C. P. No. 618

C. P. No. 618

aERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Comparison of Two Methods for Predicting the Potential Flow around Arbitrary

Airfoils in Cascade

> By
D. Pollard and J. Wordsworth

$$
\begin{aligned}
& \text { C.P. No. } 618 \\
& \text { June, } 1962
\end{aligned}
$$

A COMPARISON OE TWO METHODS FOR PREDICTIHG

 THE POTENTIAL FLOV AROUND ARBITPARY AIREOILS IN CASCADEby

D. POLIARD and J. WORDSWORTH

ACKNOWLEDGEMENT

The authors wish to express their appreciation of the advice and help given by Professor J.H. Horlock, Profossor of Mechanical Engineering, University of Liverpool, at all stages of the production of this paper and also of the assistance given by Dr. A. Young and the staff of the Sub-Department of Numerical Analysis in the University of Liverpool.
1.
2.
3.
4.
5.

APPENDICES

Summary
.
3.1 The Method of Conformal Transformation
3.2 The Method of Distributed Singularities Conciusions.

Notation
The Method of Conformal Transformation
The Method of Distributed Singularities to use on an Electronic Computer. to use on an Electronic Computer

References. Calculations on Cascades of C4 and NACA blades

Adaptation of the Method of Conformal Transformation

Adaptation of the Method of Distributed Singularities

1.0 SUMMARY

A method of conformal transformation due to Howell (Bl) and a method of distributec singularities due to Schlichting (Cl), for predicting the performance of cascades of arbitrary aifoils, have been adapted for use on an electronic computer. Much greater accuracy than hifterto is thus possible, and this has enabled numerous refinements to be made. For an airfoil section defined at 30 points, the former method requires about 4 hours equally divided between automatic computing and graphical work, while the latter is completely analytical and needs about 3 hours machine time (both times being for a slow code of computer operation). The two approaches are critically sensitive to profile shape. Pressure distributions as determined by each method are in close agreement, but the agreement in turning angle is only fair.

2.0 INTRODUCTION

There exists disturbing differences in cascade data as determined by American and British experiments, and in comparisons between these data and the limited amount of theoretical treatments at presentavailable. The former disparity may be due to differences in experimental technique, because of difficulties in obtaining truly two dimensional flow in practice, while the latter is undoubtedly due to lack of an adoquate theory. This paper outlines a study of two theoretical methods suggested by Howell (BI) and Schlichting (Cl).

Among the methods available for solving the direct problem of the potential flow of a fluid through a cascade of arbitrary airfoils, a transformation method by Garrick (B4) may be mentioned; but like so many others, the usefulness of his method is severely limited by simplifications which are initially inherent, and approximations which are subsequently unavoidable, if a working solution is to be obtained. Of other classical treatments, two have beor selected for study in this paper. Howell's approach was favoured because mathematically it is relatively simple and sound - the only approximation is in transforming an irregular circle into an exact circle. The Schlichting treatment found favour because it suggested a completely analytical approach, and lent itself readily to the study of a cascade with suction (c.f. American experimental technique). Both methods have as a starting point the basic profile shape of the arbitrary airfoil undur investigation, and the porformance of the cascade as determined by the said methods is very much dependent on the accuracy to which the profile is defined. Therefore the reliability of both treatmonts dopends on the number of airfoil points which can be accommodated by the analysis, and this in the past has been the limiting factor. This limitation has been studied in detail in each approach, and the use of an electronic computer has brought about several improvements. With such a device, calculating time is no longer of prime importance - the
limitations are now mathematical. Many difficulties were solved, but others arose; chief of these was the effect of profile shape, at the leading and trailing edges, on the pressure distribution round the blade. Wathematically, this is related to the rapidity with which a Fourier Steries converges. It is true to say, that, the two approaches on an electronic computer having been exhaustively developed, the success of a calculation hinges on this major difficulty more than anything else.

Hodifications of the Howell and Schlichting analyses were developed from calculations on cascades of 1004/30050 and NACA $65-\left(12 A_{10}\right) 10$ blade profiles, because these are two profiles which, whilc having been designed basically for similar purposes, give the disturbing difference in performance referred to earlier. The development worl was performed on these two profiles in compressor cascades at a stagger of 36°; it was then extended in the case of the British section to turbine and compressor cascades of 15° stagger. Thus tho modified analyses have been invostigated over a limited range of stagger, camber and thickness. To prove the value of the methods in general, they should be employed in a systematic investigation of all the possible combinations of stagger, camber and thickness likely to be met with in practice. Only then will the recommendations of this paper find universal application.

3.0 SYNOPSIS CT METHODS

3.1 The Method of Conformal Transformation

A sories of confurmal transformations, suggested by Howell (BI) and cmployed by Carter and Hughes (B2) reduces the flow through a cascade of known airfoils to that around a circular cylinder with circulation. The velocity at any point on the latter is easily calculated, whence the velocity at that point in cascade is found after multiplying by the velocity coefficient for each transformation performed.

The first transformation collapses the cascade into an

$$
\zeta=\tanh z_{0}^{-3-}
$$

A succession of Joukowski transformations

$$
\zeta+\frac{a^{2}}{\zeta}=z
$$

are used to transform the S-shaped contour into an irregular circle. The "optimum" irregular circle is sought - that is, one having the least number of irregularities. It is obtained after the minimum number (usually 2, 3 or 4) of Joukewski transformations, by careful choice of the axes and the parameter 0 . The optimum irregular circle is easily recognised, since the effect of a subsequent Joukowski transformation is to render the irregularities worse.

If the optimum irregular circle has no pronounced local irregularities, it can be transformed into an exact circle using the Theodorsen transformation

$$
\sum_{1}^{n}\left[\left(A_{r}+i B_{r}\right) \zeta^{-r}\right]=\ln [z / \zeta]
$$

in which the Fourier coefficients converge rapidly. Using 50 or 60 points to define the irregular circle, some 12 or so coefficients are sufficient to specify the Fourier Series. Should coefficients of higher order than the twelfth be not entirely negligible a better irregular circle should be sought.

The calculation is best performed for every point at which the airfoil is defined, and the choice of axes and parameter C (referred to abcve) is best obtained by hand. Experience has shown that although this may take about 30 minutes for each transformation, it is still less than an electronic computer requires using curve fitting prograns, etc.

The method has been specially adapted for use on a Deuce Blectronic Computer. Using a slow code of operation, the machine time required for a complete calculation, involving fixed cascade
geometry and variable incidence, is approximately 2 hours. About 2 hours additional graphical work is necessary.

A full development of the method of conformal transformation is given in Appendix B.

3.2 The Method of Distributed Singularities

3.2.1. Basic Theory

The concept of singularities, and their use in the theoretical prediction of ideal fluid flow past solid bodies has been in use for many years and has been dealt with at length by various authors (eg. reference ClO). Schlichting (reference Cl) has used the method of singularities to determine the performance of two dimensional cascades of blades, in turbine and compressor configurations.

Sources, sinks and vorticies are distributed along a line corresponding to the position of the camber line of each blade in the cascade. The velocity induced by the sum of these singularities is calculated at points throughout the flow regime and added to the free stream velocity. The magnitude of the singularities is choosen so that a fluid streamline corresponds to each blade profile.
3.2.2. Approximations used in the analysis

To simplify analysis and bring calculation time down to a reasonable value the following three assumptions are made:(i) that a finite number of singularities are used to match the profile at a finite number of points, As the calculation requires the solution of a matrix of simultancous equations, previous workers (references (Cl) an ${ }^{(C 2)}$) have limited themselves to three matching points. The authors of this paper have had the use of a "Deuce" digital computer and have extended the number of matching points to between 15 and 20.
(ii) that the blade profile can be split into a camber line and thickness distribution, which are considered separately (see figureC1) and
(iii)that the singularities are distributed along the chord line, whence the induced velocities are calculated on the chord line, and corrected to give the velocity on the profile.

3.2.3. Basic equations

If at a given chordwise position $\frac{x}{c}$ the profile upper and Lower ordinates are y_{u} and y_{ℓ}, the camber line ordinate and half thicknesscan be written, approximately,

$$
\begin{aligned}
y_{s} & =\frac{1}{2}\left(y_{u}+y_{\ell}\right) \\
\text { and } y_{t} & =\frac{1}{2}\left(y_{u}-y_{\ell}\right)
\end{aligned}
$$

With a source distribution $q(x)$ and vortex distribution $\gamma(x)$ the induced velocities at a point x, parallel to and perpendicular to tho chord u, and v are such that, applying the continuity equation (see figure CI)

$$
\frac{d y_{t}}{d x}=\frac{q(x)}{2(U+u)}
$$

and the slope of the camber line is given by,

$$
\frac{d y_{S}}{d x}=\frac{V+v}{U+u}
$$

U, V are the components of the free stream, parallel and perpendicular to the chord.

Assuming $q(x), y(x)$ to be functions of a parameter ϕ where

$$
\frac{x}{c}=\frac{1}{2}(1-\cos \phi)
$$

the distribution of singularities may be described in terms of a Fouricr series and u and v calculated in terms of $q(x), y(x)$ for the cascade. The quantities $q(x), u$ and v are substituted in equations (3.2.1.) and (3.2.2.) with the Fourier coefficients as the unknown quantities. For every matching point on the profile (one value of y_{t}^{\prime} and one value of y^{\prime}) a pair of simul-
tareous equations is produced and a pair of Fourier coefficients can be found. If n matching points aro used, $2 n$ simultaneous equations arise and the solution reveals $2 n$ Fourier coefficients. The solution of 30 or more linoar simultaneous equations is a task easily performed by the computor.

3.2.4. Computer time required for a calculation

The time required for a calculation on Liverpool University "Deuce" computer is $31 / 4$ hours comprising:-
i) Ono and a half hours for calculating cascade parameter data, a function of stagger and space chord ratio.
ii) Half an hour to calculate thickness and camber line gradients iii) One and a quarter hours to solve the simultaneous equations and calculate the pressure coefficients.

An extra half hour is required for each value of inlet angle α_{1} aftor the first.

The programmes are writton in "alphacode" which is comparatively slow, and could bo rowritton in "basic" code, to produce quicker results now that the method has been shown to work.

A full development of the method and analysis is shown in appendices C and E.

4.0 CALCULATIONS ON CASCADES OF C4 AND NACA BLADES

Full details of the computational mothods used are given in the appendices. The results of the various calculations made are now discussed.
4.1 The Mithod of Conformal Transformation Applied to a Cascade of $1004 / 30050$ Airfoils, at a stagger of $+36^{\circ}$, zero incidence 4.1.1. The pressure distribution (ivis.4.1.1.)

The prussure distribution shown is that derived from the flow around tho irrocular circle, with the leading edge point neglected. All the points lie on a smooth curve, with the exception of a few towards the trailing edge. The pressure distribution has not been constructed to pass through the theoreticl stagnation point at the trailing edge, since this is not obtained in practioe. The base profile is accurately
defined in the region of the leading edge, and this has enabled a reliable determination of the suction and pressure peaks to be made.

4.1.2. The original and modified nose shapo (Fig.4.1.2.)

The leading edge point is reglected on the irregular circle, and the recalculated, effective nose shape is shown in Fig. (4.1.2.). The discrepancy as a result of neglecting the leading edge point is thus seen to be small. The pressure distribution of Fig. (4.1.1.) has slightly reduced suction and pressure peaks compared with the true C4 profile, since the modified nnse shape is more slender.
4.1.3. The modified Fourier coefficients, $\mathrm{Ar}^{I}, \mathrm{Br}^{1}$

Graphical representation of the coefficients accentuates the asymptoting of the series to zero. In this exanple, it is seen that about 10 coefficionts are sufficient to specify the series completely. This shows that the optimum irregular circle chosen has few irregularities, and these are small.
4.2. Method of Singularities Applied to Cascade of C4 Profile at 36° Stageer
Results of a specimen calculation are shown in graphs 4.2.1. to 4.2.5. The cascade is a compressor of 36° stagger and space-chnrd ratio unity. The pressure distribution has been determined for an inlet angle of 52.8° to compare with experimental data at present being obtained. The curve produced is smeoth and the integrated lift coefficient compares favourably with that calculated from the turning angle, as shown in the table bolow. The blade profiles used are $1004 / 30050$ profiles with a circular arc camber line, and a smooth pressure curve is produced from the measured gradients. In the case of a more irregular shape (eg. NACA 65(12A10)10) it is necessary to reduce the leading and trailing odge gradients. The effect of using this procedure on the C4 profile is shown in Fig.4.2.2.

There is little difforence between this curve and the one for the original gradients shown in Fig.4.2.1.

