

MINISTRY OF AVIATION
AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Trials of an Experimental Low Airspeed Indicator for Helicopters

by
Staff of Airborne and Helicopter Division

Trials of an oxprimuntal low airspeod indicator for helicoptors

by
Stafs of Airborne and Helicopter Division

Summary

The need for low airspoed measurenent in helicopter flight test work has led to tho development, at A. \& A.E.E., of a low airspeed indicator designed to function within the rotor downash. The instrumont measures the magnitude and direction of the resultant flow beneath the rotor and resolves the horizontal conponent, this component being approximately equal to the forwerd speed of the holicopter. Results of calibration flights are shown for level flitht, climb and descent.

During a linited assossment the instrument functioned satisfactorily at forwari speeds down to zoro, but handing limitations of the helicopter preventcd stoady cocents being nade at fomard spocds below about 5-7 knots.

- 1 -

List of Contents
Page

1. Introduction 2
2. Principle of operation 2
3. Description of instrument 3
4. Tests made 3
5. Results of tests 4
5.1 Level flight 4
5.2 Climbing flight 5
5.3 Powered descent 5
6. Discussion and conolusions 5
List of illustrations
Figurc 1
Swivelling pitot-static head 2
Mounting of swivelling head on aircraft 3
Calibration of airspeed transducer 4
Circuit diagram 5
Visual meter reading v total pjetot static hecu 6
Level flight calibrations 7
Mean level flight calibration 8
Climb calibration 9
Descent calibration 10

1. Introduction

The noed for an accurate indication of 10 airspoeds has long been apporent in helicopter fliধht test work where measurements are frequently required in hovering or at 10% speeds. Such in instrument may also prove to be of operational value in permitting techniques not considered practical at present.

Though satisfactory sbove 20 knots the conventional fixed pitot-static system is inedequate below this speed since the pressure difference is too small to be detected by normal airspeed indicators, and the rotor domidish affects the indication, producing large position errors. Several sonsitivo devices havo been tricd on helicopters to measure these low forward speeds but in all cases at A. \&A.E.E. the downash affected the indication to such an extont as to mare it unusable.

The conclusion wes reached that a satisfactory device would have to take full account of the rotor downwash and an idea from Dr. Cheeseman led to the development of a horizontil airspeed indicator described herein.

2. Principle of operation

The instrument was designed to measure the ragnitude and direction of the airspeed at a point under tio rotor and to compute the horizontal component of this velocity, which, in unaccelerated flight, is shown to be approximately tho same as the horizontal airspeed of the helicopter.

```
If \(V_{L}^{\prime}=\) horizontal component of the resultant flow just beneath
                        the rotor disc
    \(V_{I}=\) horizontal component of aircraft specd
    \(v=\) induced velocity ist rotor
\(\alpha_{\mathrm{H}}=\) disc incidonce relative to the horizontal
```

Then

$$
V_{L}^{\prime}=V_{L}+V \sin \operatorname{cin}_{H}
$$

For nomal holicoptor flight conditions, v sin ψ_{H} is small compared to V_{L} since the induced velocity is surall at high speeds and $\alpha_{\text {I }}$ small at low speeds; hence $V_{L}^{\prime} \leq V_{L}$.

If the velocity of t e resultant flo: bencath t e rotor is measured and also the cosine of the angle of this rulative to the horizontul, then the product of these two quantities will give $\mathrm{J}_{\mathrm{L}}^{\prime}$ and henco the horizontal airspeed of the helicopter.

Fig. 1 shows the theoretical values of the resultont flow V ' at the rotor disc for a Sycamore holicopter. It will be scen that in level flight V^{\prime} is alvays greater than 17 knots, and thus there should alvays be a reasonuble airflow to be detocted by a pitot-static head pointing in the dircotion of the resultant airstream. In powered descent however thero will be cases near tho vortex ring state when tho flow over tho detecting head will be very small and the equipmont may not perform sctisfactorily under these conditions.

Consideration has been given to the effects of horizontal swirl in the rotor downewsh. Entimates for a Sycanore in hovering flight, based on propeller theory, shored a horizontal component in the dormash of about 3 knots in the rogion of the detucting heard.

It should be noted that iu horizontil ditum is presupposed from winich to measure the angle of the resultant flow. For the purposo of these tests the aircruft fuselare vas takon as the datum. \therefore refinemont would, of course, be to provide a spice urro ditum.

-3-
 3. Description of instrument.

The nagnitude and lirection of the resultant airllow beneath the rotor were measured by a pitot statice head swivcling $\pm 90^{\circ}$ in the pitching plane on a horizont: I spinule. (Fig. 2). The head was kept pointing into the airflow by a piir of vanes.

