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The methods su~ested in Ref.1 for enalysing the behaviour of 
linear systems are briefly reviewed, the numerical amlysis being expressed 
in terms of matrices. Possible applioa'cions of time series representation 
to the study of eircroft stability characteristics are discussed and a 
detailed numerical investigaticn of a simP10 one de ree of freedom undamped 
system is mode. l?or this system the 'I-u&in method f of analysis in terms 
of A units seems setisfactozy, An alternative method based on the use of 
Simpson's integration rule in con$uxction with time series representation 
is also described. 

No definite conclusions can be drnwn as to the advisability of 
using the suggested method of analysis at this stage, as it is oonsidered 
that a det*i.led numeric81 study of the stability characteristics of 8 
particulsr aircraft should be made in order to check fully tho acourflcy of 
the method, 

I. Introduotion 

In s note entitled "!?light measurements of oircreft stability end 
control", it is suggested by F!oulton Paul Aircrr~ft Limited that measurements 
of aircraft response due to know control displaoements should bo analysed 
by means of time series. Any function depended on time is in this scheme 
represented by a series of ordinates corresponding to the values of the 
finotion at equal time inter-v&s 6, where 6 is assumed to be Ems11 enough 
to ensure accurate represcntatlon, Such a procedure ~8s used by 
Professor 'l'ustin in Ref. I, but was not applied to aircraft response problems. 
His methods of dealing with tire series are briefly outlined in this note, 
Emd it is shawl how the analysis can be conveniently expressed in matrix 
notation, Ihe numerical processes of 'serial multiplication' snd 
'SeriEl division' as defined by Iustin correspond to matrix multiplioation 
end inversion respectively. Certain operators used in Ref. I con also be 
expressed concisely in matrix form. 

Over / 
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Over 3 period of time, any function would be represented in this 
scheme by a large number of ordinates. Sonseqrant~ly, the numerical work 
of enalysing the behaviour of a linear system might in certain asses be 
rather laborious with ordinary calculating machines, This disadvantage 
could perhaps be cvercome by using speoial computing swipment. 

/in alternative method of approaoh is suggested in this note whioh 
might in certain oases reduce the amount of computation without entailing 
loss of accuraoy. This scheme is based on the use of Simpson's integration 
rule in oonjunotion with time series representation. The relative 
aoouraoy of the two methods 5.6 illustrated by a very simple example of a 
ane veriable system with known responee oharacteristics, 

By the use of matrices the analysis for either method can be 
extended to deal with prcblems involving many degrees of freedom and the 
results of flight tests. In flight, the response in any degree of freedcm 
due to e known movement of a particular control can usually be measured.. 
The pmblem is then to estimate tho response in each degrce uf freedom 
due to a A unit input (or unit impulse) fmm the control. When these are 
known accurately, the responses due to any other known input can be 
estimated. The responses in a number cf degrees of freedom clue to a 
ccmbtion of inputs, such as from ailemn and rudder, can be treated 
simi&rly. 

It has been suggested that the mcts of the stability determinant 
for the airoraft oan be deduced fmm the numerioally equivalent form of the 
equations of mcticn as derived by time series repmscntation. This has 
been done for the simple example ocnsidered, but it is difficult to judge 
whether the method would apply in the ease of a system with several degrees 
of freedom. Since in praotioa the analysis would be based on data obtained 
fmm flight tests, the possibility of smell errors in the measured respcnses 
would also have to be considerad as these would affect the calculated 
responses due to A unit inputs (or ait impulses) which have to be 
determined by a pmcess of Inversion, as presumably such inputs cmumt, ?x 
applied directly. In view of these difficulties it is thought that further 
test oalculations should be done for a particular eiroraft, taking into 
acoount tho appmpriate degrees cf freedom and assuming control inputs cd’ a 
fcim which oon be applied in practice. The information obtained fmm such 
o~hubdkm should give a clear indioation as tc the advisability, cr 
othervdise, cf using the method of time series representation for dealing with 
stability problems, 

2, Time Series Re-oresentation 

In Tustin's paper' any function of time d(t) is represented 
by a series of cidinates as shown inFig.1. 

