
C. P. No. 618 

MINISTRY OF AVIATION 

AERONAUTICAL RESEARCH COUNCIL 

CURRENT PAPERS 

A Comparison of Two Methods for Predicting 

the Potential Flow around Arbitrary 

Airfoils in Cascade 

BY 

D. Pollurd and J. Wordsworth 

LONDON: HER MAJESTY’S STATIONERY OFFICE 

1963 

Price 8s 6d net 



C .P. No,61 8 

June, 1962 

A COKPAKISON OF TN0 METHODS FOR PJlEDICTIfJG 

THE POII'ENTIAL FLW AROTJND ARB PTEARY 

AIRFOILS IN CASCADZ3 

bY 

D. POLI,ARD and J. WORDSWORTH 

---------------------------------------------~----~-~--~ - - - - - -  --e..c--------- 

Replaces A.R.C.23,814, 



ACKNOYfLEDGEMENT 

The authors wish to express their appreciation of the 

advice and help given by Professor J.H. Horlock, Professor of 

Mechanical Engineering, University of Liverpool, at all stages 

of the production of this paper and also of the assistance 

given by Dr. A. Young and the staff of the Sub-Department of 

Numerical Analysis in the University of Liverpool. 



INDEX, 

1. summary 

2. Introduction 

3. Synopsis of Methods 

3.1 The Method of Con-formal Transformation 

3.2 The Method of Distributed Singularities 

4. Calculations on Cascades of C4 and NACA blades 

5. ConcJ.usions. 

AP?ENDICES 

\ 
A 

B 

c 

D 

E 

F 

Notation 

The Method of Confortnal Transformation 

The Method of Distributed Singularities 

Adaptation of the Method of Conformal Transformation 

to a5e on an Electronic Computer. 

Adaptation of the Method of Distributed Singularities 

to use on an Electronic Ccmputer 

References. 



1.0 SUMMARY 

A method of conformal transformation due to Howell (Bl) 

and a method of distributec singularities due to Schlichting (Cl), 

for predicting the performance of cascades of arbitrary ailFoils, 

have been adapted for use on an electronic computer. Much greater 

accuracy than hitirto is thus possible, and this has enabled 

numerous refinements to be made. Por an airfoil section defined 

at 30 points, the former method requires about 4 hours equally 

divided between automatic computing and graphical work, while the 

latter is completely analytical and needs about 3 hours machine 

time (both times being for a slow code of computer operation). 

The two approaches are critically sensitive to profile shape. 

Pressure distributions as determined by each method are in close 

agreement, but the agreement in turning angle is only fair. 
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2.0 Il\JTRODUCTION 

There exists disturbing differences in cascade data as 

determined by American and British experiments, and i.n comparisons 

between these data and the limited amount of theoretical treatments 

at presentavailable, The former disparity may be due to differences 

in experimental technique, because of difficulties in obtaining 

truly two dimensional flow in practice, while the latter is 

undoubtedly due to la& of an adequate theory. This paper out- 

lines a study of two theoretical methods suggested by Howell (IX) 

and Schlichting (Cl). 

Among the methods available for solving the direct problem 

of the potential flow of a fluid through a cascade of arbitrary 

airfoils, a transformation method by Garrick (B4) may be mentioned; 

but like so many others, the usefulness of his method is severely 

limited by simplifications which are initially inherent, and 

approximations which are subsequently unavoidable, if a working 

solution is to bc obtained. Of other classical treatments, two 

have been selected for study in this paper. Howellls approach 

was favoured because mathematically it is relatively simple and 

sound - the only approximation is in transforming an irregular 

circle into an exact circle. The Schlichting treatment found 

favour because it suggosted a completely analytical approach, _ 

and lent itself readily to the studg of a cascade with suction 

(c,f, American experimental technique). Both methods have as a 

starting point the basic profile shape of the arbitrary airfoil 

under investigation, and the performance of the cascade as 

determined by the said methods is very much dependent on the 

. accuracy to which the profile is defined. Therefore the 

reliability of both treatments depends on the number of airfoil 

points which can be accommodated by the analysis, and this in 

the past has been the limiting factor. This limitation has been 

studied in detail in each approach, and the use of an electronic 

computer has brought about several improvements. bliith such a 

device, calculating time is no longer of prime importance - tho 
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limitations are now mathematical, PIany difficulties were solved9 

but others arose; chief of these was the effect of profile shape, 

at the 1r;ading and trailing edges, on the pressure distribution 

round the blade. Kathematically, this is related to the rapidity 

with which a Fourier Series converges. It is true to say, that, 

the two ap;?rcaches on an electronic computes having beon exhaus- 

tively developed, the success cf a calculation hinges on this 

major difficulty more than anything else. 

ilodifications of the Howell and Schlichting analyses were 

developed from calculations on cascades of lOC4/3OC50 and 

N.&CA 65 -(12A10)10 blade profiles, because these are two profiles 

which, while having been designed basically for similar purposesp 

give the disturbin Q difference in performance referred to earlier. 

The development worl; was performed on these two profiles in 

compressor cascades at a stagger of 36'; it was then extended 

in the case of the 3ritish section to turbine and compressor 

cascades of 15O stagger. Thus the modified analyses have been 

invcstigatcd over a limited range of stagger, camber and thickness. 

To prove the value of the methods in general, they should be 

employed in a systematic investigation of all the possible 

combinations of stagger, camber and thickness likely to be met 

with in practice. Only then will the recommendations of this 

paper find universal application. 

3.0 S.YlVE'SIS OF I!J.$TEIODS 

3.1 The Method of Conformal Transformation 

A series of conformal transformations, suggested by Howell (Rl) 

and cmployzd by Carter and Zughcs (32) reduces the flow through a 

cascade of known airfoils to that around a circular cylinder with 

circulation. The velocity at any point on the latter is easily 

calculated, whence the velocity at that point in cascade is found 

after multiplying by the velocity coefficient for each transformation 

performed, 

The first transformation collapses the: cascade into an 
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s = tanh z0 

A succession of Joukowski transformations 

are used to transform the S-shaped contour into an irregular 

circle. The tfoptimumlt irregular circle is sought - that is, 

one having the least number of irregularities, It is obtained 

after the minimum number (usually 2, 3 or 4) of Joukcwski trans- 

formations, by careful choice of the axes and the parameter 3, 

The optimum irregular circle is easily recognised, since the 

effect of a subsequent Joukcwski transformation is to render 

the irregularities worse. 

If the optimum irregular circle has no pronounced local 

irregularities, it can be transformed into an exact circle using 

the Theodorsen transformation 

* 
Li 

(A,ciB,) c+] = Cn r/g-1 
--I 

in which the Fourier coefficients converge rapidly. Using 50 

or 60 points to define the irregular circle, some 12 or SO 

coefficients are sufficient to specify the Fourier Series, 

Should coefficients of higher order than the twelfth be not 

entirely negligible a better irregular circle should be sought. 

The calculation is best performed for every point at which 

the airfoil is defined, and the choice of axes and parameter C 

(referred to above) is best obtained by hand. Experience has 

, shown that although this may take about 30 minutes for each 

R 
transformation, it is still less than an electronic computer 

requires using curve fitting programs, etc. 

The method has been specially adapted for use on a Deuce 

Electronic Computer, Using a slow code of operation, the machine 

time required for a complete calculation, involving fixed cascade 
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geometry and variable incidence, is approximately 2 hours. About 

2 hours additional graphical work is necessary. 

A full development of the method of conformal transformation 

is given in Appendix B. 

3.2 The Method of Distributed Singularities 

3.2.1, Basic Theory 

The concept of singularities, and their use in the 

theoretical prediction of ideal fluid flow past solid bodies has 

been in use for many years and has been dealt with at Zength by 

various authors (eg. reference ClO). Schlichting (reference Cl) 

has used the method of singularities to determine the performance 

of two dimensional cascades of blades, in turbine and compressor 

configurations. 

Sources 9 sinks and vorticies are distributed along a line 

corresponding to the position of the camber line of each blade 

in the cascade. The velocity induced by the sum of these singu- 

larities is calculated at points throughout the flow regime and 

added to the free stream velocity. The magnitude of the singu- 

larities is choosen so that a fluid streamline corresponds to 

each blade profile. 

