${\text { N. } A_{1} E_{1} \text {, tibranty }}_{\text {c.p }}^{\text {No. } 46}$ $(12,911)$
A.RC. Technical Report

NATIONAL AERONAUTICAL ESTABLir. | A.R. Tec |
| :---: |

LIBRARY

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Note on the Use of Time Series in the Analysis of Flight Test Series

By
W. P. Jones, M.A., of the Aerodynamics Division, N.P.L.

Crown Copyright Reserved

A Note on the Use of Timo Series in the Analysis of Flight Test Records.

- by -
W. P. Jones, M.A.,
of the Aerodynamics Division, N.P.I.

30th January, 1950
Summery
The methods suggested in Ref. 1 for analysing the behavicur of linear systems are briefly reviewed, the numerical analysis being expressed in terms of matrices. Possible applications of time series representation to the study of aircraft stability characteristics are discussed and a detalled numerical investigation of a simplo one degreo of freedom undamped system is made. For this system the Tustin method of analysis in terms of Δ units seems satisfactory. An alternative method based on the use of Simpson's integration rule in conjunction with time series representation is also described.

No dofinite conclusions can be drawn as to the advisability of using the suggested method of analysis at this stage, as it is considered that a detailed numerical sthdy of the stability characteristics of a particular airreraft should be made in order to check fully tho accuracy of the method.

1. Introduction

In a note entitled "Flight measurements of aircraft stability and control", it is suggested by Eoulton Paul Airoraf't Limited that measurements of aircraft response due to krown control displacements should bo analysed by means of time series. Any function depended on time is in this scheme represented by a series of ordinates corresponding to the values of tho function at equal time intervais δ, whero δ is assumed to be small enough to ensure accurate representation. Such a procedure was used by Professor Tustin in Ref. 1, but was not applied to aircraft response problems. His methods of dealing with time series are briefly cutlined in this note, and it is shown how the analysis can be conveniently expressed in matrix notation. The numerical processes of 'serial multiplication' and 'serial division' as defined by Tustin corrospond to matrix multiplioation and inversion respectively. Certain operators used in Ref. 1 con also be expressed concisely in matrix form.

Over /

[^0]Over a period of time, any function would be represented in this scheme by a large number of ordinates. Consequentiy, the numerical work of analysing the behaviour of a linear system might in certain cases be rather laborious with ordinary calculating machnes. This disadvantage could perhaps be overcome by using special computing equipment.
in alternative method of approach is suggested in this note which might in certain cases reduce the amount of computation without entailing loss of accuracy. This scheme is based on the use of Simpson's integration rule in conjunction with time series representation. The relative accuracy of the two methods is illustrated by a very simple example of a one variable system with known response characteristics.

By the use of matrices the analysis for either method can be extended to deal with problems involving many degrees of freedom and the results of flight tests. In flight, the response in any degree of freedom due to a known movement of a particular control can usually be measured.. The problem is then to estimate tho response in each degroe of freedom due to a Δ unit input (or unit impulse) from the control. When these are known accurately, the responses due to any other known input can be estimatod. The responses in a number of degrees of freedom due to a combination of inputs, such as from alleron and rudder, can be treated aimizarly.

It has been suggested that the roots of the stability determinant for the aircraft can be deduced from the numerically equivalent form of the equations of motion as derived by time series represontation. This has been done for the simple example considered, but it is difficult to judge whether the method wculd apply in the case of a system with several degrees of freedom. Since in practioe the analysis would be based on data obtained from flight tests, the possibility of small errors in the measured responses would also have to be considered as these would affect the calculated responses due to Δ unit inputs (or xnit impulses) which have to be determined by a process of inversion, as presumably such inputs cannot be applied directly. In view of these difficulties it is thought that further test calculations should be done for a particular aircraft, taking into account the appropriate degrees of freedon and assuming control inputs of a form which oan be applied in practice. The information obtained from such calculations should give a clear indication as to the advisability, or otherwise, of using the method of time series representation for dealing with stability problems.

2. Time Series Representation

In lustin's peper ${ }^{1}$ any function of time $d(t)$ is represented by a series of ordinates as shown in Fig.1.
-3-

FIGI

The ourve $d(t)$ is first replaced by a polygon formed by joining the ordinates at regular timo intervals δ, and this in turn is replaced-by a system of isosceles triangles of height $d_{1}, d_{2}, \quad \theta t o . \quad$ and base 2δ. If the interval $\&$ is sufficiontly small the function $d(t)$ will be accurately represented by such a sories of ordinates and oan be regardod as being composed of superposed Δ units as indicated.

Let us suppose $\{a(t)\}=\left\{a_{1}, d_{2}, a_{3} \ldots \ldots\right\}$,
is the response of a particular variable due to a unit Δ inputiz
Then, since any general input $\theta(t)$ can be represented by a number of isosceles triangies as above, the response $r(t)$ due to $e(t)$ is expressible in matrix notation in the altermative forms

$$
\begin{equation*}
\left\{x x^{\prime}=A(d)\{\theta\} \quad=A(\theta)\{a\},\right. \tag{1}
\end{equation*}
$$

where $\{r\},\{e\}$ and $\{d\}$ represent columns of ordinates and the matrix
operator
$\Lambda(d) /$

- A unit is in the form of anf isosceles briangle of unit height andibase 28.

$$
A(d) \equiv\left[\begin{array}{ccccccccc}
a_{1} & 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot \tag{2}\\
d_{2} & d_{1} & 0 & 0 & 0 & \cdot & \cdot & \cdot & \cdot \\
d_{3} & d_{2} & d_{1} & 0 & 0 & \cdot & \cdot & \cdot & \cdot \\
d_{4} & d_{3} & d_{2} & d_{1} & 0 & \cdot & \cdot & \cdot & \cdot \\
d_{5} & d_{4} & d_{3} & d_{2} & d_{1} & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot &
\end{array}\right]
$$

and $A(e)$ is defined similarly. In general A is an infinite triangular matrix, but in practice only a finite number of rows will be needed. For a stable system $a_{n} \rightarrow 0$ when n is large.

