

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Measurements of Pitching Oscillation Derivatives at Subsonic and Transonic Speeds for a Cropped Delta Wing of Aspect Ratio 1.8
(Interim Report)

By
C. J. W. Miles, J. B. Bratt, B.A., B.Sc., and
K. B. Bridgeman of the Aerodynamics Division, N.P.L.

Measurements of Pitching Oscillation Derivatives
at Subsonic and Transonic Speeds for a Cropped
Delta Wing of Aspect Ratio 1.8
(Interim Report)

- By -
C. J. W. Miles, J. B. Bratt, B.A., B.Sc., and
K. B. Bridgman of the Aerodynamics Division, N.P.I.

5th February, 1960

SUMMARY

Measurements of the direct and indirect derivatives for pitching oscillations on a cropped delta wing of aspect ratio 1.3 have been made at subsonic and transonic speeds.

The effects of frequency parameter, amplitude of oscillation and mean incidence have been investigated. Tests were also made to determine the effects on the measurenents of a root fence.

Comparisons with subsonic theory are reasonably satisfactory but agreement with supersonic theory is poor.

1. Intioduction

The measurements describod in this report form part of a general prognmue of derivative tests made in the N.I.I. $9 \frac{1}{2}$ in. high-speed tunnel on a half-wing model of a cropped delta wing of aspect ratio 1.8 with a trailing-edge flap. Measurements of the direct hinge noment derivatives heve already been completed and are givon in an earlier report ${ }^{1}$. For the present tests the flap was rigidly clampod to the wing and measurements of oscillatory pitching moment and lift wore obtained for pitching oscillations about two axis positions, in order to give sufficient information for deducing plunging motion derivatives.

A Mach number range from 0.4 to 1.12 was covered in the tests, in general at amplitudes of oscillation of both 1° abd 2°. The direct derivatives m_{α} and m_{α} were measured at two frequencies of approximately $25 \mathrm{c} / \mathrm{s}$ and $100^{\alpha} \mathrm{c} / \mathrm{s}$ and at mean incidences ranging from 0° to 10°. The indirect derivatives ℓ_{α} and ℓ_{α}^{*} were obtained only for the lowest frequency ($25 \mathrm{c} / \mathrm{s}$) and zero mean incidence at an amplitude of 2°.

A preliminary series of tests was made in which m_{q} and $m_{\dot{\alpha}}$ were measured with a fence in the form of a thin metal plate fixed at the root of the model to reduce effects of fllcw through the narrow gap between the root and the tunnel wall. The fence also covered holes in the tunnel wall for connections between model and apparatus. Fences of different size and shape were tested in order to give some guidunce on the dosign of a fence for the main body of the tests.

2. Technique of Measurement

The apparatus used in these tests employed an electrically selfexcited system, and is described in detail in Ref. 2.

2.1 Direct derivatives $m_{\alpha,} m_{a}$

For measurements of m_{d} and m_{0} the apparatus inner frame was clamped to the earthed structure. The stiffness derivative coefficient m_{a} was measured by observing the change of frequency of the oscillating system on running the tunnel whilst the damping derivative coefficient $m \dot{\alpha}$ was obtained as the change in useful electrical power required to maintain constant amplitude. A more detailed description of the measurements involved is given in Ref.2.

Some cases were encountered where m_{α} and consequently the change in frequency of the system was very small and tended to bo masked by the effects due to changes in temperature. In these cases the sequence of measurements was designed to minimise temperature effects.

2.2 Indirect derivatives ℓ_{0}, ℓ_{0}

For the measurement of ℓ_{α} and $\ell_{\dot{d}}$ the inner frame was supported by the force units and observations of the oscillatory lift forces appearing at these units wore made. Reduction of the observations to the coefficients ℓ_{α} and $\ell_{\dot{d}}$ involved a dynamic calibration of the system in which a known oscillatory lift force was simulated by a mass attached to the oscillating model by means of a light Tufnol clamp. Two spanwise positions for tho mass were used and in each case tests were made with the mass both forward of the I.E., and behind the T.E. The average value of
'mosured force'/'calculated force' for all loading positions and both axes of oscillation was 1.05 . The dynamic calibration also gave a value for the total phase shift through the measuring system, which amounted to 0.2° and involved a correction to $\ell_{\dot{d}}$ of the order of $10, \%$ in the worst case.