The source and vortex distributions are shown in Fig.4.2.3. for the nomal 1004/30050 profile and the recalculated camber line and thickness distribution shown in Figs.4.2.4. and 4.2.5. The recalculated camber line agrees well with that originally spucificd, but the thickness distribution shows some small discrepancy. The maximum difference between calculated and original thickness ordinates is $\frac{1}{2} \%$ of the chord at 30% of the chord back from the leading edge.

TASIE I

Comparison of integrated and calculated parameters

Integrated Calculated \quad| Percent |
| :--- |
| Difference |

$C p$	0.720	0.728	1.1
$\frac{1}{c} \int\left(\frac{q(x)}{V_{m_{X}}}\right) d\left(\frac{x}{c}\right)$	0.005	0.000	
$\frac{1}{c} \int\left(\frac{y(x)}{V_{m_{x}}}\right) d\left(\frac{x}{c}\right)$	0.517	0.531	2.6

4.3 Comparison of the two methods for calculations on a
 Cascade of 10C4/30050 airfoils at zero incidence, various staggers

$$
\text { 4.3.1., 4.3.2., 4.3.3. } \frac{\text { The prossure distribution }}{\text { (Pigs.4.3.1., 4.3.2., 4.3.3.) }}
$$

The agrcement between the pressure distributions as determined by the two methods is close at the three staggers shown; therefore the calculation of the lift coefficients (which are proportional to the areas enclosed by the pressure curves) as determined by both methods is consistent. For positively staggered (compressor) cascades, the method of conformal transformation gives suction and pressure peaks which are slightly exaggerated compared to those determined by the method of singularities. At nagative staggers, this is not so. The suction peak as determined by the Howell method occurs at abnut 10% chord; the method due to Schlichting yields a suction peak at about 15% chord.

4.3.4. Deviation as a function of stagger, and comparison with the rule for nominal deviation (Fig.4.3.4.)

In positively staggered cascades, the deviation determined by Howell's method is less, and that determined by Schlichting's method is greater, than that predicted by the rule for nominal deviation (B5). At low negative staggers, the Howell deviation increases above the nominal deviation, while the difference between the Schlichting deviation and nominal deviation increases as the stagger becomes very large, negative. These latter trends are, however, dependent on a calculation at one negative stagger in each case.

4.4. Further results using the method of singularities

Fig. 4.4.1. shows the pressure distribution of a 1004/10050 profile blade in a 36° stagger, 1.0 space-chord ratio configuration, for three different inlet angles. With a low (10°) cambered profile a smooth curve is produced for all values of inlet angle, but at high angles of incidence the integrated lift coefficient shows a 5% error when compared with the calculated value.

Figs.4.4.2 and 4.4.3. show the pressure distribution for an NACA ($12 \mathrm{~A}_{1} 0^{10}$) profile in 36° stagger 1.0 space-chord ratio compressor cascade. Fig.4.4.2. shows the original profile pressure distribution and Fig.4.4.3. the modified profile pressure distfibution. The curves are of the same general shape but the number of calculated pressure coefficients which do not lie on the smooth curve has been reduced and the integrated lift coefficient compares more favourably with the calculated one in the second case than in the first.

5. CONCLUSIONS

5.1. Results of calculations using the method of conformal transformation and the method of singularities have been given in graphs 4.1 and 4.2 respectively. A comparison of the two methods at various staggers has been given in graphs 4.3.
5.2. The method of conformal transformation is mathematically exact and only two approximations are required in numerical computation. The Fourier series used (see paragraph B4) is limited to a finite number of terms and the irregular circle of the last transformation is smoothed at a point corresponding to the leading edge in order that this series may converge rapidly. The recalculated nose shape is very little different from the original and increases the length of the chord by only $\frac{1}{2} \%$ (Fig. 4.1.3.). A full explanation of these approximations is given in appendix B.

The pressure distribution obtained is a smooth curve and on integration the lift coefficient derived agrees with that produced by the turning angle, to within $\frac{1}{2} \%$. At the single space chord ratio investigated the method was found to be satisfactory over a wide range of stagger angles.

It is unlikely that this method will be transferred completely to a computer calculation, as the time required for curve fitting and the change of axes in the intermediate steps is rather long. The correct choice of the new axes between transformations requires a certain amount of experience if a reasonable transformation shape is to result. The change of axes by hand involves about half an hour's work.
5.3 The basic flow equations in the method of singularities contain the approximations mentioned in paragraph C.I. The results suggest that for the profile investigated these approximations are quite valid. Lift coefficients from the pressure distribution area and the turning angle agree within $\frac{1}{2} \%$, and
the recalculated thickness distribution has a maximum discrepancy of $\frac{1}{2} \%$ of the chord at the station of maximum thickness 30% (Fig. 4.2 .5.). Uninterrupted use may be made of a computer which allows a comparatively simple method of operation to be followed. Pnor results are obtained from some profiles and the method is also unreliable at high angles of incidence (section 4.4). Large gradients in the camber line at the leading or trailing edges (e.g. as for the NACA $65\left(12 A_{10}\right) 10$ profile) cause irregularities in the calculated pressure distribution curves and thus the method would not be applicable to highly combered turbine blades.
5.4. The outlet angle deviations from the two methods have been compared in Fig.4.3.4. Results from the method of conformal transformation predict a lower deviation for compressor cascades. The deviation derived from the method of singularities shows good agreement with the Howell-Carter nominal deviation rule. Pressure distributions from the two methods are in close agreement, with two small differences. The method of conformal transformation gives a slightly higher lift coefficient and a suction peak closer to the leading edge than the corresponding quantities from the method singularities (Fig.4.3).
5.5. Both methods have been adopted for use on a digital computer and ceftain approximations have been modified to allow full use to be made of computational accuracy.

The method of conformal transformation is more accurate analytically although the shape of the leading edge of the profile cannot be truely specified. The method is fairly slow as intermediate steps in the calculation have to be performed manua $2 y$. For the cascades considered in this report the method has been found satisfactory over the range of stagger employed. The method of singularities, although containing mathematical approximations is straight forward and
-12-
found for stagger angle, but care must be taken that large values of profile gradients do not produce incorrect results. At large angles of incidence the method is inconsistant. 5.6. The method singularities is being developed to take account of boundary layer growth on the blade profile and the effect of a change in axial velocity across the cascade. It is hoped to present this analysis at a later date.

Appendix A NOTATION

The two nethods of calculation set out in appendices B and C are so distinct that the notation for each is given under a separate heading. Al contains the notation used in the method of conformal transformation, shown in appondix B and $A 2$ the notation for the method of singularities in appendix C. An attempt has been made to use the same notation where possible, the most notable exception being the symbol for stagger angle, y in appendix B and λ in appendix C.

A.1. The Method of Conformal Transformation

γ	stagger angle (positive for compressors, negative for turbinos)
c	blade chord
s	blade spacing
p	static prossure at a point
V	velocity at a point
p	density of fluid
${ }^{\text {c }}$	pressure coefficiont at a point
p	an integer
q	an integor
r	an integer
n	an integer
i	imaginery quantity, equal to $\sqrt{-1}$
(X, Y)	cartesian co-ordinates in the basic airfoil
z	a complex plane
ζ	tho transformed complex plane of z
(x, y)	cartesian co-ordinates in the plane of z
(ξ, η)	cartesian co-ordinates in the plane of ζ
$\left(\xi^{\prime}, \eta^{\prime}\right)$	the origin in a plane of ζ for the succeoding plane of z
K	the angle between the axis of ζ and the succeeding axis of x .
C	Joukowski parameter
A_{r}, B_{r}	Fourier coefficients

$A_{r}{ }^{1}, B_{r}{ }^{1}$	modified Fourier coefficients
λ	parameter in the plane of z
ϕ	arcument in the plane of z
ψ	parameter in the plane of ζ
θ	argument in the plane of 5
a	radius of base circle
ro	radius of exact circle
\triangle	increment in λ produced by Theodorsen transformation
ϵ	rotation of ϕ produced by Theodorsen transformation
α	flow angle relative to axial direction
(f, g, h))
$\left.\begin{array}{l} \left(m_{1}, m_{2}\right) \\ \left(\theta_{1},\right. \\ \theta_{2} \end{array}\right)$	$\{$ parameters $\cap f$ the theordorsen transformation

Subscripts:

0 a point on the airfoil
$-\infty \quad$ a point at infinity upstream of the cascade
$+\infty \quad$ a point at infinity downstream of the cascade
$r \quad$ the rth term
a axial direction
1 inlet conditions to the cascade
2 outlet conditions from the cascade
T. I. \quad the trailing edge point.

A.2. The Method of distributed Singularities

A_{n}, B_{n}	Fourier coefficients
C_{p}	Pressure coefficient
c	Blade chord length
K	Tan $\epsilon=V_{m y} / V_{m x}$ $M$$\quad$Combined, complex singularity strength (source and vortex)
n	An integer
P, Q, R, S	Simultaneous equation parameters
p_{I}	Local static pressure
p_{1}	Inlet pressure
q	Source strength

```
                                    -A3-
    q(x) Source strength distribution along x-axis
R(F),I(F), f,g Intermediate calculation parameters
    r,0 Polar coordinates
    s Cascade blade pitch
    g
U A stream velocity
u Perturbation velocity in x-direction due to
        singularities
J Perturbation velocity in y-direction due to
        singularities
VI Blade surface local velocity
Vm
Vm
Vmy Component of Vin in y-direction
Vt Tangential component of velocity
2\Delta Vt Difference between inlet and outlet tangential
        velocitios
Vl Cascade inlet velocity
V
W Velocity potontial
x, y Coordinates of rectangular axes
\overline{x}},\overline{\phi}\mathrm{ Terms associatad with integration
y ( Combined blade profile lower ordinate
ys Slope line ordinate
yt . Thickness ordinate
yu Combined profile upper ordinate
z Complexcoordinate (=x + iy = re ie )
\alpha, Inlet flux angle
\alpha
\alpham
y Vortex strength
\gamma(x) Vortex strength distribution along x-axis
\epsilon Angle between vector mean velocity and x-axis
0 Cascade blade camber angle
\lambda Cascade blade stagger angle (+ ve for compressor
        cascades)
```

$\psi \quad$ stroam function

Subscripts

1	Gradient
si	Single aerofoil
R	Gascade minus sincie aerofoil(remainder cascade)

Appendix B THE MEYHOI OT CONFORTAL TRANSFORMATION
B.1. The Basic Airfoil

The airfoils are spaced along the cascade at a distance π apart; this is so that when the first transformation $\zeta=\tanh z$ is applied, the cascade collapses into a single contour. The basic cambered airfoil co-ordinates are therefore calculated to a chord length $\frac{\pi}{(\mathrm{s} / \mathrm{c})}$ to maintain the correct space:chord ratio. For groatest accuracy the calculation is preferably purformed for every point at which the airfoil is defined, (thesc points are hereaftur referred to as the "airfoil points")

An origin is takon on the camber line at approximately 50% chord; and cartesian axes (X, Y) chosen so that the axis of X is parallel to the chord. positive direction towards the trailing edge. The co-ordinatos (X, Y) of the airfoil points are calculated.
B. 2 The Pirst Transformation ($\zeta=\tanh z$)

The origin of the z-plane is chosen to coincide with that of the (X, Y) plane, the oriontation of the axes (x, y) being such that the x-axis nalres an angle with the X-axis equal to the stagger, in the acouptod sonse. The new co-ordinates of the airfoil points in the z-plane are found.

At this stage, and again later, it is seen that many points lie close to no or the other axes; and therefore the percentage error in determining x, or y as the case may be, for these points will tend to be largo compared with points ly lng woll away from both axes. To overcome this disadvantage it is strongly recommendud that, having chosen the origin of the new axes, and their orientation with respect to the old axes, simple formulae be used to givo the now co-ordinates. For example

$$
\begin{aligned}
& \mathrm{x}=\left(\xi-\xi^{\prime}\right) \cos \mathrm{K}+\left(\eta-\eta^{\prime}\right) \sin \mathrm{K} \\
& \mathrm{y}=\left(\eta-\eta^{\prime}\right) \cos \mathrm{K}-\left(\xi-\xi^{\prime}\right) \sin \mathrm{K}
\end{aligned}
$$

In this way any percentage error should be reasonably constant over the whole airfoil. The above expressions for x and y are to be preferred to the alternative method of drawing to a large scale and measuring.

The transformation $\zeta=\tanh z$ is applied to the airfoil and infinity points, and the co-ordinates (ξ, η), together with the velocity coefficient $\left|\frac{\partial S}{\partial z}\right|_{0}$, evaluated. The transformation has singularities given by

$$
\frac{d \zeta}{d z}=1-\zeta^{2}=0 \text { or } \infty
$$

but Howell (B.I) has shown that thesc points lie outside the airfoil, and in fact the trarisformation is conformal for all the airfoil points.