Formula (1) above expresses in concise form the table for serial multiplication given in Ref. 1. From (1) it follows by inversion* that
and

$$
\begin{equation*}
\{e\}=[A(\bar{\alpha})]^{-1}\{r\} \tag{3}
\end{equation*}
$$

$\{d\}=[A(c)]^{-1} \quad\{r\}$,
where \hat{A}^{-1} represents the inverse of A so that $A A^{-1}=I$, where I represents tho unit matrix.

Suppose

$$
[A(d)]^{-1}=\left[\begin{array}{ccccccc}
a_{1} & 0 & 0 & 0 & \cdots & \cdots & \cdots \\
a_{2} & a_{1} & 0 & 0 & \cdots & \cdots & \cdots \\
a_{3} & a_{2} & a_{1} & 0 & \cdots & \cdots & \cdots \\
a_{4} & a_{3} & a_{2} & a_{1} & \cdots & \cdots & \cdots \\
\cdots & \bullet & \cdots & \cdots & \cdots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \bullet & \cdots & \cdots & \cdots \\
& \cdots
\end{array}\right]
$$

Since $A A^{-1}=I$, matrix multiplication immediately yields the set of eguations

$$
a_{1} d_{1}=1
$$

* This corresponds to 'serial division' in Ref. 1.

$$
\begin{gather*}
-5- \\
a_{2} d_{1}+a_{1} d_{2}=0 \\
a_{3} d_{1}+a_{2} d_{2}+a_{1} d_{3}=0, \tag{6}\\
\text { and so on }
\end{gather*}
$$

When the elements d_{1}, d_{2}, d_{3} etc, are known the elements a_{1}, a_{2}, a_{3}, etc. can then be determined successively, and $\{\theta\}$ can bo calculated from (3) whon $\{r\}$ is known. Similariy when $\{n\}$ and $\{0\}$ are known, $\{d\}$, the response duc to unit Δ input, is given by (4). It should be noted that (3) is the numerical equivalent of the differential d
equation defoning the motion, say $f(p) r=\theta$, where $p=-$ The above procedure avoids'serial division' as carried out by Tustin.

In goneral the response $\{x\}$ and the input $\{\theta\}$ are known, or can be measured, and one is faced with the problem of determining $\{d\}$. This is given direotly by (4) or it can be derived from the expanded form of (1). Wo ensure accuracy δ must be small, and this means heavy numerical work, particularly when soveral degrees of freedom are involved. In the next section an alternative mothod is suggested which may in certain cases reduce the amount of computation without introduoing inaccuraoies.

3. Alternative Method

$$
\begin{align*}
& \text { function exact formula for the response } r(t) \text { due to any input } \\
& \qquad r(t)=\int_{0}^{t} d(t-\tau) e(\tau) d \tau
\end{align*}
$$

where $d(\tau)$ now represents the response due to a unit impulso.
dr
It is assumod that $r=-\quad=0$ at $t=0$.
Let us suppose that the range of integration is divided into n equal intervals δ. Then, in serial numbers tho integrand $d(t-\tau) \theta(\tau)$ is expressiblc in the form

$$
\begin{equation*}
\{d[(n-s) \delta] \theta(s \delta)\}=\left\{d_{n} \ominus_{0}, d_{n-1} 0_{1}, \ldots, d_{0} \oplus_{n}\right\} \tag{8}
\end{equation*}
$$

By the use of Simpson's integration rulest the value of $r(n \delta)$ can be calculated /

4 The $1 / 3$ rule is mainly used but for $r 5, r 7, r_{9}$, eto, the integration is rounded off by using the $3 / 8$ th , rule as shown by (9).
calculated accurately for any value of n greater than unity. The serial numbers r_{2}, r_{3}, r_{4} etc, are given by the following set of equations

$$
\begin{align*}
& r_{2}=\frac{\delta}{3}\left(d_{2} e_{0}+4 a_{1} \theta_{1}+d_{0} \theta_{2}\right) \\
& r_{3}=\frac{3 \delta}{8}\left(d_{3} e_{0}+3 a_{2} e_{1}+3 a_{1} e_{2}+d_{0} e_{3}\right) \tag{9}\\
& r_{4}=\frac{\delta}{3}\left(d_{4} e_{0}+4 a_{3} e_{1}+2 d_{2} \theta_{2}+4 a_{1} e_{3}+a_{0} \theta_{4}\right) \\
& r_{5}=\frac{\delta}{3}\left(d_{5} e_{0}+4 a_{4} \theta_{1}+\frac{17}{8} a_{3} e_{2}+\frac{27}{8} d_{2} e_{3}+\frac{27}{8} d_{1} e_{4}+\frac{9}{8} d_{0} e_{5}\right)
\end{align*}
$$

and so on.

