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discussed for two-dimensional flow and for axisymmetric flow of both 
compressible and incompressib e fluids* It is shown that the solutions 
obtained by Ll *I,3 and Glauert 3 for the tvfo-dimensional flow of an incom- 
pressible fluid ‘are applicable in the more general case after suitable 
transformations of coordinates have been made0 14ew definitions are shown 
to be neces%Lry, and are given, for the displacement and momentum thicknesses 
of such a boundary layer0 Reynolds numbers based on these thicknesses are 
given, and it is shown that any phenomenon (such as tran&tion to turbulence) 
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I INTRODUCTION -.x--=x- --a 

In recent years, interest has grown in flows which contain vorticity: 
this interest is due mainly to the highly curved shock waves which occur 
upstream of bodies travelling at very high velocities0 The fluid which has 
passed through the curved portion of the shock possesses vorticity, so that 
there exists a velocity (and density, etc*) shear in the flow even when it 
is far from the surface. A new Foblem immediately arises: the effect of 
the boundary itself on such a flow. 

The concept of a thin boundary layer, as originally suggested by 
Frandtl, is so useful that we are reluctant to discard it; and all the 
workers in the field so far have assumed that such a layer exists, even 
when there is vorticity further away from the bodye This ,assumption is not 
easily justified at present, except on grounds of expediency; it implies 
that although vor-ticity exists in each of two neighbouring regions, the two 
regions may be treated seloarately* The distinction between the regions is 
made by su;?posing that viscous effects are negligible in the region further 
from the wall (this region will be referred to as "the external flow", or 
"the external shear flov?"9 throughout this note). 
(that is, 

In the boundary layer 
in the region nearer to the wall) the vorticity is produced mainly 

by viscous effects due to the presence of the boundary; in the external flow 
it is produced by a mechanism which is upstream of the region, and whose 
nature is unimportant0 At present there is little evidence to show that the 
division between the two regions is as distinct as the corresponding one for 
a boundary layer developing in a uniform flow* Unfortunately no exact 
solutions and insufficient experimental results are at present available for 
comparison, and the concept can be used only in so far as it predicts 
correctly such phenomena as transition to turbulence* 

Most of the workers in the field have considered the development of 
the boundary layer in an incompressi ble flow over a flat plate, in the case 
where the flow has a uniform velocity shear far from the plate. Lid has 
shown that the Howarth transformation (see equation (3)) is sufficient to 
convert the equations of a compressible shear flow into those of an in om- 
pressible shear flow* There has been some discussion (between Clauert 9 and 
Li3) of the appropriate boundary conditions to take at the outer “edge" of 
the boundary layer; the arguments involved can be found in Ref.2 and will 
not be repeated here. In the present paper results will be presented using 
the solutions obtained from both m&hods, the difference in the boundary 
conditions being specified prcciscly in section 2.3* 

It is shown first that tither solution can be extended to cover the 
cast of a shear flow over an axisymmetric surface, both for the incompressible 
and for the compressible case, >Ls with all solutions so far produced it is 
assumed that all the variables (velocity, density, etc.) in the boundary layer 
can be expressed as a power series in a parameter which is proportional to the 
velocity shear far from the surface, This series is not shown to be conver- 
t5en-t 9 and the only justification given for its use is that of qualitative 
agreement with experimental results* 

The solutions of the boundary layer equations assume, of course, that 
there is no turbulence in the flow, and it is of i,mportance to know if, and 
where, turbulence occurs~ Instability of a laminar flow can be due to many 
causes, on1.y one of which is discussed here. This is referred to as a 
boundary-layer instability and it occurs for a constant value of the Reynolds 
number, R 

&2> 
based on local conditions and the momentum thickness of the 

boundary layer. Experimental evidence4 suggests that this is the kind of 
instability which causes transition to turbulence in the boundary layer on 
a blunt cone in supersonic flow- 
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Reference has been made above to the displacement and momentum thick- 
nesses of the boundary layor, but the meaning of these terms is less clear 
than for boundary layers developing in a uniform flow. A fuller discussion 
of this point is given in seotion 3, where it is shown that there can be 
some ambiguity in their definition* Such quantities can be defined, however, 
and are related respectively to the mass deficit and to the momentum deficit 
which occur due to the presence of the boundary layer. The definitions 
chosen here reduce to the usual ones when the external flow is uniform, but 
make the evaluation of the momentum thickness in the experimental case less 
accurate. 

It is shown that the Reynolds number, Rx, based on conditions at the 

edge of the boundary layer and on the distance, x, downstream is not the 
most suitable parameter for predicting transition to turbulence (as was 
suggested by Moeckel5). Instead, the Reynolds number, R6 , based on certain 

2 
reference conditions (which are defined in section 4) and on the momentum 
thickness, 62, is used. It is found that, as the length scale, r, increases, 
there is a region in which the position of transition moves upstream, although 
this position is always downstream of' that obtained when r is very small. 
This implies (see Fig.j2) that there is also a region in which the position 
of transition moves dovmstrem as r increases. 

Comparisons with experimental results obtained by the author4 are made 
wherever possible; these results were for boundary layer development on a 
blunt cone in supersonic flow. Due to the difficulty of calculating &2 from 
the experimental results, the Reynolds number R6 is considered as well as 

1 
; there is no obvious reason why this quantity should be inferior as a 

transition parameter to the quantity, R6 , which has previously been con- 
2 

sidcred. The accuracy of the experiments was insufficiezlt to give more than 
qualitative agreement with the theory of this paper, and a further series of 
experiments designed to test the theory would be desirable. As far as it 
goes, the agreement is satisfactory. 

