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I Introduction 

. 

. 

1.1 The work in references 1 and 2 has been based on vacuum ballistic 
trajectories for which the climb angle is chosen to maxtize the range 
from ground to ground. In practice, the boost phase of a rocket flight 
will occupy an appreciable part of the flight, covering perhaps 5% of the 
maximum range attained by the ballistic missile. The missile'will actually 
set out on its ballistic trajectory when motor thrust ceases at the cut-off 
point high above the earth surface. It appears reasonable to maximize the 
range from the cut-off point to the ground rather than including an 
LlzaginRry portion of the trajectory traced backwards from the cut-off point 
to the ground. 

Rtaximizing the range covered over just the free flight (ballistic) part 
of the trajectory will not give the greatest range from launch to impact. 
h slightly lower climb angle at cut-off enables more ground to be covered 
during the boost phase with very little loss in range over the ballistic 
part of the trajectory. However, maximum range between launch aed impact 
may not be required. In some schemes of radar guidance, it is possible that 
a ground staticnmaybe sited roughly below the cut-off point. Since such 
a ground station would necessarily lie on friendly ground and ahead of the 
launching site, the operational range would be measured most effectively 
from cut-off to impact. 

Trajectories optimized from cut-off to impact offer two simplifications 
which may justify their substitution for the ground optimized trajectories 
used previously (references I and 2). In the first place, since the range 
from cut-off to ground is a maximum, error3 in range are insensitive to 
errors in the climb angle at cut-off, depending on only second order terms. 
This may be expressed in the manner of reference 2 by saying that the 
critical direction for the velocity lies along the direction of the desired 
velocity. It means that if the climb angle is adjusted to be approximately 
correct (within say 3 mil s), only the speed of the missile need be measured 
in order to determine the range to irnpact. 

The second advantage lies in the partial separation of the problems of 
optimizing the boost trajectory end optimizing the ballistic trajectory. 
The analysis of the ground optimized trajectories used in references 1 and 2 
is somewhat complicated by the rather artificial concept of the range from 
ground tc ground. In order to find the velocity required to cover a given 
range frcma given cut-off point it is necessary to solve a cubic 
equation fer the ground optimised trajectory. This and similar difficulties 
are overcome by optimizing the ballistic trajectory from cut-off to ground. 
Unless otherwise indicated in the remainder of this note, the term optimum 
trajectory will be used in the sense that the climb angle at cut-off is 
chosen tc give maximum range from cut-off to impact. 

I .2 Apart from the different method of optimising the trajectories the 
assumptions are the same as in references 1 and 2. The work deals with 
vacuum ballistic trajectories &cut a spherical ncn-rotating earth. The 
cut-off point will, be well above the atmosphere so that drag caused by the 
air will be entirely negligible until the missile re-enters the atmosphere 
near the target. Terminal deflections of the missile from a vacuum ballistic 
trajectory caused by the atmosphere are ignored here. It has been shown in 
reference 1 that the mean of such deflections is small compared with the 
total ground range traversed. 

The trajectories are considered about a non-rotating spherical earth. 
Allowance may be made for earth rotaticn between particular end-points but 
since the correction is in a variable direction with respect to the trajec- 
tory, it is more convenient to ignore the spin of the earth in this simple 
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general treatment. Allowance for earth rotation will be considered in a 
later note. 

In harmony with the assumption of a spherical earth, the acceleraticn 
due to gravity is assumed to be that of a uniform sphere. Thus the force per 
unit mass exerted by the earth on the missile is directed towards the centre c 
of the earth and varies inversely as the square of the distance fmmthe 
centre of the earth. The acceleration due to gravity at the earth surface 
has been taken as 32 ft/sec2. The radius of the earth is assumed to be 
3437.75 n. miles so that one nautical mile at the earth surface subtends one . 
minute of arc at the oentre of the earth. 

The notation is basically the same as that in references 1 and 2. Most 
of the mathematics is contained in three appendices, through which equations 
are numbered ccnsecutively. A few properties of optimum trajectories are 
outlined in the main text and s umnarized in the conclusions. 

2 Vacuum ballistic trajectories ad their envelope 

2.-l Appendix 1 contains a derivation of the trajectory of a ballistic 
missile in a vacuum. The equations of moticn have been obtained in more 
detail in reference 9, and the analysis follows closely on that of references 
I and2. Some of the earlier work is reproduced in order to maintain some 
independence. The later parts of the argument proceed differently due to 
discarding the ccncept of range from ground projection to impact. 

2.2 Certain salient features of vacuum ballistic trajectories may be pointed 
out in consequence of results in the Appendix. The results are most easily 
expressed in terms of a speed parameter p (see equation (8)) whioh is non- 
dimensional and equal. to 

. 

where r is the distance of the missile from the centre of the e;arth, v is the 
missile speed, g is the acceleration due to gravity at the earth surface and 
R is the radius of the earth. 

Any vacuum ballistic trajectory takes the form of an ellipse with one 
focus at the centre of the earth. The length of the major axis is 

2r 
2-p see equation (18) 

in which formula any instantaneous values of the variables r, p may be 
substituted. In particular the initial values may be used, so that given the 
initial height ‘and the speed of the missile, the length of the major axis of 
its trajectory is determined. The initial point on -the ballistic trajectory 
is the point at which all motor thrust ceases, and so will be referred to in 
general as the cut-off point. & 

The constancy of the expression for the major axis may be deduced from 
the principle of conservation of energy. The only acceleration of the missile 
is assumed to be due to the attraction of the earth of magnitude 6 

gR2 
r2 
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acting towards the centre of the earth. By integration, it follows 
that an expression for the potential energy of the missile at a range r 
from the centre of the earth is 

c ,d 
r 

per unit mass osthe missile. Since the kinetic energy of the missile per 
unit mass is&v , the total energy of the missile is 

and this remains constant along the trajectory. But by the definition of 
p in equation (8), 

Thus 2Er = gR2p - 2gR2 

i.e. 2r 
2-p = 

Since the values of g, R and E are all constant along the trajectory, it 
follows that the fraction 

also remains constant over the trajectory. As mentioned above, it represents 
a length which may be identified with the major axis of the orbit. 

It may be observed that the dZl,ensionless parameter p takes the form 
of twice the quotient of the kinetic and potential energies of the missile. 