Drifts of the force unit outputs due to temperature changes proved at first to be troublesome. A fair degree of temperature stabilisation was achieved by circulating water at constant temperature through small tanks of simple construction attached to the bases of the force units. The residual drifts, whilst allowing the oscillatory lift forces to be measured, proved to be too large for the measurement of static forces.

Considerable difficulty was at first experienced in measuring ℓ_{a} and $l_{\dot{\alpha}}$ due to the presence of relatively high-frequency noise signals superimposed on the lift signal when the tunnel was running. In many cases the noise swamped the lift signal and load to cutoff in amplifier circuits and transformer effects in the dynamometer wattmeter used for measuring the vector components. The difficulty was finally overcome by the use of a suitable filter and auxiliary phase-shifter, a simple technique being developed for adjusting the latter to compensate for the phase shift introduced by the filter.

3. Notation

The complex pitching moment and lift relating to a pitching oscillation are expressed in the following form:-

$$
\begin{aligned}
& M=p V^{2} S \bar{c}\left(m_{a}+j \omega m_{a}\right) a \\
& L=p V^{2} S\left(\ell_{\alpha}+j \omega \ell_{\dot{\alpha}}\right) a
\end{aligned}
$$

where the symbols are defined below

M	pitching monent (positive nose up)
L	lift (positive up)
${ }^{\text {c }}$	root chord
$\overline{\text { c }}$	mean chord
f	frequency of oscillation
M	Mach number
S	area of wing
V	wind speed
x	distance forward of trailing edge
	pitching displacement (positive nose up)
a_{0}	amplitudo of oscillation
p	air density (free stream)
ω	frequency parameter ($=2 \pi f \bar{c} / \mathrm{V}$)
in in 0	non-dimensional derivativo coefficients as defined in Ref. 3
$\left.\begin{array}{l} \ell_{\alpha} \\ \varepsilon_{\dot{a}} \end{array}\right]$	

4. Experimental Results

No tunnel corrections have been applied to any of the experimental results given in this peper.

The varintion of the frequency parameter ω with Mach number for the two frequencies of the tosts is shown in Fig.14.

4.1 Tests with various root fonces

The five fences used in the tests are illustrated in Fig.2. All show the sane characteristics of increasing width rearwards, the reason for this being the presence of a lug extending from the flap through a hole in the tunnel wall. The modifications in No. 3 and No. 4 were introduced to increase the ovorlap on the hole in the tunnel wall accommodating the tongue of the model for the respective axis positions.

The effects of the various fonces on $-m_{\alpha}$ and $-m$ are shown in Figs. $10(\mathrm{a}), 10(\mathrm{~b}), 11(\mathrm{a})$ and $11(\mathrm{~b})$, the tosts being made at the highest frequency of the range. It seems that all the fences are more or less equally effective up to $i=1.0$, with one exception shown in Fig. 11 (b). This, howevor, is likely to be a sensitive case since $-m_{\alpha}$ is very small. Above $M=1.0$ fluctuations in the curves tond to appear, and some attempt was made to correlatc these with shock wave putterns, but without succoss. Finally the smallesi fonce (ivo.1) was solocted as being the loast likely to produce undesiroble offects at transonic spoeds.

4.2 hieasurements of $m_{\alpha 2}$ ma at zoro mean incidence

Curves of $-m_{a}$ and $-m_{\dot{\alpha}}$ against Mach number for zero mean incidence are shown in Figs. $4(a), 4(b), 5(a)$ and $5(b)$. For both axes of oscillation $-\mathrm{m}_{\dot{\alpha}}$ rises at a steadily increasing rate with Mach number up to a peak value at about $M=1.0$. Por still higher values of $\mathrm{F}_{\mathrm{i}},-\mathrm{m}$. falls rapidly in the case of the rearmost uxis position, but for the forward axis the curve shows only a snall dip. The stiffness derivative $-m_{\alpha}$ shows very little change with Mach number up to $M=0.9$. At higher values of M the changes become more rapid.

A large frequency effect can be seen on $-\mathrm{m}_{\alpha}$ for the forward axis (Fig.5(a)). The similar effect in Fig. $5(b)$ is actually a very small shift of the curve if plotted on the same scale as Fig. 5(a), and corresponds to a change in a very small quantity. A similar trend with frequency is observable in the case of $-m_{\dot{a}}$ for the forward axis position (Fig.4(a)).