2 TH.8 FUl'?DA&EXIXL SOLUTION w--w- w-m- 

2.j E*Lquations of the m$J.o.o 

Glaucrt' assumes that the boundary layer approximations hold throughout 
both the regions considered: that is, using the notation of Fig.1, the com- 
ponent of velocity, v, normal to the surface is of a smaller order of magni- 
tude than that, u, along the surface in the direction of the flow. On the 
other hand, the rate of change of any quantity in the direction of u, is of 
a smaller order than that in a Direction normal to the surface. He supposes 
further that there is no pressure gradient in the direction of u in the 3 

external flow: that is, that ap/ax is zero in this region. Under the boundary 
layer assumptions, we have ap/ay is zero everywhere; it follows that ap/ax is 
zero in the boundary layer as well as in the external flow - that is, the w 
pressure is constant throughout both the regions considered. Li3, on the 
other hand, finds an induced pressure gradient due to the presence of the 
boundary layer, so that the (constant) term -l/p ap/ax must be retained in 
the equations of motion. 
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The momentum equation for the flow in either region is 

. where p is the density and p is the viscosity of the fluid at the point (x,y). 
The equation of continuity is, to a good approximation 

where k = 0 in the two-dimensional case and k = 1 in the axisymmetric case. 
In this equation the distance of the point (x,y) from the axis is replaced 
(as is usual in an axisymmetric boundary layer) by the distance, rj, of the 
point (x,0) from the axis of symmetry0 This form is also used in the external 
flow, since for the important region near ihe edge of the boundary layer it 
is still small compared with r, Cand the approximation remains acceptable. 

It is convenient to use a transformation of the independent variables 
which is a combination of the well-known ones originally used by Howarth~and 
by Mangler. These new coordinates (X>Y) are given by the integrals 

2k kY 

x E dx, Yz 
0 0 

where r is the length scale of the motion (in the case of a blunt cone, for 
example, r is the radius of the tip), and p. is a reference density. In the 

two-dimensional incompressible case, of course, X = x and Y = y. 

A stream function, 
continuity (2). 

$, can be introduced, by 
We define this by the equations 

virtue of the equation of 

(3) 

k pr u=p $ &I! Jy9 Pr-l kV GL 
1 0 =-Por&* 

In terma of the new coordinates (X,Y) defined in equation (3), the stream 
function is given by 

u = i!ik 
JY ' (4) 

and 
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where Y1 = dY/dx. Substituting these expressions 
equation (j), and writing pp = pope, a constant96, 
manipulation 

in the momentum 
we have after some 

and this is identioal with the form obtained for the two-dimensional 
incompressible case. In this equation, Glauert* takes ap/aX = 0, and 
Li3 finds that l/p ap/?lX is a function of x only, and becomes a constant 
(A,/* 9 say) to the required order of the problem in the later analysis 
with the coordinates (g,?-)) that are introduced in the next section; these 
values will be assumed here without proof. The expression for u, given 
in equation (.&), is also the same as that in the two-dimensional incom- 
pressible case, 

2.2 The external flow -mm-- 

This is the region in which viscous effects are negligible although 
there may be vorticity in the flow. The vorticity is introduced into the 
fluid upstream of the region considered by a mechanism such as a curved 
shock wave in the case of supersonic flow, or a nonuniform grid in the case 
of subsonic flow. The nature of the mechanism is unimportant, since there 
is no vorticity produoing mechanism in the region itself. 

It is assumed that the boundary layer is contained entirely within a 
region of velocity shear in the external flow; in practice, however, such 
an external velocity shear cannot extend to an infinite distance from the 
wall, but is itself only a layer. The model chosen here is shown schemati- 
cally for x = 0 in Fig.2: the shear layer, as defined below, exists 
for all Y less than Ym ; for Y greater than YW , the velocity 
component in the direction parallel tu the surface remains oonstant, and has 
the value u . In the cases of axisymmetric and compressible flow, the shear 

layer exist: for all y less than y (which may be a function of x), where 

ym and YW are related by the seoonZ integral of equation (3). This model 

permits a direct comparison with the blunt cone experiments: in this case 
the velocity u is the velocity at the edge of a boundary layer on a sharp 

cone (that is, far downstream ?rom the tip)e 

The shear flow to be considered in the two-dimensional incompressible 
case is that in which the velocity shear is uniform: that is 

where u 0 is a reference velocity (at the point x = 0, y = 0, of Fig.2) 

and !3 is a non-dimensional velocity shear. This corresponds,in the more 
general case, to an assumption that the shearing stress is indGpcndont of y: 
that is 

-a-- -B* az 
* Thisyonly 

--- a=--- ----e---- ---s-m.- 
true if the pressure is constant ds Glauert assumes. Li also 

assumes constant pressure in Ref.1 and in his reappraisal of the problem 
with induced pressure gradient 3 he considers only incompressible flow. It is, 
however, perhaps reasonable to regard the pressure graaient as being small and 
to neglect variations in imp as a first approximation, espeoially since the 
assumption of proportionality between p and T is itself only approximately 
true. 
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It is of interest to note that for this form of the external flow, the 
right hand side of equation 
model (dp/dx = 0) - 

(5) is identically zero if we use Glauert's 
that is, that viscous forces have no effect on the 

flow (not merely a negligible effect, as stated in the?ntroduction). 

In the absence of a boundary layer, the shear flow is defined by 

(62.) 

but in the presence of a boundary layer, there may bo a displacement 
effect which must be included in this formulation* If the displacement 
thickness of the boundary layer is given by y = &,, or Y = A,, Glauert 
has shown that the appropriate form for ue is 

-. 

u =u 
e 0 

L 

’ j + &j (Y-q1 

-I 

in the two-dimensional incompressible c2seo The value of A, can be 

determined only when the boundary layer solution has beon obtained; 
since, however, A, is zero when x z 0, and thti boundary condition which 

Glauert applies at the edge of the boundary layor is at the point x = 0, 
this does not cause any practical difficulty in the solution of tho problem. 
It should bo noticed that the displacement effect acts on the position of 
the edge of the shear layor as well, and this will now be in the position 
given by Y = Ym + A, instoad of Y = Y . co J,ij takes u = ueo given by (6(a)) 
as the value outside the boundary layer but takes the zero for Y in the 
external shear layer to be at the edge of the boundary layer, iOee Y could 
bo replaced by Y-A in (6(a where A is the boundary layer thickness (not 
the displacement thickness in the coordinate of Y0 

The usual boundary layer transformation 

will be made, and in terms of this variable, equation (6) becomes 

where n = ?-+ when Y = A,, and where 

is a parameter dependina m on the velocity shear in the flow. 
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In term3 of the physical variables x and y, the equation (6) for the 
velooity in the external shear layer 0 c y c y co + 6, becomes 

A3 shown in E.g.3 for an incompressible fluid, if r4(x) is an increasing 
function of x (on a blunt cone, for example, r,(x) CC x, if a 3uitable 
origin i3 chosen for x), the lines of constant velocity approach the surface 
a3 x increa3e3, and the bound=ary layer grow3 into a region of higher velocity. 