3.2.2. Approximations used in the analysis 

To simplify analysis and bring calculation time down to a 

reasonable value the following three assumptions are madc:- 

(i) that a finite number of singularities are used to match the 

profile at a finite number of points, As the calculation requires 

the solution of a matrix of simultaneous equations, previous 

workers (references(CL) and (C2)) have limited themselves to 

three matching points. The authors of this paper have had the 

use of a tsiIeucelf digital computer and have extended the number of 

matching points to between 15 and 20. 

(ii) that the blade profile can be split into a cambar line and 

thickness distribution, which are considered separately (see 

figureC1) and 
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(iii)that the singularities are distributed along the chord 

line, whence the induced velocities are calculated on the chord 

line, and corrected to give the velocity on the profile. 

3.2.30 _I_ Basic equations 

If at a given chordwise position t the profile upper and 

lower ordinates are y, and Ye , the camber line ordinate and 

half thicknesscan be written, approximately, 

55 = SY, + Y,) 

and yt = &(Y, - y- > 

With a source distribution q(x) and vortex distribution y(x) 

the induced velocities at a -point x,parallel to and perpendicular 

to the chord u,and v are such that, applying the continuity 

equation (see figure Cl) 

dyt SW 
?E-= '??y-TTJ 

(3.2.1.) 

and the slope of the camber line is given by, 

d’S v+v 
-=77T=iTi dx 

(52.2.) 

U, V are the components of the free stream,parallel and 

perpendicular to the chord. 

Assuming q(x), y(x)to be functions of a parameter $ where 

H = +(I - cos & 
C 

the distribution of singularities may be described in terms of 

a Fourier series and U and v calculated in terms of q(x), y(x) 

for the cascade. !i!hti quantities q(x),u and v are substituted 

in equations (3.2.1,) and (3.2.2.) with the Fourier coefficients 

as th2 unknown quantities. For every matching point on the 

profile (one value of Y{ and one value of ys ) a pair of simul- 
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taneous equations is produced and a pair of Fourier coefficients 

can be found. If n matching points arc used, 2n simultaneous 

equations arise and the solution reveals 2n Fourier cocfficitints. 

The solution of 30 or more linear simultaneous equations is a 

task easily performed by tht: ccmputcr. 

3.2.4. Computer time requirt:d for a calculation 

The time rcquir$d for a calculation on Liverpool University 

"Deuce " computer is 3% hours comprising:- 

i) One and a half hours for calculating cascade parameter data, 

a function of stagger and space chord ratio. 

ii) Half an hour to calculate thickness and camber line gradients 

iii) One and a qusrtcr hours to solve the simultaneous equations 

and calculate the pressure coefficients. 

An extra half hour is required for each value of inlet 

angle aI after the first. 

The programmes ara writtcn in ltalphacodell which is compara- 

tively slow, and could bc: rcwritton in ttbasiclt code, to nroduc$ 2. 
quicker results now that the method has been shown to work. 

A full development of th<3 me$hod and analysis is shown in 

appendices C and E. 

4.0 CALCULATIONS Ol!J CASCADES OF C4 AN'D NACA BLADES 

Full details of the computational methods used ar? given in 

the appendices. The results of the various calculations made 

are now discussed. 

4.1 The Nkthod of Conformal Transfornlation Applied to a Cascade 

of lOC4/3OC50 Airfoils, at a stagger of +36o, zero incidence -__I 

4.1-l. The prossure distribution (F&.4.1.1.) 

The pr,;ssure distribution shown is that derived from the 

flow around the irro&ular circle, with the leading edg~e point 

neglected. All the points lie on a smooth curve, with the 

exception of a few towards the trailing edge. The pressure 
distribution has not been constructed to pass through the 

theoretid stagnation point at the trailing edge, , since this 

is not obtained in practice. The 'base profile is accurately 



defined in the region of the leading; edge, and this has enabled 

a reliable determination of the suction and pressure peaks to 

be made. 

4,1.2, The original and modified nose shaeer (Fig.4.1,2.) 

The leading edge point is neglected on the irregular circle, 

and the recalculated, effecti.ve nose shape is shown in I?ig.(4.1,2.), 

The discrepancy as a result of neglecting the leading edge point 

is thus seen to be small. The pressure distribution of Pig. 

(4.1.1.) has slightly reduced suction and pressure neaks compared 

with the true C4 profile, since the modified rinse shape is more 

slender. 

4.1.3. The modified Fourier coefficients, A&, Brt 

Graphical representation of the coefficients accentuates 

the asymptoting of the series to zero. In this example, it is 

se?n that about 10 coefficients are sufficient to specify the 

series completely. This shows that the optimum irregular circle 

chosen has few irregularities, and these are small, 

4.2. Method of Singularities Applied to Cascade of C4 Profile 

at 36o Stagger 

Results of a specimen calculation are shown in graphs 

4.2.1, to 4.2.54 The cascade is a compressor of 36' stagger 

and space-chnrd ratio unity, The prt?ssure distribution has 

been determined for an inlet angle of 52.80 to compare with 

experimental data at present being obtained. The curve produced 

is smaoth and the integrated lift coefficient compares favour- 

ably with that calculated from the turning angle, as shown in 

the table below. The blade profiles used are lOC4/3OC50 profiles 

with a circular arc camber line, and a smooth pressure curve 

is produced from the measured gradients. In the case of a 

more irregular shape (eg. NACA 65(12810)10) it is necessary 

to reduce the leading and trailing edge gradients. The effect 

of using this procedure on the C4 profile is shown in E'ig.402.20 
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There is little difference between this curve and the one for 

the original gradients shown in Fig.4.2.1. 

The source and vortex distributions are shown in Fig.402,3. 

for the normal lOC4/3OC50 profile and the recalculated camber 

line and thickness distribution shown in l?igs.4.2,4. and 4.2.5. 

The recalculated camber line agrees well with that originally 

spticified, but the thickness distribution shows some small 

discrepancy. The maximum difference b&Preen calculated and 

original thickness ordinates is 2% of the chord at 3Oo;cl of the 

chord back from the leading edge. 

!i!A3I,E I 

Comparison of integrated and calculated parameters 
i . , I 1 ,Dzrccnt 

\ Integrated Calculated Difference .-. --- L 
0.720 0.728 1.1 / --. . --- . , 

0.005 0.000 

0.517 ' 0.531 ‘2.6 

. . .- . ~_~ _ 

4.3 Comparison of the two methods for calculations on a _I- -- 
Cascade of lOC4 3OC50 airfoils at zero incidence, various ----I_ 
staggers 

4.3.1., 4.3.2., 4.3.3. Thi: Pressure distribution 

(Pigs.4.3.1., 4.3.2., 4.3.3.) 

'The agreement between the pressure distributions as deter- 

mined by the two methods is close at the three staggers shown; 

therefore the calculation of the lift coefficients (which are 

proportional to the a7.s Atas enclosed by the pressure curves) as 

determined by both methods is consistent. For positively 

staggcrcd (compressor)cascades, the method of conformal trans- 

formation givtis suction and pressure peaks which are slightly 

exaggcratcd compared to those dotermined by thz method of 

singularities, At nzgativc stsggers, this is not so. The 

suction peak as determined by the Howell method occurs at 

about 10s chord; the method due to Schlichting yields a suction 

peak at about 15s chord. 
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4.3.4. Deviation as a function of stagger, and comparison 

with the rule for nominal deviation (Fig.4.3.4.) 

In positively staggered cascades, the deviation determined 

by Howell's method is less, and that determined by Schlichting's 

method is greater, than that predicted by the rule for nominal 

deviation (B5). At low negative staggers, the Howell deviation 

incraases above the nominal deviation, while the difference 

between the Schlichting deviation and nominal deviation increases 

as the stagger becomes very large, negative. These latter trends 

are, however, dependent on a calculation at one negative stagger 

in each case. 

4.4. Further results using the method of singularities 

Fig.4.4.1. shows the pressure distribution of a lOC4/lOC50 

profile blade in a 36O stagger, 1.0 space-chord ratio configur- 

ation, for three different inlet angles. With a low (10') 

cambered profile a smooth curve is produced for all values of 

inlet angle, but at high angles of incidence the integrated 

lift coefficient shows a 5% error when compared with the calculated 

value. 

