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SUMMARY 

A small perturbation analysis of rotating stall in inviscid, 
incompressible flow is developed from an analysis of Yeh. An isolated 
blade row is considered having a blade height which is not small compared 
to the msan radius. A criterion is derived for tie occurrence of 
rotating stall, the speed of stall propagation and the possible number of 
stall cells involved. From this the frequency of circumferential flow 
disturbances can be obtained. An example is given of an application Of 
the analysis. 

The main assumptions made are that a large number of small 
amplitude stall cells are induced at onset of stall, that the radial shift 
of the streamlines is small and that the absolute exit flow angle is small. 

Possible explanations are suggested for the observed changes in 
number of stall cells. 
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I. Introduction 

1.1 Brief summary of some experimental observations 

When the flow through a compressor blade row is decreased at 
constant speed of rotation the angle of attack of the blades increases 
and the blades eventually stall. It is observed, however, that not all 
the blades stall simultaneously but that only a fraction of them are 
involved. There may be several stalled patches of blades which, moreover, 
are found generally to be travelling steadily around the circumference at 
an appreciable fraction of the blade speed. The term "rotating stall", 
or "propagating stall", originates from this behaviour. 

The mechanism whereby the stall propagates along the row has a 
qualitative explanation. Consider the blades to be operating close to 
the point of stall and that a small disturbance initiates stall on one or 
two blades. The stalled passages offer a smaller area to the flow 
through the blades causing the approaching flow to be diverted to either 
side of the stall patch, as shown in the accompanying sketch. 

Flow direction 
relative to blades 

Direction d- 
of blade motion 

Direction of stall 
propagation 
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The increased incidence on one side of the stall patch causes ad,jacent 
blades to stall; conversely blades stalled on the opposite side of -the 
patch tend to become unstalled. The stall patch therefore remains a 
definite length, usually moving steadily* around the blades. 

It is widely acknowledged that the stall cells prooeed in%he 
direction of the tangential component of the relative inlet velocity. 
It is possible by means of suitable inlet guide vanes to cause the stall 
to become stationary relative to the casing and even propa 
absolute velocity in the direction opposite to the blades Stenning et al, 
Ref .2). 

1.1.1 Stall patterns observed in rotor rows 

Because interference between adjacent blade rows appears to 
have a significant effect on stall patterns produced (see Wood, Horlock 
and ArmstrongJ), only isolated rotor** stall patterns are considered. 

Two main types of stall pattern emerge when stall is first 
initiated. The first type, which 
observed by Wood et a13, 

eems to be the most common, has been 
t Carmichael , Montgomery and Braun5 and others; 

the pattern-consists of a single stall cell which usually splits 
progressively into two, three and then four cells with throttling. The 
second type of pattern commences, with several stall cells*** which may 
increase in number with continued throttling and then collapse into one 
cell. This cell may then split into two and then three cells with 
further olosure of the throttle. Kriebel, Seidel and Schwind8 found 
that rotating stall always commenced with two cells and that opening the 
throttle this would change to a single cell pattern. However, they found 
that any slight asymmetry of the flow resulted in a single stall cell at 
stall initiation. The mechanism which determines the type.of stall 
pattern developed initially and its subsequent behaviour still remains to 
be clarified. 

The experimental observations 0, f Rocket' are particularly 
interesting. The test rig he used had a smooth inlet passage to the 
rotor row, entirely unobstructed by inlet guide vanes or struts, etc. 
The stator row was six chord lengths downstream of the rotor. 

Rocket found three stall cells at stall initiation. On opening 
the throttle at constant rotor speed the number of cells was reduced until 
only one remained. This condition was maintained indefinitely; for the 
same throttle setting the unstalled condition was also indefinitely 
maintained. Closing the throttle after stall initiation caused the 
number of stall cells to increase. The maximum number of ce 

8 
1s which the 

rotor can maintain has not yet been determined; Emmons et al suggests 
that with a smooth unobstructed casing the rotor might exhibit as many as 
one stall cell for every three blades. Continued throttling resulted in 

some/ 

*Ilocket' has reported finding a low-frequency oscillation of the 
cell-spacing. This oscillation was a transient condition, lasting 
only a few seconds, but reappearing at frequent intervals; the 
amplitude was sufficiently large to interfere with accurate stall 
velocity measurements. 

**Some of the "isolated rotorH tests involved the use of guide vanes, 
albeit several axial chord lengths upstream: 

. 
***Stenning 

3 
Kriebel and Montgomev' found ei&t or nine, Costilow and 

Huppert found two and Rocket observed three cells at stall initiation. 
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some amalgamation into fewer cells (having a somewhat different nature from 
the earlier type) until a single large cell was formed. Reverse flow has 
been found in this large type of cell; a static pressure drop was 
observed across some of the passages with air passing upstream in those 
passages. 

1.2 Small perturbation theories 

Many theories have been advanced to determine the speed of stall 
propagation, the cell spacing and stall size. It is important that such 
a theory predicts both the propagation speed and number of stall cells 
around the annulus, since the product then gives the frequency of the 
oscillating loads imposed on the blades. The compressor desigt3er would 
then be able to determine whether blade resonance is likely, leading to 
blade failure. 

Some degree of success has been reported in determining, 
approximately, the stall speed; prediction of the number of stall cells 
for a given flow condition still remains one of the major unsolved problems 
of rotating stall research. 

Theoretical studies of rotating stall have mostly been attempted 
using small perturbation theory* in which the equations of motion are 
linearised. These analyses are then strictly valid only for small velocity 
perturbations aboht a mean flow condition; however, the pressure rise 
(or deflection) need not be small**. 

1.2.1 Some observed small amplitude disturbances 

The amplitude of the velocity disturbances, in contrast with the 
assumption of small perturbation analysis, has been found to be usually of 
the same order of magnitude as the mean stream velocity. Small amplitude 
disturbances have in fact, been observed. Rannie and Marble9 report that 
Benenson at California Irstitute of Technology was the first to find a 
clear example of a small disturbance propagating stall. He made 
observations of an annular stator cascade of hub-tip ratio 0.8 mith blade 
solidity of about unity and found a disturbance near the cascade with 
velocity fluctuations of 7 to 1% of the mean stream velocity. The 
disturbance upstream was approximately sinusoidal, of wavelength equal to 
the annulus circumference. Benenson found another example of small 
amplitude self-induced disturbances in an isolated stator blade row in a 
compressor with a hub-tip ratio of 0.6. 
again 7 to 1% of the mean velocity. 