2.3 Another quantity assooiated with the elliptical trajectory is the length 
of the latus rectum which is quoted as 

2rp cos28 

(see equation 19) where the angle 8 is the climb angle between the missile 
velocity and the local horizontal, and is measured positively in the 
upwards sense. This quantity may be shown to remain constant over the 
trajectory by the principle of constancy of angular momentum about the centre 
of the earth. The length of the l&us rectum depends not only on the speed 
and position of the missile but also on the direction of the velocity. 

2.4 A convenient way of determining the greatest distance which can be 
travelled starting from a certain cut-off point is to study the envelope of 
trajectories. It is assumed that the cut-off point and cut-off speed are 
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specified., but that the trajectory maybe altered by choice of the climb angle 
at cut-off. The envelope of the trajectories in such circumstances has been 
derived at the end of Appendix I where it is shown to be an ellipse called the 
bounding ellipse. 

Through any point inside the bounding ellipse, it is possible to find 
a trajectory starting frcxn the ,cut-off point with the stated speed. Points 
outside the bounding ellipse cannot be reached, and points on the bounding 
ellipse can just be reached by a missile with the given cut-off conditions. 

The bounding ellipse has one focus at the centre of the earth and the 
other focus at the cut-off point. The size of the bounding ellipse is 
typified by the length of the major axis and this is 

2+p, , 
rl - 

2-P, 

where the suffix 1 denotes v<alues at cut-off. For varying values of the speed 
parameter p, the corresponding bounding ellipses form a con-focal system. 
For example, when thevalue of p = 2/3, the length of the major axis of the 
bounding ellipse is 2r, so that the missile is able to reach a point which 
is a distance r, from both the cut-off point and the centre of the earth. 
This means that the missile is capable of traversing an arc of sixty degrees 
over the earth surface between two points both at a "height" r, (measured 
from the centre of the earth). The following table shows the cut-off speed 
required to satisfy the relation p = 2/J at three heights above the earth. 

Cut-off speed when p = 2/3 

Height (n. miles) I 0 50 100 
Speed ft/sec 21,116 20,964 20,816 

m.p.h. 1 14,397,14,294 I 14,192 

When the value of p = I, the length of the major axis of the bounding ellipse 
is 3r so that the missile is able to reach a point distance r from the 
centri of the earth at the opposite side of the world. The fol 1 owing table 
shows the cut-off speed required to satisfy the relation p = 1 at three heights 
above the earth. 

Cut-off speed when p = 1 

Height (n. miles) 0 50 100 I 
, Speed ft/sec 25,862 25,676 25,494 

i m.p.h. ~17,633 ,17,506 1 17,382 4 * 

As the value of p tends towards 2, the bounding ellipse degenerates into the 
circle at infinity, with the consequence that the missile can reach any point 
in space. The necessary speeds are 42 times those in the previous table and 
are shown in the table below. 

z 
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Cut-off speed when p = 2 

Height, (n. miles) 0 ' 50 j 100 
Speed (ft/sec) 36,575 36,312 t 36,054 

m,p.h. i 24,337 24,757 I ! 243Q 

2,5 By a well-known property of an ellipse, the sum of the distances 
from any point on the ellipse to the two foci is a constant (equal to the 
length of the major axis). Hence if in Fig.l(b) a missile is capable of 
just reaching a point Q on the earth surface from the cut-off point P, the 
length of the major axis of the bounding ellipse must be 

R+d 

where R is the radius of the earth and d is the distance PQ. If the missile 
were fired vertically up;vards with the same speed from tne same cut-off point, 
it would reach a maximum height of h' above the earth surface where 

2(R + ht) - r, = R + d 

i.e. h' = $(r, + d - R) 

c $-(d+h) 

where h is the height of the out-off point above the earth surface. For 
example a missile capable of travelling 2333 n. miles from a cut-off point 
400 n. miles high would reach a height of 12cO n. miles if it were 
directed vertically. 

3 Optimum ballistic trajectories 

3*-l The geometrical propertie s of the bounding ellipse may be used to 
deduce the form of the optimuim ballistic trajectory. In Fig.l(b), let P 
be the cut-off point and Q the desired impact point which the rmissile must 
just reach. It follows that the cut-off speed must be chosen so that the 
bounding ellipse with foci at P and the centre of the earth 0 shaU pass 
through Q. The tangent to an ellipse bisects the angle between the focal 
lines, the lines from the contact point on the ellipse to each of the two 
foci. Thus the direction of the bounding ellipse at the impact point Q 
must bisect the angle between the lines PQ and OQ. NOW at the point Q, the 
optimum ellipse from P to Q touches the bounding ellipse which forms its 
envelope, and so the tangent to the optimum trajectory at Q coincides with 
the tangent to the bounding ellipse. Thus the tangent at Q to the optimum 
trajectory also bisects the angle between the lines PQ and OQ. But the 
trajectory from P to Q is an ellipse with one focus at the centre of the 
earth 0. Since the tangent at impact Q to the optimum trajectory must 
bisect the focal lines, it follows that the second focus of the optimum 
trajectory lies on the line PQ. 

Thus the optimum trajectory from P to Q is the ellipse which has one 
focus on the straight line joining P to Q. 
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This property of optimum trajectories has been noted in reference l.cor 
the particular case in which both P and Q lie on the earth surface at equal 
distanoes from the earth centre. 

3.2 Since the second focus F of the optimum trajectory lies on the line PQ, 
it follows that the lines PQ and OP are focal lines from the cut-off point P. 
Hence the climb angle at cut-off on an optimum trajectory is such that the . 
velocity bisects the angle between the straight line PQ to the target and the 
upward vertical OP. 

It has been suggested (by Mr. G.H. Seaton of Convair, U.S.A.) that a * 
profitable trajectory during the later part of boost might be one on which the 
missile always climbs at such an angle as to be the optimum should free flight 
cormence at that instant. If the optimum climb angle is interpreted as that 
required to reach a given target Q, the missile would fly in such a direction 
as tc bisect the angle between the lines PQ and OP. It follows from the 
geometry of the ellipse that this locus would be an ellipse with foci at the 
centre of the earth 0 and at the impact point Q. It can be shown that such a 
locus would not demand very large sideways acceleration. For example, just 
before cut-off at a height of 100 n. miles, a missile guided towards a target 
2400 n. miles away (in a straight line) would require Fg acceleration normal 
to the trajectory. 