Fig.? / 



FIG I 

:'l!he curve d(t) 1s firat replaced by-w~&m fomad by &$.ni.ug the 
ordinstas at xegular ttic intervals 6 , and this in turn~is replsceLby-3 
system of Lsosceles trisngles of height dj, d2, eta. and base 26~ 
If the intervsl 6 is suff%oiently 3msl.l the funotion d(t) will be 
Emmra~el.y represented by suoh 3 series of ordinates 3rd om be regs.dUd 
03 being oompo3ed of superposed A units ss indicated. 

bt US suppo80 {a(t)j E { aI, a2, a3 . . ...% 

is the response of 3 psrticulnr vez%able due to a unit A input? 
Then, sinoe any general input e(t) osn be represented by s number of 
i3osceles trlan@es- a3 shove, the response r(t) Clue ~WJ e(t) is 
expmsslble in mstrix notation in the slternstive fozms 



1,(a) 5 

and A(e) is defined similarly. 
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0 0 0 

0 0 0 

aj 0 0 

%? a1 0 

a3 %. a1 

. . . 

. . * 

In general A 

. ..(2) 

is an infinite triangular 
matrix, but in practice only a finite number of rows will be needed., For 
a stable system $,-+ 0 when n is large. 

Formula (1) above expresses in concise fozm the table for serial 
multiplication given in Ref. I. From (1) it follows by inverslon*that 

where A-' represents the inverse of A ao that A A-' = I, where I 
represents tha unit rakdrix. 

Suppose 

Since A A*' a I, matrix multiplication tiedietely yields the set of 
equdions 

82 / --------------------------------------- 
* l'his corresponds to ~sefial division' in Ref. 1. 
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a2dl+qd2 = 0 

a3 d.1 + a$2 + a+3 = 0, 

ma so on 

. ..(6) 

When the elaments di, d2, d3 etc. are known the elements 
al? a2P Ll , etc. can then he determined successively,and {e] can bo 
oalcul~te~ from (3) when {r] is known. 
are known, {d] 

Similm-ly when {d and {c} 
, the response due to unit A input, is given by (4). 

It should be noted that (3) is the numerical equivalent of the differential 
a 

equation defining the motion, say f(p)r = e, where p n -. The 
at 

above proaedure avoids'serial divia$ont as carried out by Tustin. 

In goneral the response {rj and the input {e] are known, 
or can be measured, and one is faced with the problem of determining {d]. 
This is given direotly by (4) or it oan be derived from the expanded form 
of (I). Eo ensure accumcy fi must be small, and this means heavy 
numerical work, particularly when saveral degrees of freedom are involved, 
Ill the next seotion an alternative method is suggested whio,h nmy in certain 
oases reduce the amount of computation without introduoing inaccuraoies, 

3. Alternative Method 

The exact forsmla for the response r(t) due to any input 
function e(t) is 

**a(7) 

where a(~,) now represents the response due to a unit impulse. 
dz 

It is assumed that r = - = 0 at t = 0. 
at. 

Let us suppose that the range of integration is diviaed into n equal 
interv3ls 6, Then, in serial numbers the integrand d(t-r) e (7) is 
expressible in the form 

t a LIb&l 4sf9 1 = If+po, %-jq, l eoe, doen 1 . ..(8) 

By the use of Simpsonts,integration rule& the value of r(nb) can be 

dd~t~a / -“Ms “-~~~~~~~~~~ ---------------------- 

{ The Y3 rule is mainly used but for r5, 7, r9, eta. the integration 
is mun~ed off by using the 3/S th rule as shcm by (9). 
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calculated acaurately for any value of n greater than unity. 'The serial 
numbers rz, r3, q etc. are given by the following sat of ecpations 

?i (tip0 + 3dpi + 3ap2 + doe31 r3 = * 

6 
z-4 = - ~~~~o 

3 
t 4d3el t zi2e2 + 4ap3 + ag4) 

27 
k (&jeo t 4d4ej t 1: a3e2 + 2 ap3 t 

27 9 
r5 = 3 -; afe4 + ; doe51 

and so on. 

In matrix netatlon (9) yields 
i z-2, z-3, x-k... = I bM(a) tea, ed, 02 . . . ..J 

= bM(e) {r& c+, $ . . . . ..I 

. . . 

. . . 

0 

3% 
-u 

a 

4% 

0 

0 

a 

2%? 

0 0 . . . 

0 0 l . . 

3% -0.. . 
a 

4 qJ 
--. . . 
3 3 

ma / 

l *.(9) 

. ..(lO) 

. ..(n) 
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and q denotes d or e es the case might be. In response problems, 
however, when the time dependent variables correspond to displacements, 
the initielvalue of d(t) is zero (do = O), and, except for inputs c 
the unit steT> type, en = 0 oen also be ass~ed. Equations (10) 

where the modifie& matrix operator 

3 

17q 

24 

. 

l 

0 

0 

0 

If 

. ..(12) 

. ..(93) 

ma q = Cl or o aocording to whloh fozm of (12) is the most convenient 
to use. 

