NA, 定, dinnumy


```
C. P No 47
\((13,682)\)
-ARC Technical Report
```


AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Dynamic Stability of the Helicopter:
The Equations of Motion

By
A. H. YATES, B Sc, B.Sc (Eng)

Crown Copyright Reserved

lIBRARY
Current Paper No. 47
4.4 Corrigendum

Page 4, Equation 2a, Inne 2:-

$$
\text { For }\left(1+\frac{Z_{\underline{i}}}{\mu_{*}}\right) \text { read }\left(\begin{array}{l}
V \\
\Omega R
\end{array} \frac{Z_{\underline{i}}}{\mu_{*}}\right)
$$

Page 4, Equation 2 b , line 2:-

$$
\text { For }\left(1-\frac{Y_{\underline{x}}}{-\frac{d}{\mu_{*}}} \frac{-}{d \tau}\right) \text { read }\left(\begin{array}{ll}
V & y_{I} \\
-\mathbb{R} & -\frac{\mu_{*}}{\mu^{*}}
\end{array}\right) \frac{d}{d \tau}
$$

Page 6, last three lines:-
In each line

$$
\text { For }\left(1+\frac{Z_{\underline{C}}}{\mu_{*}}\right) \operatorname{read}\left(\frac{V}{V}+\frac{Z_{\underline{q}}}{\Omega R} \underset{\mu_{*}}{\mu_{*}}\right)
$$

Page 7. In the expression for $\mathrm{C}:-$

Page 7. In the expression for D

$$
\text { For } \mu_{*} \frac{l_{V}^{n_{N}}-l n_{V}}{i_{A} i_{C}} \text { read } \frac{V}{\Omega R} \cdot \frac{\mu_{*}}{l_{V} n_{p}-l_{F} n_{V}} I_{A} i_{C}
$$

Page 7, 1st line:-

$$
\begin{aligned}
& \text { For } x_{U} \text { read } x_{U} \\
& \text { For } x_{W} \text { read } x_{W} \text {. }
\end{aligned}
$$

Dynamio Stability of the Helicopter The Equations of Motion

- By -
A. H. Yates, B.Sc., B.Sc.(Eng.).

21th Jenuary: 1951

The equations of motion, as used in
calculations of the dynamic stability of the helicopter, are stated hore.

They are reduced to dimensionless
form and the oxpended forms of the
coefficients of the detommental equations
aro gaven.

Introduction

Sevoral reports have recently been published on various aspects of the problem of dynamio longitudinal and lataral stability of the single-rotor helicopter but tho lack of a common notation has made difficult the task of linking the various reports. This task is simplified if we write down the six equations of motion of the helicopter in terms of dimonsionless derivatives in a manner anclogous to that for fixedwing aircraft.

Tho equations can thon be simplufied where nocessary by neglecting oertain dorivativos and the characteristics of the motions of the helicopter deduced from the solutions of the equations. Tho man problem is, of course, the calculation of the dorivatives. Some are amenable to direot celculation while others can be astinatol by somi-empirical methods fron the results of wind tumnel tosts.

The equations of motion

The calculations apply to small disturbances of the holicopter from its equilibrium condition so that only first order derivatives noed be considered.

Almost 0.11 fixedwing eircraft heve a longitucinal plane of symetry so that, in the consideration of themr stability, coupling between longitudanal and lateral motions can be lgnored. Many helicopters, too, will have this plane of symetry but the singlerotor helicopter with torquo-balanoang tail rotor, for example, has not and there will bo a coupling between the two motions. The error caused by assuming that the motions aro indupendent is found to be small so that the coupling is ignored in the prosent paper.

Some other assumptions made in deriving the nomal equations of motion of a fixedming acroplane cannot so easily be made for the helicopter. For the former the direction of the relative wind is assumed to be in the plane of symetry. We shall retain this assumption in writang our equations and will thus obtain the equations of motions for small disturbances from forvard or backward flight or hovering only. inother assumption \rightarrow that the products of inertia $D=\sum$ myz and $F=\sum m x y$ aro zero is retained sinoe the torque balancing device doos not usually involve any shift of the centre of gravity from the plane of symmetry.

In defining the motion of tho helicopter wre use a sot of rightmhanded axes with origin at the centre of gravity, G, and fixed in the helicopter so that they move with it when it is disturbed. The axes GX and GZ are always takon in the plane of symmetry with the axis GX approxmately forvard and GZ downard. GY is taken to starboard.