$$
\begin{align*}
& \text { In matrix notation }(9) \text { yields } \\
&\left\{r_{2}, r_{3}, r_{4} \ldots\right\}=\delta M(d)\left\{e_{0}, e_{1}, o_{2} \ldots .\right\} \\
&=\delta M(e)\left\{a_{0}, d_{1}, d_{2} \ldots \ldots\right\} \tag{10}
\end{align*}
$$

where
and q denotes d or θ as the case might be. In response problems, however, when the tine dependent variables correspond to displacements, the initial value of $d(t)$ is zero $\left(d_{0}=0\right)$, and, except for inputs of the unit step type, $e_{0}=0$ oan also be assumed. Equations (10)
reduce to

$$
\begin{align*}
\left\{r_{2}, r_{3}, \ldots\right\} & =\vec{M}(d)\left\{a_{1}, e_{2} \ldots\right\} \tag{12}\\
& =\ddot{M}(e)\left\{a_{1}, d_{2} \ldots\right\}
\end{align*}
$$

where the modified matrix operator

$$
M(q) \equiv\left[\begin{array}{ccccccc}
\frac{4 q_{1}}{3} & 0 & 0 & 0 & 0 & \cdot & \cdot \tag{13}\\
9 q_{2} & 9 q_{1} & 0 & 0 & 0 & \cdot & \cdot \\
\frac{-2}{8} & 8 & & \\
\frac{4 q_{3}}{3} & \frac{2 q_{2}}{3} & \frac{4 q_{1}}{3} & 0 & 0 & \cdot & \cdot \\
\frac{4 q_{4}}{3} & \frac{17 q_{3}}{24} & \frac{9 q_{2}}{8} & \frac{9 q_{1}}{8} & 0 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}\right]
$$

and $q=a$ or 0 according to which form of (12) is the most convenient to uso.

Eguations (12) and (1) corrospond. Both A and \bar{M} are triangular, but the elomonts in the latter matrix operator are multiplied by certain factors. It shculd be notod that the element r_{1} of the response function $\{r(t)\}$ is omittodin (12).

If the input is zero after a finite time the serial numbers will all be zero after a oortain valuc. Let θ_{n} correspond to the first zero value. The value of r_{m} for $m a n$ will thon be given by

$$
r_{m}=\frac{\delta}{3}\left[4 A_{m-1} e_{1}+2 A_{m-2} \theta_{2}+4 d_{m-3} \theta_{3}+\ldots e_{4} \theta_{m-n+1} \theta_{n-1}\right] \ldots(14)
$$

when n is even, and by

$$
r_{m}=1
$$

$$
\begin{align*}
r_{m}= & \frac{\delta}{3}\left[4 a_{m-1} \theta_{1}+2 \alpha_{m-2} \theta_{2}+4 a_{m-3} e_{3}+\cdots\right. \tag{15}\\
& \left.+\frac{17}{8} a_{m-n+3} \theta_{n-3}+\frac{27}{8} a_{m-n+2} e_{n-2}+\frac{27}{8} a_{m-n+1} \theta_{n-1}\right]
\end{align*}
$$

when n is odd. The corresponding matrix operator $\mathbb{I}(q)$ would for such a case havo to be modified. For instance, if $\theta(t)=\left\{e_{0},{ }^{\theta} 2, \theta_{3}, 0,0,0,0 \ldots\right\}$ the response $\{x\}$ will be givep by (12) with $\mathbb{M}(\mathrm{d})$ and $\mathbb{M}(e)$ replaced respectively by

$$
\mathbb{M}_{1}(d) \geq\left[\begin{array}{ccc}
\frac{4 d_{1}}{3} & 0 & 0 \tag{16}\\
\frac{9 d_{2}}{8} & \frac{9 d_{1}}{8} & 0 \\
8 & \frac{2 d_{2}}{3} & \frac{4 d_{1}}{3} \\
\frac{4 d_{3}}{3} & \frac{2 a_{3}}{3 a_{1}} \\
\frac{4 d_{4}}{3} & \frac{4 d_{1}}{3} & 3 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right]
$$

and

When $\{\mathbf{r}\}$ and $\{\theta\}$ are known, $\{d\}$ can either be obtained from the set of equations represented by

$$
\begin{equation*}
\left\{r_{2}, r_{3}, \ldots\right\} \equiv \bar{M}_{1}(d)\left\{e_{1}, e_{2}, e_{3}\right\}, \tag{18}
\end{equation*}
$$

or, direotly, from

$$
\begin{equation*}
\{a\}=\frac{1}{6}\left[\bar{K}_{\|}(\theta)\right]^{-1}\{r\}, \tag{19}
\end{equation*}
$$

4. Integration and Differentiation

Let us consider the curve $y(t)=\left\{0, y_{1}, y_{2}, \ldots\right\}$ shown below.

FIG 2

In terms of Δ units it immediately follows that the integral

$$
\left.r(t)=\int_{0}^{t} y d t=\delta\left\{\frac{y_{1}}{2}, y_{1}+\frac{y_{2}}{2}, y_{1}+y_{2}+\frac{y_{3}}{2}, \ldots .\right\}\right\},
$$

and this is expressible in the matrix form.

Hence, if $p \equiv \frac{d}{d t}$, the differentia: operator, it can be shown that the integrating operator,

$$
\begin{equation*}
\frac{1}{\underline{p}} \equiv \frac{\delta}{2}[T\{1,2,2, .2 \ldots\}], \tag{21}
\end{equation*}
$$

where $\left[T\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}\right]$ represents, in general, 8 ir triangular matrix with equal elemonts along the principal diagonal and along any line parallel to it. It oan also be showm that

$$
\begin{align*}
& {[T\{1,222 \ldots \ldots\}] }=[T\{1,1, A 00 \ldots\}][T\{1,1,1,1,1,1 \ldots\}] \\
&=[T\{1,1,0,0,0 \ldots\}][T\{1,-1,000 .\}]^{-1} \\
& \text { Hence } \frac{1}{p} \equiv \frac{\delta}{2}[T\{1,1,00 \ldots\}][T\{1,-1,00 \ldots \ldots\}]^{-1} . \\
& \text { and } \quad p \equiv \frac{2}{\delta}[T\{1,-1,00 \ldots\}][T\{1,1,00 \ldots \ldots\}]^{-1} \tag{22}
\end{align*}
$$