Figs.4.4.2 and 4.4.3. show the pressure distribution for 

an NACA (12A1010) profile in 36O stagger 1.0 space-chord ratio 

compressor cascade. Fig.4.4.2. shows the original profile 

pressure distribution and Fig,404.3. the modified profile 

pressure disttiibution. The curves are of the same general 

shape but the number of calculated pressure coefficients which 

do not lie on the smooth curve has been reduced and the 

integrated lift coefficient compares more favourably with the 

calculated one in the second case than in the first. 
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5. CONCLUSIONS 

5.1. Results of calculations using the method of conformal trans- 

formation and the method of singularities have been given in 

graphs 4.1 and 4.2 respectively. A comparison of the two methods 

at various staggers has been given in graphs 4.3. 

5;2. The method of conformal transformation is mathematically 

exact and only two approximations are required in numerical 

computation. The Fourier series used (see paragraph 134) is 

limited to a finite number of terms and the irregular circle 

of the last transformation is smoothed at a point corresponding 

to the leading edge in order that this series may converge 

rapidly. The recalculated nose shape is very little differen% 

from the original and 'increases the length of the chord by only 

i!$ (Fig.4.1.3.). A full explanation of these approximations 

is given in appendix B. 

The pressure distribution obtained is a smooth curve and 

on integration the lift coefficient derived agrees with that 

produced by the turning angle, to within &$. At the single 

space chord ratio investigated the method was found to be 

satisfactory over a wide range of stagger angles. 

It is unlikely that this method will be transferred 

completely to a computer calculation, as the time required 

for curve fitting and the change of axes in the intermediate 

steps is rather long. The correct choice of the new axes 

between transformations requires a certain amount of experience 

if a reasonable transformation shape is to result. The change 

of axes by hand involves about half an hour's work. 

5.3 The basic flow equations in the method of singularities 

contain the approximations mentioned in paragraph C.1. The 

results suggest that for the profile investigated these approxi- 

mations are quite valid. Lift coefficients from the pressure 

distribution area and the turning angle agree within $$, and 
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the recalculated thickness distribution has a maximum discrepancy 

of @ of the chord at the station of maximum thickness 30s 

(Fig.4.2.5.). Uninterrupted use may be made of a computer 

which allows a comparatively simple method of operation to 

be followed. Poor results are obtained from some profiles 

and the method is also unreliable at high angles of incidence 

(section 4.4). Large gradients in the camber line at the lead- 

ing or trailing edges (e.g. as for the NACA 65(12Alo)10 profile) 

cause irregularities in the calculated pressure distribution 

curves and thus the method would not be applicable to highly 

cambered turbine blades. 

5.4. The outlet angle deviations from the two methods have 

been compared in Fig.4.3.4. Results from the method of con- 

formal transformation predict a lower deviation for compressor 

cascades. The deviation derived from the method of singularities 

shows good agreement with the Howell-Carter nominal deviation 

rule. Pressure distribgtions from the two methods are in close 

agreement, with two small differences, The method of conformal 

transformation gives a slightly higher lift coefficient and a 

suction peak closer to the leading edge than the corresponding 

quantities from the method singularities (Fig.4.3). 

5.5. Both methods have been adopted for use on a digital 

computer and ccptain approximations have been modified to 

allow full use to be made of computational accuracy. 

The method of conformal transformation is more accurate 

analytically although the shape of the leading edge of the 

profile cannot be truely specified. The method is fairly 

slow as intermediate steps in the calculation have to be 

performed manua ly. For the cascades considered in this 

report the method has been found satisfactory over the range 

of stagger employed. The method of singularities, although 

containing mathematical approximations is&straight forward and 

calculations are easily performed on a computer. No limit was 
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found for stagger angle, but care must be taken that large 

values of profile gradients do not produce incorrect results. 

At large angles of incidence the nethod is inconsistant. 

5.6. The method singularities is being developed to take account 

of boundary layer growth on the blade profile and the effect of 

a change in axial velocity across the cascade, It is hoped to 

present this analysis at a later date, 
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The two iaethods of calculation set out in appendices B 

and C are so distinct that the notation for each is given under 

a separate heading. Al contains the! notation used in ths method 

of conformal transformation, shown in appendix B and A2 the 

notation for the method of singularities in appendix C. An 

attempt has been made to use the sar;le notation where possible, 

the most notable exception being the symbol for stagger angle, 

Y in appendix B and h in appendix C. 

A.1. The X&hod of Conformal Transformation ----- 

Y 

C 

S 

P 

v 

F 

cP 

F 

cl. 

r 

n 

i 

(&Y) 

Z 

c 

(XPY) 

(CPd 

(Yd7’) 

K 

C 

Ar9% 

staggeT an@.e ( positive for compressors, negative 
for turbines) 

blade chord 

blade spacing 

static prtissura at a point 

velocity at a point 

density of fluid 

pressure coefficient at 8 point 

an integer 

an integer 

an integer 

an integer 

imaginery quantity, equal to 47 

Cartesian co-ordinates in the basic airfoil 

2 ccmplex plane 

the transformed complex plane of Z 

Cartesian co-ordinates in the plane of Z 

Cartesian co-ordinates in the plane of 6 

the origin in a plane of S for the succeeding 
plane of Z 

the angle betwetin the axis oft and the succeedi 
axis of x. 

Joukowski p3irnmeter 

Fourier coefficients 

.ng 



a 

PO 

A 

c 

a 

(GM-d 

(ml, 9) 

(01, 02) 

Subscripts: 

0 

-c@ 

+CO 

r 

a 

1 

2 

T.r;. 
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modified Fourier coefficients 

parameter in the plane of z 

argument in the plane of z 

parameter in the plane oft 

argument in the plane of g 

radius of base circle 

radius of exact circle 

increment in h produced by Theodorsen transformation 

rotation of (p produced by Theodorsen transformation 

flow angle relative to axial direction 

> ) 
1 parameters nf the Theordorsen transformation 

) 

a point on the airfoil 

a point at infinity upstream of the cascade 

a point at infinity downstream of the cascade 

the rth term 

axial direction 

inlet conditions to the cascade 

outlet conditions from the cascade 

the t-railing edge point. 

A.2. The Method of distributed Singularities 

An, Bn 
C P 
C 

I< 

M 

n 

J%Q,R,S 

% 

p1 
(r 

Fourier coefficients 

Pressure coefficient 

Rlade chord length 

Tan g = vmYblx 

Combined, complex singularity strength (source 
and vortex) 

An in-teger 

Simultaneous equation parameters 

Local static pressure 

inlet pressure 

Source strength 
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%4 Source strength distribution along x-axis 

R(P), I(F), f,g Intermediate calculation parameters 

Polar coordinates 

s Cascade blade pitch 
B 
F Space chord ratio 

U A stream velocity 

u Perturbation velocity in x-direction due to 
singularities 

Perturbation velocity in y-direction due to 
singularities 

Blade surface local velocity 

Vrn Cascade vector r-:ean velocity 

Vmx Component of Vm in x-direction 

VmY Component of Vm in y-direction 

v-t Tangential component of velocity 

2 n Vt Difference between inlet and outlet tangential 
velocities 

h 
V2 
w 

Cascade inlet velocity 

Cascade outlet velocity 

Velocity petcntial 

x9 Y Coordinates of rectangular axes 

x97 Terms associated with integration 

ye 
Combined blade profile lower ordinate 

ys Slope line ordinate 

y-t , Thickness ordinate 

h 
Combined profile upper ordinate 

Z Complexcoordinate (=x + iy = re i-0 ) 

Inlet flux angle 

Outlet flux angle 

a m Vector mean flow angle 

Y Vortex strength 

Y (4 Vortex strength distribution along x-axis 

c Angle between vector mean velocity and x-axis 

e Cascade blade camber angle 

h Cascade blade stagger angle (+ ve for compressor 
cascades) 

V Potential function 



Subscripts 
I 

si 

R 

-A+ 

Ztraam function 

Gradient 

k5ingle aerofoil 

Cascade minus single aerofoil(remainder cascade) 



3.1. The 3asi.c Airfoil -__I -- 

The airfoils are spaced along the cascade at a distance 

7T apart; this is so that when the first transformation 

s = tanh z is applied, the cascade collapses into a single 

contour. The basic cambered airfoil co-ordinates are therefore 

calculated to a chord length -db 
to maintain the correct 

spacezchord ratio. For grzatcst accuracy the calculation is 

przfdrably performed for every point at which the airfoil is 

defined , (these points are hzreaftcr referred to as the "airfoil 

points't) 

An origin is taken on the camber line at approximately 

50$ chord; and cartesian axes (;[,I!') chosen so that the axis of 

X is parallel to the chord. positive direction towards the 

trailing edgc. The co-ordinatics (X,Y) of the airfoil points 

are calculated. 

