

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

An Experimental Investigation of the Characteristics of an
Ogee Wing from $M=0.4$ to $M=1.8$
by
L. C. Squire
and
D. S. Capps

$$
\text { U.D.C. NO. 533.693.3:533.6.011. } 34 / 5: 533.6 .013 .412
$$

C.P. No. 585

August, 1959

AN EXPERTMENTAL INVESTIGATIUN OF TIR CILARACTERISTICS OF $A N O G E E$ WING FROM $M=0.4$ to $M=1.8$

by
I.O. Squire
and
D.S. Capps
\qquad

SUMMCIRY

Wind tunnel tests have been made in the $3 f^{t} t$ tunnel at R.A.E. Bedford to investigate the flow development and longitudinal statio stability of a slender ogee wing (aspect ratio 1.2) from $M=0.4$ to $M=1.82$. Throughout the Mach number range the flow separates from the leading edge at some positive inoidence and a pair of vortices lie above the ving. This leading edge separation oocurs at very low incidenoe at subsonio speeds but at supersonic speeds occurs at progressively higher incidences as the Mach number increases. The additional lift associated with the vortices is approximately independent of Mach number at subsonio speeds but at supersonio speeds the additional lift decreases with inorease in Mach number. The overall rearward shift in aerodynamic centre position and centre of pressure position between subsonio and supersonio speeds is 6% of the root chord

IIST OF CONTENIS

		Page
1	INTRODUCTION	4
2	FXPERTMENTAL DETAILS	4
	2.1 Details of the model	4
	2.2 Details of the tests	4
3	DISCUSSION OF THE RESUITS	5
	3.1 Lift and pitching moment	5
	3.2 Drag	8
4	CONCLITSIONS	10.
LIST OF SYMBOLS		10
LIST OF REPERENCES		11
TABLE 1		12
ILUUSTRATIONS - Figs.1-17		-
IETACH	HABIE ABSTRLCT CAPDS	-

TABIE
1 - Aerodynamic coefficients 12

IISTM OF IIIUSTRGIIGISFig.
Datails of the model 1
Variation of C_{L} with $\alpha: M=0.4$ to 1.0 2
Variation of C_{L} with $\alpha: M=1.25$ to 1.82 3
Variation of C_{m} with $G_{\mathrm{I}}: M=0.4$ to 1.0 4
Variation of C_{m} with $\mathrm{C}_{\mathrm{L}}: M=1.25$ to 1.82 5
Variation of C_{Φ} with Mach number at fixed incidence 6
Position of aerodynamic centre $\left(C_{I_{1}}=0.1\right)$ on root chord 7
Position of centre of pressure on root chord 8
Oil flow patterns at approximately 2° incidence 9
Oil flow patterns at approximately 4° incidence 10
Oil flow patterns at approximately 8° incidence 11

IIST OF ILLUSTRATTONS (Contd.)

Fig.
Vapour screen photographs at $M=1.61$ 12
Variation of C_{D} with $C_{I}: M=0.4$ to 1.0 13
Variation of C_{D} with $\mathrm{C}_{\mathrm{L}}: \mathrm{M}=1.32$ to 1.82 14
Variation of $C_{D_{0}}$ with Mach number 15
Variation of induced drag factor at $G_{I}=0.1$ with Mach number 16
Variation of induced drag factor with C_{L} 17

In connection with the design of slender wings for supersonic flight various considerations have IAd to studies of slender planforms with curved leading edges. However, these studies have been hampered by a lark of information on the movement of aerodynamic centre on these planforms Note gives results of wind tunnel tests on an ogee planform from $M=0.4$ to $M=1.8$. In addition to data on the aerodynamic centre movement the tests also provide information on the variation of drag due to lift with Mach number.

2 EXPERTMENTAL DETAILS

2.1 Details of the model

Details of the model are given in Fig. 1; basically it consisted of a slender wing of aspect ratio 1.2 mounted on a simple circular body. The wing sections normal to the stream were rhombic and the root section was of parabolic biconvex shape with a thickness chord ratio of 5%. The circular body was the full length of the wing (20 inches); over the rear half of the wing the body had a constant diameter of 1.6 inches. Tho front of the body was ogival in form.

The rear, parallel part of the model was made of steel and was bolted to a metal plate inside the wing, this metal plate was used to attach the model to the sting support. The rest of the model was made of glass-cloth and araldite cast onto the body and the intemal metal plate.

2.2 Details of the tosts

Tests were made in the speed range from $M=0.4$ to 1.82 in the transonic and supersonic working sections of the R.A.E., Beaford, 3 ft tunnel. All tests were made at zero sideslip.

Lift, pitching moment and drag were measured at Mach numbers of 0.4 , $0.7,0.8,0.85,0.9,0.94,0.98,1.00,1.02,1.04,1.06,1.08,1.10,1.15$, 1.20 and 1.25 through an incidence range from -2° to $+13^{\circ}$ in the transonic warking section, and at Mach numbers of $1.32,1.42,1.61$ and 1.82 through an incidence range from -2° to $+10^{\circ}$ in the suporsonic working section. In addition to these force tests a series of oil flow patterms were obtained at Mach numbers of 0.7 and 1.61 and a series of vapour screen photographs at $M=1.61$.

The force tests were made with transition fixed by moans of a band of distributed roughness 0.5 inch wide the whole length of the leading edge; this band began 0.125 inch back from the edge to ensure that the edge remained sharp. At subsonic and transonic speeds the roughness consisted of carborundum particles 0.003 inch high, whereas at supersonio speeds the particles were 0.007 inch high. Transition was not fixed in the flow visualisation tests since the main interest was in the flow noar the leading edge and the presence of roughness would have obscured the flow pattern in this region. Both force and flow visualisation tests werc made at a Reynolds number of 1.7×10^{6} based on acrodynamic mean chord.