Fram (22) it follows that

$$
p^{2}=\frac{4}{\delta^{2}}[T\{1-2,100 \ldots\}][T\{1,2,1,00 \ldots \ldots\}]^{-1} \quad \ldots(23)
$$

and, in general, when n is odd for instance,
where the elements in tho first columns of the numerator and the denomenater aro the coefficients of x in $(1-x)^{n}$ and $(1+x)^{n}$ respectively. By the use of (24) any differential equation of the type

$$
\begin{equation*}
\left(a_{0} p^{n}+a_{1} p^{n-1}+\ldots \ldots \ldots a_{n}\right) r=e \tag{25}
\end{equation*}
$$

con be expressed in serial form by substitution for p and its powers.
It 1s, however, clear that tre integral of y will not be given acourately by (20) unless δ is small. If use is made of Simpson's integration rules the following altemative form may be deduced, namely

In the case, when $y_{0} \neq 0$, there is an additional column on the left hand side of the matrix and the analysis would have to be extended as shown later.

Equation (26) can be oxpressod more conveniently as

$$
\begin{equation*}
\{\mathbf{r}\}=\delta S\{y\} \tag{27}
\end{equation*}
$$

Promultiplication of $\{x\}$ by B where

yields/

- 12 -
yields

$$
B\{\mathbf{r}\}=\delta\left[\begin{array}{rrrrrrrr}
-18 & 0 & 0 & 0 & 0 & \cdot & \cdot & \cdot \\
4 & 1 & & & & & & \\
\overline{3} & \frac{3}{3} & 0 & 0 & 0 & \cdot & \cdot & \cdot \\
9 & 9 & 3 & & & & & \\
\overline{8} & \overline{8} & \overline{8} & 0 & 0 & \cdot & \cdot & \cdot \\
4 & 2 & 4 & 1 & & & & \\
\overline{3} & \overline{3} & \overline{3} & \overline{3} & 0 & \cdot & \cdot & \cdot \\
4 & 17 & 9 & 9 & 3 & & & \\
-3 & \overline{24} & \overline{8} & \overline{8} & \frac{3}{3} & \cdot & \cdot & \cdot
\end{array}\right]
$$

which may be represented more concisely by

$$
\begin{equation*}
B\{\boldsymbol{r}\}=\delta K\left\{y_{1}, y_{2}, y_{3} \ldots\right\} \tag{29}
\end{equation*}
$$

Since K is triangular, K^{-1} is readily aetarminod, and from (29) the relation

$$
\begin{equation*}
\left\{y_{1}, y_{2} \ldots\right\}=\frac{1}{\delta} K^{-1} B\left\{r_{1}, r_{2} \ldots\right\} \tag{30}
\end{equation*}
$$

can be docluced, From (27) and (30), it follows that

$$
\begin{equation*}
\frac{1}{\mathrm{p}} \equiv \delta \mathrm{~S}, \quad \mathrm{p} \equiv \frac{1}{\delta} \mathrm{~K}^{-1} \mathrm{~B} \tag{31}
\end{equation*}
$$

where S represents the matrix in (26).
In expanded form

$$
\mathrm{p} \equiv /
$$

$$
\begin{aligned}
& \text { - } 13 \text { - }
\end{aligned}
$$

It should be remembered that the above operator has been derived on the assumption that $y_{0}=$ C. One should not therefore expect to get correct slopes with the above form of p for terms of lower order then t^{2}. In serial form

$$
\left\{t^{2}\right\}=\delta^{2}\{1,4,9, \ldots\}
$$

and, by (32), it follows that

$$
\begin{align*}
p\left\{t^{2}\right\} & =\delta\{2,4,6,8, \ldots\} \tag{33}\\
& =\{2 t\} .
\end{align*}
$$

Tho above result is correct and it can be shown that, inf general $p^{n-1}\left\{^{m}\right\}$ is accurately represented provided $m \geqslant n$. For example,

Then $\quad\left\{t^{4}\right\} \equiv \delta^{4}\{4,16,81,256, \ldots \ldots\}$
$p\left\{t^{4}\right\}=\delta^{3}\{4,32,108$,

$$
\equiv\left\{4 t^{3}\right\}
$$

$p^{2}\left\{t^{4}\right\}=4 p\left\{t^{3}\right\}=4 \mathrm{p} \delta^{3}\{1,8,27,64 \ldots\}$
$=4 \delta^{2}\{3,12,27 \ldots\}$
$=12\left\{t^{2}\right\}$
$p^{3}\left\{t^{4}\right\}=\left\{2 p \delta^{2}\{1,4.9 .16 \ldots\}\right.$
$=24 \delta\{, 2,3,4 \ldots\}$
$=24\{t\}$
AlI /

All the above results are correct but the process breaks down on further differentiation. It is found that

$$
\begin{align*}
& p\{t\}=p \delta\{1,2,3,4 \ldots\} \tag{35}
\end{align*}
$$

This is because (26) is not true when $y_{0} \neq 0$.
In Ref. 1, it is suggested that a differential equation of the
form

$$
\begin{equation*}
\left(a_{0} p^{n}+a_{1} p^{n-1}+\ldots a_{n}\right) r=e \tag{36}
\end{equation*}
$$

can be represented in the serial form $U\{r\}=\{\theta\}$, where U is an equivalent matrix operator formed by substitution for p^{n}, p^{n-1} etc. and summation. It soems to the wrater, in view of the precoding results, that such a representation maght not be valid in general. This criticism also applies to the operators used by Tustin sance he obtains theresult.