3.2 The First Transformation ( h= tanh z ) --"--- 
'i'h; origin of the z-plane is chosen to coincide with that 

of the (X,Y) plant, th,r: ori,ntation of the axes (x,y) being 

such that the x-axis mtlktis an angle with the X-axis equal to 

the stagger, in the accq-ted sense. The new co-ordinates of 

the airfoil points i.n the z-plane are found. 

fit this stagt>9 and again later, it is seen that many 

points lie close to on; 0~' the other axes; and thersfore the 

percentcge error in determining x, or y as the case may be, 

for those points will tend to bc large compared with points 

1yFng well away from both axes. 'To cvercome this disadvantage 

it is strongly recommended that, having chosen the origin of the 

new axes, and their orientation with respect to the old axes, 

simple formulae be l!sed to give the new co-ordinates. For example 

x = (c - e')cos K + (q - q')sin K 

y = (77 - q')cos K - (f - c')sin K 
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In this way any percentage error should be reasonably constant 

over the whole airfoil. The above expressions for x and y are 

to be preferred to the alternative method of drawing to a large 

scale and measuring. 

The transformation C = tanh z is applied to the airfoil 

and infinity points, and the! co-ordinates (e9 7 ), together 

with the velocity coefficient 
I 
ccl 
dzlo ' evaluated. The trans- 

formation has singularities given by 

dc ==I - c2 =Ooro0 

but Howell (B.1) has shown that these points lie outside the 

airfoil, and in fact the transformation is conformal for all 

the airfoil points. 

The infinity points (- ~0~ 0 ), (+ oo,O ) in the z-plane 

have transformed into (- 1, 0), (+ 1, 0) in the < -plane; whi'le 

the cascade has transformed into an isolated S- shaped contour, 

the severity cf the curvature at the e:lds being largely dependent 

on the stagger. 

a30 The Joukowski Transformations ( g+ y = z) 

(i) The first Joukowski tznsformation 

The origin (E'9Q')of the new Z-plant2 is chosen at the 

mid-point of the line joining thz leading and trailing edge 

points, the x-axis lying along that line and being positive 

towards the trailing edge. The new co-ordinates (x,y) of the 

airfoil and infinity points in the z-plane are calculated. 

The parameter Cis chosen to be one quarter of the distance 

between leading and trailing edge points. 

The Joukowski transformation is applied to every point 

in turn. For each z ) two values of g are possible. Con- 

sidering the Joukowski equation, it can be seen* that for the 

transformed contour to be described in the same sense as the 

original airfoil, with Izl < 2 C , points on the upper or 

suction surface should take the nositive root, points on the 

lower or pressure surface the negative root. For the infinity 

points, take the root having the same sign asy; if y is zero, 
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then follow the sign of x. The velocity coefficient is also 

evaluated 

The result of tht: first Joukowski transformation is an 

irregular kidney shape. 

(ii)Subsequent Joukowski Transfarmations 1_1- ---- 

The longest straight line PQ contained by the previous 

contour is located, and also points P' 9 Q' on it which are 

as near as possible to thz centres of curvature of the ends of 

the contour P9 Q respectively, If P;'p Q" are the mid-points 

of PP' and QQ respzctjvely then the origin of the new 

z-plane is tnkcn at the mid-point of p/f ~'1 , the x-axis +.Lz 

along PQ and being pos.itive in the general direction of the 

trailing edge, 4C is takan r:q~zl to p/l ~'1. The new co-ordinates 

(x,y) of the airfoil and infinity points are calculated, 

The Joukowski transfomation i.s again applied to every point 

in turn, taking thti root of MC same sign as y; if y is zero, 

then following the sign of xX (here and after, }zl > 2 C),, 

The velocity coefficients are again evaluated, and the resulting 

contour is an irregular circle. 

To obtain optimum accuracy from the last (Thoodorsen) 

trnnsfomnotion, the irregular circle to which it is applied 

should have as few irregularities as possible; hence the optimum 

irregular circle: is sought. It can be seen that the effect of a 

Joukowski transformation in general is a contraction along the 

x-axlOY and an expansion along the y-axis. *n This effect is 

controlled by the choice of axes, and the value of C. Clearly, 

the x-axis has been chosen to lie along PQ , as defined above, 

1 ;!,rith the object of using this fact to the best advantage; also 

C emphasises this effect, an increase in C giving an increased 

contraction in the x-direction, etc. Thus by diligently oriont- 

sting the axes and choosing Cp the optimum irragular can be 

obtained from the? minimum number of Joukowski transformations. 
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For cascades of low stagger, the optimum Joukowski transformation 

is usually the second; for higher staggcrs(giving greater 

curvatures on the S-shaped contour) the optimum one may be the 

third or even fourth. 

If more than two Joukowski transformations are found to be 

necessary the third and subsequent ones can conveniently be 

taken with the same origin as the second; all that is usually 

wccssary is a rotation of the axes and a suitable choice of C, 

It is usually fairly obvious when the optimum Joukowski trans- 

formation has 'been rt'achdd, since the next one renders the 

irregularities worse. 

Note H 
. 

Briefly, put z = raelDd, c = o+ 
rr 

then as z + CQ~ $ + CO or 6, 

but we must hrvc w 
ir$ "3 

z 0 
. . . as 2 -+069 6 -+ooo 

This is thti deciding factcr when dctenaining which of the 

quadratic roots to tekti. 

53.4. The Last (Theodorsen) Transformation 
n 

(CL 
@+, + iB,) c-r7 

J 
= en ml > 

1 

The usefulness of this trznsformzticn dcpcnds on the rapidity 

with which the Fourier coefficients A,, B,, tend to zero, (see 

for example, 
I I 
s the formulae for dz 

0 ) 
D If the optimum 

irregular circle has any pronounctid localised irregularities, 

high order coefficients are required to accommodate them. The 

leading edge point in the plane of the optimum irregular circle 

can sometimes course such a localised irregularity, and the 

Thcodorsen transformation fails in its object. To overcome 

this difficulty, such a point is ignored for the purpose of 

the last transformation, thus enabling a rapidly converging 

series to be obtained, Accordingly subsequent refdronce to 

"airfoil points" should now be understood to refer to the 



original airfoil points, less the leading edge point. Neglect- 

ing the leading edge on the optimum irregular circle has the 

Effect cf changing slightly the nose shape of the airfoil for 

which the flow is determined. Trlc Ynodified" shape can easily 

be obtained by applying the transformations in reverse to the 

optimum irregular circle;; it will in general not differ greatly 

from the original profile specified. 

A point in the plane of the o;ltimum irregular circle can 

be conveniently tixprcssed as 

2 = &-igl = ae'(cos # + i sin $) 

while the transformed position would be 

4 = a,cO+ie = aeg(cOs 0 + i sin 8), 

A new set of axes (x,y) is cthoasn in the plane of the optimum 

irregular circle9 with the sam? origin as the optimum irregular 

circle, but with thti x-axis passing in a positive direction 

through the + 03 point. Th, base circle is a circle with 

centre at the origin, and arec equal to that of the optimum 

irregular circle. The radius vector aeh and argument$ 

with respect to the x-3xi.s can then be calculated for airfoil 

2nd infinity points, By Linear interpolation of the graph of 

radius vector against argument for airfoil points, equally 

spaced ordinattis are obtained, enabling Simpson's Rule to be 

used in finding th\: ~irzn and hence radius of the base circle, 

For airfoil points, $ will be constant, and its proximity 

to zero is an indication of the closeness of the base and exact 

circles. The function h is evaluated for the airfoil and 

infinity points, and used to find $, p where 

(Cl0 = & 
I 

2n 
ho deo 

0 

krl and Brl arc calculated from the formulae 

*r’ = Ar 22 1 
J 

2n hocos(rOo)dOo 

(ae+")r 7r O 
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Br’ I 
2n 

= B, =L ho sin(rOO)dOo. 