203 -- The flow in the boundary-,JEr w-m. 

In this region the stream function $ must satisfy the full equation (5). 
At the surface Y = 0, we mu3t have u = 0 and v = 0: that i3 13$/dX = 0, 
a*/ay = 0 for all X. At the outer edge of the boundary layer, the boundary 
condition i3 either:- 

(i) that u is given by ueo (see equation 6(a)) when x = 0. 
This together with the absence of a px3sure gradient is a sufficient 
condition and automatically satisfies the relation u + u e' see 

equation 6(b)) a.3 Y -+ co for all X0 Thus the value of A, does not 

enter into the specification of the problem. 
condition used by Glauert*+) 

(This is the boundary 

(ii) that u + uoo a3 Y + ~0 for all x. (This is the boundary condition 

u3ed by Li3 with, 
boundary layer.) 

however, the zero for Y taken at the edge of the 

The 3olution is expanded in powers of the parameter c, defined by 
equation (9); it is as3umed that such an expansion exists and is convergent. 
v?e look for a 3olution of equation (5), therefore, of the form 

where v is given by equation (i')O Thi3 expression 3atisfies equation (5) 
for all values of E if 

2 f;' + fofY - f'of; + 2 f;fj = A, 

where da3hes denote differentiation with respect to V. The boundary 
oonditions may be written either as 

fo(0) = f;(o) = 0 , f:(q) + 1 a3 v-m 

f, (0) = f;(o) = 0 , f!;(v) + -I as q + -22 1 

(j2a) 

. 
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which are the same equations as those given by Li 6 and Glauert2 when 

*I = 0; or &La 

-3 which are the equations given by Li with A,] + 0. The author is grateful 
to Mr. Glauert for making available to her the numerical solution of the 
second of equations (II) with A, = 0 subject to the boundary conditions 
('i2a). The solution with A, + 0, subject to the boundary conditions (12b), 
has been obtained from the solution of similar equctions given by MurrayTe 
In this case A, is found to be '/e72070 The numerical solution of the first 

of equations (d'l), which is the familiar Blasius equation, is well known* 
The values of fA(?l) and f;(v) in each ease are given in Table 1, together 
with the asymptotic forms of the functions fo(n) and fd(v)- 

The velocity distribution in the boundary layer is given by the 
expression 

Graphs of u/u0 as a function of ?-I are shown in Fig.4 for three values 

of g, using Glauert's solution; there is no qualitative differenoe from 
Li's solution0 Careful inspection shows a point of inflexion in the curve 
for the largest value of c; that such a point exists in every cast is shown 
by a study of the asymptotic form of equation (13) as shown in Api2endix -l. 
It is interesting to compare this with similar "kinks" in the experimental 
curves obtained for the velocity profiles on a blunt cone: a typical curve 
(drawn on an arbitrary SC&C) is alsa shown in Fig.4* It must be pointed 
out, however, that this theory is only a first approximation, and the 
existence of this point of inflexion may not persist in higher order approxi- 
mations; so the agreement may be entirely fortuitous. 

Fig.5 shows a sketch of the velocity profiles at different stations 
of x in both the two-dimensional and the axisymmetric cases0 The figures 
have been dr&wn to illustrate Glauert's solution (which is slightly more 
complicated): if Li's solution is used, the lines y = ym + 6, are not 
relevant0 It should be emphasizcd that yW is, in the axisymmetrical case, 

a function of x as shown in the figure. 

2 '4 Conditions at the edge of the boundary lzcr (Glauertl ---=-- -w- - v- a- --a a..-- - 

Inspection of Fig.4 suggests that the velocity u may be taken to have 
reached its asymptotic value (that is, ue) when *fl % 4.7 which corresponds 
to a value 

UX 
b 

+ u. 0 + 3EJ 041 

for u6, the value of u at the edge of the boundary layer. This is confirmed 
by inspection of the numerical values given in Table I: it is found that 
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u=u e within 1 per cent when q is greater than about 4.7. It is now 
possible to oalculate Mb, the Mach number at the edge of the boundary layer. 
To do this we require a relation between the density and the velocity in the 
boundary layer. If we assume that the stagnation temperature is oonstant 
throughout the boundary layer (this is not exactly true, but is a good 
approximation), and that the ratio of specific heats, y, is 1.4, it is easy 
to show that 