The disturbance amplitude was 
There were seven or eight 

sinusoidal waves around the annulus which, apparently, were somewhat 
irregular. 

There appears to be no evidence that the small amplitude 
disturbance represents the beginning of a large amplitude disturbance. 

1.2.2. Flow'models used in earlier analyses 

The results of any small perturbation analysis depend lazrgely 
upon the assumptions made with regard to: 

(i) the form of the cascade characteristics, 

(ii) the nature of the downstream flow field, 

(iii) certain geometrical parameters such as blade chord, circumference 
of blade row, hub-tip ratio etc. 

Nearly/ 
- - - - - -___--_-- - - -___L___________________--- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

*Another type of analysis based upon the vortices shed by the blade row has 
been used by some workers. 

**The analyses of both Sears IO and Marble -II , summarised below, were 
restricted to a small turning angle through the cascade. 
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Nearly all the analyses utilise an infinite actuator strip or an infinite 
blade row as the flow model; the circumference is introduced later, in 
some cases, as a constraint on possible wavelengths. The three-dimensional 
effects likely to be of importance in blade rows with low hub-tip ratios are 
not considered in any of the theories. 

Some recent work by Yeh 12 also using a small perturbation analysis 
applied to an infinite actuator strip, suggested to the present writer a 
method whereby the number of stall cells around an annulus of low hub-tip 
ratio might be determined. Both the spanwise and circumferential distances 
are found to be of importance in obtaining possible solutions to the number 
of stall cells. 

An outline is given below of some earlier small perturbation 
theories leading to Yeh's analysis; this is followed by a brief account of 
the differences between the present analysis and that of Yeh. 

Emmons et al 13 , produced the first analysis of the problem; it 
was shown that the cascade could be represented by a series of parallel 
passages, with variable outlet areas to represent the blockage effect of 
the stall cell. The stability of small upstream disturbances was 
investigated; if a critical value of the effective outlet area derivative 
with respect to angle of attack was attained then the disturbances could 
propagate unchanged along the cascade. For lower values the disturbance 
was attenuated, for higher values the disturbance was amplified. Emmons 
assumed that a blockage coefficient had been determined by experiment and 
that an arbitrarily assumed time delay between changes in angle of attack 
and blockage coefficient governed the speed of stall propagation. Emmons 
made no attempt to predict the velocity of stall propagation. 

Sears" considered the case of disturbances which were large with 
respect to the blade chord. He assumed stall cells to exist, moving with 
steady velocity along the cascade, and calculated their velocity and the 
conditions required to produce them. The velocity field downstream of the 
cascade was assumed continuous so that mixing of separated and normal flow 
was completed in a very short distance. Sears introduced a so-called 
"boundary-layer phase lag" which he believed to be of major importance in 
determining the stall speed. This idea receives its support from 
experiments on single oscillating aerofoils; a phase lag is found between 
the coefficient of lift and angle of attack which is insensitive to frequency 
and is of the right order of magnitude to explain stall propagation. If' 
this is the main controlling factor then removal of every second blade 
should result in doubling the speed of stall propagation. 
Iurs and&&nnie14 

According to 
no such large change has been observed; however, 

Stenning using a stationary circular cascade with outward radial flow has 
found there is a tendency for the stall speed to increase with decreasing 
solidity*. 

It is of interest to note that Sears obtained a solution showing 
stall propagation occurring even with zero phase lag. 

A further questionable assumption concerns the cascade 
characteristic. This was represented as a continuous function of inlet 
angle with zero average pressure rise across the blade row during stall 
propagation. Rotating stall commences, in many cases, just after the 
peak pressure rise. 

Marble" rejected the boundary phase-lag used by Sears and 
considered the inertia of the fluid outside the cascade as controlling the 
stall phenomenon. Attention was concentrated on the variation of static 
pressure rise as the cascade approached stall. According to Marble, at 

stall/ 

*For the solidities normally used in compressor blade rows this effect 
appears to be negligible. 
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stall the static pressure rise decreased to zero, and remains so for all 
higher incidences, the turning angle being virtua,lly unaffected. 
is therefore a discontinuity in static pressure at cascade inlet 

There 

resembling a square wave. Marble then showed that the ima.ginary part of 
the complex function representing a source at the origin has a discontinuity 
close to the origin. By combining the imaginary parts of a,n infinite row 
Of sources and sinks a model was established to present the static pressure 
distribution. The velocity perturbations associated with this distribution 
of static pressure must induce flow incidences sufficient to stall the 
blades at one end of a stall cell and to unstall them at the other. 
satisfying these conditions the angular speed of stall propagation, 

By 
the 

extent of the stalled region and its dependence upon operating conditions 
together with the pressure loss due to stall, may be deduced. 
of stall is the same as Sears' value with zero phase lag. 

The velocity 

Agreement was shown between the theory and an experimental value 
of the propagation speed measured in a compressor. 
fortuitous although WOO~'~ 

Marble considered this 
thought it possible that the disturbances caused 

by stall were actually small so giving the close correlation between theory 
and experiment. 

Stenning 16 extended the theory of Emmons and obtained the velocity 
of stall propagation in terms of the air angles, disturb 
static pressure rise coefficient. 2 

ce wavelengths and 
Ln a further analysis the theory was 

developed to include boundary-layer effects. Briefly, Stenning assumed 
that the stall cells produce regions of flow separation which do not mix 
with the downstream flow. The wake behind the cascade then consists Of a 
number of free jets discharging into a region of constant pressure0 
Conditions downstream of the cascade are thereby ignored; a solution is 
obtained for a stability criterion and stall speed by equating a 
perturbation potential function derived for the cascade entry with its 
equivalent for the upstream flow field. 

The expression derived by Stenning for stall speed implies that 
only pure sinusoidal disturbances traverse the cascade since the velocity 
depends on wavelength and harmonics would travel at speeds different from 
the fundamental. Stenning and Wood15, considered the analysis inadequate 
in this respect and not in agreement with observations. Other criticisms 
which have been levelled at this analysis are: 

(i) The stability criterion and speed of stall propagation can only 
be determined after measurement of the disturbance wavelength. 