(ae$Oy 7r O 

for r = 1, 2, 3, 4, ----q. If the integrals are evaluated 

using equally spaced ordinates (ic. at equal intervals of O. ), 

it is seen that many of the trigomometric functions occuring 

are recurrent, and this can greatly reduce the amount of 

repetitive arithmetic involved. For greatest accuracy in 

making a true rapresontation of the irregular circle, ( 2'rr/dOo 

should be of the order fifty or sixty. The V~~UCS of Arl and 

Brl are plotted, and a vallul-> of r (say p) ascertained for which 

subsequent values of A,1 and B,l can be neglected. In the 

analysis that follows, USC only the first :p values of Arl and 

B1 r * 
The transformed positions of the two infinity points is 

found by using Mcwtonls method of successive approximations 

to solve the following equation for (cl , given h and 6 

n=?p+ 
fC 

[A,’ cos(r6 

I 

> + 3,’ sin(r8) 3e -w 
I 

These results are used to solve for 0 of the infinity points, 

where 

E = qj - 6 = 
21 

[BP1 cos(r6) - A,' sin(rO)]e-" 
3 I 

The transformed positions of the airfoil points are found from 

the following formulae 
P 

e. = tie - e. = 
2‘ 

[B,' cos 

I 
n 

(rdo - Ar' sin(r60 >I 

I Lx 
dz =I + 

0 
- l>[Ar’ cos (r&d f B,' sin 
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Note: 

cannot bc zvaluntcd, since # end not 0 is known, Expcricnce 

however shows that c is usually very small, and so $ may bo 

used for 8 without groat error. 

The tr:, nsformed positions of the infinity point could be 

dctirmined by combining A and E 03 03 into on.2 complex equation, 

and solving it using the method of charcctzristics, Also the 

transformed position of an airfoil point could be found by 

using !Icwtonfs m&hod of sllccI).ssive cpproximations, to solve 

00 , given @o (e-f. the exnrcssion for eo ). Eowzvcr !, it is 

suggcstod that thcsc two rofinem2nts arc not consistent, and 

tdlcrefom not justiliod, f::r thr: following reason. The Fourier 

coefficients ha-v,: bcsGn fcmnd using #ofor O. , hence the last 

transformation is or&y mathematicaU!-y consistent if this 

substitution is adopt-cd thrcughout, When analysis on the 

exact circle is pursutid howtivcr, 00 should be ustid, and is 

given by 00 = $0 - &J-to a first cuproxination. 

B. 5* Velocity cn-.Jh\: Exact Circle 

Jiowell (331) has shown that thti velocity at a point on 

the exact circle is givcivs by 

IL2 If = f. -t- go tan (ai) + ho tan (aa) 

go =& 

I--- 

sin (01 + 
$- ml+-- ( ;, ,+cosx, r 

sin (02) 
~I~~+&)-cos (e,) 

I --- 1 

1 44 ml+- &’ scos (0,) 

ho = - J1, 
4r I-- 

bk- 4,) 1 
$(m2+$-)-COS(B2) 

L- 
I 

.I 



and 01 = eo + (n - e,) 
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&is found from Joukowski'c hypothesis, which demands a 

stagnation point at the trailing edge. 

viz; 

tan b2JToEo = f. f go tan (CXI) 
T.E. 

B.6. Velocity and Pressure Coefficient on the Airfoil in m-e 
Cascade 

Thz velocity at a point on the rirfoil is obtained by 

multiplying the velocity at that point on ths exact circle by 

tho velocity coefficient of that point for each transformntion 

porfomned. The pr~ssurc cocfficic:nt is defined as thz increase 

in static ~22,~~~ 'lpsuri: over free strecim static pressure, compared 

with the inlet dynamic hoad. Tht;t i:; 

C p = r, -,P& = 1 - g 
SPVl I 

but V=Vo. 

and va = VI cos (a,). 

0 
0 0 c l- = 

P c[ 
f. + go tan(ai) f ho tan(a2) ] Izq*(%l" ---I%$ 

cos (a,) 
3 

2 
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Appendix C METSOD OF DISTRIBUTED SINGULARITIES 

C.l. Basic Theory 

The theory set out in this cllppcndix is based on an 

extension of classic;:1 potLntial flr,lv theory, by Schlicting 

(Cl) * Thti fluid considered is invisciti, irrotational and 

incomprzssiblc. Three basic potential flo-ws are 

1. A uniform stream 

V =ux 9 $=-uy , v=u, 

2, A source or sink 

3. A vortex 

V =-%, $=-$logr 2n e 

where V,, V, arc the fluid vclccities along an.3 perpendicular 

to ~3. radius r. 

A combinction GP the uniform stream with singularities of 

varying magnitude plnc& zt variou;: positions cqn bc usGd to 

produce the flow round art aLroioil. A simple extension of the 

r3nalysis will then giv;: thz flow roul?d 3 atiries of equally 

spaced zerofoils:, that is, FYI ccsccldc. 

In order to solve the di.rect problem of deducing the 

prcasure distribution round 2 given aeroffoil, the singularities 

distributed in the potcr-.tial flop planv arc selecti;d to produce 

a streamlino mtltching the acrofoil prcscribod, An Gxc;ct way of 

doing this is to spread :~n iniinitti number of singularities 

along the blade camber lirt, and. match complc-tcly thti blade form. 

As this is an extrtimely complex procedure a small, finite 

numbtir of singularities is used. In previou s work (Cl, C2j 

this numbLr has rarely excocdtid three, but the authors, with 

the aid of Livcrpooi University's llD~~~~tt digital computer, have 

incrcas(;d it to bctwccn fifteen 2nd twenty. This requires the 

solution of thirty or morti 1in::zr simultnneous equrtions, a 

task well within the scope of the computer used. 

A second approxinntion, that thu singularities WE: located 

on the chord lint instczd of -the ccmber line, is used to 
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simplify the mathematical analysis. This assumption limits 

calculations to blades with camber 0.1 to 0.15~ (see reference 

Cl). 

Defining the vorticity distribution along the x-axis by 

y(x)and th e source and sir-& distribution by q(x);- 

C 
I-= Y(X) dx 

0 
(Cl) 

where I' is the total blade vorticity, and 

I C 
&= q(x) dx 

J 0 
W2) 

where Q is the total source distribution and is zero for a 

closed aerofoil. 

The flow round a cambered aerofoil of finite thickness (x 9yu 

b 9Yg ) is considered as the sum of two superimposed flows. 

1) The flow over a thick blade of zero camber defined by 

Y-t = HY, - ye > 

(cs) 

The uncambered profile is a streamline and applying the 

continuity equation (see Pig.Cl (a)) t o an element of the blade:- 

(V, -I- u)yt + &q(x)dx = + u + g dx yt + $$t dx o 
X X x 

It is assumed in this equation that u does not vary with y and 

the component of velocity in the y-direction, v is zero. A 
du further assumption is made that dx 

i&L and dxt . Rearranging equation C4 

gt = y t'.-mph7 
X 

is small compared with u 

the following 

. 

03) 
results. 
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2) The flow round a thin camber line or vortex sheet. 

The ordinates of this line are:- 

YS = 3(Yu + Y,) 

(‘33 

Flow is tangential to the camber line so that at any point 

29 

vm +v 

= Y.i = v+Ei 
mX 

see figure (Clb) 

For each pair of ordinates (yu9 gL ) determined from the 

profile a pair of equations is produced, equations C5 and C7. 

Thus if n pairs of ordinates are used to define the aerofoil 2n 

equations are produced. Yhe equations'are solved simultaneously. 

C.2. Uevelopment of Equations -m.. 
c.2.1, Mathematical concept 

In order to solve the simultaneous equations (C5)an.d (fl7) 

the following four steps ard necessary:- 

1) 
2) 

3) 

4) 

c.2.2. 

If x 

Define q(x), y(x) in terms of a Fourier series 

Deduce the equations for u and v the induced velocities 

from the singularity distribution 

Calculate the numerical quantities associated with 

cl(x) 9 y(x), u and v. 