The results of the force tests between $M=1.02$ and 1.20 are liable to wind tunnel interference due to the reflection of the model flow ficld by the tunnel walls; these results are not presented in this Note, but they have

[^0]been used to draw faired curves betreen results outside the region of interference.

Below $M=1.0$ the results may be liable to some wind tunnel interference, however, this is probably small at low incidence but may increase at the higher incidences. No detailed data is available on the actual magnitude of this interference on slender configurations but results on other models ${ }^{1}$ suggest that at the maximum incidence the true lift coefficients may be about 2% higher than the quoted values. In adaition, near $M=1.0$ the quoted Mach number may be about 0.005 higher than the true Mach number.

Apart from this wind tunnel interference it is estimated that 95% of the results have accuracies within the following linits:-

$$
\begin{aligned}
C_{L}= & \pm 0.003 \\
C_{\mathrm{m}}= & \pm 0.0005 \\
\mathrm{C}_{\mathrm{D}}= & \pm 0.0004 \text { at } \mathrm{C}_{\mathrm{L}}=0 \\
& \pm 0.001 \text { at } \mathrm{C}_{\mathrm{L}}=0.3 \\
\alpha= & \pm 0.05
\end{aligned}
$$

The drag results have been corrected to a base pressure equal to free stream static pressure and the pitching moments are referred to the mean quarter chord point.

The force results, except those in the Mach number range from $\mathbb{M}=1.02$ to 1.20, are tabulated in Table 1.

3 DISCUSSION OF RESULTS

3.1 Lift and pitching moment

The variation of C_{L} with α, and of C_{m} with C_{L}, is presented in Figs. 2 to 5. The variation of C_{L} with Mach number at fixed incidence is given in Fig. 6 and the movenents of aerodynamic centre and centre of pressure position with Mach number in Figs. 7 and 8. The outstanding feature of the lift and pitching moment curves (Figs.2-5) is the marked non-linearity of the lift curves (particularly at subsonic speeds) compared with the almost linear character of the pitching moment curves.

Considering the lift curves in more detail, it will be seen that at subsonic speeds the non-linear increase in lift associated with leading odge separation and rolled up vortex sheets is apnarent from very low incidence. This increase in lift is illustrated at $M=1.0$ by comparing the experimental lift with slender wing theory $G=\frac{\pi}{2} \alpha$ (radians), (Fig.2). At low incidence the lift is just above the slender wing value but at 10° the measured lift coefficient is 0.454 compared with the slender value of 0.330 .

For slender delta wings Mangler and Smith ${ }^{2}$ have shown that the additional lift due to the vortices, is approximately $4 \alpha^{2}$ (α in radians). Various other simpler theories $3,4,5,6,7$ lead to non-linear lift of the form $k \alpha 5 / 3$, where the coefficient k varies from 3.3 to 7.2 in the different theories for the present wing*.

[^1]When $4 \alpha^{2}$ was added to the slender wing lift fairly good agreement with the measured lift was obtained at $M=1.0$ (see Fig. 6). Below $M=1.0$ the lift at a given incidence decreases with decrease in Mach number: the decrease is similar to that given by linear theory for a delta wing of the same aspect ratio i.e. the delta formed by joining the apex to the wing
tips. This lift is plotted in Fig. 6 when it is labelled $\left(\frac{\vec{C}_{I}}{\partial \alpha}\right)_{\Delta}$ a. Also plotted in Fig. 6 is the linear Iift plus $4 \alpha^{2}$. In general this theoretical lift is in fair agreement with experiment, although the experimental lift is lower than the theoretical values at $M=0.4$. such better agreement with experiment is obtained if the $a 5 / 3$ form of non-linear lift is used with a ocefficient of 2. This non-linear lift has also been added to the linear lift and plotted in Fig.6, and the agreement is now very good throughout the incidence range at Mach numbers below 1.0. At $M=0.4$, for example, the measured lift is about 1% below $\left(\frac{\partial \overline{\mathrm{C}}_{\mathrm{L}}}{\partial \alpha}\right)_{\Delta} \alpha+2 \alpha^{5 / 3}$ for all incidences, and at $M=0.7$ the measured lift is in exact agreement. Above $M=0.7$ the measured lift is slightly higher than $\left(\frac{\partial \bar{C}_{I}}{\partial \alpha}\right)_{\Delta} a+2 \alpha^{5 / 3}$ throughout the incidence range except at $M=0.98$ and 1.00 where the measured lift falls orf at the higher incidences, possibly due to the interaction of shock waves with the vortices,

These results show that on this wing the non-linear lift associated with the leading edge separations is almost independent of Mach number below $M=1.0$. An analysis of results between $M=1.0$ and $M=1.2$ showed that the non-linear lift remained of the same form and magnitude throughout this speed range, but began to decrease thereafter.