$$
\begin{align*}
p\{t\} & =p \delta\{1,2,3,4 \ldots\} \tag{37}\\
& =\{2,0,2,0,2 .\}
\end{align*}
$$

by the use of (22). Further differentiation makes matters even worse.
This difficulty can, however, be partly overcome if $y_{0} \neq 0$ is assumed, and (26) is replaoed by
$\equiv \delta \mathrm{R}\left\{\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2}, \cdots\right\}$
whore r is an arbitrary factor whzch is assumed to have the value $\gamma=1$ In the subsequent analysis. The above form of R gives the correct value of r when $\{y\}, 3=\{1,1,1 \ldots\},\{y\}=\{t\},\{y\}=\{t 2\}$ For $\{y\}=\left\{t^{3}\right\}$, the value of r_{0} is in error* but all the other values are corrcet. Hence, if we write

$$
\begin{equation*}
\frac{1}{\bar{p}}=\delta R, \text { and } \overline{\mathrm{p}}=\frac{1}{\delta} \mathrm{R}^{-1} \tag{39}
\end{equation*}
$$

where R is defined above and R^{-1} is the inverse matrax, it follows from (38) that

$$
\begin{equation*}
\overline{\mathrm{p}}\{\mathrm{r}\}=\{\mathrm{y}\}, \tag{4,0}
\end{equation*}
$$

and $\bar{p}\{t\}=\{1,1 . .11\}$. Unfortunately, howover, when $\gamma=1$ is assumed in (38)

$$
\begin{equation*}
\bar{p}^{2}\{t\}=\left\{2, \frac{1}{4},-\frac{1}{12}, \frac{1}{12}, \ldots .\right\} \tag{41}
\end{equation*}
$$

anstead of zeros. However, it seems that if ropoated dufferentiation of r in (36) nevor leads to a funotion which is approximately constant over a period of time, the dafferential equation (36) oan bo represented in numerioal form provided $\bar{p} \equiv \frac{d}{d t}$ is of the form given by (38).

$$
\begin{aligned}
& \text { The matrix } \mathrm{R}^{-1} \text { correspondang to } R \text { as defined by (38) is }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ccccccc}
-1 & -1 & 1, & -1 & & \\
--\infty & -, & & 0 & 0 & & \\
12 r & 2 & & 6 & & &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { In } /
\end{aligned}
$$

* N.B. The error in r_{0} can be eliminated by taking more terms in the first row. Tho elements are the coefficients in the expansion of $\gamma(1-x)^{m}$.

In practice, however, it wculd perhaps be more conveniont to express R and R^{-1} as ratios. This cen readily be done, for premultiplication of R by $T\{1,-1,000 \ldots\}$ leads to a triangular matrix of simpler form with zero elements in the bottom left hand corner. The corresponding form for p, however, is not quite as simple as that given in (22).

5. Many degrees of freedom

Tho analysis of paragraphs 2 and 3 can bo extonded to include cases where many degrees of freedom are involved as would normally be the case in airoraft response and flutter research. For simplicity, let two degrees of freedom be assumed. The dymamical equations of motion for such a system oan be expressed in the form

$$
\begin{align*}
& \left(a_{11} p^{2}+b_{11} p+c_{11}\right) z+\left(a_{12} p^{2}+b_{12} p+c_{12}\right) \theta=F(t), \tag{42}\\
& \left(a_{21} p^{2}+b_{21} p+c_{21}\right) z+\left(a_{22} p^{2}+b_{22} p+o_{22}\right) \theta=G(t),
\end{align*}
$$

where z and 0 represent time dopendent variables and F and G represent external foroes or inputs.

In matrix notation (42) reduces to

$$
\begin{equation*}
\left(a p^{2}+b p+0\right) r(t)=\theta(t) \tag{43}
\end{equation*}
$$

where $r(t) \equiv\{z, \theta\}$, and $\theta(t) \equiv\{F, G\}$
Now lat it bo supposed that $z(t)$ and $O(t)$ have been measured in flight for partioular forms of $F(t)$ and $G(t)$. Then, if Δ represents the matrix operator corresponding to unit Δ inputs (or unit impulses) relations of the following form are valid for linoar systems.

$$
\begin{align*}
& \{z\}=\Delta_{11}\{F\}+\Delta_{12}\{G\} \tag{4}\\
& \{\theta\}=\Delta_{21}\{F\}+\Delta_{22}\{G\}
\end{align*}
$$

whero

$$
\Delta \equiv\left[\begin{array}{ll}
\Delta_{11} & \Delta_{12} \\
\Delta_{21} & \Delta_{22}
\end{array}\right]
$$

and Δ_{11} etc. are triangular sub-matrices corresponding in form to the operetors $A(d)$ or $\bar{M}(d)$ definod by (1) end (12) respectively. In a more concise form ($4+t$ is expressed as
and hence

$\{r\}$	$=\Delta\{\theta\}$,	$\ldots(45)$
$\{\theta\}$	$=\Delta^{-1}\{r\}$.	$\ldots(46)$

Equation (46) is the numerioal oquavalent of (43) and it oen be shown in this case that

$$
\{\theta\}=\left\{\Delta_{11} \Delta_{22}-\left.\Delta_{12} \Delta_{21}\right|^{-1}\left[\begin{array}{cc}
\Delta_{22}, & -\Delta_{12} \tag{47}\\
-\Delta_{21}, & \Delta_{11}
\end{array}\right]\{r\}\right.
$$

and that the following operators are approximately equivalent,

$$
a p^{2}+b p+c \equiv\left|\Delta_{11} \Delta_{22}-\Delta_{12} \Delta_{21}\right|^{-1}\left[\begin{array}{cc}
\Delta_{22} & -\Delta_{12} \\
-\Delta_{21} & \Delta_{11}
\end{array}\right] \quad \ldots(48)
$$

Extension of the above analysis is relatively straight forward.
Tho numerical work inorcases rapidly with the number of degrees of freedom and if the response over a long period were required, it would be almost prohibitive unless δ could be taken reasonably large. It may be, however, that the operator Δ can be represented as a ratio of two simpler matrices. This would probably be possiblo for the elements in each column of the sub-matrices satisfy oertain recurrence relations. If this were so, the numerical work would be reduced and the acouracy of the analysis improved (see paragraph 6).