3.3 The position of the second focus F is deduced in Appendix II. If the 
cut-off point is at a height h in excess of the height of the impact point 
(i.e. h =r - 
of PQ towarL 

r ), the position of F is at a distance &h from the mid point 
thz cut-off point 9. Given the two foci at F and 0, the centre 

of the earth, the optimum trajectory may be sketched readily, since it passes 
thrcughP and Q. e 

Various other properties of optimum trajectories are deduced in Appendix11 
including explicit formulae for the cut-off speed and climb angle required to 
reach a given impact position. The speed at cut-off vl is given by equation I 
(29) as 

2 
5 = 

pr R2 (d-h) 
rs I 

where d is the straight line distance fmm cut-off to impact, 

h is the height of the cut-off point in excess of the impact height 

and s is the semi-perimeter of the triangle formed by the cut-off point, the 
impact point and the centre of the earth. 

The variables d, s, h appear to be the most natural to use in work on 
optimum trajectories since formulae often take their simplest formwhen 
expressed in their terms. Possibly one exception is the climb angle at cut- 
off, 0, which equation (33) expresses as 

sin P 
0, = 6 arctan 

t 

r2 2 
rl - r2 cos Q 2 3 

c 

where r, r2 are the distances of the cut-off point P and the impact point Q 
from the centre of the earth, and the angle G2 is the angle subtended at the 
centre of the earth by PQ. The corresponding formula (37) in terms of the 
variables d, s, h is 
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8, = 

The equation of the optimum ellipse is quoted in the Appendix as . 
equation (4.0). 

3.4 Alternatively it may be required to find how far a missile with a 
given speed will travel from a given cut-off point if the climb angle is 
chosen for optimum range. The distance PQ is shown by equation (55) to be 

d = 

where 

2 
I‘1 9 

P, = 
‘!3R2 

Also the optimum clixib angle is, by equation (57) 

8, = srctan 1 c r2 - 9 P, ('1 +r2) 'i 
2 P, l 

rl - r2 f B Plr2 1 

3.5 The final ApperLaix III comprises analysis to find an expression for the 
time of flight from cut-off to impact. This is shown by equation (69) to be 

where s = 3 (9 + r2 + d) the semi-perimeter of the triangle formed by the 
cut-off point,impaot point and the centre of the earth. 

3.6 Since the condition which optimizes the trajectory from P to Q is 
symmetrical in terms of the points P and Q, the same trajectory is also the 
optimum from Q to P (when traversed in the opposite sense). It is proper 
to speak of the optimum trajectory between P and Q since the pathis unique 
and does not depend on the direction of motion. Since the velocities at 
any point are the same in magnitude and direction and merely differ in 
sense with the way the missile is flying, the speed at impact at Q on 
arrival from P is the same as the speed at Q needed to reach P on the 
optimum trajectory. Thus the speed and dive angle at impact maybe 
calxilated from the same formulae as for cut-off merely by interchanging 
the distances relating to cut-off and impact (i.e. reversing the sign of 
h)- 

The locus of cut-off point,, p from which the missile just reaches the 
target with a given speed is the same as the locus 'of points which can 
just be reached by projecting the missile from the impact position with an 
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equal but opposite speed. This is a bounding ellipse described about the 
impact point and centre of the earth as foci. Since the energy at impaot is 
determined by the speed, and the energy remains constant along a vacuum 
ballistic trajectory, the locus maybe described in another way. The locus 
of cut-off points at which the missile has the same minimum energy needed to 
carry it to the target at Q is the bounding ellipse with foci at 0 and Q. This * 
same elliptical locus has been noted above in section 3.2 as a possible boost 
trajectory along which the climb angle is always the opt- for reaching the 
target at Q. 

4 Discussicn and numeric-al examples 

4.1 One immediate question posed by the new method of optimisation is what 
difference there is between the new optimum trajectories and the former ground- 
optimised trajectories of references 1 and 2. This may be answered by a 
numerical example. On a trajectory optimized between two points on the ground 
2500 n. miles apart, a point 100 n. n;iles high is at a ground range of 2350 n. 
miles from the target. If cut-off were chosen at 100 n. miles high so as to 
use such a ground optimised trajectory, the cut-off velocity would be 17,691 
ft/sec at an angle of 32.1 degrees to the local horizontal. On the other 
hand, if an optimum trajectory is chosen from the same cut-off point to the 
same target at a ground range of 2350 n. miles, the velocity required is 
17,680 ft/sec at 34 degrees to the local horizontal. Hence over an impact 
mange of 2500 n. miles, the difference in optimization is likely to amount to 
IO ft/sec in speed (about 0.0694 and about two degrees in climb angle. Maxi- 
mizing the range from launch to impact rather than cut-off to impact is likely 
tc lead to cut-off climb angles a little nearer the horizontal. 

i 
4.2 It is instructive to find what speed is required tc reach the t‘arget 
when the cut-off climb angle varies on either side of the optimum. The refev- 
ant formula is eqaticn (17) in the Appendices. The following Table shows 
values of the speed for the same example as above, with the cut-off point ‘ 
100 n. miles high and a target at a ground range of 2350 n. miles away. 

Variation uf cut-off speed with climb angle 

I I Climb Cut-off angle (degrees) / 22 24 26 28 30 ’ 32 

, speed (ft/sec) 18,266 18,082 17,933 17,822 97,744 17,697 

Clizib angle (degrees) 1 34 36 38 40 42 -I 44 
i Cut-off speed (ft/sec) 1 17,680 17,695 1 17,743 17,822 ?7,933 , 18,081 

From this table it appears that climib angles within a couple cf degrees 
of the optimum do not require much more speed,at cut-off, and the cut-off speed 
remains within one per cent of the optimum over an interval of 26 degrees. 