Whe infinity points $(-\infty, 0),(+\infty, 0)$ in the $z-p l a n e$ have transformed into $(-1,0),(+1,0)$ in the 5 -plane; while the cascade has transformed into an isolated s - shaped contour, the severity $\cap 1$ the curveture at the ends being largely dependent on the stagger.
B3. The Joukowski Transformations $\left(\sigma+\frac{C^{2}}{\zeta}=2\right)$
(i) The first Joukowski transformation

The origin $\left(\xi^{\prime}, \eta^{\prime}\right)$ of the new $z-p l a n e$ is chosen at the mid-point of the line joining the leading and trailing edge points, the x-axis lying along that line and being positive towards the trailing adge. The now co-ordinates (x, y) of the airfoil and infinity points in the z-plane are calculated. The parameter C is chosen to be one quarter of the distance between leading and trailing edge points.

The Joukowski transformation is applied to every point in turn. For each z, two values of 6 are possible. Considering the Joukowski equation, it can be seen ${ }^{\text {\# }}$ that for the transformed contour to be described in the same sense as the original airfoil, with $|z|<2 C$, points on the upper or suction surface should take the positive root, points on the lower or pressure surface the negative root. For the infinity points, take the root having the same sign as y; if y is zero,
then follow the sign of x. The velocity coefficient is also evaluated

$$
\left|\frac{d \zeta}{d z}\right|_{0}=\left|\frac{\zeta^{2}}{\zeta^{2}-c^{2}}\right|
$$

The result of the first Joukowski transformation is an irregular kianey shape.
(ii) Subsequent Joukowski Transformations

Tho longest straight line $P Q$ contained by the previous contour is located, and also points F^{\prime}, Q^{\prime} on it which are as near as possiblo to the centres of curvature of the ends of the contour P, Q rospoctively. If $P^{\prime \prime}, Q^{\prime \prime}$ are the mid-points of $P P$, and $Q Q$ respoctively then the origin of the new z-plane is taken at the mid-point of $P^{\prime \prime} Q^{\prime \prime}$, the x-axis lying along PQ and being positive in the general direction of the trailing edge. $4 C$ is taken squal to $P^{\prime \prime} Q^{\prime \prime}$. The new co-ordinates (x, y) of the airfoil ard infinity noints are calculated.

The Joukowski transformation is again applied to every point in turn, taking the root of tho samo sign as y; if y is zero, then following the sign of x^{*} (here and after, $|z|>2 C$). The velocity coefficients are again evaluated, and the resulting contour is an irregular circle.

To obtain optimum accuracy from the last (Theodorsen) transfomation, the irregular circie to which it is applied should have as few irregularities as possible; hence the optimum irregular circle is sought. It can be seen that the effect of a Joukowski transfomation in general is a contraction along the x-axis, and an expansion along the y-axis. This effect is controlled by the choice of axes, and the value of C. Clearly, the x -axis has been chosen to lie along $P Q$, as defined above, with the objcct of using this fact to the best advantage; also C emphasises this effoct, an increase in C giving an increased contraction in the x-direction, etc. Thus by diligently orientating the axes and choosing C, the optimum irregular can be obtainod from the minimum number of Joukowski transformations.

For cascedes of low stagger, the optimum Joukowski transformation is usually the second for higher stagger (giving greater curvatures on the s-shaped contour) the optimum one may be the third or even fourth.

If more than two Joukowski trensformations are found to be necessary the third and subsequent ones can conveniently be taken with the same origin as the second; all that is usually necessary is a rotation of the axes and a suitable choice of C. It is usually fairly obvious when the optimum Joukowski transformation has been ruachud, since the next one renders the irregularities worse.

Note ${ }^{\text {\# }}$

$$
\begin{aligned}
& \text { Briefly, put } z=r_{z} e^{i \beta_{z}}, \zeta=r_{\zeta} e^{i \beta_{\zeta}} \\
& \text { then as } z \rightarrow \infty, \zeta \rightarrow \infty \text { or } 0 \text {. }
\end{aligned}
$$

but we must heve $\frac{d \beta_{\zeta}}{d \beta_{3}} \geqslant 0$
\therefore as $z \rightarrow \infty, \zeta \rightarrow \infty$.
This is the deciding factor whon deternining which of the quadratic roots to take.
B.4. The Lest (Theodorsen) Transformation

$$
\left(\sum_{1}^{n}\left[\left(A_{r}+i B_{r}\right) \sigma^{-r}\right]=\operatorname{\ell n}[z / \zeta]\right)
$$

The usefulness of this trancformation depends on the rapidity with which the Fouricr coefficionts A_{r}, B_{r}, tend to zero, (see for example, the formulae for $\left|\frac{d \zeta}{\partial z}\right|_{0}$). If the optimum irregular circle has any pronounced localised irregularities, high order coefficients are rcquired to accommodate them. The leading edge point in the plane of the optimum irregular circle can sometimes course such a localised irregularity, and the Thoodorsen transformation fails in its object. To overcome this difficulty, such a point is ignored for the purpose of the last transformation, thus enabling a rapidly converging series to be obtained. Accordingly subsequent reference to "airfoil points" should now be understood to refer to the
original airfoil points, less the leading eage point. Neglecting the leading edge on the optimum irregular circle has the effect of changing slightly the nose shape of the airfoil for which the flow is deternined. Tae "modified" shape can easily be obtained by applying the tronsformations in reverse to the optimum irregular circle; it will in general not diffor greatly from the original profile specified.

A point in the plane of the optimum irregular circle can be conveniently expressed as

$$
z=a e^{\lambda+i \phi}=a e^{\lambda}(\cos \phi+i \sin \phi)
$$

while the transformed position would be

$$
\zeta=a e^{\psi+i \theta}=a e^{\psi}(\cos \theta+i \sin \theta)
$$

A now set of axes (x, y) is chosen in the plane of the optimum irregular circle, with the sam origin as the optimum irregular circle, but with the x-axis passing in a positive direction through the $+\infty$ point. Thu base circle is a circle with contre at the origin, and area cqual to that of the optimum irrcgular circle. The radius vector $a e^{\lambda}$ and argument ϕ with respect to the x-oxis can then be calculated for airfoil end infinity points. By linear interpolation of the graph of radius voctor against argunent for airfoil points, equally spaced ordinates are obtained, onabling Simpson's Rule to be usod in finding the aren and hence radius of the base circle.

For airfoil points, ψ will be constant, and its proximity to zero is an indication of the closoness of tho base and exact circles. The function λ is evaluated for the airfoil and infinity points, and used to find ψ_{0}, where

$$
\psi_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \lambda_{0} d \theta_{0}
$$

$A_{r}{ }^{1}$ and $B_{r}{ }^{1}$ are calculated from the formulae

$$
A_{r}^{\prime}=A_{r}=1 \int^{2 \pi} \lambda_{0} \cos \left(r \theta_{0}\right) d \theta_{0}
$$

$$
B_{r}^{\prime}=\frac{B_{r}}{\left(a e^{\psi_{0}}\right)^{r}}=\frac{1}{\pi} \int_{0}^{2 \pi} \lambda_{0} \sin \left(r \theta_{0}\right) \mathrm{d} \theta_{0}
$$

for $r=1,2,3,4,---q$. If the integrals are evaluated using equally spaced ordinates (ic. at equal intervals of θ_{0}), it is scen that many of the trigomometric functions occuring are recurrent, and this can ereotly reduco the amount of repotitive arithmetic involved. For greatest accuracy in making a truc represontation of the irregular circle, ($2 \pi / d \theta_{0}$) should be of the order fifty or sizty. The valuos of A^{1} and $B_{r} I$ are plotted, and a value of r (say p) ascertained for which subsequent valucs of $A_{r}{ }^{I}$ and $B_{r}{ }^{I}$ can bo neglected. In the analysis that follows, use only the first p values of $\mathrm{A}_{\mathrm{r}}{ }^{\mathrm{l}}$ and $B_{r}{ }^{1}$ 。

The transformed positions of the two infinity points is found by using Newton's method of successive approximations to solve the following equation for ψ, given λ and ϕ

$$
\Delta=\lambda-\psi=\sum_{1}^{p}\left\{\left[A_{r}^{\prime} \cos (r \theta)+B_{r}^{\prime} \sin (r \theta)\right] e^{-r \psi}\right\}
$$

These results are used to solve for θ of the infinity points, where

$$
\varepsilon=\phi-\theta=\sum_{1}^{p}\left\{\left[B_{r}^{\prime} \cos (r \theta)-A_{r}^{\prime} \sin (r \theta)\right] e^{-r \psi}\right\}
$$

The transformod positions of the airfoil points are found from the following formulae

$$
\begin{aligned}
& \epsilon_{0}=\phi_{0}-\theta_{0}=\sum_{1}^{p}\left[B_{r}^{\prime} \cos (r \theta)_{0}-A_{r}^{\prime} \sin \left(r \theta_{0}\right)\right] \\
& \left|\frac{d C}{d z}\right|_{0}=1+\sum_{1}^{p}\left\{(r-1)\left[A_{r}^{\prime} \cos \left(r \theta_{0}\right)+B_{r}^{\prime} \sin \left(r \theta_{0}\right]\right\}\right.
\end{aligned}
$$

Noto:

It would seom that $\psi_{0}, A_{r}{ }^{1}, B_{r}{ }^{1}, \Delta_{\infty}, \epsilon_{\infty}, \epsilon_{a}$ and $\left|\frac{d \zeta}{d z}\right|_{0}$ cannot bs evaluatod, since ϕ and not θ is known. Exporience howevor shows that ϵ is usuilly very small, and so ϕ may be used for θ without great orror.

Tho trensformed positions of the infinity point could be detirmined by combining Δ_{∞} and ε_{∞} into one complox equation, and solving it using the method of cheracturiatics. Also the transformed position of a airfoil point could be found by using Nowton's method of successive approximations, to solve θ_{0}, givon ϕ_{0} (e,f. tho oxpression for ϵ_{0}). Eowvor, it is suggestod that thoso two rofinomonts are not consistent, and therefore not justiriod, for the following reason. The fourier coefficients have beon found uing fofor $^{\theta_{0} \text {, hence the last }}$ trensformation is ondy mothomatically consistont if this substitution is adopted throughout. When analysis on the exact circle is pursued however, θ_{0} should be used, and is givon by $\theta_{0}=\left(\phi_{0}-\epsilon_{0}\right)$ to a first approximation.

B.5. Velocity on the Exact Circle

fiowell (BI) has shown that the velocity at a point on the exact circle is givon by

$$
\frac{V_{0}}{V_{a}}=f_{0}+g_{0} \tan \left(\alpha_{1}\right)+h_{0} \tan \left(\alpha_{2}\right)
$$

whure $f_{0}=\frac{1}{2 r_{0}}\left[\frac{\sin \left(\theta_{1}\right)}{\frac{1}{2}\left(m_{1}+\frac{1}{m_{1}}\right)+\cos \left(\theta_{1}\right)}+\frac{\sin \left(\theta_{2}\right)}{\frac{1}{2}\left(m_{2}+\frac{1}{m_{2}}\right)-\cos \left(\theta_{2}\right)}\right]$

$$
g_{0}=\frac{1}{4 r_{0}}\left[\frac{\left(m_{1}-\frac{1}{m_{1}}\right)}{\frac{1}{2}\left(m_{1}+\frac{1}{m_{1}}\right)+\cos \left(\theta_{1}\right)}\right]
$$

$$
h_{0}=-\frac{1}{4 r}\left[\frac{\left(m_{2}-\frac{1}{m_{2}}\right)}{\frac{1}{2}\left(m_{2}+\frac{1}{m_{2}}\right)-\cos \left(\theta_{2}\right)}\right]
$$

and $\quad \theta_{1}=\theta_{0}+\left(\pi-\theta_{-\infty}\right)$

$$
\begin{gathered}
\theta_{2}=\theta_{0}-\theta_{+\infty} \\
m_{1}=e^{\psi-\infty} ; \quad m_{2}=e^{\psi+\infty} \\
r_{0}=a e^{\psi+}
\end{gathered}
$$

α_{2} is found from Joukowski's hypothesis, which demands a stagnation point at tho trailing cdge.
viz:

$$
\tan \left(\alpha_{2}\right)_{T_{0} E_{0}}=\left[-\frac{1}{h_{0}}\left\{f_{0}+g_{0} \tan \left(\alpha_{1}\right)\right]\right]_{T_{0} E_{0}}
$$