Comparisons of results with and without fence are given in
Figs. 6 to 9. In general the effect of the fence is to produce a numerical increase below $n=1.0$.

Tests were made on a dumy fence with the model removed. The forces measured on this fence were negligible.

4.3 Effect of nean incidence on $m_{\alpha} m_{\alpha}$

Values of $-m_{\alpha}$ and $-m_{\dot{a}}$ plotted against mean incidence for three Mach numbers generally are shown in Figs.12(a), 12(b), 13(a) and 13(b). For the rearward axis of oscillation $-m$. shows a large and sharp peak value at the higher Mach numbers for a mean incidence of 7.5 to 8.0 degrees. An attempt was made to correlate this result with the surface flow on the wing for static conditions using the oil flow technique. The starting position of the L.E. vortex is plotted against incidence in Fig. 15, and for the two higher Mach numbers shows a delayed movement with increasing incidence at 7.0° to 8.0°.

4.4 Effects of transition

The major part of the experiment was carried out with free transition and laminar boundary layer, but a few measurements of m_{c} and m_{α} were made with a turbulent boundary layer, transition being fixed by means of a strip of carborvindum powder at the wing L.E. The effect of making the boundary layer turbulent was small and is shown in Figs.16(a), 16(b).

4.5 Measurements of $e_{\alpha} e_{0}$

Curves of ℓ_{α} and $\ell_{\dot{q}}$ for zero mean incidence plotted against Mach nuaber are shown in Figs.17(a), 17(b), 18(a) and 18(b). Over the whole Mach number range ℓ_{α} shows a slight increase whilst $\ell_{\dot{a}}^{0}$ shows a small decrease at the lower Mach numbers with a sudden, small increase at about $\mathrm{M}=0.9$.

5. Comparisons with Theory

Subsonic theoretical values of the derivative coefficients relating to a pitching oscillation have been obtained by Garner ${ }^{4}$. The subsonic curves for $-m_{a}$, shown in $\operatorname{Figs.} 4(a)$ and $4(b)$ are in good agreenent with experiment for the lowest frequency in the region of $N=0.9$, but show a steeper rise with Mach number. In the cases of $-\mathrm{m}_{\mathrm{c}}$ and ℓ_{α} (Figs.5(a),5(b), 18(a) and $10(b))$ the theoretical values are somewat greater numerically than the experimental values, but $\varepsilon_{\dot{\alpha}}$ shows an opposite trend below $\mathbb{M}=0.05$ (Figs.17(a) and 17(b)).

The supersonic theory due to watson ${ }^{5}$ shows in general unsatisfactory agrecnent with experiment either in magnitude or trend.

6. Conclusions

(1) The use of a root fence appears to be of some importance, and in general increases the numerical value of the derivative at Mach numbers below $\mathrm{M}=1.0$.
(2) The effect of irequency on m_{α} and $m_{\dot{\alpha}}$ is quite marked except in the case of m_{d} for the rearmost axis position.
(3) Incidence effects are most marked in the case of $-\mathrm{m} \cdot$ for the rearmost axis where a pronounced peak appears at a mean incidence of approximatcly 8.0°. This is correlated with a discontinuity in the movement of the I.E. vortex with change in incidence, for the static condition.
(4) Comparisons witi subsonic theory are reasonably setisfactory but agreenent with supersonic theory is poor.

References

Ho. Aluther (S)

Sitle, etc.

1 J. E. Bratt, C. J. W. Milos and
R. F. Johnson

2 J.B. Bratt

3 I. T. Minhinnick

4 H. C. Garner

5 J. Watson

Measurements of the direct hinge moment derivatives at subsonic and transonic speeds for a crovped delta wing with oscillating flap. R. \& . . $3163 . \quad \mathrm{May}$, 1957.

A note on derivative apparatus for the N.P.L. $9 \frac{1}{2}$ in. High Speed Tunnel. A.R.C. C.P. 269. January, 1956.

Tables of functions for evaluation of wing and control surface flutter derivatives for incomprossible flow. A.R.C.13,730. July, 1950.

Application of Multhopp's lifting-surface theory to the lift, pitching moment and hinge moment on a slowly pitching cropped dolta wing with oscillating flap. (To be written).

Solculation of derivatives for a cropped delta wins with subsonic lcading eages oscillating in a supersonic air strean. A.T.C. R. \& M. 3060. 1953.