6. Sumple Applioations

(i) Calculation of Response

In order to try out numericaliy the Tustin method and the alternative scheme suggested, the following equation for on undamped system was considered, nemely,

$$
\begin{equation*}
\left(p^{2}+\pi^{2}\right) r=e \tag{49}
\end{equation*}
$$

where $p \equiv-$ It can readily be established that the response
$d(\Delta)^{\prime}$ due to a Δ unit input is in this oase given by

$$
d(\Delta)=\left\{R_{1}, R_{2}-2 R_{1}, R_{3}-2 R_{2}+R_{1}, \ldots . R_{n}-2 R_{n-1}+R_{n-2}, \ldots\right\} \ldots(50)
$$

where
is samply

$$
R_{n} \equiv \frac{1}{\delta}\left(\begin{array}{cc}
n \delta & \operatorname{Sin} n \pi \delta \\
\overline{\pi^{2}} & -\bar{\pi}
\end{array}\right) \text {. The response due to a unit mpulse }
$$

$$
\begin{equation*}
d(t) \equiv \frac{\sin \pi t}{\pi} \tag{51}
\end{equation*}
$$

The response due to a goneral input $e(t)$ is then expressible in a form similar to (1), namely,

$$
\begin{equation*}
1 r=[T\{d(\Delta)\}] e \tag{52}
\end{equation*}
$$

or in the alternative form given by (12), namely,

$$
\begin{equation*}
I=\delta \bar{M}(d) \varepsilon \tag{53}
\end{equation*}
$$

where $\vec{M}(d)$ 妻is defined by (13) and (51). Approximate values of r
 response given by

$$
\begin{equation*}
\therefore \approx x r^{t}=\frac{1}{\pi} \int_{0}^{t} \sin \pi(t-\tau) e(\tau) d \tau \tag{54}
\end{equation*}
$$

in Figs. 4 and 5. Two cases are considered, namely,
(a) $\begin{array}{rlrlrl}e(t) & =\sin \pi t, & \ldots \ldots .0 \leqslant t \leqslant 1 \\ & =0 & & 0 \leqslant 1 \\ (b) \quad o(t) & =\sin \pi t, & \ldots . . & t \geqslant 0\end{array}$
$\} \ldots(55)$
for which the exiat solutions are

As far as the calculation of the response due to a pertzcular input is concerned, the altermative method suggestod in th2s note appears to give good agreement with the exaot values and to be slightly better then the Tustin method, but for all practioel purposes the latter scheme seems to be sufficiently accurate. It was also found thet the responses $d(\Delta)$ and $d(t)$ due to a Δ unit and a unit impulse respectively could be dotermined with reasonable accurscy from (52) and (53), when the exact values of $r(t)$ and $e(t)$ ware assumed, as show in Figs. 6 and 7. In flaght tests, both $e(t)$ and $r(t)$ would be measured and the problem would be to determine $d(\Delta)$ (or $d(t)$) so that the rosponse due to eny generel input oould be estimated. Slight errors in $r(t)$ and $e(t)$ might, however, lead to trouble duo to the form of the simultaneous equations which determine the sorial ordinates representing $d(\Delta)$. The expanded form of (52) is

$$
\begin{aligned}
& r_{1}=a_{1} e_{1} \\
& r_{2}=a_{2} \theta_{1}+d_{4} \theta_{2} \\
& r_{3}=d_{3} \theta_{1}+d_{2} \theta_{2}+a_{1} \theta_{3}
\end{aligned}
$$

and so on. so on.
and it is clear that an error in $d_{1}+$ for instance, would affect the value of d_{2} and all the other ordinates. When r and a are approxamately proportional, as might well be the casc, the above set of equations hecomes illmonditioned as $r-d_{1} e$ would tend to zero end the valuo obtained for d_{2}, for instance, would probably bo ineccurete. These troubles oould to some extent be evoidod if an input approximating closely to the form shown below could be applied in flight and the rosponse measured

$$
\begin{aligned}
x(t) & \left.=\frac{t}{\delta}, \ldots\right\rangle<t \leqslant \delta \\
& =1, \ldots t \geqslant \delta
\end{aligned}
$$

If $R(t)$ represents the response due to such an input, the repose due to a Δ input would be given by

$$
\begin{equation*}
d(\Delta)=R(t)-R(t-\delta), \tag{58}
\end{equation*}
$$

but even in this case $d(\Delta)$ would be given as a difference and would in the limit correspond to the slope of $R(t)$. By drawing smooth curves through the measured values of $R(t)$ before taking differences, one might, however, be able to get reasonably accurate values for $d(\Delta)$. It is thought, however, that the response at tine $t=n \delta, n \geqslant 2$, due to any transient input $e(t)$ such that $\int_{0}^{2 \delta} \theta(t) d t=\delta$ would oor"espond closely to the response due to a Δ unit. O In flight it may therefore be unnecessary to apply inputs of a pure Δ form to get a good estimate of the response due to a Δ unit input. If this reponse could be measured directly, the numerical difficulties arising from inversion would be avoided. The reliability of the results obtained could be checked by making use of the estimated $d(\Delta)$'s to calculate the measured response due to some more practical form of $e(t)$ which could be applied an flight. A possible form of input might be

$$
\begin{array}{rlr}
o(t) & =\frac{1-\cos \pi t}{2} \tag{c}\\
& =1 & \ldots \ldots, \\
& & 0<t \leqslant 1 \\
& & t \geqslant 1
\end{array}
$$

and for the simple system considered here the response to such an input is given to reasonable accuracy by the Tustin method (see Fig.4). The true response for this case is

$$
\begin{aligned}
& r(t)=\frac{1}{2 \pi}\left[\begin{array}{c}
1-\cos \pi t \\
-\cdots \\
-\cdots-\cdots \\
2
\end{array}\right], \ldots 0 \leqslant t \leqslant 1.0 \\
& =\frac{1}{\pi^{2}}-\frac{\sin \pi t}{4 \pi}, \ldots \ldots \ldots \quad t \geqslant 1.0
\end{aligned}
$$