Cascade

The velocity at a point on the airfoil is obtained by multiplying the volocity at that point on the exact circle by the volocity coefficiunt of that point for each trensformation porformed. The prussurc cocfficiunt is defined as the increase in static prossure over free stream stotic pressure, compared with the inlet dyramic head. That is

$$
C_{p}=\frac{p-p_{1}}{\frac{1}{2} p V_{1}^{2}}=1-\frac{V^{2}}{V_{1}^{2}}
$$

but $\quad v=V_{0} \cdot\left|\frac{d \zeta}{\partial z}\right| \cdot\left|\frac{\partial \zeta}{\partial z}\right| \cdot$ $\left|\frac{\partial \zeta}{\partial z}\right|$
and

$$
v_{a}=V_{1} \cos \left(\alpha_{1}\right) .
$$

$$
\therefore C_{p}=1-\left\{\left[f_{0}+g_{0} \tan \left(\alpha_{1}\right)+h_{0} \tan \left(\alpha_{2}\right)\right]\left|\frac{d \zeta}{\partial z}\right| \cdot\left|\frac{d \zeta}{\partial z}\right| \cdot \cdots-\left|\frac{d \zeta}{\partial z}\right| \cdot\right.
$$

$$
\left.\cos \left(\alpha_{1}\right)\right\}^{2}
$$

Appendix C METHOD OF DISTRIBUTED SINGULARITIES

C.I. Basic Thoory

The theory sut out in this appendix is based on an oxtension of classical potuntial flow theory, by Schlicting (cl). The fluid considered is inviscic, irrotational and incompressible. Three basic potential flows are

1. A Uniform stream

$$
v=U x, \quad \psi=-U y, \quad V=U
$$

2. A source or sink

$$
v= \pm \frac{a}{2 \pi} \log _{e} r, \psi= \pm \frac{a}{2 \pi} \theta \quad V_{r}= \pm \frac{a}{2 \pi r}
$$

3. A vortex

$$
v=\frac{\nu}{2 \pi} \theta, \psi=-\frac{y}{2 \pi} \log _{\mathrm{e}} \mathrm{r} \quad \mathrm{~V}_{\theta}=\frac{\gamma}{2 \pi r} .
$$

where V_{r}, V_{θ} are the fluid velocities along and perpendicular to a radius x.

A combination oi the uniform stream with singularities of varying magnitude placud at varioun positions can bo usod to produce the flow round an aroioil. A simple extension of the analysis will then give the flow round a suries of equally spaced aerofoils, that is, a cascade.

In order to solve the diroct problem of deducing the prussure distribution round a given aerofoil, the singularities distributod in the potortial flow plane aro selected to produco a streamino matching the aorofoil proscribod. An exact way of doing this is to spread an iminite number of singularities along the blade cambor lin and match completely the blade form. As this is an extrumely complex procodure a small, finite number of singularitios is uscd. In previous work (Cl, C2) this numbur has raroly oxcooded threc, but the authors, with tho aid of Livorpool Univcrsity's "Deuce" digital computer, have incroascd it to botwcen fiftcen and twenty. This requires the solution of thirty or more lincar simultancous equations, a task woll within tho scope of tho computer used.

A sccond approximation, that the singularities are located
simplify the mathematical analysis. This assumption limits calculations to blades with camber 0.1 to $0.15 c$ (see reference Cl).

Defining the vorticity distribution along the x -axis by $y(x)$ and the source and sins distribution by $q(x)$;-

$$
\begin{equation*}
\Gamma=\int_{0}^{c} \gamma(x) d x \tag{Cl}
\end{equation*}
$$

where Γ is the total blade vorticity, and

$$
\begin{equation*}
Q=\int_{0}^{c} q(x) d x \tag{C2}
\end{equation*}
$$

where Q is the total source distribution and is zero for a closed aerofoil.

The flow round a cambered aerofoil of finite thickness (x, y_{u}); ($\mathrm{x}, \mathrm{y}_{\hat{6}}$) is considered as the sum of two superimposed flows.

1) The flow over a thick blade of zero camber defined by

$$
\begin{equation*}
y_{t}=\frac{1}{2}\left(y_{u}-y_{l}\right) \tag{c3}
\end{equation*}
$$

The uncambered profile is a streamline and applying the continuity equation (see Fig. $\mathrm{Cl}^{(a)}$) to an element of the blade:$\left(v_{m_{x}}+u\right) y_{t}+\frac{1}{2} q(x) d x=\left(V_{m_{x}}+u+\frac{\partial u}{\partial x} d x\right)\left(y_{t}+\frac{d y}{d x} t d x\right)$.

It is assumed in this equation that u does not vary with y and the component of velocity in the y-direction, v is zero. A further assumption is made that $\frac{\partial u}{\partial x} \quad$ is small compared with u and $\frac{d y}{d x} t$. Rearranging equation $C 4$ the following

$$
\frac{d y}{d x} t=y_{t}^{\prime}=\frac{g(x)}{2\left(v_{m_{x}}+u\right)} .
$$

results.
2) The flow round a thin camber line or vortex sheet. The ordinates of this line are:-

$$
\begin{equation*}
y_{s}=\frac{1}{2}\left(y_{u}+y_{\ell}\right) \tag{c6}
\end{equation*}
$$

Flow is tangential to the camber line so that at any point

$$
\begin{equation*}
\frac{d y}{d x} s=y_{s}^{\prime}=\frac{v_{m_{y}}+v}{V_{m_{x}}+u} \tag{c7}
\end{equation*}
$$

see figure (Clb)
For each pair of ordinates ($\left.y_{u}, y_{\ell}\right)$ determined from the profile a pair of equations is produced, equations C5 and C7. Thus if n pairs of ordinates are used to define the aerofoil $2 n$ equations are produced. The equations are solved simultaneously.
C.2. Developroent of Equations

C.2.1. Mathematical concept

In order to solve the simultaneous equations (C5) and (67) the following four steps ard nocessary:-

1) Define $q(x), \quad \gamma(x)$ in terms of a Fourier series
2) Deduce the equations for u and v the induced velocities from the singularity distribution
3) Calculate the numerical quantities associated with $q(x), \quad y(x), u$ and v.
4) Substitute the above quantities into equations (C5) and (C7) with the Fourier coefficient as the unknown parameters.
C.2.2. Definition of singularities

If x is the distance along the chord from the leading edge, a new coordinate ϕ can be defined as

$$
\frac{x}{c}=\frac{1}{2}(1-\cos \phi) .
$$

terms of ϕ as a series (see Glauert Ref.C3)

$$
\begin{gather*}
\frac{y(x)}{2 V_{m_{x}}}=A_{0} \cot \frac{\phi}{2}+A_{1} \sin \phi+A_{2} \sin 2 \phi+\cdots+A_{n-1} \sin (n-1) \phi \\
(C 9) \tag{c9}\\
\frac{q(x)}{2 V_{m_{x}}}=B_{0}\left(\cot \frac{\phi}{2}-2 \sin \phi\right)+B_{2} \sin 2 \phi+\cdots+B_{n} \sin n \phi
\end{gather*}
$$

where $A_{0}, A_{1}--A_{n-1}, B_{0}, B_{2}-\infty B_{n}$ are Fourier coefficients. C.2.3. Determination of induced velocities

The velocity potential at a point z in the complex plane, induced by a singularity at another point \bar{z} is

$$
W=\frac{M}{2 \pi} \log _{e}(z-\bar{z})
$$

where M is a complex singularity, $M=Q+i \Gamma$. The induced velocity is given by

$$
u-i v=\frac{d W}{d z} \quad \cdot=\frac{M}{2 \pi} \frac{1}{z-\bar{Z}}
$$

The cascade is located in the complex plane by one of the blades having its leading edge at the origin of the complex plane $(z=0)$ and its chord lying along the x-axis as shown in Fig.a2. The cascade tangential direction is then at an angle λ to the y-axis, where λ is the cascade stagger angle. If the spacing of the blades is s, the leading edge of each blade lies along a line

$$
\begin{equation*}
L=i e^{-i \lambda} \tag{Cl3}
\end{equation*}
$$

with coordinates given by

$$
\bar{z}=i n s e^{-i \lambda} \quad \text { (} n \text { an integer) }
$$

As n varies from $-\infty$ to $+\infty$, \bar{z} locates each successive blade leading edge for the infinite cascade.

It has been assumed that the singularities are distributed along the chord line (see $\S \delta 1$), that is parallel to the x-axis. Thus any singularity on the chord of any of the cascade blades has the complex coordinate,

$$
\begin{equation*}
\bar{z}=\text { inse }^{-i \lambda}+\bar{x} \tag{C15}
\end{equation*}
$$

where $\overline{\mathrm{X}}$ is its distance from the blade leading edge. The complex velocity induced at z by this singularity is, from equation (Cl2)

$$
\begin{equation*}
u-i v=\frac{M}{2 \pi} \frac{1}{z-\left(\text { inse }^{-i \lambda}+\bar{x}\right)} . \tag{c16}
\end{equation*}
$$

The velocity induced by the sum of singularities at corresponding $\overline{\mathrm{x}}$ positions on all the blades as n goes from $-\infty$ to $+\infty$ is then,

$$
\begin{aligned}
u-i v & =\frac{M}{2 \pi} \sum_{-\infty}^{+\infty} \frac{1}{z-\left(i n s e^{-i \lambda}+\bar{x}\right)} \\
& =\frac{M}{2 s e^{-i \lambda}} \sum_{-\infty}^{+\infty} \frac{1}{\left.\frac{\pi(z-\bar{x})}{-i \lambda}-i n \pi\right)}
\end{aligned}
$$

and

$$
\begin{equation*}
u-i v=\frac{M}{2 s} e^{i \lambda} \operatorname{coth}\left(\frac{\pi(z-\bar{x})}{s} e^{i \lambda}\right) . \tag{C17}
\end{equation*}
$$

Substituting for T and Q from equations ($C 1$) and ($C 2$) in

$$
M=Q+i \Gamma
$$

equation (C17) becomes

$$
\begin{equation*}
u-i v=\frac{e^{i \lambda}}{2} \frac{c}{s} \int_{\frac{\bar{x}}{c}=0}^{1}\left[q\left(\frac{\bar{x}}{c}\right)+i \gamma\left(\frac{\bar{x}}{c}\right)\right] \operatorname{coth}\left(\pi \frac{(z-\bar{x})}{s} e^{i \lambda}\right) d\left(\frac{\bar{x}}{c}\right) \tag{C18}
\end{equation*}
$$

To simplify the calculation the induced velocity is derived
becomes
$u-i v= \pm \frac{y(x)-i q(x)}{2}+\frac{e^{i \lambda}}{2} \frac{c}{s} \int_{\frac{\bar{x}}{c}=0}^{1}\left[q\left(\frac{\bar{x}}{c}\right)+i \gamma\left(\frac{\bar{x}}{c}\right)\right] \operatorname{coth}\left(\pi e^{i \lambda} \frac{(x-\bar{x})}{s}\right) d\left(\frac{\bar{x}}{c}\right)$

As $s \rightarrow \infty$ equation (C19) becomes that fnr a single aerofoil, and in the limit (see reference (2)

$$
\begin{equation*}
u_{s i}-i v_{s i}= \pm \frac{v(x)-i a(x)}{2}+\frac{c}{2 \pi} \int_{\frac{\bar{x}}{\frac{x}{c}=0}}^{1}\left[\left(\frac{\bar{x}}{c}\right)+i \gamma\left(\frac{\bar{x}}{c}\right)\right] \frac{d \bar{x}}{x-\bar{x}}, \tag{C20}
\end{equation*}
$$

where suffix "si" refers to the single aerofoil.
Both the induced velocity for the whole cascade and that for the single eerofoil becomes infinite at $\mathrm{x}=\overline{\mathrm{x}}$, a singular point in the complex plane. By subtracting the single aerofoil velocity from the cascade velocity the singular point is eliminated. The resulting velocity is known as the induced velocity for the "remainder" cascade so that

$$
\begin{equation*}
u_{R}-i v_{R}=\left(u-u_{s i}\right)-i\left(v-v_{s i}\right) \tag{C21}
\end{equation*}
$$

"R" refering to the romainder cascade, and
$u_{R}-i v_{R}=\frac{1}{2} \frac{c}{s} \int_{\frac{\bar{x}}{c}=0}^{1}\left[q\left(\frac{\bar{x}}{c}\right)+i \gamma\left(\frac{x}{c}\right)\right] e^{i \lambda}\left[\operatorname{coth}\left(\pi e^{i \lambda} \frac{x-\bar{x}}{s}\right)-\frac{e}{\pi}^{-i \lambda} \cdot \frac{s}{(x-\bar{x})}\right] d\left(\frac{x}{c}\right)$
(C22)
Substituting for $\mathcal{X}(x), q(x)$ from equations (C9) and (ClO) equation (C20) is integrated explicitly. Equation (c22) must be integratód numerically.

$$
\text { Finally } \begin{align*}
u & =u_{s i}+u_{R} \tag{c23}\\
v & =v_{s i}+v_{R} \tag{C24}
\end{align*}
$$

C.2.4. Numerical parameters

The left hand side of each of equations (C5) and (C7) comprises a numerical quantity defining the aerofoil profile at a given abscissa (distance along the chord) x. If the profile is defined at n positions the quantities on the right hand side of each equation $q(x), u$ and v must be determined explicitly for the n corresponding values of x. for n pairs of equations, n terms of each Fourier series can be found (equations (C9) and (C10)). These terms replace $q\binom{\bar{x}}{\bar{c}}, \gamma\left(\frac{\bar{x}}{c}\right)$ in equation (C20) and (c22) which are integrated for each value of x. This requires n integrations for each equation, or term by term n^{2} integrations. This number is doubled by taking the real and imaginary parts of the equation separately.