Equations (42) ma (I) m-rqmd. Both A and a are triWCuler, 
but the elomonts in the latter matrix operator ore multiplied by certain 
factors, It shculd be noted that the element r, of the response function 
{r(t)] is omitted in (12). 

If the input is zero after a finite time the serial numbers will 
all be zero after a oertein value. Let s cmre+md to the first 
zero ~81~0. The vdue of q, for m> n will then be given by 

rm a t lZ4&1 y + 2%~2+ h&..3e3 + . ...% l&++j endI . ..(14) 

when n is even, N-ICI by 

pm = / 



when n is odd. The ~~nwp~ruUng ndr%zc operator n(q) woda for such 
For instance, S e(t) = {o 

:h::s;::eto{:~ %%?;:'g~0~ by (12) with 8(d) and &) 
e*, e , 

i 
O,O,O,O..~~ 

rep aced 
respectively by 

0 

2a 
-2 

3 

. 

0 

0 

. 

. 
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When {r} and {e} me known, {d] can either be obtained frcm the set 
of equations represented by 

or, direotly, frm 

l+. Intezxration end Differentiation 

Let us oonsider the ourve y(t) = {o,y~,y~, .., 

, . ..(18) 

. ..(I91 

shorn below, 

FIG 2 

In terns of A unit6 it 3mne&.xtdY follows thet the integral 

J 
t 

r(t) = Yl y2 yat = 6{-#Y,+-#Yl+Y2+ 3 
-, . . . . . 11 

0 2 2 2 

and thm is expressible in the matrix fozm. 

{r} = Ylr I 0 0 0 . . I e 
22100..., 

{y] 

2 210...~ 
2221.*,, 
. . . . . . . 
. . . . . . 
, . . . . . ;I! 

,. WI 

. ..(20) 

Hence, / 
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a 
Hence, if p 5 --, the diff'erentia: operator, it can be shovm that the 

at 
integratmg operator, 

1 6 
m 5 ; b{l~2S2#.2..~1# .*.(21) 

where [ T {al: a2, a3, . . . . ..-.. j]represents,ingeneral, a~trisnguler 
matrix with equal elements along the prmoipal diagonal snd along nny line 
parallel to it. It oan dso be ahovm that 

[T t I,2 2 2 . . . . . }] = [T {l,l,e 0 0 . ..}I [T{ 1,',1,1,1,1 . ..I 

= r3 t 
I 6 

l,l,O,O,O ..,}I [T{ I,-I,0 0 O.o]]-' 

Henoe - s - [T { 1~1~ 0 0 . ..]I ET{ I,-1~ 0 0 ...s.. 11-I. 
P 2 

. ..(22) 

and P z h t 1,-l, 0 0 . ..}l[T tl,l, 0 0 . . . . . 11 -' 
6 

From (229 it f0nm that 

p2 .z ;; [T {I -2,100 . ..I] [T{l,2,1, 0 0 . . . . . }]-I ..*@3) 

an& in general, when n is odd for instance, 

where the de-ta in the first CO~UUU of the numerator and the dencmenater 
are tho coefficients of x in (IYc)~ and (l+x)n respectively. 
By the use of (24.) any differential equation of the type 

(ati + alp-1 + .....o... an) r z e . ..(25) 

asn be expressed in serial form by substitution for p and its powers, 

It us, however, clear.that the integral of y will not be 
given accurately by (20) unless 6 is small. If use is mad0 of 
Simpson's integration ruIes the following alternative fozm may be 
deduced, nsmely 

equation / 
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t rq ,r2ar3 . ..I =. 6 
19-5 1 
--, --,--000.. 
a 2424 

4 10000.. 

.i i 

9 9 3000..; 
e -m 
a a a 

4 2 4.100.. 
M --- 
3 333 

4 17 9930,. 
e a- --- 
3 2k aaa 

4 2 4241.. 
w e ---- 
3 3 3333 

. . . . . . . . 

. . . . . . . , 

. ..(26) 

In the case, when yo # 0, there is an aklitional co.k.nxn on the left bend 
side of the matrz and the analysis would have to be extencled as shown later. 

Equation (26) can be oxpresscd more conveniently as 

tr} = biti tyj. 
Premultiplication of {r) by B where 

II E -9j 

0 

0 

C 

0 

. 

. 

. 

-9, 

1 

c 

0 

0 

. 

. 

. 

I 0 

0 0 

1 0 

0 1 

0 0 

. e 

. l 

. * 

0 . 

0 . 

Q . 

0 . 

I . 

. . 

. . 

. . 

. * 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. 

. 

. 

. 

. 

* 

. 