In Figs. $9-11$ nil flow patterns at $\mathrm{M}=0.7$ and $\mathrm{M}=1.61$ are compared at approximately the same incidence. The oil flow patterms at $M=0.70$ confirm that there are large leading edge separations on this wing at subsonio spe eds even at low incidence. For example at 2° invidence at $M=0.7$ (Fig.9) the oil patterns show the typical streamline pattern of a leading edge separation with a rolled up vortex sheet. The attachnent line, that is the dividing line between the streamwise flow inboard and the outward spanwise flow near the leading edge, follows the leading edge shape and is at approximately 90% of the local span along the whole leading edge. Outboard of the at wachment line the oil streamlines run together into a thick oil line just inboard of the leading edge; this running together of the streamlines indicateg that a secondary separation is taking place under the rolled up vortex sheet ${ }^{8}$. At 4° incidence (Fig. 10) both the attachment and secondary separation lines have moved inboard and their shapes tend to follow the curve of the leading edge. The oil lines outboard of the secondary separation line are consistent with a second vortex lying along the leading edge under the main vortex sheet and rotating in the opposite direction. In general the flow pattern at 8° incidence (Fig. 11) is similar to that at 4°; the attachment and separation lines are further inboard but still follow the shape of the leading edge. Outboard of the separation the flow pattern almost cortainly indicates a secondary vortex, in porticular close to the leading edge, at about $1 / 3$ of the chord from the nose, the oil lines near the leading edge flow towards the edge, whereas just a little further inboard the flow direction is more streamwise. This patterm would tend to indinate a second attachment line with the flow inboard of this line flowing into the separated region of the main vortex.

Turning now to the lift at supersonic speeds there are two main differences from subsonic speeds, first there appears to be a region of linear lift ourve near zero incidence, the extent of this region of linear
lift increasing with Mach number, and secondly when the non-linear lift is apparent it is less than at subsonic speeds. These trends are shown in both Figs. 3 and 6. At $M=1.8$ for example the lift curve appears linear up to 4° incidence and at 10° incidence the increment in non-linear lift is only 0.020 in C_{I}. At $M=1.0$ the non-linear lift increment at 10° is 0.124 . It should be noted that at $M=1.82$ the slope of the linear lift is about 15% higher than that of the corresponding delta and in fact agrees with the slope given by slender body theory. The region of linear lift near zero incidence can be explained by the results analysed in Reference 9. Here it was shown that on a swept edge at supersonic speeds the flow did not separate from the edge until some positive incidence when the Mach number normal to edge was greater than about 0.6. In fact 4° at $\mathbb{N}=1.8$ lies just above the boundary for attached flow if the wing leading edge sweep is taken as that of the delta of the same aspect ratio. The absence of leading edge separations at low incidence is confirmed by the oil flow photographs at $M=1.61$ of Figs.9-11. At 2° incidence, Fig.9, the oil flow pattern does not have the charaoteristic pattern of a leading edge vortex (see $M=0.7$ in the same figure); instead the oil shows a number of streamwise streaks, between which the oil flows almost parallel to the leading edge. Similar patterns have been found and investigated in the flow over some 65° delta wings ${ }^{10}$ where it was found that these streamwise streaks are associated with small vortices, probably within the boundary layer, which lie along the wing in the stream direction. These vortices did not appear to produce any nonlinear lift. At 4° incidence there is an attachment line along the leading edge, in about the same position at both Mach numbers. Over the front part of the wing the oil patterns at these two Mach numbers are very similar. Over the rear portion of the wing marked differences occur. At $M=0.7$ the oil outboard of the vortex is very well defined wi th clear streamlines under the vortex and a large amount of oil at the separation line, at $M=1.6$ on the other hand the oil has not really moved outboard of the attachment line. This lack of oil movement is due to a shortage of running time; in fact at 8° incidence a similar pattern was first obtained and the pattern shown in Fig. 11 required at least 3 times the usual running time to fully develop. This increase in running time is much greater than could be attributed to changes in oil mixture or model temperature, thus it would appear that at $M=1.6$ the vortex is either weaker, or further from the surface, than at $M=0.7$. However, photographs of the vapour screen 1 inch ahead of the trailing edge (Fig.12) show that the separated sheet is close to the wing surface. Thus, taken in conjunction with the loss of non-linear lift between $M=0.7$ and 1.6, it would appear that there is a weaker vortex under the separation at $M=1.6$ than at $M=0.7$.

At 8° incidence the oil flow patterns at $\mathbb{M}=0.7$ and 1.6 both reveal a large vortex above the wing inboard of the leading edge, however, there are significant differences in the two flow patterns. At $M=1.6$ the attachment line is further inboard and appoars straighter than at 0.7 , and the area of cross flow between the attachment line and the secondary separation is greater at the higher Mach number. The secondary separation at 1.6 is also slightly further from the leading edge than at $M=0.7$. Under the vortex the oil streamlines at $M=1.61$ do not have such a marked inflection point as at $M=0.70$; however, without detailed caloulations of flow directions the oil flow pattern does not reveal any obvious reasons for the lower non-linear lif't at $M=1.61$.

Turning now to the moment rosults it will be seen that in general the ourves are much more linear than the lift curves. At $M=0.4$ there is a very slight decrease in stability with increase in C_{I}, this decrease is, however, quite small and corresponds to a forward shif t of about $\frac{1}{2} \%$ of root chord in the centre of pressure position between $C_{I}=0.1$ and 0.5 , the change in aerodynamic centre position is about $1.5 \% c_{0}$ between the same values of C_{I}. At $M=0.7$ and 0.8 the aerodynamic contre is constant (within the accuracy of the results) throughout the lif't range up to $C_{L}=0.6$. At $M=0.85$ and 0.90
the aerodynamin centre is again constant up to $\mathrm{C}_{\mathrm{L}}=0.3$ but above this C_{L} there is a steady increase in stability, for example at $M=0.9$ the aerodynamis sentre moves bank by $Z_{\%} c_{0}$ with increase of G_{I} from $\mathrm{C}_{\mathrm{L}}=0.3$ to $C_{I}=0.5$. At $M=0.94$ and 0.98 there is a region of reduced stability near zero incidence, at $M=0.94$ for examle, the aerazynamic centre at $C_{I}=0$ is at about 64% of the root chord compared with 66.7% at $C_{L}=0.1$. Above $C_{L}=0.1$ the stability again increases at $M=0.94$, a.s at 0.90 . Above $M=1.0$, up to $M=1.8$, the pitohing moment curves vary linearly with lift and there are no significant changes in aerodynamic sentre or centre of pressure position.