P 22 
P 

= I + 0.2 MO2 l u21 1 --=-y , (15) 

where No is the Mach number corresponding 

uO* 
We also have the relation 

l UoV 

to the density p. and the velocity 

where p& is the value of the density at the edge of the boundary layer. 
Using the equations (14) and ('l5) 
order in the small quantity C) 

in this relation, we have (to the first 

OrY in terms of the coordinate X defined by the first of equations (3), 

M6 
= Ido + Ido 

POX -pg- . 
0 0 

The experimental variation of I&o with X is shown in Fig.6, and this enables 
the experimental value of 0 to be determined. The value of MO in this case 
is taken to be the value of the Mach number on the surface of the cone in 
the absence of the boundary layer when the statio pressure on the surface 
is equal to that on a sharp cone*, and the stagnation pressure is that at 
the stagnation point at the ti2 of a blunt cone. Thus, for a blunt cone 
whose included angle is 15O Tlaoed in a supersonic stream whose undisturbed 
Mach number is 3.12, the value of MO is 2*14; the value of JdW, the Mach 
number at the edge of the boundary layer very far from the tip (that is, 
the value of M at the edge of the external shear layer) is 2.92e For the 
same cone in a stream whose undisturbed Nach number is 3-81, the value of 
MO is 2.34 and that of M=is 3.35. Fairing a straight line through the 

experimental points of Fig*6, we find that the value of Cl is 0.20 when the 
free-stream Mach number is 3.12, and 0.14 when the free-stream Mach number 
is 3.81. Further, it can be seen that the values of g for which Mh = M cm 
are 0.06 and 0.07 in the two cases respectively - the theory is not expected 
to be valid for values of c as large as this. The values obtained from Li's 
solution are not significantly different from these@ 

- - - - - -am 

* As was the case in the experiments4. 
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When a boundary layer develops in a uniform stream whose velocity ue 
is a constant, the displacement thickness is defined by the integral 

6, = 
0 

aid the momentum thickness by the integral 

6 

0 

When ue is not constant the form of these equations is not necessarily 
the same. It is important, therefore, to investigate the physical interpre- 
tation of these quantitiese 

Before doing so, however, it will be valuable to point out how con- 
fusion can arise due to the usual practice of using the velocity at the edge 
of the boundary layer as a reference velocity. In the development of a 
boundary layer in a uniform flow, this velocity, u8, is precisely defined9 
although the zsition of the edge of the boundary layer is imprecise0 When .--- 
the flow outside the boundary layer is a shear flow, however, the velocity 
u6 is known only at the point (O,O), and it is this value (u. in the notation 

of the present paper) that is t2ken as the reference velocity. In the present 
problem, of course, there is also the given velocity, LI ; but this depends co 
on the extent of the external shear layer, and so is irrelevant to the flow 
in the boundary layer, at least for small x: it is not, therefore, suitable 
as a reference velocity for boundary layer problems. 

It is not, however, sufficient to replace the referenco quantities pe 

and ue in equations (I?) and (I 8) by the reference quantities p. and uo, as 

the integrals would not then be convergent; and, as pointed out above, the 
quantities p w and u. are not suitable reference values in the boundary layer. 
In order to preserve as much as possible of the usual physical significance 
of the two thicknesses, we proceed as follows* 

3*j Displacement thickness and mass deficit Pee..s*-,sasc-- ~..AP.~.~~~-~.~~~.- - 

The physical significance of the displacement thickness of a boundary 
layer developing in a uniform flow has been discussed in some detail by 
Lighthil18. Similar argument s may be applied in the present case, and these 
are given in Appendix 2 for the two-dimensional incompressible case* It is 
sufficient here to regard the displacement thickness as a measure of tne 
mass deficit due to the presence of the boundary layer: in this case, the 
surface y = 8,, where 6q is the displacement thickness, represents the 

position of a displaced boundary which, in the absence of viscous forces, 
would give the correct flow outside the boundary layer. It follows that 
the magnitude of the displacement thickness at any station satisfies the 
equation 

r 

/ 

pudy = Pe ue ay ’ 
0 
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and this is in agreement with (17) when pe and ue are constants* An 
altern&ive form of this equation is 

% 03 

/ 
pe ue do = (pe ue - pu) dy , 

where the right hand side is the mass deficit between the real flow along 
Y = 0 and thefictitiousinvisoid flow along y = 0 (as distinct fromy=6,). . 

It may be of interest to note that 6, can be regarded as 
between a total displacement thickness 

the difference 

which is appropriate to the whole shear flow (including both the boundary 
layer and the external shear layerj, and a partial displacement thickness 

appropriate to the external shear flow in the absence of a boundary layer. 
b can, inoidentally, be shown that bqe is neg::tive in the <axisymmetric 
case.) This definition, hovrever, appears to be less fundamental than that 
given by equations (19) and (20), <and will not be considered further. 

IIt is shown in Appendix 3 that 
displacement thickness is given by 

using Glauert*s solution, and by 

for the solution of section 2, the 

-+0073474 MO2 C+,..' 
-I 

. . . (2la) 

4-1.6392 Ido2 

' . . . (21b) 

using Li's solution. The eqerimental values of 8, for the boundary 
layers on blunt cones have been recalculated (the incorrect formula was 
used in Ref.4) and the results are given in Table 2, and plotted as a 
function of c in Fig,T* The values of < have been c&culatcd using the 
values of !CI found in section 2* To investigate the variation with E it 
has been found most convenient in Fig.7 to plot, not bl, but the ratio 

i5 ; the theoretical curves of equ;%tion (21) Lare shown on the 

graph, and so is the value of the ratio far downstream (that is, the value 
on a sharp cone). It can be seen that, although the experimental results 
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. 

are rather scattered, they are not inconsistent with the theoretical curves: 
the accuracy of the experimental results is unfortunately insufficient to go 
further than this, and there is not enough evidence ta say that the 
equation (21) is verified0 It should be noted that for small values of c, 
and therefore of x, the effect of the boundary layer on the curved part of 
the blunt cone may be considerable, and this has not been allowed for here. 

3.2 Momentum thickness and momentum deficit ~~..~-~~-.~~~~~~~~-=-- &em*- 

There are two ways of interpretating the concept of momentum thickness 
physically. First, we can consider it as a measure of the deficit of momentum 
due to the presence of the boundary layer: this momentum deficit we write as 

D = pe ue2 dY - pu2 dY 9 

&I 
0 

m 

which is the difference between the flow of momentum in the inviscid flow 
round the fictitious surface y = ?j,, and the flo# of momentum in the real 

flOV?. It is not difficult to show that, if pe 
the definition of equation (18) corresponds to 

Alternatively, we can integrate equation 
pressure gradient, using (2), we have 

and ue are constants, then 

. 