. 

* 

yields / 

a..(271 

. ..(2a) 
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yields 

B{r] = 6 I- -I8 0 0 0 0 , , , 
, 

I 

4 1 
w w ooo.,. 

3 3 

99 3 
ix ii 0 0 , . . 

4 17 9 9 3 
me w e - , , . 

3 24 8 8 3 

and so on 

which may be rcpresentad more concisely by 

. ..(29) 

Sinca K is triangular, ~-1 is readily detznnincd, and frcm (29) tha 
relation 

can be deduced, From (271 and (30)) it follov~s that 

I 1 
- 2 bS, p z - K-'B, 
P ti 

l .*(30) 

. ..(31) 

where S represents the matrix in (26). 

In expanded fozm 



I 
PZ - 

6 

1 
-, 
2 

-2, 

9 
-, 
2 

-16 

73 
-m 

2 

-130, 

. 

. 

1 -1 
-, 
2 18 

1, 2 

-9 1; 
-, 
2 -i 

-80 
14 -- 

9 

Q c 

0 c 

C 0 

3 0 

0 
-9 - 

3 

30, 22 
--, 
3 

. . 

. . 

Q . * 

0 . . 

Q . . 

0 * . 

fl . . 

3 
. . 

. . . 

. . . 

. ..(32) 

It should be remembered that the above operator has been derived 
on the assunptxn that y c G. Ona should not therefore expect to get 
correot slopw with ths &ova fmm of p 
t2. 

for terns of lower order then 
In serial fozm 

w? = 62 {I, 4, 9, . ..I 

and3 by (32), it follows that 

P jt21 = 6 t 2,4, 6, 8, ...I 

= {2t} . 

The above result is oorroot and it can be shown that, La general 

l ..(33) 

P n-' $?I is aoourat6l.y represent& prwided m >n. For exmnpl.ea 
let m = I+. 

Thsn @I s 64 {+I, 16, 81,256s, . ..} 

P {+'j E 63 { 4, 32, 108, 1 

r {4t? 1 

P2 w4 = 4P it3 = 4~63 {I, 8, 27, 64 ..} 

e 462{ 3, 12, 27 .,. } 

s 12 {tq 

9b4 = 12$* {I, 4. Y. 16 ..I 
- m g, 2, 3, 4 .*a ) 
= *itI 
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All the above results are oorreot but the Prooes~ breaks down on further 
differentiation. It is found that 

This ia beoause (26) is not true when yo V! 

folml 
In Ref. I, it is suggested that a differential equation of the 

(aGn + a1p-l + . . . an)r = e . ..(36) 

can be rePresented in the serial fozm U {r} = bl 9 whzy U is an 
equivalent matrix operator formed by aubstitutzon for Pn, Pn eto. Em3 
sumnatian. It seems to the writer, in view of the preoddng results, that 
such a representatzon might not be valid in general. This oritioism also 
applies to the operators used by Tustin SLIU~ he obtatis themsdt. 

PitI = p6 { I, 2, 3, 4 ...I 

Z t 2, 0, 2, 0, 2. } 

by the use of (22). Further dsferentiation makes matters even worse. 

. ..(37) 

This diffioulty oan, hoWever, be partly ovccocme if yO # 0 ia 

f 

3 
"" 
24 

1 

i 

3 

a 

1 
" 
3 

I 

3 

1 

i 

. 

. 

. 

-3y 3.f -Y 0 0 0 . . . 

19 -5 1 
"" "" - 000.. . 
24 2424 

41 
" " oooo... 
3 3 

99 3 
" " -000. . . 
aa a 

4 2 41 
" " -oo... 
3 3 i3 

4 17 993 
"" """ 0 . . . 

3 24 aaa 

4 2 4241 
;; y;;... 

. . . ..*.-0 

. , .* . . . . 4 

. . ,.....t 

yo 

Yl 

Y2 

Y3 

. 

. 

. 

. 

. 

. 