4.3 From the formulae developed in the Appendices, some numerical examples 
have been computed and graphs drawn. Where a typical cut-off height has been 
required, a value of 100 n. miles has been taken. Ranges to impact have been 
chosen in steps of five hundred miles out to a value of 5500 n. miles, which t 

represents roughly a quarter of the circumfermce of the earth. Where a 
typical impact range has been required, a value of 25CC n. miles has been 
used as it is roughly the mean rcange considered in this note. It should be d 
remarked that the definition of impact range is the ground range from below 
the cut-off point to Lipact ,uld differs fmin the ground-to-ground range of 
reference 2. 
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4.4 The first few graphs show the variation of missile velocity and 
height along a number of trajectories. For all these graphs, the cut-off 
height is t&en to be 100 n. miles. Fig.2 shows the variaticn cf missile 
speed with ground range over eleven trajectories with impact ranges from 
500 to 5500 n, miles. l3ecause the cut-off occurs at a greater height 
than im?nct, the speed is less at cut-off than at impact, and the curves 
are not symmetrical about the mid-points. The lack of symnetry beccmes 
less obvicus as the impact range increases but remains appreciable. These 
curves may be compared with the correspcnding curves in Fig.1 of reference 2 
for vtnich the cut-off height was taken equal to the impact height. The 
formula used in computing the results is shown as equaticn (42). 

In Pig.3, the same data have been plotted slightly differently as 
functions of the fractional range to the txget, the quotient of the 
ground range to the impact range. This permits more accurate reading of the 
speeds in many circums4znces. 

In Fig.4 values of the climb (and dive) angle have been plotted along 
the same trajectories as for the speed above. The results are plotted against 
fractional ground range only as overlapping causes too much confusion if 
the curves are shown similarly to Fig.2. The formula for thti climb angle 
is quoted as equation (47). It may be observed that when the impact rage 
approaches the order of magnitude of the cut-off height (100 n. miles) 
there is a considerable displacement of the curve compared with the remainder 
of the family. All the curves of climb angle for impact ranges of 1000 
n, miles and greater pass through a v,slue close to 6 degrees at 0.4 of the 
way to the target. In order to distinguish neighbouring curves, the lines 
have been drawn alternately full and broken. 

In Figs.5 and 6, the height of the trajectories above the earth 
surface has been plotted in the sine wCay as the speed in Figs. 2 and 3. 
The formula fcr the missile height is equation (40). These curves may be 
compared with Figs.4 and 5 of reference 2 in which the cut-off is assumed 
to occur on the ground. It will be noticed that for impact ranges greater 
than 5509 n. miles, the greatest height attained on the trajectory starts 
to decrease as the impact rLange increases. 

4.5 Fig.7 shows three graphs to illustrate how the cut-off velocity and 
the time of flight vary witn the out-off height. A standLard impact range 
of 25CC n. miles has been chosen. For all three curves of cut-off speed, 
cut-off climb (angle <and time of flight, the relation with cut-off height is 
nearly linear, but all three curves show slight concavity upwards. An 
increase in the cut-off height cf 1 n. mile requires a decrease in the cut- 
off speed of 6.2 ft/sec and a decrease in the climb angle of O.O? degree. 
Also an increase of I n. mile in the cut-off height increases the flight 
time by 0.27 seconds. In order to cover a range of 2500 n. miles from a 
cut-off point 100 n. miles high, the missile needs a velocity of 18,096 
ft/sec at an angle of 33.5 degrees to the horizontal. The time of flight 
from cut-off to impact is l207.6 seconds. 

4.6 The remaining three figures 8-10 show the variation of the same three 
variables (cut-off speed, cut-off climb angle ‘and time of flight) as func- 
tions of impact range. In each figure three curves are drawn for cut-cff 
heights of 0, 50 and 100 n. miles. The values for the curves with zero 
cut-off height may be determined by the formulae in reference 2. However, 
the formulae given in the Appendix are true for any height at cut-off 
including zero height as a particular cnse. The appropriate formulae are 
equation (29) for the cut-off speed, equation (33) fcr the climb angle 
and equation (69) for the flight time. 
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The curves of climb angle in Fig.9 are worthy of comment since it is 
apparent that there is a wide divergence for short impact ranges, between cut- 
off on the ground and cut-off at some height. This may be understcod by 
remembering that the optimum direction for projection bisects the angle between I 
the line of sight to the target ,and the upward vertical. To reach a point at 
the same height, the optimum angle of projection is 45 degrees over ranges 
sufficiently short for neglecting curvature of the earth. However, if, the c 
target is at a lower height, the missile is able to drop on it and very small 
angles ef projection mayb e the best. For impact ranges much greater than the 
cut-off height, the optimum climb angle at cut-off differs little from that 
at zero cut-off height. As shown in reference 2, this climb angle is 

where Q2 is the angle subtended by the trajectory at the earth centre. 

5 Conclusion 

The note proposes optimizing the range covered between cut-off end 
impact showing that this leads to results very similar to those previously 
obtained. Simple formulae are developed for the speed and climb angle 
required tc reach a specified aiming point. The climb angle bisects the angle 
between the straight line to the target and the upward vertical. Some numeri- 
cal values have been ccmputed and are shown as graphs for impact ranges up to 
5500 n. miles. 

In order tc cover a ground rrnge of 2500 n. miles from a cut-off point 
100 n. miles high, the cut-off velocity should be 18,096 ft/sec at Lan angle 
of 33.5 degrees to the horizontal. The flight time is 1207.6 seconds. 

c;Loss ary 

Suffix 1 denotes values of variables at cut-off 

Suffix 2 denotes values of variables at impact 

Impact range is defined as the range measured over the earth surface 
from below the cut-off point to the impact point 

a 

A 

b 

P 

d 

e 

e; 

h= 

length of the semi-major axis of elliptical trajectory 

quotient of eccentricity ard semi-lotus rectum of elliptical 
trajectory: see equations (4) and (14) 

length of the semi-minor Cexis of elliptical trajectory 

eccentric angle used in parametric representation of ellipse: 
see equations (65) and (67) 

straight line distance from cut-off to impact 

eccentricity of elliptical trajectory 

acceleration due to gravity at earth surface (32 ft/sec') 

rl - r2 height of cut-off point in excess of impact point 
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Glossa~ (Ccnt'd.) 

. 
H angular momentum per unit m.zss of missile about centre of 

earth (see equations (3) and (6)) 

a climb angle; inclinaticn of trajectory to local horizontal 

cp angle subtended at ce;ntre of earth between missile and the 
apogee of the trajectory 

9 angle subtended at centre of earthbetween missile and cut-off 
point 

2 
P parameter related to missile speed: equalsr% 

see equation (8) gR 

9 parameter related to climb angle: equ,als tan 0 
see equation (9) 

r distance of missile from centre of the earth 

R radius of the earth (taken as 3437.75 n. miles) 

S = -5 ' (r, + r2 + d) : semi-perimeter 
impact and centre of the earth 

t time 
I 

u = - 

V speed of missile 
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surface ballistic rocket missiles Part II 
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Envelope of bCallistic trajectories in a vacuum 

Let (r, S) be the polar coordinates of the missile with respect to the 
centre of the earth as origin. Fig.l(a) shows a diagram intended to 
illustrate some of the notation. The only force assumed to act on the missile 
is that due to gravity, directed towards the centre of the earth and varying 
inversely with the square of the distance to the centre of the earth. 