If the axis GX coincidos with the direction of the undisturbed motion of the holicopter then the axes are oalled 'wind axus' but remain fixed in the helicoptor. The wind axes can be noved to coincide with their original position in undisturbed flight by rotations ψ about $G Z, \theta$ about the resulting $G Y$ and \varnothing about the resulting $G X$.

Forces and velocities are defined in Table I and are taken positive in the dareotions of tho exes. Angular volocitios and moments are positive when thoy tond to rotate the belicopter in the senses $Y \rightarrow Z, \quad Z \rightarrow X, X \rightarrow Y$.

IABITI

Description	Symbol	Un2t
Axes	$G X \quad G Y$ GZ	
Moment of Inertia	$I_{A} \quad I_{B} \quad I_{C}$	slugs. ft. ${ }^{2}$
Product of Inertia	- I_{E} -	slugs. ft. ${ }^{2}$
Steady velocity	V - -	ft./sec.
Disturbed velocity	$v+u \quad v$	ft. $/ \mathrm{sec}$.
Disturbed angular velocity	$(\stackrel{p}{=})(=\dot{q})\binom{r}{=}$	rad./sec.
Forces	$\begin{array}{lll}X & Y & Z\end{array}$	Ib.
inoments	L 11 N	2b.ft,

The equations of motion when 'vind axes' are adopted are as follovs*.-

Longitudinal

Lateral

Where X_{0} ilo etc. are forces or monents applied by control movements, etc. If ve now substitute the dimensionless derivatives (I'able II), these equations become:-

Iongitudinal /

[^0]
Iongitudinal

$$
\left.\begin{array}{rlr}
\left(\frac{d}{d \tau}-x_{u}\right) \frac{u}{\Omega R}-x_{w} \frac{w}{\Omega R}+\left(C_{L}-\frac{x_{q}}{\mu_{*}} \frac{d}{d \tau}\right) \theta & =x_{0} \\
-z_{u} \frac{u}{\Omega R}+\left(\frac{d}{d \tau}-z_{w}\right) \frac{w}{\Omega R}+\left[C_{I} \tan \tau_{c}-\left(1+\frac{z_{q}}{\mu_{*}}\right) \frac{d}{d \tau}\right] \theta & =z_{0} \tag{2a}\\
-\frac{\mu_{*}}{i_{B}} m_{u} \frac{u}{\Omega R}-\frac{\mu_{*}}{I_{B}} m_{w} \frac{w}{\Omega R}+\left(\frac{d^{2}}{d \tau^{2}}-\frac{m_{q}}{i_{B}} \cdot \frac{d}{d \tau}\right) \theta & =m_{0}
\end{array}\right\}
$$

Lateral

$$
\left.\left.\left.\begin{array}{rl}
\left(\frac{d}{d \tau}-y_{v}\right) \frac{v}{\Omega R}-\left(\frac{y_{p}}{\mu_{*}} \frac{d}{d \tau}+C_{I}\right) \phi+\left[\left(1-\frac{y_{r}}{\mu_{*}} \frac{d}{d \tau}\right)-C_{I} \tan \tau_{C}\right.
\end{array}\right] \psi=y_{0}\right]=\ell_{0}\right\}(2 b)
$$

[Nota thet $C_{I}=J_{\text {aft }} / \rho(\Omega R)^{2} S$ where S in the ciac area. πR^{2}, ond thet lift, measured as usuel normel to the filght $\left.p \operatorname{th},=W \cos \tau_{c}\right]$.

The/

The dimensionless derivatives and their derivations aro given in the table below.-