For the single aerofoil from equation (C20)

$$
\begin{equation*}
u_{s i}= \pm \frac{y(x)}{2}+\frac{c}{2 \pi} \int_{\frac{x_{x}}{c}=0}^{1} \frac{a(\bar{x})}{x-\bar{x}} d \bar{x} \tag{C25}
\end{equation*}
$$

$$
\begin{equation*}
v_{s i}= \pm\left(\frac{-q(x)}{2}\right)+\frac{c}{2 \pi} \int_{\frac{\bar{x}}{c}=0}^{1} \frac{v(\bar{x})}{(x-\bar{x})} d \bar{x} \tag{026}
\end{equation*}
$$

Substituting for $q(\bar{x})$ and $\gamma(\bar{x})$ from (C9) and (C10) and writing

$$
\frac{\bar{x}}{c}=\frac{1}{2}(1-\cos \bar{\phi}) \quad, \quad \frac{x}{c}=\frac{1}{2}(1-\cos \phi) \quad \text { equations (c25) }
$$

and (C26) are integrated to give:-
$\frac{u_{s i}}{V_{m_{x}}}=\quad \pm\left(A_{0} \cot \frac{\phi}{2}+A_{1} \sin \phi+\ldots A_{n-1} \sin (n-1) \phi+B_{0}(1+2 \cos \phi)-B_{2} \cos 2 \phi\right.$.
$\left.-\ldots-B_{n} \cos (n \phi)\right\}$ 。 (c27)
and
$\frac{\mathrm{v}_{s i}}{\mathrm{~V}_{\mathrm{m}}}=\left(-\mathrm{A}_{0}+A_{1} \cos \phi+\ldots+A_{n-1} \cos (n-1) \phi\right) \pm\left(B_{0}\left(\cot \frac{\phi}{2}-2 \sin \phi\right)+B_{2} \sin 2 \phi \ldots+B_{n} \sin n \phi\right)$
(c28)
Equation (C22) must be integrated numerically. Writing for $e^{i \lambda}$

$$
e^{i \lambda}=\cos \lambda+i \sin \lambda
$$

the integrand may besplit into real and imaginary parts. Let $F=e^{i \lambda}\left\{\operatorname{coth}\left(\pi e^{i \lambda}\left(\frac{x-\bar{x}}{s}\right)\right)-e^{-i \lambda} \frac{s}{x-\bar{x}}\right\}=F\left(\lambda, \frac{s}{c}, \bar{x}\right)$

$$
\begin{equation*}
F=(\cos \lambda+i \sin \lambda) \operatorname{coth}\left[\pi(\cos \lambda+i \sin \lambda)^{\frac{x}{x}-\bar{x}}\right]-\frac{1}{\pi} \frac{s}{x-\bar{x}} \tag{c30}
\end{equation*}
$$

from which follow the real and imaginary parts of F,

$$
F=R(F)+i I(F) \quad \text { and }
$$

$R(F)=\frac{\cos \lambda \sinh \left[2 \pi \frac{x-\bar{x}}{s} \cos \lambda\right]+\sin \lambda \sin \left[2 \pi \frac{x-\bar{x}}{s} \sin \lambda\right]}{\cosh \left[2 \pi \frac{x-\bar{x}}{s} \cos \lambda\right]-\cos \left[2 \pi \frac{x-\bar{x}}{s} \sin \lambda\right]}-\frac{s}{\pi(x-\bar{x})}$
$I(F)=\frac{\sin \lambda \sinh \left[2 \pi \frac{x-\bar{x}}{s} \cos \lambda\right]-\cos \lambda \sin \left[2 \pi \frac{x-\bar{x}}{s} \sin \lambda\right]}{\cosh \left[2 \pi \frac{x-\bar{x}}{s} \cos \lambda\right]-\cos \left[2 \pi \frac{x-\bar{x}}{s} \sin \lambda\right]}$.
(C34)
Rewriting equation (C22) gives

$$
\begin{equation*}
\left.u_{R}-i v_{R}=\frac{1}{2} \frac{c}{s} \int_{\frac{\bar{x}}{c}=0}^{1} \int\left\{\left(\frac{\bar{x}}{c}\right)+i \gamma\left(\frac{\bar{x}}{c}\right)\right)(R(F)+i I(F))\right] d\left(\frac{\bar{x}}{c}\right) \tag{C35}
\end{equation*}
$$

so that

$$
\begin{equation*}
u_{R}=\frac{1}{2} \frac{c}{s} \int_{\frac{\bar{x}}{c}=0}^{1}\left[R(F) q\left(\frac{\bar{x}}{c}\right)-I(F) \gamma\left(\frac{\bar{x}}{c}\right)\right] d\left(\frac{\bar{x}}{c}\right) \tag{C36}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{R}=-\frac{1}{2} \frac{c}{s} \int_{\frac{x_{n}}{c}=0}^{1}\left[I(F) q\left(\frac{\bar{x}}{c}\right)+R(F) y\left(\frac{\bar{x}}{c}\right)\right] d\left(\frac{\bar{x}}{c}\right) \tag{C37}
\end{equation*}
$$

Putting in the quantities for $\gamma(\overline{\mathbf{x}}), q(\bar{x})$ from equations (C9) and (ClO) produces integral cquations in terms of the Fourier coefficients $R(F), I(F)$ and trignometrical values of $\bar{\phi}$. (C36) and (C38) then become

$$
\begin{align*}
& \frac{u_{R}}{V_{m_{X}}}=\frac{c}{s} \int_{\frac{X}{x}}^{1}=d\left\{B_{0}\left(\cot \frac{\bar{\phi}}{2}-2 \sin \bar{\phi}\right)+B_{2} \sin 2 \bar{\phi}+\ldots+B_{n} \sin n \bar{\phi}\right\} R(F)- \\
& \left.\left\{A_{0} \cot \frac{\bar{\phi}}{2}+A_{1} \sin \bar{\phi}+\ldots+A_{n} \sin n \bar{\phi}\right\} I(F)\right] d\left(\frac{\bar{x}}{c}\right) . \\
& \text { (C38) } \\
& \frac{V_{R}^{R}}{\bar{V}_{x}}=-\frac{c}{s} \int_{\frac{\bar{x}}{c}}^{1}\left[\left\{B_{0}\left(\cot \frac{\bar{\phi}}{2}-2 \sin \bar{\phi}\right)+B_{2} \sin 2 \bar{\phi}+\ldots+B_{n} \sin \bar{\phi} \bar{\phi}\right\} I(F)\right. \\
& \left.+\left\{A_{0} \cot \frac{\bar{\phi}}{2}+A_{1} \sin \bar{\phi}+\ldots+A_{n} \sin \bar{\phi}\right\}_{R}(F)\right] d\left(\frac{\bar{x}}{c}\right) \tag{C39}
\end{align*}
$$

These equations are integrated term by term. For ease of ruferenco the following short hand symbols are used:-$f_{Q_{0}}=-\frac{c}{s} \int\left(\cot \frac{\bar{\phi}}{2}-2 \sin \bar{\phi}\right) I(F) d\left(\frac{\bar{x}}{c}\right) \quad g_{q_{0}}=\frac{c}{s} \int\left(\cot \frac{\bar{\phi}}{2}-2 \sin \bar{\phi}\right) R(F) d\left(\frac{\bar{x}}{c}\right)$
$f_{q_{2}}=-\frac{c}{s} \int \sin 2 \bar{\phi} I(F) d\left(\frac{\bar{x}}{c}\right) \quad g_{q_{2}}=\frac{c}{s} \int \sin 2 \bar{\phi} R(F) d\left(\frac{\bar{x}}{c}\right)$
$f_{q_{n}}=-\frac{c}{s} \int \operatorname{sinn} \bar{\phi} I(F) d\left(\frac{\bar{x}}{c}\right) \quad g_{q_{n}}=\frac{c}{s} \int \operatorname{sinn} \bar{\phi} R(F) d\left(\frac{\bar{x}}{c}\right)$
$f_{\gamma_{0}}=-\frac{c}{s} \int \cot \frac{\bar{\phi}_{2}}{R}(F) d\left(\frac{\bar{x}}{c}\right)$
$g_{y_{0}}=-\frac{c}{s} \int \cot \frac{\bar{\phi}_{2}}{2}(F) \mathrm{d}\left(\frac{\mathrm{x}}{\mathrm{x}} \frac{(1)}{c}\right)$
$f_{y_{1}}=-\frac{c}{s} \int \sin \bar{\phi} R(F) d\left(\frac{\bar{x}}{c}\right)$
$g_{y_{1}}=-\frac{c}{s} \int \sin \bar{\phi} I(F) d\left(\frac{\bar{x}}{c}\right)$
$f_{\gamma_{n}}=-\frac{c}{s} \int \operatorname{sinn} \bar{\phi} R(F) d\left(\frac{x}{c}\right)$

$$
g_{y_{n}}=-\frac{c}{s} \int \operatorname{sinn} \bar{\phi} I(F) \mathrm{d}\left(\frac{\bar{x}}{c}\right)
$$

(C42)
The limits of the integration are $\frac{\bar{x}}{c}=0$ and $\frac{\bar{x}}{c}=(C 43)$

$$
d\binom{\bar{x}}{c}=\frac{1}{2} \sin \bar{\phi} d \bar{\phi}
$$

$$
\begin{equation*}
\text { For } n \geqslant 2 \quad f_{q_{n}}=g_{\gamma_{n}} \quad(C 45) \quad \text { and } f_{y_{n}}=-g_{q_{n}} \tag{c44}
\end{equation*}
$$ Substituting (C40) - (C43) in (038) and (C39).

$$
\left.\begin{array}{l}
\frac{u_{R}}{V_{m_{x}}}=\left(B_{0} g_{q_{0}}+B_{2} g_{q_{2}}+\cdots+B_{n} g_{q_{n}}\right)+\left(A_{0} g_{\gamma_{0}}+A_{1} g_{\gamma_{1}}+\cdots+A_{n} g_{\gamma_{n}}\right) \\
(047) \tag{C48}
\end{array}\right)
$$

The induced velocities on the x-axis are obtained from equations
(C23), (C24), (C27), (C28), (C47) and (C48) and are given by,

$$
\begin{align*}
\frac{u}{V_{m_{x}}}=\left(B_{0}(1+2 \cos \phi)\right. & \left.-B_{2} \cos 2 \phi-\ldots-B_{n} \cos n \phi\right)+\left(B_{0} g_{q_{0}}+B_{2} g_{q_{2}}+\ldots+B_{n} g_{q_{n}}\right) \\
& +\left(A_{0} g_{y_{0}}+A_{1} g_{y_{1}}+\ldots+A_{n} g_{\gamma_{n}}\right) \tag{c49}
\end{align*}
$$

$\frac{v}{V_{m_{x}}=\left(-A_{0}+A_{1} \cos \phi+\ldots+A_{n} \operatorname{cosn} \phi\right)+\left(B_{0} f_{q_{0}}+B_{2} f_{q_{2}}+\ldots+B_{n} f_{q_{n}}\right)+\left(A_{0} f_{\gamma_{0}}+A_{1} f_{y_{1}}+\right.} \begin{gathered}\left.\ldots+A_{n} f_{\gamma_{n}}\right)\end{gathered}$
Note that on the x-axis components with a \pm sign disappear.

$$
\begin{array}{rlrl}
\text { Now let } f_{\gamma_{0}^{*}}^{*} & =f_{\gamma_{0}}-1 & g_{q_{0}^{*}}^{*}=g_{q_{0}}+2 \cos \phi+1 \\
f_{\gamma_{1}^{*}}^{*} & =f_{\gamma_{1}}+\cos \phi & & g_{q_{2}^{*}}^{*}=g_{q_{2}}-\cos 2 \phi \\
f_{\gamma_{n}^{*}}^{*} & =f_{\gamma_{n}}+\operatorname{cosn} \phi(C 5 I) & g_{q_{n}^{*}}^{*}=g_{q_{n}}-\operatorname{cosn} \phi \tag{c52}
\end{array}
$$

so that for $n \geqslant 2 f_{\gamma_{n}}^{*}=-g_{q_{n}}^{*} \quad$ (C53) and
$\frac{u}{V_{m_{x}}}=\left(A_{0} g_{y_{0}}+A_{1} g_{y_{1}}+\cdots+A_{n} g_{y_{n}}\right)+\left(B_{0} g_{q_{0}}^{*}+B_{2} g_{q_{2}^{*}}^{\left.*+\cdots+B_{n} g_{q_{n}^{*}}^{*}\right)}\right.$

(C55)
Equations (C54) and (C55) give the values of $\frac{u}{V_{m_{X}}}, \frac{v}{m_{X}}$ in terms of evaluated quartities $g_{\gamma}, g_{q}^{*}, f_{y}^{*}, f_{q}$ and the unknown Fourier coofficients. The evaluated quantities are in terms of $\phi, \frac{S}{c}$ (space chord ratio) and λ (stagger angle). These results can bo tabulatod and used as constant parameters. The variablos aro then:-

1) Blade shape given by $y_{s}^{\prime}, y_{t}^{\prime}$
2) Fluid inlet angle.
c.2.5. Setting up of simultaneous equations

Equations (C5) and (C7) are
$y_{t}^{\prime}=\frac{q(x)}{2\left(v_{m_{x}}+u\right)}$
(C5)
$y_{s}^{\prime}=\frac{V_{m_{y}}+v}{V_{m_{x}}+u}$
Now $\frac{\gamma(x)}{2 V_{m_{x}}}, \frac{q(x)}{2 V_{m_{x}}}$
are defined in §o.2.2.