.o.t3a) 
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where Y is an arbitrary faotor whloh is assumed to have the value Y = 1 
f{?$ of= R {y;sfh~ oo~cjvalue 

is in error* but al.1 the other 

.*.(39) 

where R IS deftid above sad R-' 
(38),that 

1s the inverse matrn, it follows frm 

ala F itI i I? 1 
when Y = I is assumes in (389' q ' 

II. Unfortunately, howover, 

? I 
g2 ItI = { 2, 1, - --, -, . . ..I . ..otll 

4 12 12 

lnsteca of seros. However, lt seems that if ropea'ced dxfferentiation of r 
m (36) never leads to a funotion whxh 1s ap roxjmately constant over a 
period of tune, the dsferential equation (36 7 oen be represented LII numerioal 

a 
. fomprovided 5 E -- is of the form given by (389. 

dt 

The matr: ix R-1 oorrespondmg to R as def'med by (3t 31 is 

R-' x 
1 3, -3 1 
;; ' -, 2 -, 0 0 

3 

-1 -1 I, -1 
---9 

2 
'-., 0 0 

12Y 6 

1 -1, 1 1 
--- , -# "# CJ 0 
12Y 2 3 

4 ILL The error in r. can be eljminated by taking more terms i?~ the 
first row. 
of Y(l-x)% 

Tho elements are the ooeffioimts in the expansion 
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In pm&i e, 
express R and R 4 however, it wmld perhaps be more convenient to 

as ratios, This oen readily be done, for 
premultiplication of R by T {I, -1, 0 0 0 ,..I leads to a triengular 
matrix of simPler form with sero elements in the bottom left hand corner. 
The correspondtig fmm for P, 
given in (22). 

however, 1s not quite as s5nple as that 

5. Msny degrees of free&m 

Ths analysis of paragraphs 2 and 3 oan bo oxtonded to mclude 
oases whare many degrees of fresdcm are mvolved as would nomally bc the 
case in airoraft rssponsc end flutter research0 For simplloity, let 
two degrees af freeda be assmed. The dynemical cquetions of motion for 
such a system ocn be expressed in the form 

by2 + b,lp + o,,)s + (a,2P2 + b,vp + c,2)3 = F(t) , 

(a2,p2 + b2jp + 02, )s + (a22P2 + b22p + o22)0 = Gt t) 9 
..a(42) 

where s and 0 represent tkne dependent variables and F and G 
represent external foroea or inputs, 

In matrix notation (42) reduces to 

(ap2 t bp + o) r(t) = e(t) . ..(43) 

where 4 t4 : {ZB 0) s and e(t) z iF9G.j 

Now let it bo supposed that s(t) and 9(t) have been measured in 
flight for partloular forms of F(t) and G(t), Then, if & represents 
the matrix operator corresponding to unit A inputs (or unit impulses) 
relations of the following form ere valid for lznoar systems. 

where A 5 

and A,, etc. are triangular sub-matrices corresponding in form to the 
oporetors A(d) or a(d) defmed by (I) and (12) respectively. In a 
more concise form (L&J is exPressed as 

and hence b 1 .t A-‘{$ . ..(46) 

Equation (46) is the nunerioal oqwvalent of (43) end it 0‘~ be shown in 
this case that 

..*(47) 

t 4211 *II 
J 
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am3 that the following operators are approximately equivalent, 

aPz +bp+o z IA 11 A22 - %2 A2l 
-1 I r A22 -%2 1 . ..(48) 

L 421 *II -I 
Extension of the above analysis is relatively straight forward. 

The numerioel work moroases rapidly with the nmber of degrees of freedm 
cmd if the response over a long period were required, it would be almost 
prohibitive unless 6 oould be taken reasonably large. It may be, 
however, that the operator A oen be represented as a ratio of two simpler 
matrioes. This would probably be possible for the elements in eaoh oolmn 
of the sub-matrices satisfy aertain recurrence mlatmns. If this were 
so, the numerical work would. be reduoed sad the aoouracy of the snalysis 
improved (see paragraph 6). 

6. Simple Applioations 

Ci) Caloulation of ResponsA 

In order to try out nurneriaally the Tustin method and the 
alternative sohem suggested , the following equation for an uudsmped system 
was considered, nsmely, 

(p2 + 7cR)r = e9 ..-(49) 
a 

where p E --. It oan readily be established that the response 
, - dt 

d(A) due to a A unit input u in this ease given by 

d!A) = {RI, R2-2R,, R3-2R2 + R,, . . . . ~-2Rn43.,~2,...~ . ..(50) 

where 
Sinn?C6 
- -- -- - - - ,g * The response due to a unit repulse 

is smply 

The response due to a goneral. input e(t) is then expressible in a form 
similar to (I) 3 nsmely, 

I r z! [T@(A)} 1 es . ..(52) 

or in the alternative fom givdn by (12)* nsmely, 

r = gi?(d)e, . ..(53) 

where ~(d)&&s definedby (13) end (51). Approximate values of r 
giveri 6.ki$@&$t&&53) for particular inputs are oanpared with the true 
res&mse gaven -b$' 

1 
: - y&. z - sin % (t-c) e (~9 d-c l .*(54) 