Substitute the above quantities into equations (C5) and 

(CT) with the Fourier coefficient as the unknown 

parameters, 

Definition of singularities 

is the distance along the chord from the leading edge, 

a new coordinate $ can be defined as 

X - = 8(1 " co9 $)e 
C 

The source-sink and vortex distributions are written down in 
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terms of $ as a series (see Glauert Ref.C3) 

Ykd= 
2vm 

Aocot $ + A [sin # + ASsin 293 + eme + An-,sin(n--l)#a 
X 

(c9) 

Lli.kd 
2v 

“X 

= B&cot $ - 2 sin 6) + Basin 2# + . . . + Bnsin n$ 

where A,, Al --- Anml, B,, B2 --- Bn are Fourier coefficients, 

C.2.3. Determination of induced velocities 

The velocity potential at a point z in the complex plane, 

induced by a singularity at another point B is 

where M is a complex singularity, M = Q -t il'. 

The induced velocity is given by 

U - iv dW 
=zz 

M 1 
*=z?Tz 

The cascade is located in the complex plane by one of the 

blades having its leading edge at the origin of the complex 

plane (21 = 0) and its chord lying along the x-axis as shown in 

Fig.CI2. The cascade tangential direction is then at an angle 

h to the y-axis, where h is the cascade stagger angle. If 

the spacing of the blades is s, the Leading edge of each blade 

lies along a line 

L = &A 

with coordinates givan by 

2 = inse -ih 

(Cl31 

(n an integer > 
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As n varies from - CO to + o. , Z locates each successive blade 

leading edge for the infinite cascade. 

It has been assumed that the singularities are distributed 

&ong the chord line (see $ Cl), that is parallel to the x-axis. 

Thus any singularity on the chord of any of the cascade blades 

has the complex coordinate, 

35 = inse -ih + ; 

cc151 

where 2 is its distance from the blade leading edge. 

The complex velocity induced at z by this singularity is, from 

equation (C12) 

u - iv = .JL 
tar z - ( i.niewih + H) ’ 

The velocity induced by the sum of singularities at corresponding 

j7 po$itions on all the blades as n goes from - o3 to t w is then, 
i-co 

u - iv = JL 
7 

I 
2n d z- ( inse -ih + ii) 

and 

u - iv = A 
2s 

eih coth eix 
> 

~ 

(c17) 

Substituting for r and Q from equations (Cl) and (C2) in 

M = Q t ir 

equation (Cl?) becomes 

To simplify the calculation the induced veiocity is derived 

along the x-axis only. In the limit, as z-+x9 esuation (Cl8) 
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becomes 

As s -+ o. equation (Clg) becomes that for a single aerofoil, and 

in the limit (see reference C2) 

u .-iv s1 ai = f y(x)-iq(x -k c 
2 1 2n 1; [@+i@] -/$ ) 

;=o 
(cm) 

where suffix 'lsi'l refers to the single aerofoil. 

Both the induced velocity for the whole cascade and that for the 

single aerofoil becomes infinite at x = ii, a singular point in 

the complex plane. By subtracting the single aerofoil velocity 

from the cascade velocity the singular point is eliminatsd. The 

resulting velocity is known as the induced velocity for the 

"remainder" cascade so that 

UR -ivR=(u-u si )-i(v-v > si 

em 

ltRft refering to the remainder cascade, and 

(c22) 

Substituting for dx), q(x) from equations (Cg) and (ClO) 

equation (C20) is integrated explicitly. Equation (C22) must 

be integratQd numerically. 

Finally u = usi + uR 

v=v 4-v si R 

(C23) 

(C24) 
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C.2.4, Numerical parameters 

The left hand side of each of equations (C5) and (C7) 

comprises a numerical quantity defining the aerofoil profile at 

a given abscissa (distance along the chord) xr If the profile 

is defined at n positions the quantities on the right hand side 

of each equation q(x), u and v must be determined explicitly 

for the n corresponding values of x. For n pairs of equations, 

n terms of each Fourier series can be fouqd (equations (C9) and 

(CmL These terms replace q in equation (C20) and 

(C22) which are integrated for &ch value of x. This requires 

n integrations for each equation, or term by term n2 integrations. 

This number is doubled by taking the real and imaginary parts of 

the equation separately, 

For the single aerofoil from equation (C20) 

U si = 
*Y&L+&& ’ Qlj;)& 

2 i- $=o 
X-E 

(c25) 

Substituting for q(f) and y(z) from (Cg) and (C10) and writing 

‘;; 
- = +(I - CO6 7) 

X 
C 9 -g zz +(I, - cos $) equations (C25) 

and (C26) are integrated to give:- 

U 
si 

tr= ii k(Aocot,+A, sin@+. . .An-, sin.$H$-$BO( 1+2cos+Bzcos2#. 
"m L 

x 
L 

-...-Bncos(n$)le 

(C27) 
and 

V si= 
v 

mX 

( -A*+A, COS#+...+A~-, cos 

(C28) 

Equation (C22) must be integrated numerj.cally. Writing for e ih 
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e in = cos A + i sin h 

the integrand may bmq&Li$ into real and imaginary parts. 

F= (cos h + i sin h)cot w(cos A + i sin A)? - L eALm p 
3 7rx-x 

from which $illow the real and imaginary parts of %, 

F= R(F) + i I(F) and 

(c32) 
R(F) = coshuinh[~~c~sh]+sinhsin[ Z#Tsinh] - _ 8 -'3; 

cosh[29++xA]-cos[ 2&+inA] n(x - T) 

(c33) 

(c34) 

Rewriting equation (C22) gives 

SO that 

(C36) 

and 

PuttAg in the quantities for ,('jE), &) front epmtions (Cg) 

and (ClO) produces integral equations in term of the Fourier 

coefficiwlr+ R(l?)9 f(F) and trignomztrical values of 7 l 

(C36) and (CT@?) then become 
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3 Bo(cot2-2sin~)-tBzsin2&~..+Bnsinn~ 

c 
3 Aocot2+AIsinT+...+AnsinnT 

28 B0(cot2-2sinq)+Bzsin2&00+Bnsinn$ I(F) 
3 

C 

+ 
c 

ii AOcotp+Aisin~+O.+Ansinn~ 

lc39> 
These equations are ir&gratad tsrm by term. For ease of 

reference the following short hand symbols are used:- 

f c =-‘=- 
rllo s coGj-2sinJ)I(F)d(~j gqo=t J(cot$-Psir$)R (F)d $ 

0 

St 
=.m.- z 

n J 

f =-z z '; 
YO 

Cot2R(F)d ; 
J 0 

f =-- 
YI i sinTR(F) 

s 

f 
Yn 

gs =z 
a 

P 7-t 

43 
(c40j 

g =md-=- 
Yo 

"s 
s 

g =-- 
YI 

i 
J 

;; sin$I(F)d ; 
0 

(C42) 

The limits of the integration are z = 0 and T = 1, and 

(c44) 

(C45) and f = -gq (c46) 

in (C38) and (29). n 

uR (B r= Ogqo +B2iz 
q2 

+-+Bngq > + (Aogyo+A,isy,tmtA @; 

&lyn 

> 

X 
n 

;% = (Bofqo+B2fq2 +"""+Bnfq ) + (Aofyo+A,fy,+"'"+A f' ) 
m X n n Yn 

(C48) 

The induced velocities on the x-axis are obtained from equations 
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(c23), (~24)~ (C27), (C2Q9 (C47) and (C48) alid are given GYP 

e= 
(B0(1+2cos$)-Bzcos2+.,.-B cosn#)+(B,g n +Bag +,,,.+B g 

x 
90 q2 

) 

+(Aogyo+A,g YI +o 0 a+Allgy ) 
n qn 

n 
(c49) 

c 
'x 

= (-Ao+A~cos~+~..+Ancosn$)+(B,fqO+B2fq2+...+Bnfq )+(Aof +A,f + 
n Yo Yl 

.".+Anfy ) 
n (c50) 

Note that on the x-axis components with a 2 sign disappear. 