Ta PLTEII

```I Units of Quernt- itius in II and III```	II   Quantities	III   Divisors to obtain IV		V Deseription
1 l .	$\begin{gathered} X \quad Y \quad Z \\ I \end{gathered}$	$\rho \Omega^{2} R^{2} \cdot S$	${ }_{x}^{C_{X}} C_{y} C_{z}$	子orjo   ooet'ficionts*
lb.ft.	L M N	$Q D^{2} R^{2} \cdot S . R$	${ }^{\mathrm{C}} \mathrm{f}^{\mathrm{C}} \mathrm{m} \cdot \mathrm{C}_{\mathrm{n}}$	Moment ooefficients
lb.	$\begin{array}{lll} X_{u} & & Z_{u} \\ & Y_{V} & \\ X_{W} & & Z_{W} \end{array}$	O.』R.S	$\begin{array}{lll} x_{u} & & x_{u} \\ & y_{W} & \\ x_{W} & & z_{w} \end{array}$	$\begin{gathered} \text { Force } \\ \text { veloczty } \\ \text { derivatives } \end{gathered}$
$\frac{\mathrm{lb} .}{\text { rad./sec. }}$	$X_{q} \begin{array}{cc} Y_{p} & Z_{q} \\ & Y_{r} \end{array}$	B. R R.S.R	$\mathrm{x}_{\mathrm{q}}{ }^{\mathrm{y}_{\mathrm{p}}}{ }^{\mathrm{y}_{\mathrm{r}}}{ }^{z_{\mathrm{q}}}$	Foroo angular velocity derivatives
$\frac{\mathrm{Ib} . \mathrm{f}^{\mathrm{t}} .}{\mathrm{It} . / \mathrm{soc} .}$	$\mathrm{L}_{\mathrm{v}}{ }_{\substack{\mathrm{M}_{\mathrm{W}}}}^{\mathrm{M}_{\mathrm{u}}} \mathrm{~N}_{\mathrm{v}}$	P. $\Omega$ R.S.R	$2_{v} \overbrace{m_{v}}^{m_{v}}$	$\begin{gathered} \text { Moment } \\ \text { volocity } \\ \text { derivatives } \end{gathered}$
$\frac{\mathrm{lb} . \mathrm{ft} .}{\mathrm{rat} . / \mathrm{scc} .}$	$\begin{array}{llll}I_{p} & & & N_{p} \\ & \mathrm{M}_{\mathrm{q}} & \\ \mathrm{Irr}_{\mathrm{r}} & & & \mathrm{N}_{\mathrm{r}}\end{array}$	ค. $\Omega$ R.S.R ${ }^{2}$	$\begin{array}{lll} \ell_{\mathrm{p}} & & \mathrm{n}_{\mathrm{p}} \\ \ell_{\mathrm{r}} & \mathrm{~m}_{\mathrm{q}} & \\ \mathrm{n}_{\mathrm{r}} \end{array}$	Moment angular velocity derivativos
$\frac{1 \mathrm{~b}}{\mathrm{rac} \cdot / \mathrm{sec}^{2}}$	$\begin{array}{ccc}  & Y_{\dot{p}} & \\ \mathrm{X}_{\dot{q}} & & Z_{\dot{q}} \\ & \mathrm{Y}_{\dot{\mathrm{F}}} & \end{array}$	$\rho \cdot . \mathrm{SR}^{2}$	$\begin{array}{lll}  & y_{\dot{p}} & \\ x_{\dot{q}} & & z_{0} \\ & y_{\dot{r}} & \end{array}$	Foroo angular volocity derivatives
$\frac{\text { Ib.f't. }}{\text { rad./sec. }}$		$\rho S R^{3}$	$\begin{array}{lll} \ell \dot{j} & & n_{\dot{p}} \\ & n_{\dot{q}} & \\ f_{\dot{r}} & & n_{\dot{r}} \end{array}$	Moment   angular   volocity dorivatives**
slugs.ft ${ }^{2}$		$W \mathrm{~W}^{2} / \mathrm{g}$	$i_{A} \mathrm{i}_{\substack{\text { i }}}^{i_{E}}{ }^{i_{C}}$	Inortia coofficionts

*Tho lift ooefficient dofined bere is $\frac{1}{2}\left(\frac{V}{\Omega R}\right)^{2}$ tines the Iift coofficiont
** Those dorivatives aro usually noglected whon considering the stability of fixed wang aircraft. There is, howuver, some ovidonoc that they may affect the stability of the holioopter; they havo not, howover, boon included in the equations given above.

The dimensionless unit of time, the airsoo, is defined as

$$
\hat{t}=\frac{W}{g \rho S^{\prime} . \Omega R} \operatorname{secs}
$$

and time measured in these units is denoted by $\tau$ so that $t_{\text {seas }}=\tau 0 \hat{t}$.
The relative density parameter is defined as