(1); then in v&e case cf zero 

9 (23) 

where T ~ is the true shearing stress at the wall, ad (Tag) is that every- 
0 

where in the external shear flow (that is, the value at the wall in the 
absence of a boundary layer)* It follows that, in a uniform flow (with no 
pressure gradient), 

and this is sometimes used as an equation defining 620 

The obvious definition uses an analogy with equation (20), in v:hich 
the right hand side is the mass Cieficit: that is, we write 

co co 

/ 
p u2 dy = 

1 
p e ue2 dY ¶ 

0 &I+62 

giving 

/ 
pe uc2 dy = D . (24) 



This means that the flow of momentum in the actual flow is equal to the 
flow of momentum, outside the surface y = 6, -t 62, in tine invisoid flow 
outside the surface y = 6q; this idea must not be taken too far> however, 

as the surface y = 6, + 62 is not a stream surfacee A convenient way of 

writing this definition is 

V2 03 

1 
pe UC2 dY = Cpc ue2 - p u2) ay , (25) 

0 

and this is the eaxpression used for calculating experimental values of 62. 

(It should be noted that, since the calculation of 6 2 involves the sub- 

traction of the two compzu?atively large quantities 6, and 6, + 62, the 
experimental determination of h2 is less accurate than that of &,)Q 

,Since the shearing stress, T,#, is equal to the quantity (g du/dy)rO, 

the easiest way of calculating the theoretical value of D is to use the 

equation (23) and write the left hand side in the form 

this may be integrated with respect to x, using the fact that D = 0 when 
x = 0. The result of this integration is that 

where c = f;(O); Glaucrt gives c = 0*775, and TX gives c = 2.Y550 Using 
this result, and the definition given in equation (24) it is shown in 
Appendix 3 that the momentum thickness is given by 

..* k7d 

for Glauert's solution and 

for Li's solution. The experimental values for the boundary layers on 
blunt cones have been recalculated and are compared with the theoretical 
curves of equations (27'a) and (27bj in Fig.8. The agreement between theory 
and experiment is perhaps less good than that for the displacement thickness, 
but as pointed out above the accuracy of the experimental determination of 
the momentum thickness is rather low0 At least there is no great discrepancy 
observable. It should be remarked -that the accuracy of the experiments is 
not great enough to distinguish between the different curves of Gl2ucr-t and 
Li. 
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The Reynolds number of the flow at any given point depends on two 
quantities - the unit Reynolds number (Reynolds number per unit length) 
and a length which is associated with the point concerned,, Various com- 
binations of these two quantities can occur, and some may be more appropriate 
than others in any given problem, 

In discussing the problem of transition to turbulence in a boundary 
layer on a blunt cone, Moeckel L considers the Reynolds number, Rx, based on 
local conditions at the edge of the boundary layer and the distance down- 
stream from the tip: that is, Rx = p6 u~x/~~. lie assumes that at the 

position of transition Rx always has the same value, and points out that 
since the unit Reynolds number p& -gv~ increases with x on a blunt cone 
(so that, for a given value of x, p6 u8/p6-and therefore Rx- is smaller on 

a blunt cone than on a sharp cone) transition will occur further downstream 
on a blunt cone than on a sharp cone. It was found experimentally, however, 
in Ref.4 that this result does not apply for large values of the tip radius 
(for values of x/r less than 100). 

A more appropriate Reynolds number is likely to be one which is based 
on the thickness of the boundary layer rather than on x, which takes no 
account of the way in which the boundary layer develops. It was found 
experimentally3 that transition occurred when the Reynolds number based on 
momentum thickness, R 

g2' 
was between 650 and 700, and when that based on 

displaoement thickness, R6 , was about 5ooO; these values seemed to be 
I 

appropriate, within the experimental accuracy, for all the cones tested 
(even when the various quantities have been recalculated using the defini- 
tions of this note). 

l?or reasons simi&r to those discussed in section 3, the most suitable 
value of the unit Reynolds number is not that at the outer "edge" of the 
boundary layer, but the vzlue p. uo/po - the only given value of the problem, 
Using with this value, the values of 6,, and &2 given in equation3 (21~~) and 
(27a) respectively, we now have 

- + Oo73472 MO21 g ; 
/ 

and 

(28~~) 

for GlauertIs solution. Similarly, using Li's results we have 
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. . . (28b) 

and 

The values for the experimental results can also be calculated using the 
relations 

where, as in section 3, po, u. and p. are the values of p, u, p respectively 
at the surface of a blunt cone in the absence of a boundary layer (that is, 
the values appropriate to the static pressure on the surface of a sharp 
cone, and to the stagnation temperature and prossure behind the normal bow 
shock in front of the cone). This value is not, however, that taken for 
the largest value of x in each case: here the value of 6/yW is nearly 

unity, and it is not expected that the theory of this paper would hold as 
there is a gradient of vorticity in this region. For the sake of comparison 
the value of the Reynolds number at this point has been calculated using 
a vaiue of pu/@ intermediate between p. uo/po and pm u~P~: this inter- 

mediate value was taken to be that appropriate to the velocity when y = 0 
on the tangent to the velooity profile u(y) at the estimated outer "edge" 
of the boundary layer. 

The experimental values are Figs.9 and 10, and,ckompared with 

the curves for the quantitie? Rg 

given by equations (28) and (29): 

and R,.2 c) jzi 

The values of these quantities very far 
downstream (that is, the values on a sharp cone) are also given. Again it 
is clear that the experimental results do not conflict with the theoretical 
ones. 