(ii) Numerous observations (including those of Stenning) have shown 
that pressure fluctuations occur in the downstream field. 

In an Appendix to his paper, Stenning considered an alternative 
assumption where the fluid from each blade passage mixed without pressure 
recovery immediately after leaving the cascade, The downstream flow field 
is then a continuum. ‘The true condition lies between this extreme su?d 
that of the free jets discharging into region of constant pressure and, 
according to S-kenning will be closer to one or the other depending on the 
relative size of stall region to that of the blade chord. 

For the assumption of zero pressure recovery Stenning obtained 
a solution for stall speed; for large wavelengths and zero pressure rise 
coefficient this reduces to tie Sears-Marble result. 

Wood'5 made similar assumptions to Emmons and S-kenning but 
considered the blade chords to be small compared with the wavelength 
disturbance. As a result the propagation speed was found to be independent 
of frequency. The effect of the boundary-layer time delay was also 
considered (in the manner of Stenning) and found by Wood to decrease the 
propagation speed. 

Similar/ 



-7- 

Si 
4"1 

'lar analyses using sma 
41 

perturbation theory have been made 
by Whitehead andRannie andMarble. 

1.2.3 Yeh's analysis 

The small perturbation analysis used by Yeh 12 , with an infinite 
*actuator strip of finite span, considered the general case of flow with a 

small stationary inlet velocity distortion and the effect of the actuator 
on the resulting small stationary outlet distortion. 

Because of the linearisation of the steady equations of motion, 
the distortion can be separated from the actuator induced disturbances; the 
latter can then be expressed by a steady potential function in terms of wave 
numbers related to the blade span and a %ircumferential" distance. By 
using the continuity condition across the actuator together with the 
assumption that the distortion velocity remains parallel to the main flow, 
Yeh related the cascade characteristics (flow angles and pressure losses) / 
and found the ratio of outlet to inlet distortion velocities. For the 
case when the inlet distortion vanishes, he showed that the outlet 
distortion could still exist under certain necessary conditions and that 
this self-induced distortion could be of two basic types. These are a 
purely spanwise (stationary) distortion and a travelling 
distortion having both %ircumferential" and spanwise effects. So that the 
steady equations of motion, in the latter case, were still applicable it was 
necessary at this stage for Yeh to refer his co-ordinate system relative to 
the distortion. 

Yeh then compared the conditions under whioh the circumferential 
pIUS spanwise distortion could OCCUIT with that of the special case of’ a 
purely circumferential distortion, from which he deduced that the latter 
type always occurred first. This inference appears to be founded on the 
belief that the specific wave numbers chosen for the comparison are 
representative of all cases. This is not so and it is shown later that 
rotating stall without spanwise effects occurs or&y exceptionally; the 
combined spanwise plus circumferential distortion appears t0 be the rule. 
The purely spanwise axisymmetric distortion was shown by Yeh to be unlikely 
to occur before other stall modes. 

The speed of stall propagation resulting from the simplified 
analysis, involving as it does only a purely circumferential distortion, 
has been compared by Yeh with experimental data. Relatively few results 
can be compared since the analysis applies only to an isolated actuator 
with the distortion limited strictly to a small amplitude. The ratio 

k= stall speed relative to blades 
axial velocity found by Yeh is, 

(I + ii) 
k= 

2 oos2 pa . tan fli 

where 

4 = inlet angle relative to blades 

44 = outlet angle relative to blades. 

The data used by Yeh and the above correlation (Fig.18, Ref.12) are shown in 
Fig,2; it would seem that the above prediction is reasonably followed. 

L3/ 
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1.3 The present analysis 

In the front stages of compressors where low hub-tip ratios are 
normal, three-dimensional effects are likely to be important. The 
present writer has approached the problem of small amplitude rotating 

+ stall in relation to the isolated stator of a moderately low hub-tip ratio 
compressor stage. Some of Yeh's techniques have been adopted; the 
following analysis differs, mainly, from that of Yeh in that: 

(1) A rotating co-ordinate system has been used at the outset; 
the stall cells are stationary in this framework and the 
flow is steady. 

(2) The potential function equations derived for the present 
low hub-tip ratio model are radically different from those 
of Yeh. 

(3) Circumferential wavelengths are a fractional part of a 
circumference. 

(4) The distortion involves both spanwise and circumferential 
effects. 

(5) The conditions under which the potential solutions are valid 
are rather restricted; it is necessary that there be a large 
number of stall cells, that the disturbance is small, that 
there is little radial shift of the streamlines, and that the 
absolute exit flow angle is small. (See Appendix I.) 

2. Description of the Flow Model 

Consider an actuator disc, having an infinite number of 
infinitesimally small blades, whose axis is coincident with the axis of 
a circular annular passage of uniform section. The axis of the passage 
represents the x direction extending from cp3 upstream to 00 downstream. 
The disc is located at x = 0. Any fixed point within the annular passage 
may be described by means of a system of orthogonal cylindrical co-ordinates 
(x9 5 8) as in Fig.l(a). The inner and outer radii of the annulus are 
denoted by ri and r. respectively. 

The components of the absolute undistorted velocity are denoted 
by U= U(r) parallel to the axis and V = V(r) circumferentially. 
Since the flow is considered to be in radial equilibrium at the stations 
x = too, in general the axial component U of the main flow will be 
dependent upon radial position. The absolute flow angle, P, is 

V(r) 
P(r) = tanl-. 

U(r) 

A pattern of stall cells of small amplitude is imagined to be 
rotating around the annulus at a uniform speed, kU. The pattern of cells 
is at a fixed radius and radially of small extent; it will strictly be an 
incipient stall. 

By taking the reference frame as fixed within the pattern of 
stall cells, the problem may be reduced to one of steady flow. Representing 

the main flow tangential velocity component, relative to the stall pattern, 

by V", the main flow angle relative to stall P*, is 
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$’ = tan-1 v* ( J TJ 
and as = tan-i f 

kU + V* 
B 

\ u > 

then tan B = k+tanp*. 