The pitot and static prossures were ducted through the spindle to the supporting body and thence to the airspeed transducer.

The spindle, which rotated with the pitot-static head, drove a scotch yoke mechanisin through 1:1 gearing. The crosshead of the yoke corried io wiper ann workine over a potontiometer. The movement of the cross head of the scotch yoke, and henco the output of the potentiometor, was proportional to the cosine of the angle of rotsition of the deiving crank.

This assembly was mounted on a vertical support tube carried on a horizontal pole projecting laterally from the airoraft fusclage on the side of the retreating blade (ilig. 3). The dotecting head was approxinately 6 feut from the rotor contre, at 90° in azimuth, and $3 \frac{1}{2}$ fect bulow the rotor disc.

Tho airspeed transducor was similar to a normal rirspeed indicator except that the capsule opuratel the wiper arm of a potentiometer instead of the usual pointer. This potentiometer output was approximately a square law relationship over the rance $0-40$ mots and linear thereaftor as som in Fig. 4. The trunsducer was mountied on the support tube of the swivelling head assembly in order to minimise the longth of prossure pipine nocessary, thus reducing logs and losses.

The electrical leads from the cosine potentiometer and the airspeed potentiometer were taken to a control box. fitted on the rear seat of the aircroft.

Fig. 5 shows the electricil circuit of the system. The arm containing the fixed resistors R_{1} and R_{2} and the airspeed potentiometor P_{1} was fod with a regulated voltage supply; this corm formed an clementery square rooting system. Tho output fros this potentioneter was proportional to total pitot speed between 10 and 40 knots as shown in Гíc. 6. Since the resultant flow for normil flight is never likely to be much under 17 knots (Fig. 1) the departure from linearity at low speeds is of little significance.

The output of the inirspeed arm wis then fed to the cosine potentioneter. The voltage from this potentioneter wiper was thus proportional to V 'Cos,", where V^{\prime} was the total flow and β its direction relative to the fuselage datum, and was measured on a $0-1$ milliamneter. Trinaine resistors wero fitted for adjustment of the full scale meter reading corresponding to $V^{\prime}=40 \mathrm{knots}$, at $/ \beta=0$.

In order to obicin permanent records of the system performance, galvanometors in a fussenot continuous trace recorder were comnected to the output of the airspeed arm and in parallol with the indicating meter. Calculations showod that the circuit should be reasonably accurate, though idoally buffer stages should be inserted between the airspeed and cosine potentiometers and betwoen tho cosino potuntionctur and the incioating metor.
4. Testamade

Initial tosts wore aimodit calibratine the low airspee inaicator in level flight at two rotor specds, 245 and 207 r.pom. Bubsequently cheok tests were made in climbine flitht at full poyer and in powered descents. fill tosts were made usint, is Syounore in. 3 helicopter.
\therefore qualitativo ajsossment of the instrument wes mado at low speeds and in stee? approachos.

Flight calibrations were made using three methods, described below, all tests being made in reasonably steady winds of less than 10 knots.
(a) Formation on vehicie

The first attempts at flight celibration were made by formating on a vehicle driven along the runway in the same direction as the wind. A sensitive cup anemometer was mounted on the vchicle with tho oups about 3 feet above the roof. This anemometer gave a continuous display of true airspecd on a moter mounted before the driver and thus it was possible to drive the vehicle at known airspeeds.

This system of calibration produced considerable scatter in the results at the lower speeds due mainly to tho difficulty of formating accurately on a slowly moving vehticle. Tho difficulty was enhanced by the need for the aircraft to be some distance away so that the rotor downwash did not affect the anemometer.

After a Pew proliminary tests this method was discarded.
(b) Speed course

In this method a speed course 150 yurds long aas laid out into wind. The pilot flew over the course in both directions at ipproximately 100 feet altitude and at is nominial reading on the visual meter of the low airspeed indicator. The time for each run was taken by observers on the ground and by an observer in the aircraf't who also operated the Hussenot recorder. The wind speed was checked between each run by a cup inemometer mounted on a 20 foot pole.
(c) Camera obscura

The third method made use of a camera obscura wich projected an inage of the aircraft on to a plotting table. This image was plotted across the table at one second intervals with the aid of an audible timing device, thus giving the track and a measure of the horizontal speed of the helicopter. The aircraft was simultaneously tracked by a rocording theodolite set up about a mile away to detormine aocurately the height of the aircraft, this data being required to dufine the scale of the camera obscura plot. Communications liniss wore estiblished from the camora obscura to the theodolito and aircraft.