Using the equations (28) and (29), writing R& for either R& 
1 

or R& , 
2 

and assuming that r, is proportional to x (a3 it is very nearly-except 

near the tip-on a blunt cone), we have 

where A and B are positive constants depending on the conditions in the flow 
upstream of the cone. This equation holds only for smz~ll x and for large r; 
for large x or for small r, the value of Rb is A'x~ where A' is a constant 

(appropriate to the sharp cone) which is greater than A. Fig.11 is a sketch 
showing Rb as a function of x2 for cones of different tip radii in the same 
stream: as r increases, so do both the value of x at which R& departs 

. 
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1 
significantly from Ax' and also the value of x at which R sensibly reaches 

L 6 
Atx2 ; it is therefore reasonable to fair in the curves as shown in the 
diagram for intermediate values of x* A line has been drawn at a constant 
value of R 6' and this intersects curves corresponding to successively l<arger 
values of r in the points C,, C2, C,, etc.; it is evident from the diagram 

that the values of x at those point< first increases and then slowly 
decreases again as r increases* If this constant value of R6 is that at 
which transition to turbulence occurs, this means that as r increases from 
zero the position of transition moves first downstream and then upstream 
again- This is in agreement with the experiments of Ref.)+. 

An alternative way of expressing this is to regard (31) as a relation 
between x and r for a constant value of R 6 ( this is not valid for large 

values of x/r, of course)e If this value of x is plotted against r, a curve 
like the full line in Fig012 is obtained. For a sharp cone, the value of 
x for the same value of R6 is also shown on the graph, and it seems reasonable 
to complete the curve as shown by the dotted line* This again shows that, 
as r increases fj?Oill zero, x first increases and then decreases ag:iin. 

. 

It is interesting to note th(a.t the value of x at tra 
5 

sition for very 
large values of r is the same as that predicted by Moookel . he, however, 
finds that this is the largest possible value of x at transition, whereas 
the present theory predicts that larger values =are possible (and that, in 
any given free-stream oonditions, there is an optimum value of r which gives 
the maximum value of x at transition). In order to predict this maximum 
value, .a higher-order theory to that given in this paper is required, and an 
investigation into this is being made at the present tiEe. 

5 coKcLusIoXs -... 

Cd The theories of Li A>3 and Glauert2 for the development of a boundary 
layer in a two-diacnsional incompressible shear flow hove been extended to 
apply to axisymaetric cor22ressible shear flow* 

(2) The significance of the displacement thickness and tine momentum 
thickness of such a boundary layer is discussed, and unique definitions are 
given which reduce to the usual form for a boundary layer developing in a 
uniform flow, A comparison is made with soLie experimental results4 obtained 
on a blunt cone: although the accuracy of the experiments was insufficient 
to give a positive confirmation of the theory, the results were at least not 
inconsistent with the theory* 

(3) Reynolds numbers based on displacement thickness and on morneatun 
thickness are defined. It is shown that if transition to turbulence in 
the boundary layer occurs at a critical value of one of these, then, ct3 the 
length scale of the flow increases fron zero, the position of this transition 
moves first downstreara and then slightly upstream again. This is in agrce- 
rznt with the experimental results on blunt cones. 

(4) The main justification of the theory of the Iz~esent noto sce~s to be 
the conclusion (3) above. To make further progress it would seem to be 
necessary either to perform a more accurate series of experiments, or to 
find a complete solution of the equations of notion. 
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LiST OY SYMBOLS w ,-- e---e- 

A, AA ,B constants 
E,a,b,c 

V2 points in Fig.10 

D momentum deficit due to presence of boundary layer 

fojfl functions of -rj occurring in the stream function 

k in two dimensions, k = 0; in axisymmetric flow, k = I 

K a constant 

m strength of source distribution equivalent to boundary layer 

M h!ach number 

P static pressure in flow near surface 

%J 
stagnation pressure in free-stream 

r 

? 

length scale (e.g. radius of tip of cone) 

distance of point (x,0) from axis of 8ymmetry 

Rx Reynolds number based on x and conditions at edge of boundary 
layer 

Reynolds nuzdber based on displacement thickness and on 
conditions at the sur.face y = 6, in external flow 

Reynolds number based on momentum thiokness and on conditions 
a-t the surface y = 6, in external flow 

physical coordinates (see Rg.1) 

transformed coordinates (see equation (3)) 

dY/dX 

transformed coordinates (see Appendix 3) 

velocity components in x,y directionsj respectively 

thickness of boundary layer 

displaoement thickness of boundary layer 

momentum thickness of boundary layer 

values of Y when y = 6, 6, respectively 
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P 

P 

‘T 
W 

. 

non-dimensional coordinate (see equation (7')) 

non-dimensional coordinate (see Appendix 3) 

particul~ values of 6 as defined in Appendix 3 

non-dimensional parameter (see equation (9)) 

?-I - IQ-7207 

visoo&ty 

density 

shearing stress at the wall 

If stream function 

cl non-dimensional velocity shear in external flow 

Suffices 

0 refereme values (values at x = 0, y = 0) - except fo 

co values at outer edge of external shear layer (and on surface of 
sharp cone in inviscid flow) 

e 

e 
0 

values in external flow 

values in external flow in absence of boundary layer 

values at edge of boundary layer 
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It is well known that the 
equations (11) is 

asymptotic solution of the first of 

where ?L = 7 - 1.7207' and K is a certzin constant; it is easily verified that 
the asymptotic solution of the second equation takes the form 

fl - ; X2 + 3.4687 - t Ke -x*/4 -A ~ 
1 

It follows that, near the edge of the boundary layer, 
given by 

11 
0:x . 

ill 

the velocity, u, is 

The second derivative of this quantity is 

and we see that, at least to the order of t-e approximation of this note> 
there is always some value of A (given by ?L !2 + 4/g) at which u" vanishes: 
that is, there is always a point of inflexion in the curve of u as a function 
of A (or IJ), vinatever the value of e. 
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APPEiWIX 2 -- -- 

DEFINITIONS 03' DIS?LACEAJFJNT THICKI!JESS -- ma-a- -- 

Ve shall follow Lighthill and oonsider the two-dimensional incom- 
pressible case only (except in method 1, where we include compressibility). 
He considers four methods of defining the displacement thickness, 6,, for a 
boundary layer developing in a uniform flow, and shows that they are 
equivalent; we do the same here where the bcundary layer develops in a 
shear flow. 