7L 

m Figs. 4 and 6. Two oases are oonsidered, namely, 
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(4 e(t) = sin let, . . . . , . 06t6 1 

C 0 t> 1 

b) o(t) = sin Kt, . . ...* t> G 

for vrhioh the ex;ot solutions are 

1 l ..(55) 

00s nt 
z- ------- , ,*.......*......... th1 . ..(56) 

2-n 

As far as the oaloulation of the response due to a p?rtioular input is 
concerned, the alternative method suggested in this note appears to give 
good agreement with the exaot values and to be slightly better then the 
Tustin method, but for all praotioal purposes the latter aohae seems to be 
suffioiontly accurate. It was also found that the responses d(A) and 
d(t) due to a A unit end a unit impulse raspeotively could be dotermined 
with reasonable ~COW~OY from (52) and (53), when tha exact values of 
r(t) and e(t) wore assumed, as shown in Figs. 6 and 7. In flzght tests, 
k$v e t) and r(t) 

1 
would be measured and the problem would be to determine 

or d(t)) so that the rcoponse due to any general input oould. be 
estimated. Slight errors in r(t) end e(t) might 9 hmever, lead to 
trouble duo to the form of the sinnil.taneous equations which determine the 
serial ordinates representing dd l The expanded form of (52) is 

r1 = %@, 

r2 = %?I + dle2 *.*(57) 

r3 = d3el + d2e2 + d.,e3 md so on. 1 

and it is olear that an error in d14 for instenae, vould. affect the value 
Of %! and all the other ordinates. When r and e are approzmmately 
proportional, as might well be the case , the above set of equations 
beoomes ill-oonditioned as r - die would tend to sero and the value 
obtained for d2, for instance, would probably be ineoourate. These 
troubles could to some extant be evoidod if an input approxinmting closely 
to the fona shown below could be applied in flight and the response measured 

FiG 3 
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If R(t) represents the response due to suoh en input, the reponse due to 
a A input mould be given by 

d(A) = R(t) - R(t-6), . ..(58) 

but even in this case d(A) would be given as a difference and would in 
the limit oorrespond to the slope of R(t). By drawing smooth ourves 
through the measured values of R(t) before taking differences,‘one might, 
howcvir. be able to set reasonablv accurate values-for d(A). It is 
thought; however, thit the respo& at time t 

trsnsient inout e(t) suoh that 
J 

26 
e(t) dt 

to the response due to a A unit. ’ In flight it may therefore be 
to get a good ostzmate . . . of unneoessary to apply inputs of a pure A form 

the response clue to a A unit input. If this reponse OOU~ oe measured 
directly, the nunerioal difficulties arising from inversion would be avoided. 
The reliability of the results obtained oculd be cheoked by making use of 
the estimated d(A)‘s to calculate the measured response due to some 
more praotioal form of e(t) which could be applied in flight. A possible 
form of input might be 

= n6, n.> 2, due to any 

= 6 would oar”espond olosely 

1 - ms7tt 
Ccl e(t) = -T--.--e-.--, ,,..., o<t41 

2 
. ..(591 

Ez 1 t l, 1 

and for the simple system considered here the response to such an input 
is given to reasonable aocuraoy by the Tustin method (see Fig.4). The 
true response for this ease is 

I 1 

i 

- oos7Lt t 
r(t) = -- ---------- - - 

7c sin~t , 

1 

. . . 0 6 dl.0 
2n 2 

. ..(601 
sinn t 

= I$ - mim;- , . . . . . . t >I.0 

(ii) Characteristic roots 

In general the free motion of a system in any of its degrees 
of freedom o=an be represented in the form 

d(t) = A,e 
xl* x2t 19 

+ A2e + A3e + . . . . . . . 

where 7~1, X2, oto. are the charaoteristio roots and AI, A2, eta. oonstants 
determined by the initial conditions. The corresponding serial form of 
solution is 

M =Aq# +A2 w +A3{snj+... . ..(62) 

where x = e LIE X26 , y = e et&, end the ourly bra&e ts denote 001~~~ 
of the values for n = It 2, 39 . . . eta. It follows fran (62) that 

equation / 
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Gl - %+I = A2yn (x-y) t A$ (x-y) t cto. 