The relative position of the various angles 

2.1 The induced velocities 

is clear from Fig.?(a). 

The actuatoy disc induces a perturbation of the velocity fields 
which has velocity components, relative to the stall pattern, of 

w =w 
X x (x, 0, d 

we = we lx, 0, d 

w =w r r (x9 % 4 

in the axial, tangential and radial directions respectively. 

Now a rotating stall is essentially a self-induced phenomenon; 
it is represented in this analysis by a velocity distortion of the downstream 
field generated in the actuator disc plane. There is no distortion of the 
upstream field due t9 the stall. The generated distortion is assumed to be 
convected downstream along the flow lines at the angle e relative to the. 
stall cells. 
downstream.) 

(i.e., at the flow angle, relative to the stall, at 00 
It is shown in Appendix I that the amplitude of this 

distortion is necessarily very small compared with the main velocity 
components. 

The axial and tangential components of the stall velocity 
distortion are respectively, 

AU = NJ (x tan &f - re, r) 

49 = AV (x tan @ - r0, r) . 

The first parameter (x tan p.$ - 13) expresses the dependence of AU and 
AV on the flow line considered (at a constant radius); the second parameter 
some dependence on r. 

Sketch/ 
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The sum of all the various components of velocity relative to 
the stall in the axial, tangential and radial directions are, respectively, 

U(r) + AU(x tan Pz - re, r) + wx(x, rS 0) 

V*(r) + AV(x tan @z - re, r) + wO(x, r, 0) 

W,(x, r ,  e> l 

These are the velocity components of the downstream flow field; upstream 
of the actuator disc the AU and AV components vanish (i.e., there is 
no inlet disturbance). 

3 . * Analysis 

The continuity equation ap lied to the steady flow model 
(i.e., relative to the stall pattern P for Yncompressible'l or low Mach 3 
number flow is, 

k (U + AU 
4 a 

awX 
i aWe i a aau la 

or -++-+-- (r w,) +-+--AV=O 
ax r ae r ar ax r ae 

a=, h general, U = U(r) snd V" = V*(r) only. 

Now 
a AU a AU 
-= ‘) tan P; 

ax a(x ta p.f - re) 

1 aAv -aL?rv 
and -- = . 

r ae a(x ta.np; - re) 

The assumption that the distortion remains parallel to the relative main 
flow and is unaffected by the velocity perturbations of the actuator disc, 
gives, 

AV/ 
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AV = tan pz . AU 

where Pi is constant at a given radius. 

. . . (I) 

a AU 1 aAv a AU ?AV 
, Then, -+-- = . tan p; - = 0 

ax r ae a(x tan pz - 33) a(x t33q - 13) 

The continuity equation is now reduced to 

awx iawg la 
-++-++- (rwr) = 0. . . . (2) 

ax r a0 I‘ ar 

Considering only the relative perturbation velocities; these are zero at 
x=+co and their vorticity components are likewise zero. Since the 
fluid is assumed inviscid the vorticity due to the pertibation velocities, 
by Kelvin's theorem, is everywhere zero. (See Appendix I on the conditions 
n&cessary for perturbation potential flow of the downstream field.) 
A potential function @ is defined such that, 

a9 1 ai4 aa 
w =-, X 

a22 
we =,;;;;’ wr =g. 

Equation (2) can now be written 

aa, 1 a42 I aa, aat 
-+--j--m+- = 0. 
ar;d r dr 3 a@ a2 

This equation may be solved by the usual process of separating the 
variables. The form of the solution is largely determined by the boundary 
conditions to be satisfied. These are briefly; the induced perturbation 
velocities vanish at 5 W; the radial velocity vanishes on the annulus 
walls; the tangential velocity perturbation is periodic; for the single 
wave analysis it is assumed sinusoidal. 

The potential solutions for a single wave are, 

@L = Am n e*+ine [J,(mr) + Bm n Yn (mr)] 
, Y 

$2 = I;m n e 9 
-*+inOIJn(mr) + Dm,n Yn (mr)] 

l a* (3) 

@i a plies to the upstream region and 4$ 
P 

to the downstream region. 
J,b , Y,$mr> are ordinary Bessel functions of the first and second kind 
respectively of order n 'and argument mr. 

A m,n' Bm n, etc., are constants related to particular values of 
m and n. Y 

then If Le is half the wavelength of the circumferential oscillation, 

7tr 
n=--. 

Le 
That/ 
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That i-s; at any radius r, it is supposed that only an integral number of 
waves n, can be contained around the circle of length 2nr. 

r=r 
Observing the radial boundary conditions, wr = 0 at r = ri and 

o, then 

JA b ri> JA b ro) 
= 0 l .  .  (4) Y,: b ro> Y,: b ri) 

where * denotes differentiation 
ratio of hub-tip radii, solutions 
boundary equation in terms of the 
in detail in Section 5.2. 

Two important.relations 

with respect to r. Hence for a given 
msy be found to the above Bessel function 
numbers m and n. These are examined 

can be found from the potential 
functions, equations (3). Denoting hereafter, conditions immediately 
upstream and downstream of the actuator plane by suffixes I and 2 
respectively then, 

where 

w% 
We2 

9 

= iqw x, 1 . . . (5) 
= -iqw% 

n 
= -. 

mr 

Applying the continuity equation to the flow across the actuator 
disc, we have, noting that there is no disturbance velocity component 
upstream of the actuator, 

“xl = “x, + AU. . . . (6) 

4. The Cascade Characteristics 

The steady flow through a cascade section of any given geometry,‘ 
in terms of the inlet flow angle pi, is fully determined by any pair of 
independent flow parameters. The two parameters most frequently used, as 
in the following are, 

(i) the exit flow angle p,, 

(ii) the loss in total pressure. 

With stall of small amplitude propagating around the cascade, the flow 
relative to the b1ades.i.s essentially unsteady. The problem is reduced to 
one of steady motion by fixing the reference frame in the rotating stall. 

4.1 Flow angles 

Considering first the exit flow angle pa. For small flow 
variations, 

where 5 is a constant equal to the slope of the pa versus pi curve 
at the cascade operating point. 