The total movements of aerodynamic centre and centre of pressure, at various GL's, with Mach number are summarised in the curvos of Figs. 7 and 3. In Fig. 7 is also plotted the linear theory (attached flow) aerodynamic sentre position for a delta wing of the same aspect ratio. It will be seen that although the experimental position of the aerodynamic centre does not agree with the ory the agreement of variation with Maoh number is remarkably good; the experimental position is about 3 behind the theoretical position throughnut the specd range. It is interesting to note that the centre of area of the ogee is at 68.3% of the ront chord, as compared with $66.66,5$ for the delta. Thus the difference between the experimental curve for tho ogee and the theoretical curve for the delta is about twice the difference or the centre of area of the two planforms. Finally, it should be noted that the aerodynamic centre for the ogee as riven by siender body theory (attached flow) is at 64.8% of the root chord.

In the discussion of these resultis it should be noted that the wing tips were very flexible; the wing defleoting in such a manner as to reduce the loading at the trailing edge (the antual bending can be seen in the vapour soreen photograpls of Fig. 12). Thus the aerodynamio centre of a rigid model would be further aft. Only one test was made to investigate this effect; at $M=1.3$ the force tests were repeated at half the Reynolds number. The results at the low Reynolds number gave an aerodynanic centre position which was only a $\frac{15 \%}{4}$ of c_{0} behind the high Reynolds number position. Thus at $M=1.3$ the rigid model uerodynamic centre may be about 0.5% behind the quoted results. Since the highest model wing loading ${ }^{* * *}$ (for given incidence) occurred near $M=1.5$ in this test series this shift of 0.5% is probably the maximum correction required throughout the speod range.

3.2 Drag

The variation of C_{D} with C_{I} is presented in Figs. 13 and 14; the mily point of interest in these curves is the dip in the drag curve near zero incidence. This drop in drag at low lift has been noted in other tests and is believed to be due to a region of laminar flow which occurs only at low lift, (suggesting that at low inoidence the roughness was not completely fixing transistion). When the drag noefficient was plottod against $\mathrm{C}_{\mathrm{L}}{ }^{2}$ i.t was found that the drag corresponding to incidences of 2° to about 6°

[^2]varied almost linearly with $\mathrm{C}_{\mathrm{L}}{ }^{2}$; this linear variation has been used to extrapolate to $C_{L}{ }^{2}=0$ in order to obtain a $\left(C_{D_{0}}\right)_{T}$ which is believed to be a fair value for a turbulent boundary layer at the test Reynolds number. The resultant values of $\left(C_{D_{O}}\right)_{T}$ are plotted in Fiz. 15(a). At $M=0.4$ the drag is close to the estimated skin-friction drag of the wing. With inorease in speed the drag coefficient remains alnost constant, in spite of a decrease in the skin-friction ostimate, until $M=0.95$ when it starts to increase reaching 0.0117 at $M=1.0$. Above this Nach number the results are subject to severe wind tunnel interference effects and are not prosented until the region of interference is past. At $M=1.3$ the value of $\left(C_{D_{0}}\right)_{T}$
is 0.0120 and above this Mach number it decreasos steadily to 0.0101 at if =1.8. Subtracting the estimated skin-friction drag the wave drag coefficiont is 0.0042 at $M=1.3$ and 0.0030 at $M=1.8$. These values of the wave drag are compared in Fig. 15(b) with the wave drag calculated by slender wing the ory for the wing alone and for the wing plus body". It will be seen that the measured drag is approximately 20% higminer than the wing plus body theory values at $M=1.3$ and 1.4 and 10% higher at $M=1.8$. The reasons for this discrevancy are not fully understood; it should be pointed out, however, that the experimental results would be brought into excellent agrecment with theory if the estimates of skin-friction drag were increased by 7%. The present ostimato has been nbtained from flat plate skin-friction drag; the Reynolds number was based on the wing mean chord and the wetted area was the actual wing surface area ($2.12 \times$ wing area) . Previous results 12 have, however, suggested that this method may slightly overestimate the skin-friction drag and so the discrepancy may be greater than the rosults quoted above. More detailed investigation of this point raust therefore be deferred until more reliable estimates of skin-friction drag are available

The drag due to lift results are plotted in Figs. 16 and 17. Fig. 16 shows the variation of $\pi A\left\{C_{D}-\left(C_{D_{O}}\right)_{T}\right\} / C_{I}{ }^{2}$ and $\pi A \alpha / C_{I}$ with Mach number at $C_{L}=0.1$. Also plotted on this firure is the elliotic loading value of drag due to lift, 1.0, at subsonic specds and the R.T. Jones lover bound, $1+2\left(\beta \mathrm{Sm}_{\mathrm{p}} / \mathrm{c}_{0}\right)^{2}$ at supersonio spe eds. Thrnughout the Nach number range the values of $\left.\pi A\} C_{D}-\left(C_{D_{O}}\right)_{T}\right\} / C_{L}^{2}$ lie below the experimental no leading edge suction values, $\pi A A / C_{L}$. At subsonic speeds the actual amount below is about 33% of the difference between $\pi_{A} \alpha / G_{\mathrm{L}}$ and the theoretical minimum; at supersonic speeds $\pi A\left\{C_{D}-\left(C_{D_{O}}\right)_{T}\right\} / C_{I}{ }^{2}$ moves closer to $\pi A \alpha / C_{I}$, but even at $M=1.8$ it is still about 26% of the difference below $\pi_{A} a / \sigma_{L}$.