$\frac{u}{V_{m_{x}}}, \frac{v}{V_{m_{x}}}$	are derived in § C.2.4.
and $y_{t}^{\prime}, y_{s}^{\prime}$	appear from the aerofoil profile, see §Cl.
Kearranging equations (C5) and (C7)	

From (C5)

$$
\begin{equation*}
\frac{q(x)}{2 V_{m_{x}}}-\frac{u}{V_{m_{x}}} y_{t}^{\prime}=y_{t}^{\prime} \tag{C56}
\end{equation*}
$$

From (C7)

$$
\frac{\mathrm{V}_{\mathrm{m}_{\mathrm{y}}}}{\mathrm{~V}_{\mathrm{m}_{\mathrm{x}}}}+\frac{\mathrm{v}}{\mathrm{~V}_{\mathrm{m}_{\mathrm{x}}}}-\frac{u}{\mathrm{~V}_{\mathrm{m}_{\mathrm{x}}}} \mathrm{y}_{\mathrm{s}}^{\prime}=\mathrm{y}_{\mathrm{s}}^{\prime}
$$

Let $\frac{\mathrm{V}_{\mathrm{m}_{\mathrm{y}}}}{\mathrm{V}_{\mathrm{m}_{\mathrm{x}}}}=\mathrm{K}$ and from equations (C10), (C54) and (C55)
$B_{0}\left(\cot \frac{\phi}{2}-2 \sin \phi\right) \quad+B_{2} \sin 2 \phi+\ldots+B_{n} \sin (n \phi)-\left(A_{0} g_{\gamma_{0}}+A_{1} g_{\gamma_{1}}+\ldots+A_{n} g_{n}\right) y_{t}^{\prime}$

$$
\begin{equation*}
-\left(\mathrm{B}_{0} \mathrm{~g}_{q_{0}}^{*}+\mathrm{B}_{2} \mathrm{~g}_{q_{2}}^{*}+\cdots+\mathrm{B}_{\mathrm{n}} \mathrm{~g}_{\mathrm{n}}^{*} \mathrm{y}_{t}^{\prime}=\mathrm{y}_{t}^{\prime}\right. \tag{C58}
\end{equation*}
$$

$K+\left(A_{0} f_{\gamma_{0}^{*}}^{*}+A_{1} f_{\gamma_{1}^{*}}^{*}+\cdots+A_{n}{ }^{f} \gamma_{n}^{*}\right)+\left(B_{0} f_{q 0}+B_{2} f_{q_{2}}+\cdots+B_{n} f_{q_{n}}\right)$
$-\left(A_{0} g_{\gamma_{0}}+A_{1} g_{\gamma_{1}}+\cdots+A_{n} g_{\gamma_{n}}\right) y_{s}^{\prime}-\left(B_{0} g_{q_{0}}^{*}+B_{2} g_{q_{2}}^{*}+\cdots+B_{n} g_{q_{n}}^{*} y_{s}^{\prime}=y_{s}^{\prime}\right.$

Using a further substitution of P, Q, R, S

$$
\begin{align*}
& A_{0} P_{0}+A_{1} P_{1}+\ldots+A_{n} P_{n}+B_{0} R_{0}+B_{2} R_{2}+\ldots+B_{n} R_{n}=-K+Y_{s}^{\prime} \tag{c60}\\
&(060) \tag{C61}\\
&-A_{0} S_{0}-A_{1} S_{1}-\ldots-A_{n} S_{n}+B_{0} Q_{0}+B_{2} Q_{2}+\ldots+B_{n} G_{n}=\quad Y_{t}^{\prime}
\end{align*}
$$

in which:-

$$
\begin{align*}
& P_{0}=f_{\gamma_{0}^{*}}^{*}-g_{\gamma_{0}}, Q_{0}=\cot \frac{\phi}{2}-2 \sin \phi-y_{t}^{\prime} g_{q_{0}^{*}}^{*}, R_{0}=f_{q_{0}}-g_{q_{0}^{*}}^{*}, S_{0}=y_{t}^{\prime} g_{\gamma_{0}} \\
& P_{n}=f_{\gamma_{n}^{*}}^{*} g_{\gamma_{n}}, Q_{n}=\sin \phi-y_{t}^{\prime} g_{q_{n}^{*}}^{*}, R_{n}=f_{q_{n}}=g_{q_{n}}^{*}, S_{n}=y_{t}^{\prime} g_{\gamma_{n}} \tag{c62}
\end{align*}
$$

Fir each point on the profile a pair of simultaneous equations as above are producod. For n points defined, there are $2 n$ equations and tho matrix has $(2 n)^{2}$ eloments on the left hand side. As the equations stand it would be necessary to produce a solution for each angle of inlet flow required, as the value of $K\left(=\frac{V_{m_{y}}}{V_{m_{x}}}\right)$ depends on the inlet angle. It is
useful therefore to split the matrix into two, one independant of K and one including K, and to solve the matricies separately. The solution then applies for all values of K . Writing:-

$$
\begin{array}{ll}
A_{0}=A_{00}+K A_{0} & B_{0}=B_{00}+K B_{n \beta} \\
A_{n}=A_{n}+K A_{n \beta} & B_{n}=B_{n 0}+K B_{n \beta} \tag{C63}
\end{array}
$$

substituting in equations (060) and (c61) and separating out the K terms, the final two sets of simultaneous equations are produced,
$A_{00} P_{0}+A_{10} P_{1}+\ldots+A_{n 0} P_{n}+B_{00} R_{0}+B_{20} R_{2}+\ldots+B_{n 0} R_{n}=Y_{s}^{\prime}$
$-A_{00} S_{0}-A_{10} S_{1} \ldots-A_{n O} S_{n}+B_{00} Q_{0}+B_{20} Q_{2}+\ldots+B_{n_{0}} Q_{n}=y_{t}^{\prime}$
$A_{o \beta} P_{0}+A_{1} \beta_{1} P_{1}+\ldots+A_{n} \beta_{n}+B_{o \beta} R_{0}+B_{2} \beta^{R_{2}}+\ldots+B_{n} R_{n}=-1$
$-A_{o} \beta^{S_{0}-A_{1}} \beta^{S_{1}} \cdots A_{n} \beta_{n}+B_{o} \beta^{Q_{0}+B_{2}} \beta^{Q_{2}+\cdots+B_{n} \beta_{n}}=0$
(065)

C.2.6. The solution of the equation matrices

The magnitude of each of the parameters P, Q, R, S (equation (C62)) is determined for each value of x along the chord line corresponding to the position of the measured values $y_{s}^{\prime}, y_{t}^{\prime}$ producing one pair of equations. The matrix is erected by calculating parameters at various values of x.

From tho solution of the two matricies appears the Fourier coefficients $A_{0 \beta}--A_{n \beta}$, Aoo --- $A_{n_{0}} ; B_{o \beta} \cdots B_{n \beta}$, $B_{o o}-B_{n o}$ used in subsequent calculations. C.3. Turning Angles and Pressure Distribution

The circulation round an ærofoil in cascade is defined as Γ If $2 \Delta V_{t}$ is the change in the tangential velocity of the flow through the cascade then

$$
\begin{align*}
2 \Delta V_{t} s & =\Gamma \\
\Delta V_{t} & =\frac{\Gamma}{2 s} \tag{c66}
\end{align*}
$$

Substituting for I from equation (Cl)

$$
\Delta V_{t}=\frac{1}{2 s} \int_{0}^{-0} \gamma(x) d x
$$

Substituting for $\gamma(x)$ from equation (C9) and integrating,

$$
\begin{equation*}
\frac{\Delta V_{t}}{V_{m_{x}}}=\frac{\pi}{2} \frac{c}{s}\left(A_{0}+\frac{1}{2} A_{1}\right) \tag{C68}
\end{equation*}
$$

and from (C63)

$$
\begin{equation*}
\frac{\Delta V_{t}}{V_{m_{x}}}=\frac{\pi}{2} \frac{\mathrm{c}}{\mathrm{~s}}\left(\left(A_{\left.\left.\left.00+\frac{1}{2} A_{10}\right)+\mathrm{K}\left(A_{0 \beta^{+\frac{1}{2}} A_{1}}\right)\right), ~\right) .}\right.\right. \tag{C69}
\end{equation*}
$$

From Figure 3,

$$
\tan \alpha_{1}=\frac{V_{m_{x} \sin \lambda+} V_{m_{V} \cos } \lambda+\Delta V_{t}}{V_{m_{x}} \cos \lambda-V_{m_{y}}} \frac{\sin \lambda}{}
$$

Putting in the value of $\Delta V_{t} \quad$ from (C69) and $K=\frac{(C 70)}{V_{m_{V}}}$
$\tan \alpha_{1}=\frac{\sin \lambda+K \cos \lambda+\frac{\pi}{2} \frac{c}{s}\left[\left(\Lambda_{00+}+\frac{1}{2} A_{10}\right)+K\left(A_{0 \beta}+\frac{1}{2} A_{1 \beta}\right)\right]}{\cos \lambda-K \sin \lambda}$
(C71)
The stagger is defined and $\mathrm{A}_{0} 00, \mathrm{~A}_{10}, \mathrm{~A}_{0 \beta}, A_{\beta}$ are calculated from the simultancous equations, so that if a value of α_{1} is substituted in equation (C7I) a value of K may be obtained. Separating out the $"_{1}^{\prime}$ "torms,

$$
\begin{equation*}
K=\frac{\tan \alpha_{1}-\tan \lambda-\frac{\pi}{2} \frac{c}{s}\left[A_{00}+\frac{1}{2} A_{10}\right] \frac{1}{\cos \lambda}}{\tan \alpha_{1} \tan \lambda+1+\frac{\pi}{2} \frac{c}{s}\left[A_{0 \beta}+\frac{1}{2} A_{1 \beta}\right] \frac{1}{\cos \lambda}} \tag{C72}
\end{equation*}
$$

and the direction of outlet flow, again from Figure 3 is given by

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\tan \lambda+K-\frac{1}{\cos \lambda} \frac{\Delta V_{t}}{V_{m x}}}{1-K \tan \lambda} \tag{073}
\end{equation*}
$$

K having beon calculated from equation (072).
The volocity induccd on eithar side of the chord line in the x -direction is,

$$
V_{\mathrm{x}}=\mathrm{V}_{\mathrm{m}_{\mathrm{x}}}+u_{\mathrm{si}}+\mathrm{u}_{\mathrm{R}}
$$

(C74)
From equations (C27) and (C.54) the following equation is obtained, $\frac{V_{x}}{V_{m_{X}}}=1 \pm\left[\left(A_{0} \cot \frac{\phi}{2}+A_{1} \sin \phi+\ldots+A_{n} \sin n \phi\right)+\left(A_{0} g_{\gamma_{0}}+A_{1} g_{y_{1}}+\ldots+A_{n} g_{\gamma_{n}}\right)\right.$

$$
\begin{equation*}
\left.+B_{0} g_{q_{0}^{*}}^{*}+B_{2} g_{q_{2}^{*}}^{*}+\ldots+B_{n} g_{q_{n}}^{*)}\right] \tag{C75}
\end{equation*}
$$