Now/ 
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Now tan @ + AD) = 
u tan p + AV -4 we 

n + AU f wx 

AT + we tan P 
:. A ta,n$ = 

U 
- - (AU + wJ = seo'j3 . 43 

U 

cosa p :. A@ = u i(Av + we> - tanP (AU + wx)] . l *= (7) 

Hence (Av + wea) - (AU + w%) ta;n pa = N[w~, - wxl t= P&i , l =., (Ta) 

where 
ii cosa p3 

N = 
A t=d, 

= 
co2 p2 Ata+ l 

. . . (8) 

Using equation (5), equation (Ta) becomes 

(AU tan Pa - AV) + wQ (tan Pz +- iq) = wx, N(tan PI - iq) . . . (9) 

4.2 Pressure losses 

With Pt for undisturbed total. pressure and pt. for 

perturbation total pressure, then 

Pt+Pt 
= P+p+- ' [(U+AU+wx)"+(V*+AV+wO+kU)"] 

2 

G P+p+- : [@+(kU+V*)2]+p[U(AU+wx)+(V*+kU)(AV+w,)] . 

Now Pt = P + mf [U%(kU+V*)'] , by definition 
2 

:. Pt = p + p [U(AU+w& + (F+kU)(AV+wg)] . 

To the first order, the equation of motion in the axial direction is 

awx V” awx 1 aP 
u- +- - = ---. 

ax r a0 P ax 
(see 1.3b) 

With the condition of irrotational perturbations, 

I awx aWe 
mm = r 
r ae ax 

and the above equation becomes 

p (u 0 wx+vYwg)+p = 0 

. . l Pt = p [UAU + (Y* + kU)AY + kUwel . . . . (10) 
me/ 
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The loss in total pressure across the cascade for the main flow 
alone is, 

c 

Pt,l-Pta = G.f [rfa f (kU + Vz)"] 

For the perturbed flow, 

(Ptl +pt) - (P$ +pt > = (w+AG)&J+w~)2 + (Vf+we )“I 
1 a 2 1 

where G is the loss coefficient for the main flow and AZ the 
incremental change of G 
perturbations. 

due to a change in & as a result of velocity 

Ignoring products of small quantities, 

P@ 

ptl YPG = 2 c 
AZ se2 PI f - ; ‘“x, + we, t=e,) l 

3 

With AZ = 2M r\p I and equation (7), then 

p4 - pt, = pu bh, 1 
-'wxl tadI) +E 'wq +we tanPI)], 

1 

where M is a constant equal to half the slope of the W versus Pi 
curve at the operating point of the cascade. 

Using equation (IO) together with equation (5) in the last 
expression, 

iqk(w%+w&-(AU+AY tan Pa) = M w%(iq-tan a,)Gw&l+iq tan PA). (II) 

5. Solutions 

The foregoing equations (9) and (11) represent the cascade 
characteristics; together with the continuity relation across the 
actuator-disc, equation (6), and the assumption that the self-induced 
distortion is convected at the angle p;" relative to stall, equation (I), 
it is now possible to eliminate AU, A< wX and wG and solve for M 

and k in terms of the quantities q, z, N and the flow angles, 
4 and &. 

Two e ressions for 
(61, (9) ana d. 

wx,/AU can be found using equations (I), 
Equating these, rearranging and separating the real and 

imaginary parts we have, eventually, 

(l+bab~)(ba-NbL) + (b;-q'b,)G+q'k(l-N) 
M= . . . (12a) 

btb$+q2 

and 
(l+ka+bz2) + (l+b,bz-kb,)J!JG(l+bibz) 

M = . . . (12b) 
b,-b$ 

where for convenience, b a tan p. 

Equating/ 



- 15 - 

Equating (12a) and (12b), k can be found as the roots of, 

&+Fk?+Gk+H = 0 
l . . (13) 

where E = -2b, 

F = 4bib,+~(N+l)+b~+Nb~+?3(l+b~) 

G = -[2b,N(qs+b;)+(b,+b,)(l+$+2b;)+2Gba(l+b;)j 

H= (l+b;) [b;iNb;+q2(l+N)]+G(~+b;)($+b;) . 

That is, the speed of stall propagation is a function of the cascade 
operating point characteristics and wave parameter, q, 

5.1 Evaluating M and k 

When some radial section of the cascade is operating close to 
the "stall point", the parameter 2M is equal to the rate of change of 
total-pressure loss coefficient with change of inlet angle necessary for 
stall to propagate at that section. The speed of the stall is then kU. 
This "necessary M" is given the symbol Mnec to distinguish it from the 
actual value to M which can be obtained from measurements of cascade 
performance. The actual value of M is denoted by Mact, S-tall will 
be supposed to propagate when, 

M net = Mact 

at a given radial section. 

For a compressor stator it is normal to find some radial 
variations in the values of N, b, ana b2, depending upon blade design 
and operating condition. The application of the analysis to an actual 
stator, together with estimates of Mact$ so enabling prediction to be 
made of the conditions under which stall first propagates, is not attempted 
here. It is important to find how the value of Mnec is influenced by 
the parameter q for prescribed values of b, and N with b% as 
independent variable. 

As the calculation of k and Mnec proved fairly lengthy it was 
decided to develop a simple programme for the University*s D.E.U.C.E. 
electronic digital computer. 

Fig,3(a) shows the variation of Mnec with q for several values 

of b, with N=b, = W = 0 and Fig.3(b) the corresponding values of the 
stall speed ratio, k. . The significant characteristic of Fig,j(a) is that 
for constant values of bL, Mnec decreases to a minimum and then increases 

as q is increased. This characteristic is typical for a wide range of 
values of N and b, 0 The conclusion is drawn that a blade section on 
the point of stalling and having specific values of bi, b, and N will be 
most likely to stall with a value of q 
The previously arbitrary nature of q 

corresponding to the minimum of Mnec. 
is now absent, q being fixed by Mmin 

(minimum for M,,,) for a particular bl, b, and N. 

Values of ldrnin are shown in Fig.4 for a wide range of values of 

bi and b, and for three values of N. These three N values have been 
chosen to represent blades having high, medium and low solidities; these 
are N = 0, 0.2 and 0.4 respectively. In all calculations the effect of the 
pressure loss coefficient G has been ignored, The values of k and q 
corresponding to the Mmin values are shown in Figso5(a) and 5(b) resI;ectively* 

It/ 
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It is seen that for N 
line is drawn to indicate q = 0. 