At supersonic speeds the values of $\pi_{A}\left(C_{D}-C_{D_{0}}\right) / C_{L}{ }^{2}$ are in olose agreement with values for delta wings of the same slenderness parameter as tested by Ormerod and Sprirks in the 8 ft tunnel at Bedford.

The variation of $\pi_{A} \alpha / C_{L}$ and $\pi_{A}\left\{C_{D}-\left(C_{D_{O}}\right)_{T}\right\} / C_{L}{ }^{2}$ with C_{I} at four representative Mach numbers are plotted in Fig. 17. These plots shor the decrease in the drag-due-to lift factor with increase in C_{L}, due to the non-linear lift of the vortices and also show that some leading edge thrust is achieved throughout the C_{L} range.

[^3]
4 CONCLUSIONS

Tests have been made throughout the Mach number range from ii $=0.4$ to $M=1.82 \mathrm{on}$ a slender ogee wing to investigate the flow dovelopment and the longitudinal static stability.

The results show that at all speeds the flow separates from the leading edge at some positive incidencos to form a pair of vortices abrve the wing. At subsonis speeds this soparation ocours at very low invidence and the non-linear lift assnciated with the separated flow is almost independent of Mach number; at supersonic speeds the soparations start to occur at progressively higher incidences with increase in Mach number and the nonlinear lift drops off rapidly.

At $M=0.4$ there is a slight decrease in stability with increase in lift, but this decrease is not present at higher Mach numbers. The overall shift in aerodynamic centre between $M=0.4$ and $M=1.8$ is about 6% of the root chord; most of this shift occurs below in $=1.0$.

The zero lift wave drag of the model is higher than the theoretical value, but this may be due to the methods used to calculate the skin-friction drag. The drag due to lift is similar in magnitude to that obtained on a delta wing of the same aspect ratic.

IIST OF SYMBOLS

A	aspect ratio
$\overline{\mathrm{c}}$	aerodynamic mean chord
0_{0}	root chord
C_{L}	lift coefficient $=$ lift/qS
C_{m}	pitching moment coefficient $=$ moment $/ q \overline{\bar{c}} \mathrm{~S}$ (noment about $\overline{\bar{c}} / 4$)
C_{D}	drag onefficient $=D / Q S$
$\left(C_{D_{0}}\right)_{T T}$	drag coefficient at zero lift with turbulent boundary layer
M	Mach number
q	free stream dynamic pressure
S	wing area
S_{T}	wing semi-span
α	wing incidence

ITST OF REFEREITCES

Ref. No.	Author	Title, eto.
1	O'Hara, F. Squire, L.O. Haines, A.B.	An investigation of interference effects on similar models of different size in varinus transonic tunnels in the U.K. A.R.O. 21,094. Pebruary, 1959.
2	Mangler, K. N. Smith, J. $\mathrm{H} . \mathrm{B}$.	Calculation of the flow past slender delta wings with leading edge separations. Proc.Roy.Soc. Series A. Vol 251, pp.200m217, 1959.
3	Legendre, R.	Écoulenent au voisinage de la pointe avant d'une aile a fate flèrhe aux incidences moyennes. La Recherche Aeronautique No. 30, 1952, Nos. 31 and 35. A.R.C.16,796. 1953. Translation in
4	Adans, Mac.C.	Leading edge separations from delta wings at supersonic speeds. Journal Aero Sciences Vol. 20, p.430, 1953.
5	Edwards, R.H.	Leading edge separations from delta wings. Jour. Aero Sciences, Vol.21, p. 134, 1954.
6	Brom, C.E. Michael, W.H.	Effect of leading edge separations on the lift of a delta wing. Jour. Aero Sciences, Vol.21, p.690, 1954.
7	Brown, C.E. Michael, W.H.	On slender delta wings with leading edge separations. NACA. Tech. Note No. 3430. April, 1955.
8	Maskell, E.C.	Flow separations in three dimensions. A.R.C.18063. November, 1955.
9	Stanbrook, A. Squire, L.C.	Possible types of flow at swept leading edges. A.R.C. 21,464. April, 1959.
10	Squire, I.C. Jones, J.G. Stanbrook, A.	An experimental investigation of the characteristics of some plane and cambered 65° delta wings at Mach numbers from 0.7 to 2.0 . A.R.C. 23,110 . July, 1961.
11	Lighthill, M.J.	The wave drag at zero lift of slender delta wings and similar configurations. Jour. Fluid Meohanios, Vol.1, p.337, 1956.
12	Squire, L.C.	An experimental investigation at supersonic speeds of the characteristics of two gothic wings; one plane and one cambered. $\text { A, R, C. A \& K. 3211, May, } 1959$