(ii) Characteristic roots

In general the free motion of a system in any of its degrees of freedom on be represented in the form

$$
\begin{equation*}
d(t)=A_{1} e^{\lambda_{1} t}+A_{2} e^{\lambda_{2} t}+A_{3} e^{\lambda 3 t}+\ldots . . \tag{61}
\end{equation*}
$$

where λ_{1}, λ_{2}, otc, are the characteristic roots and A_{1}, A_{2}, ito. constants determined by the initial conditions. The corresponding serial form of solution is
$\left\{a_{n}\right\}=A_{1}\left\{x^{n}\right\}+A_{2}\{y\}+A_{3}\left\{z^{n}\right\}+\ldots$
where $x=e^{\lambda_{1} \delta}, y=e^{\lambda_{2} \delta}$ etc., and the curly brackets denote columns of the values for $n=1,2,3, \ldots$ etc. It follows from (62) that

$$
\begin{align*}
& x d_{n}-d_{n+1}=A_{2} y^{n}(x-y)+A_{3} z^{n}(x-y)+\text { etc. } \tag{63}\\
& y\left(x d_{n}-d_{n+1}\right)-\left(x d_{n+1}-d_{n+2}\right)=A_{3} z^{n}[y(x-y)-z]+\text { eto. } \\
& \text { and so on. }
\end{align*}
$$

Henoe, in general, when the number of roots is finite the ordinates d_{n} will be linearly related. When there are only two roots, for instance(63) gives

$$
\begin{equation*}
a_{n+2}-(x+y) d_{n+1}-x y a_{n}=0 \tag{64}
\end{equation*}
$$

It follows from this that if the serial numbers d_{n} satisfy a relation of the form

$$
\begin{equation*}
a_{0} d_{n+m}+a_{1} d_{n+m-1}+\ldots \quad a_{m} d_{n}=0 \tag{65}
\end{equation*}
$$

which has solutions $a_{n}=p^{n}$, then x, y, z, etce will be the roots of

$$
\begin{equation*}
a_{0} \rho^{m}+a_{1} \rho^{m-1} \cdots a_{m}=0 \tag{66}
\end{equation*}
$$

and since $x=e^{\lambda_{1} \delta}, y=\theta^{\lambda_{2} \delta}$, etc. the oharaoteristios roots λ_{1}, λ_{2}, etc. can be determined provided δ is sufficiently small. If some of the modes are highly demped, however, the order of (66) may be reduced since, in practice, δ would not be infinitesimal.

For the smple example considered $\delta=0.2$ was assumed, and It was found that the ordanates of $d(\Delta)$ gaven by (50) satisfied the relation

$$
\begin{equation*}
a_{n+2}-1.618 a_{n+1}+a_{n}=0 \tag{67}
\end{equation*}
$$

The roots of the corresponding characteristio equation

$$
\begin{equation*}
p^{2}-1.618 p+1=0 \tag{68}
\end{equation*}
$$

were found to be

$$
\begin{equation*}
\rho=0.8090 \pm 0.5878 i=e^{ \pm 0.2 \pi i} \tag{69}
\end{equation*}
$$

as was expected.

(iii) Dafferential Equation

When the differential equation defining the motion is known, as for instanoe in (49), it oen be represented in timo series form by substituting for p . By (22)

$$
\begin{equation*}
p=\frac{2}{8} \frac{T\{1,-1,000 \ldots\}}{T\{1,1000 \ldots . \ldots\}}, \tag{70}
\end{equation*}
$$

and on substitution (49) yields in serial form

$$
\left[\begin{array}{ll}
4 & T\{1,-2,1,00 \ldots\} \tag{71}\\
\delta^{2} & T\{1,2,100 \ldots\}
\end{array}+\pi^{2}\right]\{r\}=\{e\}
$$

where $\{r\}$ and $\{0\}$ represent colums of serial ordinates.
Premultaplication of both sides of (71) by $T\{1,2,1,000 \ldots\}$ leads to an equation of the form
which may be written

$$
\left.T\left\{\begin{array}{l}
4 \\
\left.\frac{-}{\delta^{2}}+\pi^{2},-\frac{8}{\delta^{2}}+2 \pi^{2}, \frac{4}{\delta^{2}}+\pi^{2}, 0,0,0 \ldots\right\}
\end{array}\right]\{x\}=\{0\}\right\}, \ldots(73)
$$

A typical equation of the set reprosented by (73) is

$$
\left(\frac{4}{\delta^{2}}+\pi^{2}\right) r_{n+2}-\left(\frac{8}{\delta^{2}}-2 \pi^{2}\right) r_{n+1}^{\prime}+\left(\frac{4}{\delta^{2}}+\pi^{2}\right) r_{n}=e_{n+2}^{\prime} \quad \ldots(74)
$$

ond, when $e_{n+2}^{1}=0$ is assumed and $r_{n}=\rho^{n}$ is substituted, (74) reduoes to the quadratio

$$
\begin{equation*}
\rho^{2}-\frac{8-2 \pi^{2} \delta^{2}}{4+\pi^{2} \delta^{2}} \rho+1=0 \tag{75}
\end{equation*}
$$

with the roots $\rho=0.8203 \pm 0.57191$ for $\delta=0.2$.
It will be noticod that the roots obtained differ fram the exact values given by (69). Sinoo the coefficient of ρ in (68) is $2 \cos \pi \delta$, for exact agreenent, the ration

