The mode with the shortest decay time or highest value of h' can, 
however, be determined by changing the sign of all the damping terms in the 
original Set of equations thus making the problem initially divergent, and 
then finding the amount of Damping Control required to give a zero damped 
oscillation. For this process the sign of the Damping Control will also 
require changing. The sign of the damping terms canbe reversed by 
reversing the sign of the feedbacks from amplifiers 2 and 4 to amplifier 1 
in each degree of freedom. 

It is possible therefore to measure the damping in the modes with the 
longest and shortest tvime decays, It does not necessarily mean however, 
that these have the smallest and largest damping factors, Equation (5) 
shows that a small value of h' for a low frequency mode may well correspond 
wit!1 a higher value of b than that for a greater value of h' in a high 
frequency mode. Close to the flutter speed, the lowest h' usually 
corresponds with the lowest b but L*emote from the flutter speed this is not 
necessarily so. However, for most flutter work, damping in the neighbour- 
hood of the critical condition is required and in general Damping Control 
will provide this result adequately, 

5 PRACTICAL CIRCliIT IFSTALiXD IX T:-l3 R.A.Z. FLUTTER SIXULATOR 

Equation (9) gives the relation between input and output voltages of 
the circuit of Pig, 2b with the time constant, IC, 'G F as defined, 

The time constant 7; is changed in the R.&X. simulator by changing 
both the feedback capacitors C and the input resistors R/S. The feedback 
capacitors are changed simultaneously in all degrees of freedom by one 
control giving overall frequency ranges of "times I", "times IO" and "times 
100” l The input resistors R/S in each degree of freedom are also variable 
in steps and provide frequency scaling factors of $, 4, 1, 2 or 4. These 
scaling factors are used to make the numerical settings for the inertia and 
stiffness terms as large as possible. For instance, if the stiffness term 
in a degree of freedom were numerically equal to one quarter of the inertia 
term, the practice would be to quadruple the stiffness term and use a 
frequency scaling factor of 4 to maintain the original frequency of solution 
In these circumstances C hi in a given problem will have the same value 
whatever the settings for overall frequency range or time constant in each 
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degree of ik2edom. The de.?inition of the factor introduced by Damiling Control 
(equation ((2)) shows therefore, that bp is inversely proportional to Rf . 

Mhen b 
P 

= 0, Rf is infinite, so that Rf has to be variable from a high fixed 

value to infinity, This is most corveniently achieved by using a fixed high 
value resistor RF tapping into a variable potentiometer Rv on the output of 

R$ 
the integrator amplifier as shown in 3ig.j. Yiith this arrangement Rf = q 

where S, is the potentiometer setting, so that the da3ping control factor 
I 

s 
F Sf 

b 
P 

an.3 bp is directly proportional to h" since Rk C is constant 
S 

in a given problem (provided Rh >> K,). 

The value of R;> determines the range of damping factor bp which can be 
added. %'hen the rrachine is operating at a frequency such that C hz = I 

c Le. the optimum design condition) b P 
maximum is ICY,4 and 100;5 respectively 

for values of Rh of IO megohms and I megohm, These ranges should be 

adequate both for the inve stigation of low damped modes and for high damped 
modes in the problem inverted as described in section &. 

. 

Since push-pull atnglifiers are used in this simulator, twenty-four ganged 
potentiometers are required for simultaneous equal settings in all six degrees 
of freedom. These are ten-turn helical potentiometers of value 50 kilohms 
geared together in a central unit with provision for manual adjustment of the 
setting Sf , Also situated in the central unit is the range switch for 
changing Rh from IG megohms to 1 megohm and a switch which oporatcs a relay 

in each of the six degrees of freodom to invert the sense of the feedback 
lines Rf and the sign of all damping terms in the problem. The circuit is 
shown in iXg.5. An indicator light is provided which is illuminated only 
when the potentiometers R v are set at zero and the sign-changing relays are 

inoperative. This is the condition for operation of the simulator without 
Damping Control (i.e. "normsl" operation), 

6 !ESTS C?? DXWIKG '208TROL 

6. ? Tests on individual de;Trc-es of freedom 

The inertia and stiffnWLI,, n-0 coefficients on all degrees of freedom were 
set to their maximum values (unity), and the overall time constant set to 
provide a circular frequency of 10 rads/sec. Each degree of freedom was then 
taken in turn and the damping coefficient varied in steps. The required 
amount of opposin!; Damping Control to maintain the oscillation at constant 
amplitude was then measured for each step. B typical example of the six 
curves obtained is shown in Fig.7. These tests were sufficient to show that 
the circuits were behaving as intended, and demonstrated the existence of 
inherent dam$ng factor error of approximately 0,5,% of critical damping in 
each degree of freedom. 

This inherent error is due to losses in the circuit components. It is 
variable with the frequency of the solution to a flutter problem. As the 
setting of the Damping Control is also dependent on frequency it is not 
possible to compensate for this error by installing a simple correction 
circuit. Though small in itself the error can 'be significant since damping 
factor values around 15; of critical commonly occur in flutter solutions, 

- IO - 



6.2 Application to binary flutter problem 

A sample binary flutter problem originally considered by 3roadbent and 
Hartley3 was investigated and the damping in each degree of freedom obtained 
at a range of settings of the velocity control, The results are compared in 
Fig. 8 with the analytical curves of Ref. 3, the ordinates of which were 
computed using "DEUCX?. Reasonable agreement in damping values for both 
roots is obtained. 

6.3 Application to a q.uaternary problem 

A four-degree-of-freedom problem for which dampings at sub-critical 
speeds had already been computed on FfDEUCE'~ was then tested on the Flutter 
Simulator. In this case only dampings for the modes with longest and 
shortest time decays can be obtained. In examining the mode with the 
shortest time decay in this problem the damping range became restricted 
because of the high frequency of the root (see section 5) and it was found 
necessary to re-scale the problem. It, may often happen, therefore, that a 
wide separation of frequencies between modes with longest and shortest time 
decays will necessitate different scaling for each condition. The results 
are given in Pig.9. 

7 coI%LusIol% 

In a problem having many degrees of freedom the sub-critical damping for 
the two modes with the shortest and longest time decays may be obtained by 
this method of damping control, It is essentially a process whereby the . damping in these modes is reduced to zero, resulting in oscillations of 
constant amplitude, The errors observed with the system installed in the 
R.A.Z. Flutter Simulator are considered to be acceptable for general 
investigations of sub-critical damping for flutter problems, The control 
equipment is convenient in use and the measurements arc presented as a scale 
reading of a potentiometer setting which is easily converted to percentage 
critical damping. 

- 
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