The positive sign in the second term refers to the suction side, the negative sign to the pressure side. The velocity on the blade surface V_{2} in terms of the velocity along the x-axis has been doterminud by Riegels (references C4 and C5) from the approximate conformal transfomation of a flat plate into an ellipse of high length to thickncss ratio. For an uncambered profile (reforence C4)

$$
\begin{equation*}
\frac{V_{t}}{V_{m}}=\frac{V_{x}}{V_{m_{x}}} \frac{1}{\sqrt{1+y_{t}^{12}}} \tag{C76}
\end{equation*}
$$

This equation is used in references $C 1$ and $C 2$ to obtain the pressure distribution round the profile. For a cambered profile however Riegel's recommends (reference C5) that the gradient of the cambered profile beused so that,

$$
\begin{equation*}
\frac{V_{L}}{V_{m_{x}}}=\frac{V_{x}}{V_{m_{x}}} \frac{1}{\sqrt{1+\mathrm{J}_{u}^{12}}} \tag{C77}
\end{equation*}
$$

for the upper surface, and

$$
\begin{equation*}
\frac{V_{L}}{V_{m_{x}}}=\frac{V_{x}}{V_{m_{x}}} \frac{1}{\sqrt{1+y_{l}^{2}}} \tag{C78}
\end{equation*}
$$

for the lower surface.
Equation (C3) $\quad y_{t}=\frac{1}{2}\left(y_{u}-y_{\ell}\right)$
differentiating $\frac{d y_{t}}{d x}=y_{t}^{\prime}=\frac{1}{2}\left(y_{u}^{\prime}-y_{\ell}^{\prime}\right)$
Equation (C6)

$$
\begin{equation*}
y_{s}=\frac{1}{2}\left(y_{u}+y_{\ell}\right) \tag{c79}
\end{equation*}
$$

differentiating

$$
\begin{equation*}
\frac{d y_{\mathrm{s}}}{d \mathrm{x}}=\mathrm{y}_{\mathrm{s}}^{\prime}=\frac{1}{2}\left(\mathrm{y}_{\mathrm{u}}^{\prime}+y_{\ell}^{\prime}\right) \tag{C80}
\end{equation*}
$$

Adding (C79) and (C80) $y_{S}^{\prime}+y_{t}^{\prime}=y_{u}^{\prime} \quad\left\{\begin{array}{l}\text { (The gradient of the } \\ \text { upper surface) }\end{array}\right.$ Subtracting (C79) from (C80) $y_{s}^{\prime}-y_{t}^{\prime}=y t \quad\left\{\begin{array}{l}\text { (The gradient of the } \\ \text { lower surface }\end{array}\right.$

Substituting for y_{u}^{\prime}, y_{l}^{\prime} in (077) and (078)

$$
\frac{V_{i}}{V_{m_{x}}}=\frac{v_{x}}{V_{m_{x}}} \frac{1}{\sqrt{1+\left(y_{s}^{\prime} \pm y_{t}^{\prime}\right)^{2}}}
$$

(c82)
where the plus sign refers to the upper surface and the minus sign to the lowcr surface.

The aerofoil pressure coefficiont is,

$$
C_{p}=\frac{p_{1}-p_{1}}{\frac{p}{2} V_{1}^{2}}=1-\left(\frac{V_{t}}{V_{1}}\right)^{2}
$$

(C83)
where

$$
\begin{equation*}
\frac{V_{1}}{V_{m_{X}}}=\frac{\cos \lambda-K \sin \lambda}{\sin \beta_{1}} \tag{c84}
\end{equation*}
$$

see Figure 3.
squations (C66) to (C84) allow the cascade outlet angle and blade pressure distribution to be cvaluated.

C.4. Calculation Checks

The following five checks may be made on the calculation:-

1) The blade lift may be found in two ways, by graphical integration of the curve of acrofoil pressure distribution, and from the fluid inlet end outlet angles. The lift coefficient is givon by,
$C_{L}=\frac{S}{c} \cos ^{2} \alpha_{1}\left(\tan ^{2} \alpha_{1}-\tan ^{2} \alpha_{2}\right) \sin \lambda+2 \cos ^{2} \alpha_{1} \frac{S}{C}\left(\tan \alpha_{1}-\tan \alpha_{2}\right) \cos \lambda$

Both values of lift are quantities measured perpendicular to the chord as distinct from normal cascade proctice of measuring
lift perpendicular to the vector mean flow direction.
2) Tho vorticity distribution along the blade chord is given by equation (C9) and the total circulation Γ from equation (Cl) Graphical integration may be performed to determine the $\gamma(x)$ circulation. The explicit integration of $y(x)$ defincd in oquation (C67) in terms of the change in tangential velocity, is given in cquation (068).
3) The source distribution may be found from equation (ClO). Graphical integration of the source distribution curve should give zero to fulfil the condition of equation (C2).
4) The recalculated acrofoil gradicnts may be determinod using equations (C5) and (C7). $q(x)$ is found using (C10), u and \checkmark fron (C49) and (050).
5) The original aorofoil ordinetos are found by integrating cquations (C5) and (C7). In order to make the integration possiblo cxplieitly the equations are written in terms of a single acrofoil.
squation (C5) is $\frac{d y_{t}}{d x}=\frac{q(x)}{2\left(V_{\mathrm{m}_{\mathrm{x}}}+u\right)}$
Equation (C7) is

$$
\begin{equation*}
\frac{d y_{S}}{d x}=\frac{v_{m_{y}}+v}{V_{m_{x}}+u} \tag{C5}
\end{equation*}
$$

For a single acrofoil $u \ll V_{m_{x}}$ and is neglected so that

$$
\begin{align*}
& \frac{d y_{t}}{d x}=\frac{a(x)}{2 v_{m x}} \tag{C85}\\
& \frac{d y_{s}}{d x}=K+\frac{v_{s i}}{v_{m x}} \tag{086}
\end{align*}
$$

Substituting for $q(x)$ from equation (Cl0) and $v_{\text {si }}$ from oquation (028),

$$
B_{0}\left(\cot \frac{\phi}{2}-2 \sin \phi\right)+B_{2} \sin 2 \phi+\ldots+B_{n} \sin \phi=\frac{d y_{t}}{d x}
$$

$$
\begin{equation*}
-A_{0}+A_{1} \cos \phi+\ldots+A_{n-1} \cos (n-1) \phi \quad=-K+\frac{d y_{S}}{d x} \tag{C87}
\end{equation*}
$$

$$
\begin{equation*}
d\left(\frac{\bar{x}}{\overline{0}}\right)=\frac{1}{2} \sin \hat{\phi} d \vec{\phi} \tag{C44}
\end{equation*}
$$

For zoro angle of attack $K=0$ and writing $A_{0}=0$ (see reference Cl) equations (C87) and (C88) on integration become,

$$
\frac{2}{c} y_{t}=B_{0}\left(\sin \phi+\frac{1}{2} \sin 2 \phi\right)+\sum_{n=2}^{n} B_{n}\left(\frac{\sin (1-n) \phi}{2(1-n)}-\frac{\sin (1+n) \phi}{2(1+n)}\right)
$$

(C89)
and

$$
\frac{2}{c} y_{s}=A_{1} \frac{1}{4}(1-\cos 2 \phi)+\sum_{n=2}^{n} A_{n}\left\{\frac{\cos (n-1) \phi}{2(n-1)}-\frac{\cos (n+1) \phi}{2(n+1)}-\frac{1}{(n-1)(n+1)}\right\}
$$

(C90)
where A_{n}, B_{n} are coefficients calculated at $K=0$.

C.5. ITumorical valuos

C.5.1. Choice of integreting points

Certain quantities have to be intograted numerically e.g. $f_{q_{n}}, g_{q_{n}}$ (cquations (c40) - (C43)). Tho "Douce" computer performs an intogration using Simpson's rule and requires ordinatcs tabulated for cqually spacod abscissa. As the integrations are performod with respect to $\bar{\phi}\left(\frac{X}{c}=\frac{1}{2}(1-\cos \bar{\phi})\right)$ the arc of $\bar{\phi}$ from 0 to π is divided into (18) parts of 10° each giving (19) ordinates.

C.5.2. Choice of singularity points

Therc are threo considerations which determine the position of the singularity points:-

1) The number. As a computer isused throughout the calculation the authors worc not restricted to the use of three points only as othor workers have boen. The initial calculation was performed on a C4 base profile which is defined by 17 points. This was taken as a nominal numbur of singularity points and any quantity between 15 and 20 is appropriatu. Ebor points would produce qui区ker results, more would tund to make the calculation unwieldy. It is useful to have points close togither near the leading edge,
to proaict the suction pcek, and en epproximato spacins of every 10% chord rearward of 20% chire. It was thought that with such a lerge number of points schliating's mothod of positioning was superflusus ind was ignored.
2) Whe distence from the lonoing cagc. The simultaneous equation matrix is very scnsitive to lorge numerical volucs. If any one of the parancters P, A, B, S is lerge, the computer equates oll small paremeters to ziro end producis an incorrect result. Fquations ($0<0$) - ($0: 3$) show $f_{q_{0}} \underline{g}_{q_{0}}, f_{\gamma_{0}}, g_{\gamma_{0}}$ as functions of $\cot \frac{\bar{\phi}}{2}$ which is iafinito at $\frac{x_{c}}{c}=0$. Goworn on changing tia intcgration function from $\frac{\bar{X}}{c}$ to $\bar{\phi}\left(\frac{c}{\frac{X}{c}}=\frac{1}{q}(1-\cos \bar{\phi})\right)$ the $\cot \frac{\phi}{2}$ torn
disappears.

$$
\begin{align*}
& d\left(\frac{\bar{x}}{c}\right)=\frac{1}{2} \sin \bar{\phi} d \bar{\phi} \\
& \int \cot \frac{\bar{\phi}}{2} d\left(\frac{\bar{x}}{c}\right)=\int\left(\cos ^{2} \frac{\bar{\phi}}{2}\right) d \bar{\phi} \tag{c91}
\end{align*}
$$

which is finite for all valucs of $\bar{\phi}$. Thus the intcgroting points may bo carriud up to the lcading edge of the protilc. For the singularity pointe on the other hend, it cen bo soen from cquation (C62) thet $Q_{0}\left(=\cot \frac{\phi}{2}-2 \sin \phi-y_{t}^{\prime} \mathrm{E}_{\mathrm{q}}^{*}\right) \quad$ beconc vory Iarge as $\phi \rightarrow 0\left(\begin{array}{l}\mathrm{x} \\ \mathrm{c}\end{array} \rightarrow 0\right) \quad$ B avoid heving Qo ton large the first aingulerity is takcn at 2.5% chord back from the loading odge. 3) Intcgration singulcritics. The discontinuity of intigrotion in equation (C19) is uliminotco by the use of cquetions (c20) and (c22). The numirical quentitics may atill beome infinitc if $z=\bar{x}$ (swo ior cxmple equi.tions (033) and (03\%)) so that the flux sincularity points must bo chosen so thet they do not coincide with the numerical intugrating points. Ine limit of $\mathbb{R}(F)$ and (\vec{N}) as $X \rightarrow \bar{X}$ is zero, but a slight discropancy in computation will produco a lo rge numcrical quantity. If howcver the comoutw pragrom is modificd to cive a result of zoro whon the valuo of $R(\mathbb{F}), I(\mathbb{F})$ risue ciove $:$ cortaity quentity the flux siggularitils moy bu cbuson aib rabiom.

C.5.3. Prof:10 coordinates

Blade profiles are usually described using camber line and base profile ordinates. The base profile ordinates are measured perpendicular to the camber line, at a position measured along the camber line corresponding to the base profile $\frac{x}{c}$ position (see Figure C4). It has been suggested (reference C2) that the values required in the calculation y_{s}, y_{t} (equations (C3) and (C6)), may be taken as the conventional coordinates. If the profile is set out as upper and Inwer ordinates along the chord, on the other hand, equations (C3) and (C6) can be used directly to determine y_{s}, y_{t}. Using an interpolation program the values of y_{s}, y_{t}. for every 2.5% along the chord can be determined. C.5.4. Profile gradients

From the thickness and slope $\left(y_{t}, y_{s}\right)$ ordinates the gradients are found using the central difference method of calculation. The Newton-Stirling formula is differentiated (reference C6), giving

$$
\mathrm{f}_{0}^{\prime}=\frac{1}{h}\left(\mu \delta \mathrm{f}_{0}-\frac{1}{6} \mu \delta^{3} \mathrm{f}_{0}+\frac{1}{30} \mu \delta^{5} \mathrm{f}_{0}-\frac{1}{140} \mu \delta^{7} \mathrm{f}_{0}+\ldots\right)
$$

where f_{0}^{\prime} is the lst derivative of the function f at $x=x_{0}$, h is the ordinate spacing δ^{n} represents the $n^{t h}$ difference. and μ the mean of the upper and lower $n^{\text {th }}$ difference. The inclusion of terms up to δ^{7} is satisfactory for $\frac{x}{c}$ from .125 to 0.90. Outside these values it is necessary to use the forward or backward difference formulae.