= 0.2 and 0.4 in Fig.4 and Fig.5(a) a 

for the present analysis, 
This line is a validity limit since, 

of q" < 0. 
no relevant meaning can be attached to values 

(See boundary conditions related to equation (3).) 

5.2 Solution of boundary equation 

Equation (4) may be written, 

J$> 
f(J.L) = - - 0 = 0 

y;(P) r. 
Y I 

1 
1 --.u 

where 
M = mro" 

Using the tables of Bessel functions lW9 the 
. _ -, \ first three roots of the 

equation Y(b) = 0 have been found for ri/ro = $ and the first and 
second roots for ri/ro = $ ; these are shown i? F-g.6 in the form n/p 
against n, for convenience. 

Now 
n 

q =7 Y by definition 
mr 

r n 
*. *q- = -* 

r 
0 CL 

For a particular blade section, r/ro, if N and the flow angles 
are known, a value of q for stall propagation cslll be found as outlined in 
Section 5.1. For a given hub-tip ratio, ri/ro and using the above 
expression, values of n may then be found. Notice, however, that n is 
required to be an integer. 

An asymptotic solution exists for the Bessel equation f(b) = 0 
such that for large values of n, n/p 
(see Appendix II). 

tends to unity for all roots 
At any radius, therefore, there is an upper limit to 

q imposed by the boundary conditions, 

e.g., at r=r, qG1 0 

and at 

5*3 Effect of cascade geometry variation 

It may be possible by suitable choice of cascade geometry to 
either increase M ti or to reduce the actual value of M and so delay 

the onset of stall, Stall is supposed to commence when the actual M, 
which is the measured rate of change of total pressure loss coefficient 
at a particular blade section, equals the value of Mmin. 

Comparing the data of Fig.4 at the same flow angles but at 
different values of N it will be observed that, for the range of angles 
chosen, M min increases as N increases. Ifhighvalues of N canbe 

construed to mean lower solidity then, other things being equal, the onset 
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of stall should be delayed by choosing lower solidity blading. There is 
the possibility, however, that varying the cascade geometry to provide a 
more favourable Mmin, may adversely affect the actual. Y values. 

According to the present theory d 2 0 to satisfy equation (3). 
O,It should not be possible for rotating stall to exist at high N values 

with certain combinations of b, and b, since cf will be less than 
zero. 

6. Application of Solutions 

The criterion for predicting the onset of rotating stall, namely 
M act = Mti, is applied to a single isolated stator at a particular radius. 

Estimates may be made, by adapting conventional techniques* 
(see Ref.21), of the performance of a blade row with a spectiied geometry. 
The total pressure losses and flow angles can be estimated, at a given radius, 
as functions of inlet angle. From this information the variation of Mti 
and M act with flow coefficient is derived, their point of intersection, 
fixring the stall condition at this radius. This procedure may be extended 
to other points along the blade span and the radius found at which stall is 
first initiated, 

6.1 Example 

ri/r, = 3, 
Suppose that an isolated stator row with a hub-tip ratio, 

first stalls at the tip when b, = tan Pi = 1.1, 

bz3 = tan ,Bs = 0.1 and 

A tan Pz 
N = = 0.2. 

A tan Pi 

From Fig.5(b) we obtain q = 0.470 

At 
r n 

r =r o, “, = cc = 0.47 . 

0 

. From Fig. 6 we obtain n = 7 (a second root 
xoeo, 7 stall cdls. 

solution), 

The corresponding value of k = 0,35 from Fig.5(a) and of 
Mmin= 0.965 from Fig.4. 

7. Discussion 

The principal result of this report is that a frequency of stall 
propagation can be obtained for a restricted type of rotating stall. The 
main assumptions on which the analysis is based are: 

(i) Small perturbation theory is used which limits the amplitudes 
of perturbation and self-induced disturbance velocities. 
Although most reported cases of rotating stall are known to 
have large amplitude disturbances some results do confirm that 
small amplitude disturbances can exist. 

*Radial equilibrium or actuator disc techniques using Howell’s cascade 
correlation. 
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(ii) Either, a large number of stall cells are formed and the absolute 
flow angle at exit is small (this exitflow is assumed a fairly 
close approximation to a free-vortex), or, 

(iia) The absolute flow angle at exit is zero. This assumption is 
necessaSy for a potential solution of the downstream flow field. 

(iii) Only a small radial shift of the streamlines is allowed. 

(iv) The self'-induced disturbances are convected at constant amplitude 
along the undisturbed stream-lines. 

(v) The assumption that an actuator disc can replace the blade row 
ignores the inertia effects within the blade row. 

(vi) Only an isolated stator is considered: there are no interference 
effects from other blade rows. 

(vii) Inviscid and incompressible flow. 

7.1 Changes in number of stall cells 

In the example considered above, values of &, pZ, N and r/r0 
were chosen such that n was, conveniently, an integer value. The stall 
criterion might have applied to slightly different conditions so that a 
non-integer for n was derived. It is suggested that this may give rise 
to the observed effect of unsteadiness in the number of stall cells under 
steady flow conditions, Cases of this 
reported by RocketI, RannieS, P 

'rd. are fairly common and are 
Stenibig and others, It appears that the 

number of cells can remain at, say, eight for a time and for no apparent 
reason, suddenly change, for instance, to nine cells. An examination of 
Fig-3 shows that at high values of b, the curves of M near Mmin are 
relatively flat with change of the parameter q- Small changes may 
occur in the value of q without appreciably altering the stall criterion, 
producing the observed change in number of stall cells. 

A tentative explanation can be also given to the large changes 
reported in the number of stall cells for small changes in throttle setting. 
It is seen that for the same value of q $- , (Fig,,G) there is more thari one 
solution for n, as there are many roots 02 the solution to the Bessel 
equation. Considering, for example, the case where the hub-tip radius 
ratio is 0.5, at a value of q $- = 0.459 the third root gives n = 8. 