$$
\begin{equation*}
\cos \pi \delta=\frac{4-\pi^{2} \delta^{2}}{4+\pi^{2} \delta^{2}} \tag{76}
\end{equation*}
$$

must be satisfied, and this is the case when $\delta \rightarrow 0$.
In praotice, however, the differential equation definang the motion of a linear system is usually unknown and one is faced with the problem of determining its characteristics from a knowledge of the reponses due to know inputs.: For the particulor example considered the ropponse and the input are reitatedinterms of Δ units $=$ by (1), and it is shown in Fig. 6 that the $d(\Delta)$ response due to unit Δ input oan be estimated with reasonable accuracy. If the oxact values of $d(\Delta)$ as given by (50) are substituted in $A(d)$ the resulting triangular matrix can be expressed fully in the form

$$
A(d)_{i}=/
$$

The inverse of the above matrix ${ }^{*}$ is
$[A(a)]^{-1}=[T\{153,-847,3323,-12180,44440,-162200,591000,-2155000$ etc. $\}]$
and the fact that the elements increase and alternate in sign should be noted. The numerioal equivalent of (49) is

$$
\begin{equation*}
[A(d)]^{-1}\{r\}=\{e\} \tag{79}
\end{equation*}
$$

whero $[A(d)]^{-1}$ is defined above. If θ is assumed to be zero after a finite time, say $e_{r}=0, r \geqslant 3$, then (79) yields the following set of equations

$$
\begin{align*}
& 3323 r_{1}-847 r_{2}+153 r_{3}=0 \\
& -12180 r_{1}+3323 r_{2}-847 r_{3}+153 r_{4}=0 \tag{80}\\
& 44440 r_{1}-12180 r_{2}+3323 r_{3}-847 r_{4}+153 r_{5}=0, \\
& \text { and so on. }
\end{align*}
$$

If /

* More signifioant figures were kept in the actual coloulations.

If $r=e^{\lambda t}$ is assumed and ρ is substituted for $e^{\lambda \delta}$, the above equations yield a set of polynomial equations whioh should lead to the characteristic equation of the system namely

$$
\begin{equation*}
\rho^{2}-1.618 \rho+1=0 \tag{81}
\end{equation*}
$$

It should be noted that the characteristic roots are not given directly by the polynomial form of (80). However, if' r_{1} and r_{2} are first elimmated the true recurrenoc relation is obtaned, namely

$$
\begin{equation*}
r_{3}-1.618 r_{4}+r_{5}=0 \tag{82}
\end{equation*}
$$

Similarly, the $n^{\text {th }}$ equation in (80) roduces after olimination to

$$
\begin{equation*}
r_{n}-1.618 r_{n+1}+r_{n+2}=0 \tag{83}
\end{equation*}
$$

It then follows that the oharacteristio roots would be given by (81).
Altermatively, (d) can be exprossed as a ratio of two simpler matrices and (81) oan be derived directly. It oan be shown that

$$
\begin{equation*}
A(d) \equiv 0.00654 \frac{[T\{1,3.921,1,0,0,0, \ldots\}]}{[T(1,-1.618,1,0,0,0 \ldots\}]} \tag{84}
\end{equation*}
$$

and that

$$
\begin{equation*}
\left.[A(d)]^{-1} \equiv 153 \frac{T}{T}\{1,-1,618,1,0,0,0, \ldots\}\right\} \tag{85}
\end{equation*}
$$

Whenthis expression is substituted for $[A(d)]^{-1}$ in (79) and the whole equation is premultiplied by the denomanator, the following equation is derived, namaly,
$T\{1,-1.618,1,0,0,0, \ldots\}\{r\}=0.00654 T\{1,3.921,1,0,0,0\},\left\{\begin{array}{c}\{0\} \\ \ldots(86)\end{array}\right.$
This equation leads directly to (81).

7. Concluding Remarks

The simple example considered reveals some of the difficulties which arise an the numerical analysis of the behaviour of a system and shows the advantages of using matrix notation. Before general conclusions can be drawn as to the advisabilaty of using thas teotnique in the study of aircraft stability, however, further work will have to be done. It is suggested that a detalled numerical study of the lateral stability of a particular airoraft be made where the stability derivatives are assumed to be known and where the responses due to assigned inputs could be oalculated. The inputs would be chosen to correspond to such as can be applied in practice and the calculated responses could be regarded as
corresponding to the responsos measured in flight. An attempt could then be made to determine the stability characteristios of the airoraft from a knowledge of the responses due to certain specified inputs as one would have to do in analysing flight test rosults. In this case, however, the true characteristios would be known and the accuracy of the method of serial reprosentation could be checked. Suitable data for such a oheck calculation are givon in Ref. 2.

REFERENCES

NO.	AUTHOR.	TITIE, etc.
1	A. Tustin	A method of analysing the behaviour of linear systems in terms of timo series. Vol. 94. Part 11A. No. 1, Journal of the Institution of Electrical Enganeers. 1947.
2	R. W. Gendy	The response of an aeroplane to the application of aileron and rudders. R. \& M. 1915.

JaM.
12.911 FiG 4

Response due to input $e(t)$ _

Response due to input $e(t)$

Response due to a \triangle unit input

Fig. 7.

Comparison of exact and estimated response due to unit impulse.

printed and published by his manesty's stationery office
To be purchased from
York House, Kingsway, london, w.c. 2429 Oxford Street, London, w 1
P.O. Box 569 , LONDON, S.e. 1
13a Castle Street, edingurgh, 2 I St. Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lade, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belfast or from any Bookselier
1951
Price 4s 6d net
PRINTED IN GEFAT MRITAIN

[^0]: Published by permission of the Director, National Physical Laboratory.