Let g be the acceleration due ta gravity at the earth surface, 
be the radius of the earth (assumed spherical). The force acting on 
missile per unit mass is 

R2 
-g-- 

r2 
along the radius 

As quoted in reference I, the equations governing 
are 

'2 F-r.@ R2 = -g.- 
r2 

1 

-  l g (r2 * i) = 0 r 

andR 
the 

the motion of the missile 

(1) 

(2) 

where t denotes the time, and differentiation with respect to time is 
denoted as usual by a dot. 

Equation (2) may be integrated at once to give 

r2 . 1; = H (31 

where H is a constant depending on the initial conditions. It may be noted 
that equation (3) may be deduced immediately from the principle of conservation 
of angular momentum about the centre of the earth. Thus the constant II equals 
the angular momentum in the trajectory per unit mass of the missile. 

As shown in reference 1, the differential e quation (1) may be solved in 
terms of 

u = 2. 
I‘ 

to give 

u = 1 -GE 
r - H2 

+ A cos (MO) (4-J 

where A, Q. are constants of integration to be determined from the initial 
conditions. The equation (4) represent s an ellipse with one focus located 
at the origin, the centre of the earth. 
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From equations (3) and (4) it may be shown that 

Thus by differentiating equation (4), 

ii = HA sin (&-@O) (5) L 

angle 
Let the initial motion of the missile be with velocity v, inclined at an 
0, to the local horizontal. 

By equation (3), the initial value of the horizontal component of 
velocity whioh equals r . 45 is 

H -= 
rl 

v, cos 8 
1 

and by equation (5) the initial value of the vertical component of velocity 
which equals 5 is 

- HAsin Q. = v, sin 8, 

choosing (3 = 0 along the line from the centre of the earth tc cut-off. 

Hence Hz r, v, cos 8 1 (6) 
i 

Asida = - 
tan e, 

5 
(7) , and 

Xs in reference 2, write 
2 

p=+ 
gR 

Q = tane 

(8) 

(9) 
Then substituting for H frcxn (6) into equation (4) gives 

1 = 2 2”R2 
r + A cos (@ - Qo) 

'I v1 cos 2 5 

i.e. 1 1 + 91' 

r = PI r, 
+ A cos (a - go) C-10) 

r 
using the definitions of p and q from equations (8) and (9). Take as the 
initial position of the missile r = r, and G = 0. Substituting these in 
equation (IO) leads to f 

R  

1 A cas Go = - - 
1 + s;’ 

rl PI 5 
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.  

c 

3 

i.e, A r, co9 Go = - 
1 -p,+q; 

(11) 
p1 

From the definition of q in equation (g), it is possible to write equation 
(7) as 

Ar, sin ip = - q, 
0 

Dividing equation (12) by equation (11) gives 

(12) 

tar-ho = PI 91 

I- Pj +qT 

Squaring and adding equations (II) and (12) 

(13) 

i.e. A2 r* 1 = (l+q:) 04) 

If the initial velocity and position of the missile are given, the 
subsequent positions may be determined from the equation (10) of the 
trajectory. In particular, if the distance r2 from the centre of the earth 
of the impact point is known, the impact position may be determined from 
'fi2 where 

rl A r, cos (G2 - Go) = - - - 
r2 PI 

In this equation the values of p, q r, may be calculated from 
initial conditions by means of equations ,8 and (g), and the values i' > 
Qo, A are calculable from equations (13) and (14). 

Equation (10) may be expanded and written in the form 

“I 1 f q; 
r= -+Ar,~~~~~~os@+Ar,sin~~.sin@ 

PI 

By substitution from equations (II) and (12) 

(15) 

the 
of 

'I 
r= 

$+(I -2) cod-q., sin@ 
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i.c, =I 
r 

= z..$ (I- co-s 0) + CDS 3 - q, sin Q (16) 

This is the eauation of the missile trajectory on which the missile sets 
off from initial conditions such that the position is (r, 0) and the velocity 
is determined by (p,' q-,) through equations (8) and (9). 

If it is desired that the trajectory shall pass through a certain point 
(r2 02) besides the initial position (r, 0) the relation between the initial. 
conditions is 

1 -N; 
- (1 - cos G2) = 2 - co9 3 2 c+ sin Q2 4. 

PI r2 

(1 + q;) (1 - cos 02) set 0, (I - cos a2) 
i.e. p1 = r, =* 

3 
(17) 

- - cos P2 -k qlsin $2 cos 0 - 
r2 0 r2 I cos (0, + G2> 

: 

This is a relation between the initial speed and the initial. climb angle 
determined by the parameters pl and q, when the missile is set on a trajectory 
passing through the point (r2, G2). 

, 

As shown in reference 2, it maybe proved t-hat the length of the major 
axis of the elliptical trajectory is 

2 “I 
2;p1 

and the length of the latus rectum is 

2 rl p, 2f3, = 2 rl PI cos 
1 + 9: 

This last relation follows from equation (4) which shows that the 
length of the latus rectum is 

2H2 

g R2 
and hence by equations (6) and (8), the expression (19) may be deduced. 

(18) 

(19) 

Consider the envelope of the trajectories expressed in equation (16) 
when the missile starts from a fixed initial position (r,, 0) with a fixed 
initial speed v 1, but at a variable climb angle. Since the initial speed 

- 17 - 



t 

and position are fixed, equation (8) shows that p, is fixed. Hence 
of the parameters in equation (j6), only q, = tan 8, varies. 