(I) Flow reduction: 
y = hj(x)* 'Then 6,(x) 

the surface y = 0 is displaced to the position 
is such that, if there existed a flow (which will 

subsequently be referred to as the fictitious flow along y = &,(x))along 
this surface which is without viscosity and which has the same tangential 
velocity component as the given flow far from the surface (that is9 Ll=u e 
far from the surface), then the mass flow in the fictitious flow is the same 
as that in the given flow (including the boundary layer) along y = 0. Then 
we have 

03 co 

Pe ue dy = pu dy (32) 

6 
,’ ca 

1 
Pe ueQ = (peue-pu)dy . 

1 
0 0 

(331 

In the incompressible case, 
to the form 

where p is constant everywhere, this reduces 

(34) 

0 0 

PI Equivalent sources: here we consider the normal component of velocity 
just outside the boundary layer. This is 

7 Y cm 
v = $dy z - 

zi a (ue-u) dy - 

' = T-G 
0 

yav 
u) dy -i- / -$ dy . (351 

0 

The second term in this expression is the normal component of velocity due 
to a flow along the surface y = 0 which has no viscosity and which has the 
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Appendix 2 

same tangential component of velocity as the given flow far from the surface. 
The first term can be regarded as the normal velocity due to a distribution 
of sources of strength (volume flow rate) per unit area 

along the surface y = 0. now the flow of the "new" fluid 
must equal the total outflow from the part of the surface 
point and the point of attachment, and this is 

past any point 
between that 

thus the new fluid just fills a region, adjacent to the body, of thickness 
6, as defined in (34). 

(3) Velocity comparison: here we look for a streamline surface y = hi(x) 

such that the fictitious flow along it (see above) has the same normal 
velooity component as the given flow to the first order of small quantities. 
The boundary conditions of such a flow are 

(i) at y=b,(x), ve = 

and (ii) when y + oo , ve = 

But outside the boundary layer, we have equation (35), and the two values 
of v must be equal outside the boundary layer. Henoe 

00 Y 
A. 
dx i-1 

au 
(ue-u)dy] = I=$ aY + ue($)6;(x) 

-- 
0 0 
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Appendix 2 

and finally 
ccl 

a 
zi L/ --- be-ub--J = -qJuedq . 

0 0 

Since u = ue and 6, = 0 when x = 0, this is equivalent to equation @t)* 

(4) Mean vorticity: here we replace the boundary layer by a vortex sheet 
at the mean distance y = hd(x), so that for y less than 6,, u = 0, and for 

large values of y, u z ue (which is the given flow)0 Then we can define a 
mean vorticity of the boundary layer by means of the equation 

where the excess vorticity present in the boundary layer only is considered, 
and where it is assumed that the term C~V/~X in the expression for the 
vorticity is much smaller than the term au/ay. Manipulation of the equation 
leads, as before, to the relation (34)e 
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, 

IF/e note first that the asymptotic solutions for fo(7) and fj(Tl) are 

where the constants a and b are different in the solutions of Glauert2 and 
Li.3, and are tabulated below. In this table ca.re given also the constant A, 
of equation (II) in the main text, the constant c = f;(O), and the oonstant 
c' = ('!.7207a + 2b + 2 - 2c)/f+ which occurs in one of the integrals below. 

. 

Substituting the asymptotio values given above for fo(v) and f,(q) in the 
second of equations (II), we find the relation a - I.7207 = A,; this is 
quite general and does not depend on the nature of the boundary conditions 
taken at the outer edge of the boundary layer. The relation is used below 
and it is only in the final substitution to obtain the four equations (@+a j , 
(44b), (.!+6a) and (46b) that the results of this Appendix are made dependent 
on the form of the boundary conditions taken. 

Before prooeeding to the main business of this Appendix, it is con- 
venient to list four integrals which will occur later. These can be evaluated 
using the differential equations (I'!) and the initial conditions of (12); 
the asymptotic forms of these integrals are also given: 
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Appendix 3 

v 

/ 

*[f;(q)12 dq = f;(q) f*(q) + 2f$q) - 2QO) 0L. q - 2*%47 

0 

where c' = (1.7207a + 2b + 2 - 2~)/4. 2 

We now proceed to evaluate the displacement thickness, using the 
definition (19) in the main text,, The rate of mass flow across the line 
joining the points (x,0) and (x,y), where y is large, in the flow of the 
viscous fluid along the surface y = 0 is the asymptotic value of the integral 

4 

where 

Y = ($j-~j$% 
0 

= (f--&$--[~ + 0.2 c (I - fi2 - 2gf; f;) + . ..--j dq 

0 

-($;r ,/s b + 0.476% Mz - 0.4 Id: c(q2/2 - aq+c*) + . ..I 
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Appendix 3 

Now for large q, the velocity profile is of the form 

+- I + i&l-) - 
0 

a)+.e. , 

and there is a fiotitious inviscid flow along the surface y = 61(x) which 
is the same as this for large q, This flow is given by the relation 

where 6 is a new variable (analogous to q) given by 

and G is a constant. Since for large y, u - ue, we must have 

v -a z;-; . 

Inverting the relation (38), we have 

(38) 

(39) 

Comparing this relation with (37), 
values of y, 

we have that, for the same (large) 

v -?i =a-;= - oe4769!+ MO2 (: - 0047694 Aio2j2/2 -t2/2 + 

-I- 0.47694 ~~~ (G+a)+c’ +... . 

l ** (4-l) 

Substituting from the equation (41) in the expression (36) for the mass 
flow rate, we have 
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Appendix 3 

But the rate of mass flo%-? across the line joining the pointa (x,6,) and 

(x,y), where y is large, in the fictitious invisoid floV along y = b,(x) i.s 

the integral 

where 5 = 5, when y = b9. This eqression has to be equated with the right 

hand side of equation (42). After some manipulation, the result of this is 
that 

. 