Y(% - %+I) - bkt, - %+21 = A#[ y(x-h-j + @to. 
.*.(63) 

and so on. 
Henoe, in general, whsn the nuabcr of roots is finite the ordinates dn 
will be linearly related. When there are only two roots, for instanoe(63) 
gives 

%I+2 - bYhI+, - mn = cl . ..(a&) 

It follows from this that if the serial numbers dn satisfy a relation 
of the form 

~o%tm+~lhn-l+.** w%l = 0 . ..(65) 

which has solutions an = n o , then x, y, z, eta. will be the roots 
of 

aoPrn + ap-' . . . . h = 0, . ..(a) 

and stioe x z e'16, y z 29 , eta. the oharaoteristios roots Xj~k2, 
eto. oan be determined provided 6 is suffioiently small. If sane 
of the modes are highly damped, however, the order of (66) may be reduced 
sin&, in praetioe, 6 would not be infinitesimal. 

For the szmplc example considered g = 0.2 was assmed, end 
it was focnL that the ordinates of d(A) given by (50) satisfied the relation 

%t2 -1.618&,tk z o 

The roots of the correspondti charaoteristio equation 

P2 - 1.618~ t I .= o 

. ..(67) 

. ..(68I 

were found to be 
*0.27Ci 

P z 0.8090 2 0.5878 i = e . ..(69) 

as was expected. 

(iii) Differential Equation 

When the differential equation defining the motion is known~ as 
for instance in (49), it om be represented in time series form by 
substituting for p. R? (22) 

2 !J! tl, -1, 0 0 0 ..a 1 
p z - ““““-“““““““““““““” , - . ..(7d 

!j T{l, 10 0 0 . . ..I 

and on substitution (49) yields in serial form 

4 !r iI, -28 tt 0 0 .*.I 

ii2 
""""-v"""-e"" 
T {I, 2, 1 0 0 . ..o.} 

+ 78 1 tr1 =. {e)~ . ..(71) 

where / 
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where { r } and { e } represent CO~UIW~ of serial ordinfltes. 
Fremultiplication of both sides of (71) by T { I, 2, I, 0 0 0 . ..I 
leads to an equation of the form 

T! {I, -2, I, 0 0 ..* 1 +7L2T {1,2,l,OO..){r} i {sf), 
I 

. ..(72) 

whioh may be written 

H T 4 ;2 +7L 2* , - &2 -- + 2 Tc2* 4 62 -- +$z2, 0, 0, 0 . . . 11 {r] = {oi}, . ..(73) 

A typical equation of the set represented by (73) is 

and, wd-len At2 = 0 is essumea and rn = pn is substituted, (74) rduoes 
to the quadratio 

0 - 27c2b2 
P2 w ~~~~~..~~~ 

4 t i&2 
p+l =o . ..(75) 

with the roots p .Z 0.8203 * O.,!ii'l9i for 6 = 0.2. 

It will be~notiood that the roots obtained differ fran the 
exaot values given by (69). Sinoo the coeffici~t of p in (68) is 

must be satisfied, and this Is 

the rdation 

the case when 6,+ 0. 

. ..(76) 

In praotioe, however, the differential equation defining the 
motion of a linear systa is usually ~&KM-I end one is faced with the 
problem of detezmming its characteristics from a knowledge of the 
reponses due to koGn inputs.:.: For the particular exsmple considered the 
rapnse and the in&itar~ re$'at%dC'lnMxms of, A.:unitsby (1)~ and it is 
shown in Fig. 6 that the d(A) respdss due t0.uni.t a input oan be 
estimated with reasonable accuracy. If the oxaot values of d(A) as 
given by (50~) are aubstltutedYin A(d) m.the-resulting triangular 
matrix can be'expressed fully in the form 
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- 

A(d) = 0.00654 o 0 0 

0.0362 0.00654 o 0 

0.0585 0.0362 O.O065I+ 0 

0.0585 0.0585 0.0362 0.00654 

0.0362 0.0585 0.0585 0.0362 

0 0.0362 0.0585 0.0585 

-0.0362 o 0.0362 0.0585 

-0.0585 -0.0362 o 0.0362 

-0.0585 -0.0585 -0.0362 o 

-0.0362 -0.0585 -0.0585 -0.0362 

0 -0.0362 -0.0585 -0.0585 

end so on 

0 0 

0 0 

0 0 

0 0 

0.00654 0 

0.0362 0.00654 

0.0585 0.0362 

0.0585 0.0585 

0.0362 0.0585 

0 0.0362 

-0.0362 0 

. . 

. . 

. . 

. . 

1 

. . 

. . 

. . 

. * 

. . 

. . 

. . 

E [T { 0.00654, 0.0362, 0.0585, 0.0585 0.0362, o, -0.o362,etdl 

. ..(77) 

The inverse of the above matrip is 

1 A(dl -’ = [T {153, -847, 3323, -12180, l&40, -162200, 591000, -2155000 etc.11 

. ..(78) 

and the fact that the elments increase end Alternate in sign should be noted. 