0 

A small change of q$ to 0,45, gives a steady value of n = 4 for the 
second root, 0 

Adequate supporting evidence for this explanation is lacking. 
The observed changes in number of the stall cells formed may be accompanied 
by changes in both propagation speed md character of the stall cells. 
The amplitudes of the velocity fluctuations within the cells are generally 
large which, strictly, invalidates the assumptions on which the theory is 
built. 

702 Further work 

A large size, low-speed, two-stage compressor having a hub-tip 
radius ratio of 0,75 has been constructed at Liverpool. All blade rows 
are removable ad. all blades can be set at varying stagger angles. The 
flow upstream of the stages is completely free from obstructions. With 
this test-rig it is hoped shortly to run a series of tests with only the 
inlet guide vanes and first row of rotor blades installed followed by the 
second row stator blades. By this means it is hoped to simulate the 
conditions of operation required by the analysis. 

Measurements/ 



- 19 - 

Measurements can be conducted, at varying throttle, of upstream 
aa downstream told. pressure aa flow angles, etc. At stall initiation 
hot-wire anemometry can provide information on the number of stall cells, 
their speed of propagation and amplitude of velocity disturbances in the 
cells, A check can be made on the criterion of stall cell formation 
assuming that small ampli'cude velocity disturbances are involved. W&tier 
the tests envisaged will produce such a phenomenon cannot be foreseen. 
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Bessel functions of first and second kind respectively, 
of order n aa argument 

qelocity ratio (kU is velocity of stall propagation) 

half wavelength of circumferential oscillation' 

decay factor for velocity perturbations 

AZ;, 

24a, 

number of complete circumferential waves 

A tan & 

A tan 6% 

static pressure perturbation 

total pressure perturbation 

stat+.c pressure associated with main flow 

total pressure associated. with main flow 

n/mr, (a wave parameter) 

co-ordinates, (see Fig.?) 

inner and outer radii of actuatQr disc 

axial and tangential velocity changes at x = 500 
(see Appendix I) 

main axial and. tangential absolute velocities 

&a3, and tangential flow distortion velocities 
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W 

P 

P" 

4p 

z,rl ,E 

P 

P 

43 

G 

AG 

R 

vorticity vector 

velocity perturbations induced by actuator disc relative 
to stall 

main flow velocity relative to stall, JP + V*' 

absolute main flow angle 

main flow angle relative to stall 

change of flow angle 

orthogonal components of vorticity along the radial, 
circumferential and axial directions respectively 

mr 
0 

fluid densit;y 

velocity potential 

total pressure loss coefficient for main flow 

incremental change of 0 due to change of PI 

angular velocity of rotating co-ordinate system. 
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APF!ENDIXI 

The Conditions Necessary for Perturbation Potential Flow 

Euler's 
steadily rotating 
co-ordinates are, 

equations of motion for steady, inviscid flow in a 
reference frame, expressed in circular cylindrical 

awr we aw r +- awr (wg+I.i2)a 1 aP 
w- -+w -- = --- 

rar r a0 x ax r P ar 

wr abe “0 awe awe 1 aP 
- f- -++ -i- 
r ar r ae x ax -?P = -Pz r 

awX we awx awX 1 aP 
w- +- -+w - = ---. 

r ar r ae x ax P ax 

The accelerations relative to inertial space were fuund by 
adding to the accelerations seen by the observer in the reference frame 
rotating at angular velocity, R, the Coriolis and centripetal accel.erations 
(see Fig.l(b)). 

and 

For wx write U(r) + AU(x tan p* - r0,r) + wx(x,O,r) 

for w8 write V*(r) + AV(x tan p* - rO,r) + wO(x,O,r). 

These are the axial and tangential components of veloci 
7 

atanypointin 
the flow relative to the rotating stall (see Section 2.1 . Substituting 
the velocity components into the Ner equations and iaoring products of 
small quantities we obtain, 

v* awr awr (V+AV+We)" 1 aP 
-.- +u-- = 0-n . . . (1.1) 
r a0 ax r P ar 

W -!- (rV*) + 2Qr 
3 

+ V* r i3r 
$ (AV+w& + Ur & ' ap (1.2) (AV+wO) = - --- 

au v* a 1 aP 
W -+-- r ae (nv+wx> + U ; (AU+wx) = - --- . . . . (1.3) 

rar * 

NOW AV = AV(x tan p*-re,r) 

and 

aav abv 
l *. - = tan p* 

ax a(x tan p*-rO)\' 

I anv -aav 
-*- = 
r ae a(~ tan p*-33) 

J-d 
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In essence, the flow distortion, (AU, AV), outside and downstream of the 
disc has been assumed to be unaffacted by the perturbations (wx, WC, wr) 
caused by the actuator disc. 

In equation (1.2) 

aAv V’ aAv a AV 
u- +-- = (u tan p*-V”) = 0 

ax r ae a(~ ta P*-re) 

since V*/U = tan p*, by definition. A similar result is obtained in 
equation (I.S), i.e., 

aau v* aL\u 
u- +- - = 0. 

ax r ae 

Rewriting (I-2) and (1.3) 

W r C -f- (rV*) + Z2r + V* - 
ar 1 awe awe ' aP 

+Ur- = --- . . . (1.2a) 
a0 ax P ae 

au v* awx 
+u 

awx 1 aP 
W -++- -w 

r ar r ae ax x 
= ---. 

P ax 
. . . (1.3a) 

The vortex distribution 

The flow at stations far removed from the actuator disc 
(x = - co and x = W) is considered to be in radial equilibrium. IT at these 
stations conditions of radially uniform stagnation enthalpy and entropy exist, 
the so-called "radial equilibrium equation" may be written as, 

$ (v”) +J.-; j(rV)a 3 = 0. 

It is possible to specify any vortex relation V = V(r) and so 
obtain a solution for U = U(r) using the above equation. The functions 

k (rV*) and s can now be found in equations (1.2a) and (I.Ja) 

respectively. However, further development of these equations has been 
found to be virtually impossible except in the special case of "free-vortex" 
flow for which a remarkably simple result is obtained. 

Assuming free-vortex flow, Vr = constant, it is easily shown that 
au 

U is constant and so the terms -L (rV*) + 2&- and - , in 
ar -J ar 

equations (1.2a) and (1.3a) vanish identically. The conditior imposed by 
the assumption of a free-vortex seems to be.somewhat restrictive; however, 
small departures from this condition appear permissible whilst the 
simplicity of the resulting equations is still preserved. 