Now let fy; = fro - -1 gqt = gqo + 2cos$ -I- 1 

fyT =f 
YI 

+ cos$ g ::: 
q2 = gq2 - cos2$ 

fY* = f 
- cosn$ (252) 

n 
y 

n 
+ cosn$ (C51) gq* = gq 

n n 

SO that for n z 2 fy* = - g * (C53) and 
n qn 

tF= 
(Aogjo+A, gy, + -+Angy > + 

X 
n 

(Bogq~+Bzgq:f'"~+B g ") 
n qn 
(C54) 

+= (Aof *i-A,f *+ 
“X 

Yo YI . ..+Anfy*) + 
n 

(Bofqo+Bafqa+...+Bnf 
%I 

(C55 

Equations (C54)and (C55) give the values of+ 9 +!& 
mx 

in terms 

of evaluated quattitiesg 9 g*ep fRP f Y 9 Y 9 
and the unknown 

Fourier coefficients. The evaluated quantities are in terms 

of $9 f (space chord ratio) and h (stagger angle). These 

results can bc tabulated and used as constant parameters. The 

variablos are then:- 

1) Blade shape given byy;, y; 

2) Fluid inlet angle. 

C.2,5. Setting up of simultaneous equations 

Equations (C5) and (C7) are 
TT 

yt = *57Tfk-7 
X 

(c7) 

J?LkLL 9(x)_ 
Now 2v* p 2v 

X mX 

are defined in § C.2.2. 
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v$j- 9 $- are derived in $ C.2.4. 
X X 

and Y{ 9 Y; appear from thz aerofoil profile, see p.2, 

kearranging equations (C5) and (C7) 

From (C5) 

From (C7) 

vm 
Lest + 

mX 

9k.L*Ay~ = yl 
2v 

mX 
m t 

X 

vm 
---JL-;v_ V 

mX 

- A- y; = y$ 
'rn 'rn 

X X 

(C56) 

= R and from equations (ClO), (C54) and (C55) 

Bo(cot$-2sin$> +Bzsin2$+,,, +B,sin(n$ >- (hogyo+Al % 
+o .+ I An y.t gY' n 

-(Bogq~+B2gq~+.~~+B,g,?')P' = y; 
nt wm 

K+(Aof 
Yo 

*+AlfyT+.. .i-A n ~)~(Bof~~+Bzf~~+..~+B,f~ f ) 
n n 

-(Ao@;yo+A,gy,+...~Angy 
n 

,Y; - 

Using a further substitution of 9, ($, R, S 

AoPo + AlP, +.,.+AnPn + BoRo + BaR2 +.r.+ B R 
n n 

= -K I- y; 
(C60) 

-AoSo - A,S, -.00 -A$, t- BoQo -I- B2Q2 i-oo.+ Bn'Gn = Y' t 
(: C61) 

in which:- 

Po=fy;-pro 9 Qo=cot$-2sin$-yigqE 9 Ro=f qo-gq: 9 So=Y~gyo 

P,=f "-g 
yn yn 

9 Qn=sinn$-y;go* 9 Rn=fq 
3. n 

- gq* P Sn = y$gy 
n n 

CC@) 

F&r each point on the profile a pair of simultaneous 

equations as abovt? ark produced. Ii'or n points defined, there 

are 2n equations and the matrix has (2n)* elements on the left 

hand side. As the equations stand it would be necessary to 

produce a solutionvfor each angle of inlzt flow required, as 

the vaiue of R depends on the inlet angle. It is 



useful therefore to split the matrix into two, one independant 

of K and one including K, and to solvethe matricies separately. 

The solution then applies for all values of K. Writing:- 

Ao = Aoo + KAo 
F Bo = Boo + KB 

nP 
(C63) 

An = An* + KA nP 

substituting in equations (C6O) and (($51) and separating out 
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Bn = Bno + KB 
nP 

the K terms, the final two sets of simultaneous equations are 

produced, 

AOOPO+A,OP~+r~~+A noPn ^ + Bo~R~+Bz~R~++~.+B~~R~ = y; 

-AooSo-AI OSI- . ..-AnoS. -t BooQo+B20&2+roo+B &4-l = y-i 
(~64) 

-AopSo-A,+--.*~ -AnpSn + BopQ~+Q2pQ2+***+BnpQn = * 

C.2.6. The solution of the equation matrices 

The magnitude of each of the parameters P, '2, R, S 

(equation (C62)) is determined for each value of x along the 

chord line corresponding to the position of the measured values 

vi ,yi, producing one pair of equations. The matrix is 

erected by calculating parameters at various values of x. 

From the solution of the two matricies apTears the Fourier 

coefficients A 
OP --- %P ,Aoo ---A 

n0 
; 23 B op --- np 9 

B 00 --- 4lo used in subseyuont calculations. 

C. 3. Turning Angles and Yressure Distribution 

The circulation round anaerofoil in cascade is defined as I' 

If 2AVt is the change in the tangential velocity of the flow 

through the cascade then 

2AVp = r 

AV, I' =-FE 

Substituting for I' from equation (Cl) 

mm 
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: L & avt = 2s i Y(X) dx 
-0 

(C67) 

Substituting for y(x)from equation (Cg) and integrating, 

(C68: 

and from (C63) % rc 
v'j;;;-=zs 

X 

~(Aop+%., $ 
> 

CC691 

Worn Figure 3, 
V 

vm ‘m 
tan al = x ein h + N coa-h + avt 

V 
mX 

cos h - v 
mY 

sin h 

tl 
c70) 

Putting in the value of~IVt from (C69) and K =p 
m 

1 
x 

tan al = ,,+$A,,) 

cos%Ksinh 
671) 

The stagger is defined and AOO , A 1o , A 
OP 9 AIB are calculated 

from the simultcncous tiquations, so that if a valua of al is 

substituted in ecpa-tiun ((271) R vzllue of K nay bc obtained. 

Sc,)aratin.g c;ut the '(1 ff$i;ms, 7 

tanal -tar&$2 Aoo+~A~o L I 
K= F?zx 

tanaltanh+?+$j z 1 ~ofi+4Atfi & 
(c72) 

and the direction of outlet flow, again from Figure 3 is 

given by 
Avt 

tan cx2 = 
tan h + K - coi n 7 

I - K tan h F 

R having been calculated from equation (C72). 

The velocity induced on eithsr side of the chord line 

in ths x-direction is, 
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vx = Vm + usi + ~ 
X 

(C74) 

From equations (C27) and (C.54)the following equation is obtained, 

% 

r-- = 
mX 

.e.+Ansinn~)+(Aogya+A,g~,+..~+A g 
n yn 

) 

+~ogq~+B~~q~+~..+Bngq*) 
n 3 

(C75) 

The positive sign in thz second term refers to the suction 

side, the negative sign to the pressure side, The velocity on 

the blade surfaccv, in terms of the velocity along the x-axis 

has been detemintid by Kiegels(referencesC4 and C5) from the 

Qpproximato conformal transformation of a flat plate into an 

ellipse of high length to thickness ratio. For an uncambered 

profile (reference C4) 

(C76) 

This equation is used in references Cl and C2 to obtain 

the pressure distribution round the profile. For a cambered 

profile however Ricgel's recommends (reference C5) that the 

gradient of the cambered profile beused so that, 

(C77) 

for the upper surface, and 

VC V 
-+L A 
vln m I .2 

X x fi + YL 

for the lower surface. 

Equation (CS) yt = &(y 
U 

- yL) 

differentiating dyt 
r = Y; = 3(YA - Yj) 

(C78) 

(C3> 

(C79) 

Equation (CG) 
YS = 4(Yu sr- Y,> 

(C6) 
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differentiating 
dYs 
ygy- = Y; = &(Y; + Yi> 

@330) 

Adding (C79) and (C80) y; + yC = y; ) (The gradient of the 
) upper surface) 
) 0331) 

Subtracting ((379) from (C80) y; - y; = yt ) (The gradient of the 
) lo~r surface) 

Substituting for yh p yt 

v L 
vy = 

x 

in (C77) and (C78) 

vx -1 
Tr-- 

X 
(C=‘) 

where the plus sign refers to the upper surface and the minus 

sign to the lower surface. 

Thti aerofoil pressure coefficjcnt is, 

(CF33) 

where 
L = iii22 3. - K sin h 
vm sin PI 

X 

see Figure 3. 

(C84) 

iquations (CGG) to (C&J) allow the cascade outlet angle 

and blade pressure distribution to be evaluated. 