$$
\mu_{*}=\frac{W}{g \rho S R}
$$

The sets of equations (aa) and (ab) are solved by assuming that the variables

$$
\frac{u}{\Omega R}, \frac{W}{\Omega R}, \theta ; \frac{\nabla}{\Omega R}, \phi, \psi
$$

are functions of $\tau$ of the form $\frac{u}{\Omega R}=\left(\frac{u}{\Omega R}\right)_{0} e^{\lambda \tau}$, etc,
If the motion with controls fixed is considered
$\left(x_{e}=z_{0}=m_{0}=y_{0}=\ell_{0}=n_{0}=0\right.$ ) the equation for $\lambda$ becomes

$$
A \lambda^{4}+B \lambda^{3}+C \lambda^{2}+D \lambda+E=0
$$

where the coefficients are functions of the dimensionless derivatives. If $i_{E}$ and the acceleration derivatives are negleoted the coefficients are

## Longitudinal

$A=1$

$$
B=-\left(x_{u}+z_{w}\right)-\frac{m_{q}}{\dot{i}_{B}}
$$

$$
0=\left(x_{u z_{w}}-x_{w} z_{u}\right)+\frac{m_{Q}}{i_{B}}\left(x_{u}+z_{w}\right)-\mu_{*} \frac{m_{w}}{1_{B}}\left(1+\frac{z_{q}}{\mu_{*}}\right)-\frac{m_{u}}{i_{B}} x_{q}
$$

$$
D=-\frac{m_{q}}{q_{B}}\left(x_{u} z_{w}-x_{w} z_{u}\right)+\mu_{*} \frac{m_{w}}{1_{B}}\left[x_{u}\left(1+\frac{z_{q}}{\mu_{*}}\right)-z_{u_{1}} \frac{x_{q}}{\mu_{*}}+C_{I} \tan \tau_{o}\right]
$$

$$
+\mu_{*} \frac{m_{L_{D}}}{I_{D}}\left[C_{I}-x_{w}\left(1+\frac{z_{q}}{\mu_{*}}\right)+z_{w} \frac{x_{q}}{\mu_{*}}\right]
$$

$$
\begin{aligned}
E & =\mu_{i_{T}}^{m_{W}} C_{I}\left(z_{u}-x_{U} \tan \tau_{c}\right)-\mu_{*_{i}}^{i_{J}} C_{I}\left(z_{W}-x_{W} \tan \tau_{c}\right) \\
& =\mu_{*} C_{I}\left(\frac{m_{w} z_{u}-m_{u} z_{W}}{i_{B}}\right) \text { if } \tau_{c}=0 .
\end{aligned}
$$

Lateral

$$
\begin{aligned}
& A=1 \\
& B=-\frac{\ell_{p}}{i_{A}}-\frac{n_{r}}{1_{C}}-y_{V} \\
& c=\frac{\ell_{p}{ }^{n} r-\ell_{r} n_{p}}{i_{A}}+\mu_{C} \frac{n_{V}}{i_{C}}+\frac{\ell_{p} y_{V}-\ell_{\nabla} y_{p}}{i_{A}}+\frac{n_{r} y_{V}-n_{\nabla} y_{r}}{i_{C}} \\
& D=-\mu_{*} \frac{\ell_{V}}{1_{A}} C_{L}+\mu_{*} \frac{\ell_{V}^{n_{p}}-\ell_{p} n_{V}}{1_{A}}-y_{V}\left(\frac{\ell_{p}^{n_{r}}-\ell_{r} n_{p}}{i_{A} i_{C}}\right) \\
& +n_{V} \frac{\ell \text { pyr }-\ell r y p}{i_{A}}+i_{V}\left(\frac{n_{r} y_{p}-n_{p} y_{r}}{i_{A}} i_{C}\right)-\mu_{*^{\prime}}^{i_{C}} C_{I} \tan \tau_{C} \\
& E=-\mu_{*} C_{L}\left(\frac{n_{V} \ell_{r}-\ell_{V} n_{r}}{i_{A}}-\mu_{C} C_{L}\left(\frac{n_{V}}{i_{C}} \frac{\ell_{p}}{1_{A}}-\frac{\ell_{V}}{i_{A}} \frac{n_{p}}{i_{C}}\right) \tan \tau_{c} .\right.
\end{aligned}
$$

C.P. No 47
$(13,682)$
ARC Technical Report

## PRINTED AND PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE

To be purchased from
York House, Kingsway, london, w c 2429 Oxford Street, LONDON, W 1
P O Box 569, LONDON, SEI
13a Castle Street, edinburgh, 21 St. Andrew's Crescent, Cardiff
39 King Street, MANCHESTER, 2 Tower Lane, BRISTOL, 1
2 Edmund Street, BIRMINGHAM, 380 Chichester Street, belfast or from any Bookseller

1951
Price is od net
PRINTED IN OREAT BRITAIN


[^0]:    Hine angle of climb of zthe helicopter is often denoted by $\tau$. As aerodynamic time is also conventionally written $\tau$ we shall here use $\tau_{c}$ to denote the angle of climb.