Consider the absolute tangential velocity distribution 

v = constant +V 
r 

together/ 
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together with the sxial velocity distribution 

u = constant + ii 

where ? is any function of r. Then (1.2a) and (1.3a) become, 

a aw0 
r ar b-3 + V" - 

awe ' aP 
w- + Ur - = --w 

ae ax P ae 

au VT awx awX 1 ap 
W -+- - +TJ- = --- 

r ar r ae ax P ax 

after omitting terms of second order of smallness. 

7 ii 
If now - and - a b-3 

U U 
are made small then the terms wr- 

ar 
au 

and wr- can be ignored as being of the second order of smallness. 
ar 

Hence, 

awe awe ' aP 
V" - +Ur- = --- 

a0 ax P 30 
. . . (I.zb) 

v* awx awx ' aP 
-- +u - = ---. . . . (1.N 

r a0 ax P ax 

By cross differentiating equations (1.4), (1.2b) and (1.3b) in 
pairs the pressure terms can be eliminated to give the Helmholte vorticib 
equations, 

v* ag ag 2v anv 
-- +u- = -- 
r a0 ax 3? ae 

. . . (I.41 

v* aq 
.a. (I.51 +u- 

r ae 
;l = ;(' -g) 

v* a;; a;: 
-- +u- = 0 
r ae ax 

. ..- (1.6) 

where E, r~ and CZ are the vorticity components due to the perturbation 
velocities alone along the axial, tangential and radiation directions 
respectively, i.e., 

g 2 
r I 

; (I-we) - fJ.2 ) 
ae 

awr awx 
q = --- 

ax ar 

&=I-- 

i 

awX a(me) 

r ae ax 3 

. 

The/ 
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The LHS of equations (I.&), (1.5) and (1.6) can be shown to be the product 
of the resultant undisturbed velocity W = m a.nd the convective 
rate of change of perturbation vorticity along lines at the downstream 

v* 
(x = CO) relative flow angle, @ m tan-' -E , for a constant radius. With 

U 
S as the distance along the line, equation (I&), for example, can be 
written as, 

G E v* aEs 2v aAV 
w- B u- E -- z --• 

ds dx r d6 r;d a0 

Now because of the presence of the AV component of the 
self-induced distortion (see Section 2.1) which originates, incidentally, 
in the centripetal acceleration term of equation (I.l), a convective rate 
of change of E and q is apparent (1.4) and (1.5). 

In equation (1.6), TJZ = 0 and ;: is constant or zero; q is 
ax 

taken to be zero for reasons stated above. 

The RHS of equations (L4) and (1.5) CS,II be written respectively as, 

2v aAv 
-- 

r a(x tan @-rej ’ 

and 
2v alSv 
- tan #q 
r a(x tan @-re) ’ 

Both of these expressions are zero when either:- 

(i) r + e0; in the limit for finite blade height this reduces to the 
infinite actuator strip employed by Yehq2 as the flow model, or, 

(ii) v = 0; since the self-induced distortion supposed present only 
aft of the disc, the condition V = 0 is only required at stator exit. 

Neither of these two conditions is particularly satisfactory. 
The above expressions can, however, be reduced to the second order of 
smallness by meals of the following de.rice. Consider the expression, 

< a 2v aL\v 
u- = -- z - 2 (AVt) . 

dx r a(x tan @-333) r 

Integrating, 

E = et(:)(;) (AP) . . . (107) 

where Ax is a representative axial distance measured from the origin in 
which the change of vorticity, & occurs. All perturbation velocities, 
it may be argued, may be represented by functions of the form 

-mxi-in0 e , (x > 0), which is not necessarily a potential function. 

Then, if (for example) wx a e 
-mx+ine 



- 27 - 

-mhx+ine 
W e 

X -= = e -' bad 

"sax 
eine 

where Ax is an sxid. distance in which the axial velocity perturbation 
has deca;yed to l/e of its original value 

:. mk = 1. 

Inspecting orders of magnitude in (1.7) 

4 = -f(:)(z) (AV), for large m 

. x.e., with the assumptions of large m and small absolute exit flow angle, 
the vorticity change must be of the second order of smallness. Hence 

which is the potential solution in Section 3. 
values of (mro) occur, in general, 

Finally from Fig.6, large 
for a large number of stall cells n. 

(The higher roots of the boundary solution give large mro for small n 
but these may be of less importance than the primary root.) 

The oonditions necessaq for downstream perturbation potential 
flow are a large number of stall cells together with a small absolute exit 
flow angle. An implicit assumption in the above analysis is that the 
exit flow is close to a free vortex distribution. If the exit flow angle 
is zero, however, the necessity of restricting the analysis to a large 
number of stall cells vanishes. 

APPENDIXII/ 
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Asymptotic Solution of Bessel Function Equation, f(P) = 0 

J$d 
f(p) = - - . 

q-d 

ri/ro = 3 
In the above equation for large values of p and with 

the second term becomes very small compared with the first 
term. The second term may then be neglected and the result is 
J;(P) = 0. 

Now J$P> = 8 Jn-, (d - Jn+, (d 1 = 0 

. . . Jn-, (cl> = JIl+,b> . 

Some values of J are available in the tables 
20 , for p = 50 and 

100 and n = I, 3, 3, . . . . lOO+ which can be used to extend somewhat the 
solutions of Fig.6 (for T./r ZE- : only). These are shown in Fig.7 
indicating sufficiently thkt For large values of n, ' 

n r 
-=q- + 1 for all roots. 
P r 

0 

ws 
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FIG. I(b) -- 
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Components of velocity relative to a steadily rotating 

reference frame and the additional acceleration components. 
(See Appendix I) 
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(a) Variation of necessary M with b, and wave parameter, q for 
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SOME THREE-DIMENSIONAL EFFECTS OF ROTATING STALL 
A small perturbation analysis of rotating stall in 

inviscid, incompressible flow is developed from an 
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invisqid, incompressible flow is developed from an 
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mean radius. A criterion is derived for the occurrence 
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1 given. Possible explanations are suggested for the 
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