TABIE 1

Aerodynomic coefficients

M	α	$\mathrm{c}_{\text {L }}$	C_{m}	${ }^{\text {c }}$
0.4	-1.99	-0.051	+0.0069	+0.0104
	-1.02	-0.021	+0.0016	+0.0091
	-0	+0.006	-0.0029	+0.0079
	+1.02	+0.033	-0.0067	+0.0094
	+2.04	+0.06	-0.0132	+0.0112
	+3.07	+0. 101	-0.0189	+0.0139
	+4. 10	$+0.141$	-0.0265	+0.0184
	+5.13	+0.180	-0.0330	$+0.0240$
	+6.16	$+0.220$	-0.0399	+0.0310
	+7.19	+0.262	-0.0465	+0.0398
	+8.22	$+0.307$	-0.0537	+0.0505
	+9.26	+0.353	-0.0610	+0.0630
	+10.30	+0.401	-0.0688	+0.0778
	+11.34	+0.449	-0.0768	+0.0941
	+12.38	+0.496	-0.0838	+0.1123
	+13.42	+0.548	-0.0919	+0.1331
0.7	-1.97	-0.054	+0.0084	+0.0105
	-1.03	-0.022	$+0.0023$	+0.0089
	+0	+0.005	-0.0021	+0.0074
	+1.04	+0.035	-0.0070	+0.0090
	+2.08	+0.068	-0.0129	+0.0109
	+3.12	+0.105	-0.0201	+0.0138
	+4.16	+0.147	-0.0280	+0.0185
	+5.21	+0.190	-0.0362	+0.0247
	+6.27	+0.233	-0.0437	+0.0327
	+7.32	+0.277	-0.0519	+0.0420
	+8.38	+0.326	-0.0605	+0.0537
	+9.43	+0.373	-0.0690	+0.0672
	+10.50	+0.423	-0.0779	+0.0829
	+11.55	+0.4.69	-0.0859	+0.0998
	+12.62	+0.522	-0.0955	$+0.1201$
	+13.68	+0.569	-0.1039	+0.1411
0.8	-1.98	-0.059	+0.0100	+0.0105
	-1.04	-0.025	+0.0033	+0.0088
	+0	+0.003	-0.0012	+0.0073
	+1.04	+0.033	-0.0064	+0.0091
	+2.09	+0.071	-0.0140	+0.0112
	+3.13	+0.107	-0.0212	+0.0140
	+4.18	+0.151	-0.0294	+0.0188
	+5.24	+0.195	-0.0378	+0.0254
	+6.30	+0.241	-0.0464	$+0.0335$
	+7.35	+0.286	-0.0555	$+0.0432$
	+8.42	+0.337	-0.0654	+0.0557
	+9.48	+0.387	-0.0748	+0.0698
	+10.55	+0.438	-0.0852	+0.0862
	+11.62	+0.490	-0.0955	+0.1050
	+12.68	$+0.541$	-0.1056	+0.1255
	+13.75	$+0.594$	-0.1162	+0.1488

TABIE 1 (Conta)

M		α	0	

TABTE 1 (Conta.)

M	α	$\mathrm{C}_{\text {L }}$	C_{m}	${ }^{\text {C }}$ D
1.00	$\begin{aligned} & -1.98 \\ & -1.04 \\ & -0 \\ & +1.04 \\ & +2.09 \\ & +3.14 \\ & -4.19 \\ & +5.24 \\ & +6.30 \\ & +7.36 \\ & +8.42 \\ & +9.48 \\ & +10.54 \\ & +11.60 \\ & +12.66 \\ & +13.72 \end{aligned}$	$\begin{aligned} & -0.071 \\ & -0.033 \\ & +0.004 \\ & +0.039 \\ & +0.080 \\ & +0.125 \\ & +0.172 \\ & +0.220 \\ & +0.273 \\ & +0.325 \\ & +0.377 \\ & +0.428 \\ & +0.480 \\ & +0.529 \\ & +0.578 \\ & +0.626 \end{aligned}$	$\begin{aligned} & +0.0169 \\ & +0.0071 \\ & -0.0027 \\ & -0.0100 \\ & -0.0200 \\ & -0.0309 \\ & -0.0434 \\ & -0.0557 \\ & -0.0691 \\ & -0.0827 \\ & -0.0963 \\ & -0.1092 \\ & -0.1231 \\ & -0.1357 \\ & -0.1481 \\ & -0.1604 \end{aligned}$	$\begin{aligned} & +0.0134 \\ & +0.0122 \\ & +0.102 \\ & +0.0121 \\ & +0.01144 \\ & +0.0178 \\ & +0.0235 \\ & +0.0308 \\ & +0.0400 \\ & +0.0519 \\ & +0.0649 \\ & +0.0804 \\ & +0.0987 \\ & +0.1174 \\ & +0.1383 \\ & +0.1612 \end{aligned}$
1.25	$\begin{array}{r} -1.97 \\ -1.04 \\ +0.01 \\ +1.05 \\ +2.09 \\ +3.13 \\ +4.19 \\ +5.23 \\ +6.29 \\ +7.34 \\ +8.40 \\ +9.45 \\ +10.51 \\ +11.56 \\ +12.62 \\ +13.68 \end{array}$	$\begin{aligned} & -0.067 \\ & -0.031 \\ & +0.002 \\ & +0.036 \\ & +0.075 \\ & +0.114 \\ & +0.157 \\ & +0.200 \\ & +0.245 \\ & +0.288 \\ & +0.332 \\ & +0.379 \\ & +0.421 \\ & +0.463 \\ & +0.505 \\ & +0.546 \end{aligned}$	+0.0182 +0.0083 -0.0090 -0.0194 -0.0298 -0.0412 -0.0529 -0.0645 -0.0762 -0.0875 -0.1002 -0.1113 -0.1218 -0.1328 -0.1437	
1.32	$\begin{aligned} & -2.08 \\ & -1.03 \\ & +0.01 \\ & +1.05 \\ & +2.09 \\ & +3.14 \\ & +4.18 \\ & +5.23 \\ & +6.28 \\ & +7.34 \\ & +8.39 \\ & +9.44 \\ & +10.50 \end{aligned}$	$\begin{aligned} & -0.075 \\ & -0.037 \\ & -0.005 \\ & +0.034 \\ & +0.064 \\ & +0.104 \\ & +0.146 \\ & +0.188 \\ & +0.230 \\ & +0.273 \\ & +0.316 \\ & +0.358 \\ & +0.401 \end{aligned}$		+0.0142 +0.0123 +0.0118 +0.0126 +0.0141 +0.169 +0.0214 +0.0276 +0.0352 +0.0447 +0.0558 +0.0686 +0.0829

TABLE 1 (Conta.)