The nmerioal equivalent of (49) is 

[dd I-'{ r 1 = {ej . ..(791 

where [ A(d)]-' is defined above, If e is &smed to be zero after a 
finite time, say er = 0, r >3, then (79) yielde the following set of 
equations 

3323q - 847r2 + 1552-j = O# 

-l218Or, + jj2jr2 - &Jr3 + 15jr4 s 0, . ..(80) 

44dtCq - 12180r2 + Jj2jr3 - 81Jr4 + 15jr5 = 0, 
end so on. 

If / 
---------------------------------------- 

s More signifioant figures were kept m the aotual caloulations. 
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If r = ext If r = ext i8 assumed and p i8 assumed and p is substituted for is substituted for e e M M , , 
the above equations yield a set of polyncmie.1 equations whioh should lead the above equations yield a set of polyncmie.1 equations whioh should lead 
to the charaoteristio equation of the system namely to the charaoteristio equation of the system namely 

PZ - 1.614~ + 1 z o . ..(81) 

It should be noted that the characteristio roots are not given directly 
by the polynaaial form of (80). However, if rt and r2 are first eliminated 
the true recurrenoo relation is obtamed, namely 

r3 - 1.618q+ + r5 = 0. . ..(82) 

Similarly, the nth equation m (80) reduces after elimination to 

a - l.618rn+q + rn+g s 0. l ..(83) 

It then follows that the oharacteristio roots would be given by (81). 

Alternatively, A(d) oan be expressed 9s s ratio of two simpler 
matrices and (81) oan be derived directly, It oan be shown 
that 

and that 

, 
-- I !c tl, -1.618, I, 0, 0, 0, . ..} 

L--b-,, z 153 ----------------------------- 
'r {I, 3.921, 1, 08 0, Of . . . 1 

. ..(65) 

Whenthis expression is substituted for [A(d)]-' in (79) and the whole 
equation is premultiplied by the dxxsmnator , the following equation ia 
derived, namely, 

'I tl p -1.616, l&0,0, . . . 1 {r) = 0,0065&T {I, 3.921~ I, 0~ Ot O,em!$j 

This equation leads directly to (81). 

7. Ooncluding Remarks 

The simple example considered reveals some of the diffioulties 
which arise in the nmeerioal Canalysis of the behaviour of a system and 
shows the advantages of using matrix notation. Before general conolusions 
oan be drawn as to the advisability of using this teotnique in the study 
of aircraft stability, however, further work will have to be done. It, is 
suggested that a detailed nwaerical study of the lateral stability of 
a partioular aircraft be made where the stability derivatives are assmaed 
to be tiown and where the responses due to assigned inputs could be 
oalculated. The inputs would be ohosen to correspond to smh as can be 
applied in practice and the cslculated responses could be regarded as 

oorresponding / 
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corresponding to the r+sponsos measured jn flight. An attempt could 
then be made to detendne the stability oharacteristios of the air-waft fran 
a knowledge of the responses due to certain specified inputs as one wtxiLd 
have to do m enalysing flight test results. In thu oasen however, the 
true aharacteristios wxld be known snd the accuracy of the methcd of serial 
representation cdld be checked. Suitable data for such a oheck calculation 
are gLven in Ref. 2. 

2 

AUTROR. 

A.Tustin 

R. W. Gand&' 

TITLE, etc. 

A method of malysing the behaviour of 
linear systems m terms of time series. 
Vol. 94, Part IIA. No. 1, Journal 
of the Institution of Electrionl 
Engmeers. 1947. 

The response of sn aeroplane to the 
application of aileron snd ruC!ders. 
R. 8~ M. 19t5. 



020 020 
- Exact - Exact 

0 0 Akernatnu method Akernatnu method 
x x Tustm’s method Tustm’s method 

(a) e(t) = am m t, t DO 

(c)e(t) - I-cynt, t&l 

1 = I , tzl 

-0 20 

-0 30 

OS 
t 



0 O! 

-00 

-0 I 

- - 1 
04 

r 



-006 

- Exact 
-X- Es&mated. 

Q 08 . . 12 20 

Response due to a A mat Input 



12, 311. 
FIG. 7 . 

0 

0 

I 

-0 

-0 

-0 

’ -9 \ \ 
3 

\ 
- Exact I 

\ 

o E&mated - Ca*e 
x Estimated - Ca+.e (b 

*pamon of axack and estlmdted response due to 
umt impul0e. 

tE fm35/l/FL72 300 5/51 CL 





C.P. No. .4b 
(12,911) 

A.R.C. Technkal Report 

S 0. Code No 23.9006-46 