However it was found that these formulae were unreliable in these circumstances and the gradients required are taken from a scaled up drawing of the base profile and camber line by direct measurement.

As has been previously mentioned with regard to the values of P, Q, R and S, if any one of the parameters in the simultaneous equations is large compared with the rest a useless result is
produced. This phenomenon also occurs with large malues of the gradients, which appear near the leading and trailing edges of the profile, and comprise the right hand side of equation (C64). The error is apparent in the plotting of the pressure distribution curve as a number of "rogue" points occur (ie. a smooth pressure plot is not produced), and the integrated lift coefficient from the curve does not agree with the lift coefficient calculated from the turning angle (see C4, l). The authors have found it necessary in these circumstances to reduce leading and trailing edge gradients, so modifying the original profile. The largest numerical gradient is that from the thickness distribution at the leading edge, which is infinite. Even at 2.5% and 5.0% the value of y_{t}^{\prime} is sometimes toofarge to be accommodated and has to be reduced. Between 10% and 90% chord the plotted values of the gradients fnrm a smooth cutve. A general rule for producing a reasonable pressure distribution, ie. no "rogue" points and correct lift coefficient, would be to extrapolate the smooth gradient curve back to 0\% chord, from say 10% and on to 100% chord from say 90%. At the present time this rule is arbitrary and it is necessary, if the correct result does not appear first time to adjust leading and trailing edge gradients until a consistent answer is obtained.

For a circular arc camber line the gradient is found analytically. With $\frac{x}{c}$ chordwise position and θ the camber angle

$$
\frac{d y}{d x}=\frac{1-2 \frac{x}{c}}{\sqrt{\operatorname{cosec}^{2} \frac{\theta}{2}-\left(2 \frac{x}{c}-1\right)^{2}}}
$$

IO USE ON AN ELECTRONIC COMPUTER

RESULTS-ORDINATES AT INTERMEDIATE POINTS

PROGRAM 4
DATA -ORDINATES OF PROFILE RESULTS-DIFTERENCE TABLE PARALETTERS

PROGRAM 9
DATA- $\mathrm{C}, \mathrm{d} \bar{\phi}, \bar{\phi}, R(F), I(F)$
RESULTS- $g_{q_{n}}, f_{q_{n}}$
PROGRAM 10
DATA- $y_{s}^{\prime}, y_{t}^{\prime}$
$g_{\gamma_{0}}, g_{y_{l}}, f_{\gamma_{0}}, f_{y_{1}}$,
$g_{q_{0}}, \mathcal{I}_{q_{0}} ; g_{q_{n}}, f_{q_{n}}$
RESULTS- $\mathrm{P}, \mathrm{Q}, \mathrm{R}, \mathrm{S}, \mathrm{y}_{\mathrm{t}}$,

PROGRAM 16
DATA - λ, α_{1}
K
A_{n}, B_{n}
$y_{s}^{\prime}, y_{t}^{\prime}$
FROM
PROCR OM 1

USE y_{t}^{\prime} FROM PROGRAM 5 IS CAMBER LINE CIRCULAR ARC? IF SO USE RESULTS OF PROGRAM 6 IF NOT USE RESULTS OF PROGRAM 5

FROM IR GRAM 15

NOTE 1

RESULTS -GRADIENTS ∇_{S}^{\prime} (FOR CIRCULAR ARC
CAMBER LINE ONLY) D. 1 TA- $\frac{x}{c}$

PROGRAM 5
DATA-DIFHERENCE TABLE PARAMETERS RESULTS -GRADIENTS (i) $\mathrm{y}_{\mathrm{s}}^{\prime}$, (ii) y_{t}^{\prime}
pROGRAM 6
OF PROGRAM 6 IF NOT USE
RESULTS OF PROGRAM 5

$$
g_{\gamma_{0}}, f_{\gamma_{1}}, f_{\gamma_{0}}, f_{\gamma_{1}}, g_{q_{0}}, f_{q_{0}}
$$

FROM PROGRAM
8
FROM PROGRAM 9
PROGRAMS $11,12,13$
DATA-F, $Q_{8} R, S, Y_{S}^{\prime} Y_{t}^{\prime}$
RESULTS-A $A^{\prime} A_{n^{\circ}}$; $B_{n \beta}{ }^{,} B_{n 0}$

PROGRAM 14
DATA- $\frac{S}{c}, \lambda, \alpha_{1}$

PROGRAM 15

DATA-K
$A_{n \beta^{\prime}}{ }_{n 0} ; B_{n \beta^{\prime}} B_{n o}$
RESULTS -An B_{n}..

$$
g_{q_{n}}, f_{q_{n}}
$$

TO PROGRAM 16
RESULTS $\frac{y(x)}{v_{m_{x}}}, \frac{x(x)}{v_{m_{x}}}, \frac{u}{v_{m_{x}}}, \frac{v}{v_{m_{x}}}, y_{t}^{\prime}, y_{s}^{\prime} C_{p_{u}}, C_{p_{L}}, y_{s}, y_{t} \cdot$

BI HOWELI, A.R.

B2 CARTER, A.D.S., and HUGHES, H.P.

BZ THEODORSEN, T.

B4 GARRICK, J.R.

B5

$$
0
$$

-

GARRICK, J.R.

C1 SCHLICHTING, H.

C2 SCHNEIDER, K.H.

C3 GLAUERT, H.

C4 RIEGELS, F.

C5 RIEGELS , F.

Note on the theory of arbitrary aerofoils in Cascade.
Philosophical Magazine, series 7 Vol.39, London 1948.

A theore iical inve tigation into the effect of profile shape on the performance of aerofoils in cascade. A.B.C. R \& M 2384 March, 1946

Theory of wing sections of arbitrary shape.
NACA Report No. 411. 1931.
On the potential flow past a lattice of arbitrary aerofoils.
NACA Report No.788. 1944.
Rule for nominal deviation
Bristol Aero-Engines Itd., Filton, Bristol.

Berechnung der raibungslosen inkompressiblem Strtmung fur ein vorgegebenen ebenes Schaufelgitter. VD1 Forschungsheft 447, 1955.
Potential flow through a cascade of known aerofoils.
M.I.T. report No.32, August 1955

The elements of aerofoil and airscrew theory.
Cambridge University Press, 1948.
Das Umstroemungsproblem bei
inkompressiblem Potentialstroemungen.
Ing-Arch. Vol.16, 1948
Aerofoil sections
Butterworths, 1961.
Interpolation and allied tables
H.M.S.O., 1936.

Deuce alphacode manual. English Eilectric Co., Ltd., Kidsgrove.
Deuce program number 434 (LE06/1)
English Electric Co., Itd., Stafford.
Alphacode translator, Deuce program
Number 597 (ZC23T).
English HIectric Co., Itd., Kidsgrove.
Theoretical Hydrodynamics.
MacMillan \& Co., Itd., London, 1949.

PROFILE IOC4/30C50
STACGER + 36°
AIR INLET ANCLE 51°
LIFT COEFFICIENT 0.725

FIC. 4.1.1.
PRESSURE DISTRIBUTION.

FIC. 4.1.2. ORIGINAL \& MODIFIED NOSE SHAPES.

PROFILE 10C4-30C50
STAGGER=+360
AIR INLET ANCLE $=\mathbf{5 2 . 8 3}{ }^{\circ}$
LIFT COEFFICIENT=0.720

FIC:4.2.A. PRESSURE DISTRIBUTION

PROFILE MODIFIED IOC4-3OC5O STACCER $=36^{\circ}$
INLET ANCLE $=52.83^{\circ}$

FIC. 4.2.2. PRESSURE DISTRIBUTION.

PROFILE IOC4/3OCSO

FIC.4.2.3. DISTRIBUTION OF SOURCES AND VORTICIES.

FIC.4.2.4. COMPARISON OF PROFILE CAMBER LINE AND RECALCULATED CAMBER LINE.

FIC. 4.2.5. COMPARISON OF BASE PROFILE AND RECALCULATED THICKNESS

FIG.4.3.1. COMPARISON OF PRESSURE DISTRIBUTION AS DETERMINED BY THE TWO METHODS.

FIC.4.3.3. COMPARISON OF PRESSURE DISTRIBUTION AS DETERMINED BY THE TWO METHODS.

FIG. 4.3.4. DEVIATION AS A FUNCTION OF STACCER.
——— the method of conformal transformation.
-.-.- THE METHOD OF DISTRIBUTED SINCULARITIES.
--- rule for nominal deviation.

PROFILE $10 \mathrm{C} 4 / 10 \mathrm{C} 50$
STAGCER $=36^{\circ}$
(1) $\quad \alpha_{1}=52.8^{\circ}$
(2) $\alpha_{F}=47.0^{\circ}$
(3) $\alpha_{=41}=0^{\circ}$

FIG. 4.4.I. PRESSURE DISTRIBUTION.

> PROFILE NACA $6512($ (IIO) 10
> STAGCER $=36^{\circ}$
> INLET ANCLE $=52.8^{\circ}$

PROFILE NACA 6512 (AID)IO
(MODIFIED GRADIENT)
3 TACGER $=36^{\circ}$
INLET ANGLE 52.8°

FIC. 4.4.3. PRESSURE DISTRIBUTION.

(a)BASE PROFILE.

(b) Camber line.

FIG. CI. FLOW CONDITIONS.

FIG. C.2. CASCADE GEOMETRY.

FIG. C. 3.
FLUID VELOCITY TRIANGLES.

FIC. C. 4
BLADE PROFILE.

A.R.C. C.P. No. 618

June, 1962
Pollard, D. and Wordsworth, J.
A COMPARISON OF IWO NETHODS FOR PREDICTING THE FOTENIIAL FLOW AROUND ARBITRARY AIRFOILS IN CASCADE

A method of conformal transformation due to Howell and a method of distributed singularities due to Schlichting, for predicting the performance of cascades of arbitrary airfoils, have been adapted for use on an electronic computer. Much greater accuracy than hitherto is thus possible, and this has enabled numerous refinements to be made. For ar airfoil section defined at 30 points, the former method requires about - hours equally divided between automatic computire end grachical work, while the latter is completely aralytical

A.R.C. C.P. No. 618

June, 1962

Pollard, D. and Wordsworth, J.
A COMPARISON OF TWO METHODS FOR PREDICTING THE POTENTIAL FLOW AROUND ARBITRARY AIRFOILS IN CASCADE

A method of conformal transformation due to Howell and a method of distributed singularities due to Schlichting, for predicting the performance of cascades of arbitrary airfoils, have been adapted for use on an electronic computer. Much greater accuracy than
hitherto is thus possible, and this has enabied numerous resinemerts to ke made. For an airfoil section
defirsa at 30 points, the former method requires about 4 hours equally divided between automatic computing and Eraphical work, while the latter is completely analytical
A.R.C. S.F. Nc. 618

June, 1962
Poliarā, D. and Wordsworth, J.
A COMPARISON OF TWC METHODS FCR PREDICTING THE PCTENTIAL FLOW ARCUND ARBITRARY AIRFOILS IN CASOADE

A method of conformal transformation aue to Howeil an $\bar{a}=$ method of distributed singularities due to Schiichting, for predicting the performance of cascades of artitrary airfcils; have been adapted for use on an =Iectronio computer. Much groater accuracy then hitherto is thus possible, and this has enabled numerous refinements to be made. For an airfoil section defined at 30 points, the ficrmer method requires about - hours squally divided betwoon automatic computing and graphical wark, while the latter is completely analytical
and needs about 3 hours machine time (both times being for a slow code of computer operation). The two approaches are critically sensitive to profile shape. Pressure distributions as determined by each method are in close agreement, but the agreement in turning angle is only fair.
and needs about 3 hours machine time (both times being for a slow code of computer operation). The two approaches are critically sensitive to profile shape. Pressure distributions as determined by each method are in close agreement, but the agreement in turning angle is only fair.
and needs about 3 hours machine time (both times being for a slow code of computer operation). approaches are critically sensitive to profile shape. Pressure distributions as determined by each method are in close agreement, but the agreement in turning angle is only fair.

(C) Crown copyright 1963

Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London, w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England
S.O. Code No. 23-9013.18
C. P. No. 618