IN	α	$\mathrm{C}_{\text {I }}$	C_{m}	${ }^{\text {c }}$
1.42	$\begin{array}{r} -2.07 \\ -1.03 \\ +0.01 \\ +1.05 \\ +2.09 \\ +3.13 \\ +4.18 \\ +5.23 \\ +6.28 \\ +7.33 \\ +8.38 \\ +9.43 \\ +10.48 \end{array}$	$\begin{aligned} & -0.066 \\ & -0.031 \\ & +0.003 \\ & +0.036 \\ & +0.071 \\ & +0.109 \\ & +0.149 \\ & +0.189 \\ & +0.230 \\ & +0.270 \\ & +0.311 \\ & +0.352 \\ & +0.390 \end{aligned}$	$\begin{aligned} & +0.0182 \\ & +0.0087 \\ & -0.0089 \\ & -0.0181 \\ & -0.0283 \\ & -0.0389 \\ & -0.0498 \\ & -0.0606 \\ & -0.0713 \\ & -0.0821 \\ & -0.0930 \\ & -0.1030 \end{aligned}$	$\begin{aligned} & +0.0136 \\ & +0.0120 \\ & +0.0113 \\ & +0.0124 \\ & +0.0139 \\ & +0.0168 \\ & +0.0214 \\ & +0.0273 \\ & +0.0348 \\ & +0.0441 \\ & +0.0547 \\ & +0.0670 \\ & +0.0805 \end{aligned}$
1.61	$\begin{aligned} & -2.07 \\ & -1.03 \\ & +0.01 \\ & +1.04 \\ & +2.03 \\ & +3.13 \\ & +4.17 \\ & +5.21 \\ & +6.26 \\ & +7.31 \\ & +8.36 \\ & +9.40 \\ & +10.45 \end{aligned}$	$\begin{aligned} & -0.053 \\ & -0.022 \\ & +0.010 \\ & +0.041 \\ & +0.074 \\ & +0.109 \\ & +0.144 \\ & +0.181 \\ & +0.217 \\ & +0.254 \\ & +0.290 \\ & +0.325 \\ & +0.360 \end{aligned}$	$\begin{aligned} & +0.0130 \\ & +0.0050 \\ & -0.0036 \\ & -0.0117 \\ & -0.0207 \\ & -0.0300 \\ & -0.0395 \\ & -0.0491 \\ & -0.0586 \\ & -0.0682 \\ & -0.0778 \\ & -0.0871 \\ & -0.0957 \end{aligned}$	$\begin{aligned} & +0.0124 \\ & +0.0107 \\ & +0.0103 \\ & +0.0114 \\ & +0.0134 \\ & +0.0163 \\ & +0.0205 \\ & +0.0261 \\ & +0.0330 \\ & +0.0416 \\ & +0.0515 \\ & +0.0625 \\ & +0.0747 \end{aligned}$
1.82	$\begin{aligned} & -2.07 \\ & -1.04 \\ & +1.04 \\ & +2.07 \\ & +3.11 \\ & +4.15 \\ & +5.20 \\ & +6.24 \\ & +7.28 \\ & +8.32 \\ & +9.37 \\ & +10.41 \end{aligned}$	$\begin{aligned} & -0.058 \\ & -0.029 \\ & +0.002 \\ & +0.031 \\ & +0.061 \\ & +0.093 \\ & +0.126 \\ & +0.160 \\ & +0.193 \\ & +0.226 \\ & +0.258 \\ & +0.291 \\ & +0.323 \end{aligned}$	$\begin{aligned} & +0.0149 \\ & +0.0071 \\ & -0.0011 \\ & -0.0082 \\ & -0.0162 \\ & -0.0246 \\ & -0.0336 \\ & -0.0425 \\ & -0.0509 \\ & -0.0595 \\ & -0.0676 \\ & -0.0759 \\ & -0.0842 \end{aligned}$	$\begin{aligned} & +0.0116 \\ & +0.0095 \\ & +0.0088 \\ & +0.0100 \\ & +0.0121 \\ & +0.0148 \\ & +0.0187 \\ & +0.0239 \\ & +0.0301 \\ & +0.0377 \\ & +0.0464 \\ & +0.0565 \\ & +0.0679 \end{aligned}$

FIG.I. DETAILS OF THE MODEL.

FIG.2. VARIATION OF C_{L} WITH α :
$M=0.4$ TO $M=1.00$.

FIG. 3. VARIATION OF C_{L} WITH α : $M=1.25$ TO $M=1.82$.

FIG.4. VARIATION OF C_{m} WITH C_{L} : $M=0.4$ TO $M=1 \cdot 00$.

FIG. 5. VARIATION OF C_{m} WITH C_{L} : $M=1 \cdot 25$ TO $M=1 \cdot 82$.

FIG. 6. VARIATION OF CL WITH MACH NUMBER
AT CONSTANT INCIDENCE.

FIG.7. POSITION OF AERODYNAMIC CENTRE
($C_{L}=0.1$) ON ROOT CHORD.