Fig. 1.

Diagram of model

Fig. 2

Fence profiles

Fence No. 1 with root profile

Full scale

Axis 0.6275 cs Fence No. 1.
Fig. 4 (b)

Comparison of $-m_{\dot{\alpha}}$ with theory.

Axis $0.6275 c_{0}$ Fence No. 1.

Comparison of $-m_{\alpha}$ with theory.

Fig.6(asb)
Fig. 6 (a)

Fig. 6 (b)

Effect of fence No. 1 on $-m_{\dot{\alpha}}$ for the $0.315 c_{0}$ axis

Fig. 7 (asb)
Fig.7(a)

Fig. 7(b)

Effect of fence No. 1 on $-m_{a}$ for the $0.315 c_{o}$ axis.

FiG. 8 ($a \& b$)
Fig. 8 (a)

Fic. 8 (b)

Effect of fence No. 1 on $-m_{\dot{\alpha}}$ for the $0.6275 c_{0}$ axis.

Fig. 9 ($a \& b$)
Fig. 9 (a)

Fig. 9 (b)

Effect of fence No. 1 on $-m_{\alpha}$ for the $0.6275 c_{o}$ axis.

Fig. 10 (b)

Effect of various fences on $-m \dot{\alpha}$

Fig. 11 (b)

Effect of various fences on $-m^{2} \alpha$.

Fig. 13 (a \& b $)$

FIGS. 14815
Fig. 14.

Variation of ω with Mach number.
Fig. 15.

Fic. 16 (b)

Effect of turbulent B.L. on $-m_{\dot{\alpha}}$ and $-m_{\alpha}$.

Fig. 17 (a \& b)
F16. 17(a)

Fig. 17 (b)

Comparison of $\ell \dot{\alpha}$ with theory.

FIG. 18 (b)

Comparison of ℓ_{α} with theory.

C.P. No. 534

Miles, C. J. W., Bratt, J. B. and Bridgman, K. B. Nat. Phys. Lab.

MEASUREMENTS OF PITCHING OSCILLATION DERIVATIVES AT SUBSONIC AND TRANSONIC SPEEDS FOR A CROPPED DELTA WING OF ASPFCT RATIO 1.8. (INTERIM REPORT)

Measurements of the direct and indirect derivatives for pitching oscillations on a cropped delta wing of aspect ratio 1.8 have been made at subsonic and transonic speeds.

The effects of frequency parameter, amplitude of oscillation and mean incrdence have been investigated. Tests were also made to determine the effects on the measurements of a root fence.

Comparisons with subsonic theory are reasonably satisfactory but agreement with supersonic theory is poor.

C.P. No. 534

Miles, C. J. W., Bratt, J. B. and Bridgman, K. B. Nat. Phys. Lab.

MEASUREMENTS OF PITCHING OSCILLATION DERIVATIVES AT SUBSONIC AND TRANSONIC SPEFDS FOR A CROPPED DELTA WING OF ASPECT RATIO 1.8. (INTERIM REPORT)

Measurements of the direct and indirect derivatives for pitching oscillations on a cropped delta wing of aspect ratio 1.8 have been made at subsonic and transonic speeds.

The effects of frequency parameter, amplitude of oscillation and mean incidence have been investigated. Tests were also made to determine the effects on the measurements of a root fence.

Comparisons with subsonic theory are reasonably satisfactory but agreement with supersonic theory is poor.

C.P. No. 534

Miles, C. J. W., Bratt, J. B. and Bridgman, K. B. Nat. Phys. Lab.
MEASUREMENTS OF PITCHING OSCILLATION DERIVATIVES AT SUBSONIC AND TRANSONIC SPEEDS FOR A CROPPED DELTA WING OF ASPECT RATIO 1.8. (INTERIM REPORT)

Measurements of the direct and indirect derivatives for pitching scillations on a cropped delta wing of aspect ratio 1.8 have been made at subsonic and transonic speeds.

The effects of frequency parameter, amplitude of oscillation and mean incidence have been investigated. Tests were also made to determine the effects on the measurements of a root fence.

Comparisons with subsonic theory are reasonably satisfactory but agreement with supersonic theory is poor.

(C) Crown copyright 1961

Printed and published by Her Majesty's Stationery Office

To be purchased from York House, Kingsway, London w.c. 2

423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England