Differentiate equation (16) with respect to q, 

2 91 - (1 - 
PI 

cos tk) = sin @ 

This may also be expressed in the form 

PI tan.5 = - 
2 9, 

(20) 

cw 

The interpretation of these equations is that the point at which 
equation (16) meets its envelope also lies on the curve represented by (20) 
or (21). Thus the point at which the trajectory (16) meets its envelope is 
the point of intersection of the equations (16) and (20); i.e. at the angle 
(I, defined by equations (20) or (21), the trajectory cf the missile meets the 
envelcpe of trajectories. At such a point, the ?%nge from the initial point 
is a maximum for the particular initial speed. The ground range measured over 
the earth surface in this maximum range condition is 

V 

KG PI 
= 2RarctmT- 

(22) 

Equation (20) may be written as an equation for q, 

p, sin G 

q1 = 2(q - cos 0) 

where the value of Q is understood to be that at which the trajectory meets 
its envelope. Hence the equation of the enveLope is obtained by substitut- 
ing for q, from equation (20) in the equation of the trajectory (16) 

/equation (23) 
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Since 

rl - cos @ p: sin' d 
-= Jl 1 Ii- 

c - 00s Q2 3 
* cos a - 

p, sin2 @ 

r p-l 40 2(-l - cos a) 

. . . 

i.e. 

sin2 Q = 1 - cos 2a = (l- cos 9) (1 + cos G) , 

2 I - cos 9 + p, (1 + cos Q) p, (l+cos Q) 
= 

r 4 
+costl?- 

pj 2 

43 5 2 
r 

= 4-4cosI-p,-p~cosP+4p, cos c? 

= 4 - p: - cos 9 (4 - 4P, + Pi, 

3 (2 - P,)@ + P,> 
r = 4p-l 

p -(g$ cos q (23) 

This is the equation of the envelope uf the trajectories. 

W&n p, < 2, this equation represents an ellipse with one focus at the 
centre of the earth (the origin). 

The length of the latus rectum follows from equation (23) as 

8pl 'I 

@-P+-P,) 

The eccentricity of the ellipse is 

2-P, 
2+p1 

The ratio of the sqsres of the major and minor axes is 

2-P, 2 
?- - ( > 8pl 

2 'Pj = t2+PlJ2 

(W 

Hence the length of the major axis of the ellipse is 
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. 

. 

8pl 5 (2+q12 2+P,' 

(2.p,)(2+p,) l 8q = r1 2-pl ( J 
(25) 

The distance between the foci of the ellipse is the product of the 
eccentricity (24) and the length of the major axis (25). 

Thus the distance between the two foci is r,' 

Vhen p, < 2, it follows that the envelope of trajectories obtained by 
varying the initial cli& angle is abounding ellipse with foci at the centre 
of tne earth and at the initial point and with major axis of length 

2+P,' 
rj - ( J 2 -PI (25) 

The length (25) depends on the initial speed and the initial "height" r, 
through the equation (8). 

The locus of points which can just be reached with a given initial 
speed corresponding to p, is the bounding ellipse defined above. As the 
speed varies upwards, from values corresponding to pl = 0 up to p, = 2, 
the bounding ellipses grow in size and form a confocal system. When 
PA = 1, the length of the major axis of the bourding ellipse is 3r,. Since 

the distance between the foci is rl, the missile is capable of travelling 
right round the earth. When p1 = 2, the bounding ellipse degenerates into 
the circle at infinity, which means that a trajectory canbe found passing 
through any point in space. 
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APPENDIX11 

Properties of optimum ballistic trajectories 

It is shown in the text that the optimum trajectory between two points 
P and Q is an ellipse with one focus at the centre of the earth 0 and the 
second focus F on the line PQ (See Fig.l(b)). From a well known property 
of the ellipse the sum of the focal distances from any point on an ellipse 
equals the length of the major axis. Hence the perimeter of the triangle 
OPQ equals twice the length of the major axis. 

The length of the major axis of the optimum ellipse is 

2a = s = 4 (r, + r2 + d) (26) 

where d is the straight line distance between the initial and final points 
P and Q on the trajectory. 

It follows that the second focus F lies at a distsnce (s - r,) along 
the line PQ from P; that is at a point 

3 (r, - r2) = &h 

from the midpoint of PQ towards P; writing 

h = r, - r2 (27) 

where h is the height of the initial point P in excess of the final point Q. 

With the knowledge of both the foci and the length of the major axis 
s from equation (26), the optimum ellipse maybe sketched readily. 

Consider the initial velocity required at a point P, (rA,O) in order 
just to reach another point Q distance r2 from the centre of the earth 0 and 
at a distance d from the initial point P. The length of the major axis of 
the optimum ellipse is stated above at equation (26) 

S = 4- (r , +r2+a) 

But it is stated in expression (18) that the length cf the major 
axis of any elliptical trajectory is 
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Thus 4 “1 d+r,+r2 = - 
2-P, 

. ““1 . . 2-p, = 
d + r, + r2 

. 
d + r2 - r, d-h . . P, = 2 d+rl+r2 =T (28) 

using the definitions (26) and (27) of d and h. 

Hence the initial speed v, may be found from the definition of p,, in 
equation (8) leading to 

2 gR2p1 gR2(d-h) 

v1 = '1 = rs (29) 
1 

This expression is probably the most simple form of the initial speed but is 
not readily expressed in terms of ground range R CD2. The straight line distance 
d between F and Q appears the more fundsmentsl measure of rsnge and must 
necessarily be calculated at some stage of vark on optimum trajectories. By 
some manipulation, equation (28) for p may be expressed in terms of the angle T 
at the centre of the earth Q 2 as follo&. 

c 

P, = 
2 = 2 (d-h)  +r2-4 

d+rl+r2 
(r, + r2) 2-d2 

Now d2=: ; r +r - 2 rlr2 cos @ (30) 

from the cosine formula applied to triangle OPQ. 

2 id ( 2-( :. 
r,+r2+r,-r2)-d 

P, = 
r, +r2) (r, -,>I 

2 2 2 2 
r,+ 2 r,r2 +r2 -r, -r2 +2 rlr2 cos 9 

2 2 
r, 

d-r: 
-r2 

+2 
r,r2 

cos P-r,+r 2 2 
2 = 

rlr2 (I+ cos 0) 
f 

i.e. P, = 
2 (d-rl+r2 cos 'P) 

r2 (I+ cos 0) (31) 3 

Thus the speed maybe expressed in terms of the angular range ip by substi- 
tution for d from equation (30). The expression (31) is that slready quoted 
in reference 3. 
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* 

The value of the initial speed may also be found from the geometry of 
the bounding ellipse. Since it is required to just reach the point Q from 
the initial point 1, the bounding ellipse about the point P must pass 
throu@l Q. The sum of the distanoes from any point on an ellipse to the 
two foci equals the length of the major axis. Since 0 and P are foci of 
the bounding ellipse which passes through Q, the length of the major axis 
of the bounding ellipse must equal OQ + PQ. Thus from expression (25) 

= r2+d (32) 

i.e. p = 2 
d-r,+r2 

d+r,+r2 

which agrees with equation (28) above. 