The aircraft made runs into wind or downind over the camera obscura at hoights between 1000 feet and 2000 feet, depending on the test. Then the image appoared on the plottine table observers in the aircraft and at the theodolite vere instructed to start their respective recorders. At some time during each plot all records were synchronised by a count-down from the canera obscura.

Before and after calibration runs, smoke puffs were fired from the aircraft at the operating height to determine wind speed and dircction. These puff's were plotted as above.

From the assembled data the airspeed of the helicopter was calculated and compared against the recorded low airspeed indication.

5. Results of tosts

5.1 Level flight

The calibrations obtainod in level flight for two rotos speeds are shown in Fig. 7; the speed course method wis used for most of these tests, though two points obtained from the camera obscure are shown. Whilst the curves for each rotor spoed are well established there is an appreciable steepening of the curve in the 0-20 knot rogion in the case of the higher

With this in mind it will be roalised that the scattor of the level flight results of Fig. 7 is not large. The scatter of the climb and descent tests (Figs. $9 \& 10$), is considerably greater than that of the level flight case, but it is possiblo that this reflects the increased difficulties in technique rather than shortcomings of the instrunent. Support for this view was obtained from the qualitative asscssment during which the mein level flight calibration was markod on the pilot's visual meter. This calibration enabled the pilot to maintain steady and consistent indications of low airspeeds during level flight, climbs and descents made in light or zero winds.

In its present form the low airspeed indicator could be a useful instrument for test purposes and its value in t is field will be investigated. The difficulty of calibration however will it present limit its application to a single aircraft.

From the operational aspect, there is general agreement among pilots who have used the low airspeed indicator that such an instrument appars to be desircble and that it pormits manoeuvres not practical with current instrumentation. It is possible however that handing problems of particular current helicopters at very low speeds may prevent the potential value of such an instrument from being fully exploited in the near future, e.g. in steep approaches.

Consideration has been given to the advisability of combining the present low airspeed indications (which are horizontal speeds) with vertical speed indications to present'speed along the filight path'. In general the handing characteristics of a helicopter depend on the direction of the flight path as well as the speed along it. This is particularly true at low speeds as can be seen by considering the difference in handling between a helicopter flying level at 5 knots and one attempting to descend vertically at the same speed ($500 \mathrm{ft} . / \mathrm{min}$.) . It is necessary therefore to present vector information to the pilot and the most practical solution appears to be separate indications of the horizontal and vertical components of the vector, since these are the references through which the helicopter is controlled.

The present instrument has nechanical limitations of $\pm 90^{\circ}$ in the pitching plane and ways of extending this range are being examined so that indications of backwards flight may be obtained.

It is considered howover that the low airspeed indicator described in this Report shows sufficient promise to varrant more development than can be undertaken at this Establishment. It is recommonded therefore, that a small number of prototype instruments (possibly 3 or 4) should be made by an interested firm for flight evaluation by other Units, e.g. R.A.E., B. ㅍ.A.
rotor speed. A mean of these results may be dram difforing by less than 2 knots from the mean curvos for individual rotor specds. This mean calibration is shown in Fig. 8 plotted against airspeed. Check calibration points for this were obtained at $270 \mathrm{r} . \mathrm{p} . \mathrm{m}$. in level flight using the camera obscura and are show in Eig. 9.

5.2 Climbing flight

Results obtained in climbing flight at full power and rates of climb betweer about 600 and $1000 \mathrm{ft} / \mathrm{min}$. using the canera obscura are shown in Fig. 9. The scattor of results about the mean lovel fight calibration in considerable though there appears to be a steepening of the culibration curve for climbing flight.

5.3 Powered doscent

The camera obscura tochnique was again used in the povered descont calibration for rates of descent between ebout 100 and $500 \mathrm{ft} / \mathrm{min}$., deponding on speed, and the results are shown in Fig.10. There is considerible scatter in the results, reasons for which are discussed later, but there appears to be a shift of about 3 knots away from the mean level flight calibration.

5.4 Pilot issessment

During colibeation runs considerable difficulty was experienced at low speeds in maintaining the dusircd low airspeed indicator readings. It was not clear at first whether these difficulties arose from the need to position the aircraft procisoly in space, requiring constant changes between instrument and extornal references, or whether the low airspeed indicator itself gave inadequate indication. Subseguent cheoks howevor showed that the instrument geve steady indications enabling lov and zero forward speeds to be maintained in level flight and climb.