5, = I .7207 + 0.47694 ME + c 1 7207a [. +-+)tb-O.i+ b’f c’ - 

- 0.4 ME (0.47694 h$) (*47zgm’ + a)] + .a= 

. . . (43) 

But we have, using (40), that 

Substituting in this expression from equation (43), we find that 

.m c +0&M; o' + ~7207(~+0~4M~) (22F - a)] + . ..I. 

..* Od+~ 
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Appendix 3 

Using the values for the constants given in the table at the beginning of 
this Appendix, we have that, using Glauert's results, 

and, using Li's results, 

. 

In order to calculate the momentum thickness, 62, it is necessary 
to evaluate the integral 

where i? = G, +- :2 when y = 6, .+ 62. 

Using equations (41) and (43) in equation (22) we find after some 
manipulation that 

Using this and the definition (24), we have 

Thus 

Using the relation (40) to find expressions for '$ + :2 and G,, it is 
possible to show that 
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Appendix 3 

and, using the relations (4-3) and (45) in this expmxim, VE have 

- g 5.206 - o - 2.188a -I- 

Using Glauert's results, this is 

+ (0.5432 - oe2656a) $1 + .. . 1 e 

..a (46) 

i32 z ($jk J ;$ p.664 - (0.646 + 0.0882 I$) c + . ..] 

. . . (46a) 

and, using Li's results, 

. . . (46b) 
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-,-+a. “ .  

0.0 

002 
0.4 
oe6 
0.8 

1 .o 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 

3*0 
3.2 

;:i 

3-8 
4-o 
4.2 
4.4 
4.6 
4.8 

TABLIE e *., A,=*- 

The function f!(q) and f:(v) 

Lv. c. . ..w‘.-w.> 

q-J 

-=.=--a 

0 *oooo 

Oe0664 
0.1328 
O,+IY89 
002647 

0,3298 
Oe3938 
O-4563 
0.5168 
0*5748 
006298 
0.6813 
0.7290 
O-7725 
0.81-i 5 
0.8460 
0.8761 
0.9018 
0.9233 
0.9411 

0.9555 
0.9670 
0.9759 
0.9827 
Oey878 

0.9915 
0.9942 
0.9962 
009975 
0.9384 

0.9990 
0.9994 
0.9996 
0.9998 
0.9999 

1 .oooo 
1 .oooo 
I .oom 
1 .oooo 
I .oooo 

1 .oooo 
I .oooo 
I .oooo 
1 .oooo 
I .oooo 

I .oooo 

0~0000 
0.1590 
0.3179 
o&763 
0.6338 
ooX96 
049429 
1 eo929 
I e2385 
I e3790 

i l E I :7649 I .882-i 
I.9947 
2.1043 
2~126 
2s3214 
2.4328 
2.5487 
2e 6706 
2.7998 
2.9371 
3.0829 
3e237d 

4.302-I 
404-947 
406895 
408b59 
5*0835 
5.2820 
5.4810 
506803 

2:;;; 0 b. 
6.2796 
6.4795 
6.6794 
6.8794 
7*079)+ 

7.2794 

For large values of q, fn(v) + q - 1.7207 

f&d - +(v -1 .7207)2 + 3.4687 acoording to Glauert 
or w # +7.1879 according to Li and Murray 
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0~0000 

I .*i8IO 

2.21-i& 

3ao940 

3.7922 

4.3mo 

4.6217 

407860 

4.8440 

4.8593 

4.8915 

4.9829 

5el517 

5.3957 

5.7005 

690475 

6.4207 

6.4042 

7e2031 

7*6010 

8aOOO3 

8e4001 

8.8000 

9 ~0000 



(a) Free-stream Mach number = 3 .I2 

(i.:.) 
.s.. -a 

oe49 
0.49 
0.16 
0.16 
0.083 
0.083 
0.048 
0.048 

ldO 
= 2.14, M = 2.92, Cl = 0.2 from Tig.5 co 

105*5 
105*5 
dO5.5 
105*5 
108 
108 
104 
104 

13.61 
10.40 

I 20~5 
1.67 

16.29 1.57 
6.02 ,Oag7’ 
8.38 1.31 
7-03 I.04 

2.90 ; 6.34 IO*99 
-----L----L.-~~-- 

2.225 
2.225 
2.32 
204-O 
2.49 
2.63 
2.86 

(b) Free-stream Mach number = 3.&l 

*o = 2.34, Mm = 3.35, Cl = Oe14 from Fig*5 

1614 260 
2245 351 
1813 268 
2942 1459 

e-s--* 

g(from 
Fig.5) 

.-* C-MA-. 

7.78~10-~ 

Ex10-3 

1:50x10-2 
2.80 
3.68 
8.88 
I  ~36x10~~ 
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TWO-DIMENSIONAL FLOW 

AXIS OF SYMMETRY AXIS OF SYMMETRY 
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1 OUTSlOE SHEAR LAYER 

1 
EXTERNAL SHEAR LAYER 
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FLOW AT x= Oe 



FlG.3. THE THINNING OF THE EXTERNAL SHEAR 
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FIG. 6. EXPERIMENTAL VARIATION WITH 3 OF THE MACH 
NUMBER, Ms, AT THE EDGE OF THE BOUNDARY LAYER 

ON A BLUNT CONE. 
(a) WE-STREAM twcbi NUMBER =3d2 (MO =2d4) 
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FiG.6. EXPERIMENTAL VARIATION WITH -$ OF THE MACH 
NUMBER, Ms, AT THE EDGE OF THE BOUNDARY LAYER 

ON A BLUNT CONE. 
09 FREE-STREAM MACH NUMBER = 3*8l (MO = 2~34) 

‘b -1 
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NOT TO SCALE 

FIGII. VARIATION WITH JC* OF THE 
REYNOLDS NUMBER, Rs, BASED ON EITHER 
THE DISPLACEMENT OR THE MOMENTUM 
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