The direction of the 
to just reach o. point Q is 
PQ an3 the upwe verticz?1 
the horizontal at P be 6,. 

initial velocity from a point P which suffices 
shown in the main text to bisect the angle between 
at P. Let the inclination of the trajectory to , 
Then it follows that in the triangle OPQ, the 

angle OPQ = 2 8,. Iience by the sine formula applied to triangle OPQ, 

:. 

r2 rl 
sin2 8, = sin (2 6, + Q2) 

(33) 
r2 sin Q 

tan2 8, = 2 
r, - r2 c0s Q '2 

This expresses the initial dli.r& angle 8, directly in terms of the angular 
range G2. 

It may perhaps be more convenient to express &the direction of the 
initial velocity in terms of the distance PQ = d. This may be aocom@ished 
as follows. 

Prom the cosine formula applied in triangle OPQ, 
2 

cos 2 8, = 
r, + d2 - r2 2 

2r Id 

Adding unity to both sides of the equation gives 

2 oos2 0, = (5 + d)2 - r$ 
2 r,d 

. . . 

i.e. 

2 (r, + d - r2) b, + d + r2) 
cos 0, = 

4 r, d 

cos 20, = s (d + h) 
2 r,d 
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Similarly by subtracting both sides of equation (34) from unity 

Sin ;!e, = 
b-2 - r, + d) (r2 + rj - d) 

4 r, d 

i.e. sin 28, = 1 S- d) (d-h) 
2 r, d 

Dividing equation (36) by (35) gives 

(36) 

(37) 

This expresses the initial climb angle 0, in terms of the distance PQ = d and 
the "heights" r, and r2 by way of equations (26) and (27). 

-- 

The optimum trajectory is completely determined by the positions of the 
two foci 0 aSiF and the length of the ma,jor axis s, from equation (26). Other 
quantities may be expressed readily in terms of known distances by standard 
properties of the pure and analytical geometry cf the ellipse. 

From expression (ly), the length of the latus rectum is 

2 r, p, cos 2 
5 

and so by equations (28) and (35) equals 

d-h 2rl -ii-- ( > 
s (d+hl 

2 r,d 

zz z-h2 d h2 
d = -d (38) 

The ratio of the squares of the minor and major axes is equal to the ratio of 
the latus rectum to the major axis and from expression (38) this equals 

d2-h2 
sd 

where s is given by (26). 

It follows that the eccentricity of the optimum ellipse is 

d2-h2 ,& \ 
sd / (39) 



t 

The equation of the optimum ellipse I~ be derived from equation (16) 
by substitution for p-, and q, from equations (28) and (37). Since the 
length of the latus rectum has been deduced already as expression (381, 
the equation of the ellipse may be Jvritten down readily as 

7 2d r, 
-= 
r d2"h2 0 - cos 0) -I- cos (31 (40) 

The speed at a general point on the optimum trajectory majjr be deduoed as 
follows. The length of' the major axis is given by expressions (18) and 
&so by (26) leading to the equation 

2;: 
s--p tS 

Thus (4-j > 

at any general point on the optimum trajectory, and so it follows from the 
definition of p in equation (8) that 

v2 2 1-1 = 2gR r s c ) h-2) 

where v is the speed at any point in the trajectory. The distance r may be 
determined in terms of ground range by equation (40). 

Under the initial conditions, when r = r, the fomula gives the speed t 
v as 1 

2 2m2 b-r,) 
vl = r s 1 

which agrees with the value already derived at eqation (29) since it 
follows from the definition (26) cf s that 

2 6 -r,) = d-h (43) 

The climb angle at a general point on the optimum trajectory may be derived . 221 various ways. The following method is probably the most direct. From 
equation (3)) the horizontal component of the velocity at any point is 

v COS 8 = ri? = H 
r 

From equation (5), the vertical component of the velocity at any 
point is 

v sin 8 = ; = HAsin (3 - 9o) 
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Dividing these two equations to elininate v gives 

tan 6 = Ar sin (Q - "o) L4-4) 9 

The particular form of this equation when @ = 0 has been used already in 
equation (7). Equation (44) may b e expan?ied into the fonri 

tan0 = r [ A cos (PO. sin rJ, - A sin 50.ccs $1 

Comparison of equations (10) and (L&J) shows that 

and 

A COB Ii0 = :- - 2d 
1 d2-h2 

(45) 

(46) 

Substitution of equations (45) and (46) into (44) gives t 

from which the dependence of 8 on 6 may be deduced by substitution for r from 
equation (40). 

Expression (47) may be expressed in a simpler form which may not be 
convenient for accurate computing. Thus from equnticn (10) 

1 I + q: 
-= 
Ar np, r, 

$ cos (Q - Go) (1+3) 

But from the form of equation (IO), the constant A must be the quotient cf the 
eccentricity of the ellipse and the semi-latus rectum which has length 

PI I-1 -. Hence it follows that 

where e is the eccentricity of the ellipse. 
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Now an expression for the eccentricity was derived as expression (39). 
Thus equation (4.8) leads to 

1 
z= 

+ cos (e-Q 

3ibstituting for kk from ewation (49) into (w+> gives 

tan0 = 
sin (3 - Qo) 

(I - d2;;2)-$ $ COS (&. ‘PO) 

(49) 

(50) 

A value for Q. may he derived by division of equations (46) and (45) giving 

tanQ [qg$q’ 
= 

0 23 r, 

d2-h2 - ' 

(51) 

of h. 

e-try of the relations, the velocity at impact which is governed 
may be found by interchanging r, and r2 i.e. reversing the sign 

Hence from equation (28) 

d+h 
P2 = Is"l 

and from equation (37) 

(52) 

(53) 

According to the sign convention used in references I and 2, the 
angle of climb 8 is taken positive before apogee is reached, c?nd negative 
from the apogee onwards. Thus in ecyuat;ion (37) the positive square z-cot is 
required for q, but in equation (53) the negative square rcct siiouid 
be taken for 92. 