An investigation was made into the value of such an instrument during steep approachos. Initial tests on to a flisht path indicator sot at 15° (wind $0-3$ knots) showod that steady doscents at 10 knots could be made with the pilot not looking out, flight juth references being passed to him by an observer as 'high/low' indications. At 5 mots however great difficulty was experiencod in holding steady conditions.

Vertical approaches relative to the ground were attempted, again with the pilot relying on information passed to him as 'over/undor' indications by tho obsorver. Vertical descents from 1000 feet (wind 20 knots) to 100 fect (wind 5-7 knots) proved to do both practical and confortable. Similar approaches attompted in zero wind, however, were unsuccessful sinco with a rate of descent of 150 ft . min . the aircraft could not be controlled accurately when the speed was in the $0-5$ knot band. as this region was entered a marked tail down tendency was noted and the control correction resulted in excessive nose down attitudes and incressed speed.

In the conditions described above, i.e. below 20 knots, the standard airspeed indicator did not give a usabio ináication.

6. Discussion and Conclusions

A major difficulty in the dovelopnont of the low airspoed indicator has been in establishing experinental techniques to calibrate the instrument in flight. These techniques were critionlly dependent on wind conditions and whilst the windspeed could bo monitored continuously during level flight calibrations by the speed course method, the sume could not be done during climb and descent using tho camera obscurc. In thosc ases the most that could bo cochieved was a smill number of spot chooks of the wind at a particular altitude node jith smoke pufes during the tests. In addition the pilot's task of Blying accurate instruaent indications whilst maintaining track within tight limits wis considurable.

With this in mind it will be realised that the scatter of the level flight results of Fig. 7 is not large. The scatter of the climb and descent tests (Figs. 9 \& 10), is considerably greater than that of the level flight case, but it is possiblo that this reflects the increased difficulties in technique rather than shortcomings of the instrunent. Support for this view was obtained from the qualitative assossment during which the mean level flight calibration was markod on the pilot's visual meter. This calibration enabled the pilot to maintain steady and consistent indications of low sirspeeds during level flight, climbs and descents made in light or zero winds.

In its present form the low airspeed indicator could be a useful instrument for test purposes and its value in tis field will be investigated. Tho difficulty of colibration however will at present limit its application to a single airoraft.

From the operational aspect, there is general agreement among pilots who have used the low airspeed indicator that such an instrument appears to be desircble and that it permits manoeuvres not practical with current instrumentation. It is possible however that handing problems of particular current helicopters at very low speeds may prevent the potential value of such an instrument from being fully exploited in the near future, e.g. in steep approaches.

Consideration has been given to the advisability of combining the present low airspeed indications (which are horizontal speeds) with vertical speed indications to present'speed along the flight path'. In general the handling characteristics of a helicopter depend on the direction of the flight path as well as the speed alonf it. This is particularly true at low speeds as can be seen by considering the difference in handling between a helicopter flying level at 5 knots and one attempting to descend vertically at the same speed ($500 \mathrm{ft} . / \mathrm{min}$.). It is necessary therefore to prasent vector information to the pilot and the most practical solution appears to be separate indications of the horizontal and vertical components of the vector, since these are the references through which the helicopter is controlled.

The present instrument has mechanical limitations of $\pm 90^{\circ}$ in the pitching plane and ways of extending this range are being examined so that indications of backwards flight nay be obtained.

It is considered however that the low airspeed indicator described in this Report shows sufficient promise to varrant more developnent than can be undertaken at this Establishment. It is recommended therefore, that a small number of prototype instruments (possibly 3 or 4) should be made by an interested firm for flight evaluation by other Units, e.g. R.A.E., B. T.A.

FIG.I.

FIG2

SWIVELLING PITOT -STATIC HEAD.

Fig. 3.
Mounting of swivelling head on aircraft.

Fig. 3.
Mounting of swivelling head on alrcraft.

FIG. 4.

CALIBRATION OF AIRSPEED TRANSDUCER.

FIGS.586.

(G) HuSSENOT EGII GALVANOMETERE.
(M) O-I mA. VISUAL METER

FIC. 5. CIRCUIT DIACRAM.

VISLIAL METER $m A$

FIG.6. VISUAL METER READINC v TOTAL PITOT-STATIC HEAD AT $\beta=0^{\circ}$.

CALIBRATION AT 245 AND 287 ROTOR R.P.M.

FIG.8.

FIGS.981O.

FIG.9. CLIMB CALIBRATION.

CALIBRATION IN CLIMB AND DESCENT.

C. P. No. 536

(C) Crown copyright 1961
Printed and published by Her Majesty's Stationery Office
To be purchased from York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
2 Edmund Street, Birmingham 3
80 Chichester Street, Belfast 1
or through any bookseller

Printed in England