$M=1.61$

$$
M=1.61
$$

$M=1.61$

$M=0.7$
FIG.I1. OIL FLOW PATTERNS AT APPROXIMATELY 8° INCIDENCE

FIG. 14. VARIATION OF C_{D} WITH C_{L} : $M=1.32$ TO $M=1.82$.

FIG. 16. VARIATION OF INDUCED DRAG FACTOR $\left(C_{L}=0.1\right)$ WITH MACH NUMBER.

(b) wave drag

FIG. I5. VARIATION OF ZERO LIFT DRAG WITH
MACH NUMBER.

FIG. 16. VARIATION OF INDUCED DRAG FACTOR ($C_{L}=0.1$) WITH MACH NUMBER.

FIG.17. VARIATION OF INDUCED DRAG FACTOR WITH C_{L}.

533.593.3:

533.6.011.34/5: 533.6.013.412
A. P.C.C.Po NO. 585

AI EXPERINENTAL INVESTIGATION OF THE CHARACTERISTICS OF IN OGEE WING FROM $M=0.4$ TO $M=1.8$, Squire, L.C, and Capps, D.S. August, 1959.

Wind tunnel tosts have becn made in the 3 ft tunnel at R. $\mathrm{A}_{\mathrm{E}} \mathrm{E}$. Bedford to investigate the flow development and longitudinal static stability of a slender ogee wing (aspect ratio 1.2) from $M=0.4$ to $M=1.82$. Throughout the Mach number range the flow separates from the leading edge at some positive incidence and a pair of vortices lie above the wing. This leading edge separation occurs at very low incidence at subsonic speeds but at supersonic speeds occurs at progressively higher incidences as the Mach number increases. The additional lift associated with the vortices is approximately independent of Mach nuaber at subsonic

(Over)

533.693.3:
533.5 .011 . 3415 :
533.6 .013 .412

AN EXPERIMENTAL INVESTIGATION OF THE CHARICTERISTICS OF AN OGEE WING FROM $M=0.4$ TO $M \equiv 1.8$. Squire, L.C. and Capps, D.S. August, 1959.

Wind tunnel tests have been made in the 3 ft tumnel at R.A.E. Bedford to investigate the flow development and longitudinal static stability of a slender ogee wing (aspect ratio 1.2) from $M=0.4$ to $\mathrm{M}=1.82$. Throughout the Mach number range the flow separates from the leading edge at sone positive incidence and a pair of vortices lie above the wing. This leading edge separation occurs at very low incidence at subsonic speeds but at supersonic speeds occurs at progressively higher incidences as the Mach number increases. The additional lift associated with the vortices is approximately independent of mach nurber at subsonic
(Over)
$533.693 .3:$
$533.6 .011 .34 / 5$ 533.6 .011 . $34 / 5$: 533.6 .013 .412

A.R.C. C.P. No. 585

AN EXPERIMENTAL INVESTIGATION OF THE CHiRACTERISTICS OF iN OGEE WING FROM $M=0.4$ TO $M=1.8$. Squire, L.C. and Capps, D.S. August, 1959.

Wind tunnel test, have been made in the 3 ft tumel at R.A.E. Bedford to investigate the flow develoment and longitudinal static stability of a slender ogee wing (aspect ratio 1.2) from $M=0.4$ to $M=1.82$. Throughout the mach number range the flow separates fron the lading edge at sone positive incidence and a pair of vortices lie above the wing. This leading edge separation occurs at very low incidence at subsonic speeds but at supersonic speeds occurs at progressively higher incidences as the Mach number increases. The additional lift associated with the vortices is approximately independent of Mach number at subsonic
speeds but at supersonic speeds the additional lift decreases with increase
in Mach number. The overall rearward shift in aerodynamic centre position
and centre of pressure position between subsonic and supersonic speeds is
6% of the root chord.
$\begin{array}{ll}\text { speeds but at supersonic specds the additional lift decreases with increase } & \text { specds but at supersonic speeds the additional lift decreases with increase } \\ \text { in Mach number. The overall rearward shift in aerodynamic centre position } & \text { in Mach number. The overall rearward shift in aerodynamic centre position } \\ \text { and centre of pressure position between subsonic and superscnic specds is } & \text { and centre of pressure position betiveen subsonice and supersonic specds is } \\ 6 ; 0 \text { of the root chord. }\end{array}$

C.P. No. 585

© Crown Copyright 1962 Published by Her Majesty's Stationery Office
 To be purchased from York House, Kingsway, London w.c. 2 423 Oxford Street, London w. 1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol I
 2 Edmund Street, Birmingham 3 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

[^0]: *The term 'ogee' has been used to describe slender wings which have a point of inflection in their leading edge shape (see FiE.1)

[^1]: * Actually for the delta wing of the same aspect ratio.

[^2]: *All values of aerodynamic contre arc found from slopes of the $C_{m} \sim C_{I}$ curves; this method is reasonably acmurate if the aurves are smooth, but extremely difficult where there are changes in slope, as in the presont case at transonic speeds.
 *FThe actual model wing loading at 6°, q $C_{\text {L }}$, varied from $0.2 \mathrm{lb} / \mathrm{sq}$ in. at $M=0.4$ to $0.5 \mathrm{Ib} / \mathrm{sq}$ in. at $M=1.2$ dropping again to $0.4 \mathrm{Ib} / \mathrm{sq}$ in. at $\mathrm{M}=1.3$.

[^3]: * The wing plus body drag was calculated by the methods of Ref.11; it should be noted that the theoretical wrave drag for the wing plus body docs not allow for base pressure, in these tests (C_{D}) basc was at least 0.003 at supersonic speeds and so the total drag of the wing + body is greater than that of the wing alone.