It may be observed that from equation (21) 

/equation 
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*2 = -- 
2s -2 

(40)? 
It follows frm syx-metry that the equation of the trajectory, equation 
may also be written as 

r2 2d r2 c 
y-= d2 h2 t --A 

l- cas (Q2-@) 

9 

c 

f + cas (4,-Q) - [+fy#Jf sin (@2-G) (54) = 

The preceding formulae have been developed in a fom suitable when the 
initial and final points P and Q are given. They inay be summxized as 
follows. 

The optimm trajectory is an ellipse with one focus at the centre of the 
earth and the other on the join PQ at a distmce & (d-h) from P. 

Here d is the distance PQ and h = r? - r2, 

The length of the major axis of the ellipse is 

S = 4 Cr , + r2 f d) by equaticn (26) 

The speed v at a general point cn the 
b-3 as 

trajectory is given by equaticn 

J = ZgR2 CL.? 
\ > r s 

The initial speed is v, where E 

2 
9 = 

eR2 (d-h) 
r, s by equation (25) 

which rmy be expressed more directly in terms of the angular range @ as 
equation (31). 
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The climb angle 0 at a general point on the trajectory is given by 
either equation (47) or eption (rO)* 

The climb angle at cut-off 0, is given by equation (37) as 

tan2 e, = (s-a)(&-h) 
s (d+h) 

which may be expressed in terms of the angular range @2 in equation (33) 
&S 

r 
tan 2ej = "r -", 

sin !I? 2 
12 CWS a 2 

Corresponding . values at impact may be derived by interehangzing 'I 
ana r 2 

and changing the sign of h. 

-I__ 

Similar formulae may be developed to show the range covered from a 
given set of initial conditions; from the position (r,,O) and the velocity 
governed by (p,, q,) which is assumed to be optimum. 

By equation (32), the distance ?Q v:kiich can be covered is 

(55) 

This equation effectively determines the .ma;cimum range. The variation of 
speed cJ..kib angle and height along the trajeotory may be deduced by 
substituting the value of d given by equation (55) in the formulae 
developed above. 

The angular range about the centre of the earth may be determined 
explioitly. By re-arrangement of equation (30), 

C8S G2 = 
r: + r$ - d2 

2r, r2 

Thus 
d2 - (r4 - r2)2 

('I + r2)2 - d* 

Eliminate d by substitution from equation (.%), 

/equation 
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tan2 

2pl 47 - 2(2-P,) r2 
= 4 2(2- p,) - r2 2p&-- 

i.e. -h-l 2;-g2 PI rl - '2 + 4 p, r2 
= 2. 

r-y%, + r7 2 
(56) 

The direction in whic=h a certsi~ speed dsnJtod by p, ,Qmu&l be d&@&&l 
so as to give nsxbnxxn range is most easily dstermined from equation (21). 

and by equation (56) th is may be expressed in terns of p,, r, arx r2 by 

tm 6, = 2 )-- .L ~ -- r2 - 3 P, bq + r2) -& 

2 c P, r, - r2 f 4 q r2 i 

i f-4 rr, - 2 _. I.3 
i.e. tanel = '2pj. f -r 1 (‘1 +r2) 3 

i 1 2 + -2 P, r2 3 
(57) 
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APPJ3.XDl.X III --- 

Time of flight on optima ballistic trajectory - 

As shown in reference 2, Appendix VI, the time of flight fm the 
apogee of a ballistic trajectory to any point is givenby 

?g (#3 + e sin P) 

where a, b are the lengths of the semi-major end semi-minor axes of the 
ellipse,e is thu? eccentricity and 0 is tha ecoentric angle. The eccentric 
angle p is related to the polar engle v through the relations 

rcoscp = ae + a cm @ 

r sin cp =bsinp 

where 'p is measured in the shale manner as F! but from zero at the apogee. 

The total time of flight from point P to paint Q is expressed by 

From the equation of the trajectcry (4), the length of the sEslii.-latus 
rectuii is 

b2 Hz I-=- 
a gR2 

i.e. 

ab a3 \5 
:. -z-z ii 6) ,R2 

Now by equal&n (26), s = 2a on en optimum ballistic trajectory, where 

2s 7 =r fr 2 + d, 

(59) 

Thus 
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Now Sin 9, - sin P, = 2.COS 
i 

P,+<, sin 
9, -  B,j 

\ 2 i ( 2 j 

Substituting equations (60) and (61) in eqression (5&), the total time 
of flight is 

It may be shown (e.g. reference 2, equation 60)) that 

r = a (1 + e cos P) 

In a similar way, 

PI? = a (I - e cos (3,) 

QF = a (1 - e cos p,) 

Iience, by addition, 

= a (2 - e ( cos P, + GOS P,) ] 

i.e. d = - e cos ("'l"'> . cos (e2LB,) ] (63) 

In parametric form, related to the principal axes of the ellipse, the cartesian 
equation of an ellipse is 

X = a cos p; Y =bsi.np 

Thus the equation of the join PQ is expressed by 

x Y I 

a cos 9 1 b sin p, 1 
I 
j a CDS p, b sin 8, I 

= 0 

which may be reduced to 

- 32 - 



Since this line PQ passes through the focus P, the point (a@, 0) it follows 
that 

e cm (PI 1”) = cos $I ; “‘> 

Substituting for e from equaticn (64) in ewatic;n (63), 

d = 2a [, - cos2 (%g!i) ] 

z a El - ~0s (P, - PII3 

t 

:. cos (P2 -p,)= 1-t 

But from equation (26), s = 2a and so 

cos (p, - p,) = 1 - $ = s ; 2d 

W-1 

(65) 

By similar analysis to that used in deriving equations (35), (36) and (37) 

(66) 

Hence it may be shcwn that 

sin (B2 - PI) = $ {ii (s - d)+ (67) 

Substitute for (9 
flight from P to a 

+ @2) in expression (62) from equation (64). The tinie of 
is 

-33 - 



This expression may be expressed in a more readUy computed formby 
equations (66) and (67). 

The time of flight from P to Q is 

r sa = c ( 
s-d -)2f 

2 R2g J i 1 -I- s 
[a (s - a)+ 

arctan (f-+)+ ] (69) ; 

By relation (26) 

S = $ (r I 
+ r2 + d) 

and so the time of flight may be calculated. 

-34- 
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