C. 4. Calculation Checks 

Thr: following five checks may be made on the calculation:- 

1) The blade lift may be found in two ways, by graphical 

integration of the curve of aerofoil pressure distribution, and 

from the fluid inlet end outlet angles. The lift coefficie 

is givon by, 

c& cos2ai(tan2a, -tan2u2)sinh+2cos2al$!j(tanal-tan% cash ) 

nt 

(C85) 

Both values of lift arl: quantities measured perpendicular 

to the chord as distinct from normal cascade practice of measuring 
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lift perpendicular to the vector mean flow direction. 

4 ') The vorticlty distribution along the blade chord is given 

by equation (C9) and thd total circulation I‘ from equation (Cl) 

Graphical integration may b e perform& to determine tha y(x) 

circulation. The explicit . integration of y(x) defined in 

equation (C67) in terms of the change in tangential velocity, is 

given in equation (C68). 

3) The source distribution may be found from equation (ClO). 

Graphical integration of the source distribution curve should 

give zero to fulfil the condition of equation (C2). 

4) The recalculated acrofoil gradients mcy be dotermined 

using equatiorz(C5) and (CT). q(x) is found using (ClO), u and 

v from (C49) and (C50). 

5) The original a\?rofoil ordinotcs are found by inttigrating 

equations (C5) and (CT). In order to make the integration 

possible cxFli&itly the equations are written in terms of a 

single acrofoil. 

Aquation ( c5 

Equation (CT 1 is dys 'm + v 
?!ET = vm+ + u 

X 
(c7) 

Par a single aerofoil u << vm and is neglcctod so that 
X 

(c5) 

dyt _u_o 
G- = 2vmx 

(C85) ’ 

d’S v . 

T!tEi- 
=K+-$% 

mx 
(C86) 

Substituting for q(x) from equation (ClO) andvsi from equation 
(C28), 

B,(cot$-2sin#)+BQsin2#+...+B 
n sinnQ = 2 

-&+n,cosq&...+A n-, COS(ll-I >$?5 



For zero angle of attack K = 0 and writing A0 = 0 (see reference 61) 

equations (C87) and (C88) on integration become, 

2 
c Yt = B0(sin$+&in2#)+ 

(c44) 

n=2 

(CBS) 

and n 

$ Y, = A,;(l-cos2$)+ An 
c 3 
n=2 

whore An, Bn arc cocfficicnts calculated at K = 0. 

C.5. Sumzriccl vzluos 

c,5.1. Choice of integrating points 

Certain quantities have to be integrated numerically e.g. 

fq 965 'Phd "-jJcuce II computer 
n qn 

(equations ((340) - ((3.4'3)). 

performs an integration using Simpson's ruli;i and requires 

ordinates tabulated for equally spaced abscissa. As the inte- 

grations are performed ryith respect to $ $ = &(I - cos 3) 
c 

the arc of 7 from 0 to 7~ is divided into (18) parts of 10' 

eacn giving (19) ordinates. 

C.5.2. Choice of singularity points 

Thcrc arc three considerations which determine the position 

of the singularity points:- 

1) The number. As c computer isusnd throughout the calculation 

the authors worz not restricted -to the use of three points only 

as other workers have bwn. The initial calculation was performed 

on a C4 base profile which is defined by 17 points. This was 

taken as a nominal numb-r of singularity points and any quantity 

between 15 and 20 is appropriate. &war points would produce 

quicker results, more would tend to make thti calculation unwieldy. 

It is useful to have points close tog;thcr near the leading edge, 



matrix js very :ic.nsitivc t3 l,n_rg;: numr,rict?.l VT~UCG, If my one 3f 

%hc pzr:~n~c%c;rs 2, 2, Y?, S is lcrgc, the cDmputcr cquzt;s 211 small 
p:wrmctcrs t:, z<.r3 cocd pr:2duc~s an incorrect I-rsult. ~qui?ti.:xx3 

C CJ-3) - (c,,:3) S!T!OPf fZlo9gaoPf 
-- Yo 9 gYo as functions 3f cot 

ii 
which is iafinitc at x - = 0, ..- e Ewcvv~r on ch,2ngi:lg t:i.Z intcgratizn 

functi.3n frx,n : tc ii; : = $(I 
c 

- cos 7) 
> 

3 . the cot F tan 

diszp;>izrx. 

(c91> 

frizi cqu,?.'c-i3.n (CC?) tht-t 

$40 
( > 

Q. =cot$ - bcc2mi; vcr,y 

lXg& a 8 *$ + 0 
( 

2sinf$-y;gq~ 

23 @void having Q. 
> 
to? large the 

first singularity iF tzltcn ~.t 2~5$&~rd back i'r~~n the leading edge. 

3) Intcgrrti3n singul::riti;s. T& discontinuity af intigroti:)n 

in cquzti3n (Cl(J) is Lliminztcd by thz use 3f equations (C2i)) 2nd 

(c22) l 'Eli num,:ricr,l quCntj.tics m;ny still Scconz izfinitc if 
-.e 

'i' = .‘A. x (0 o L c -L .~r cszx!plc equ:.ti..3ns ((233) and (CT-F)) 63 thtlt the 

flux singAzrity ysints must bc cI;gscn ::a th?t they do n3-t; 

wincidc with thC numc-rical in<;Lgrlting yoint-z, XIC limit of 

i?!(7'~) ant! If?) as x 3 z is zcrc7, but ;= slig!:t discrcpzncy in 
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c.5.3. Proflls coordinates 

Blade profiles are usually described using camber line and 

base profile ordinates. The base profile ordinates are measured 

perpendicular to the camber line, at a position measured along 

the camber line corresponding to the base profile $ position 

(see Figure C4). It has been suggested (reference C2) that the 

values required in the calculation Ys9 Y t (equations ((3) and 

KW)r may be taken as the conventional coordinates. If the 

profile isaet out as u$per and lnwer ordinates along the chord, 

on the other hand, equations (Cj) and (C6) can be used directly - .. 

to determine ,ys9 yi . 'Using an interpolation program the 

values of ys, yt , for every 2.5% along the chord can be determined. 

c.5.4. Profile gradients 

From the thickness and slope (y, ) ordinates the 
9 

ys 

gradientsare found using the central difference method of Cal- . 

culation. The Newton-Stirling formula is differentiated (reference 

C6), giving 

cc921 

where f& is the 1st derivative of the function f at x = xor 

h is the ordinate spacing 8n represents the nth difference ~ 

and p the mean of the upper and lower n th difference. The 

inclusion of terms up to 67 is satisfactory for $ from 

,125 to 0.90. Outside these values it is necessary'to use the 

forward or backward difference formulae. 

However it was found that these formulae wze unreliable in 

these circumstances and the gradients required are taken from 

a scaled up drawing of the base profile and camber line by direct 

measurement. 

As has been previously mentioned %ith regard to the values 

of P,Q,R and S, if any one of the parameters in the simultaneous 

equations is large compared with the rest a useless result is 
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produced. This phenomenon also occurs with large values of the 

grtients, which appear near the leading and trailing edges of 

the profile, and comprise the right hand side of equation (C64). 

The error is apparent in the plotting of the pressure distribution 

curve as a number of l'roguel' points occur (ie. a smooth pressure 

plot is not produced), and the integrated lift coefficient from 

the curve does not agree with the lift coefficient calculated 

from the turning angle (see C4, 1). The authors have found it 

necessary in these circumstances to reduce leading and trailing 

edge gradients, so modifying the original profile, The largest 

numerical gradient is that from the thickness distribution at the 

leading edge, which is infinite. Even at 2.5% and 5.0% the value 

of "4 is sometimes todarge to be accommodated and has to be 

reduced. Between lO$ and 90% chord the plotted values of the 

gradients fnrm a smooth curve. A general rule for producing a 

reasonable pressure distribution, ie. no tlroguett points and 

correct lift coefficient, would be to extqpolate the smooth 

gradient curve back to 0% chord, from say 10% and on to 100% 

chord from say 90%. At the present time this rule is arbitrary 

and it is necessary, if the correct result does not appear first 

time to adjust leading and trailing edge gradients until a 

consistent answer is obtained. 

For a circular arc camber line the gradient is found 

analytically. iilith f chordwise pti-tion and 0 the camber 

angle 

cc931 



Appendix D ADAPTATION OF THk: l%3THOD OF CONFORMAL TRAWFORMATION 

TO USE ON AN ELECTRONIC COMPUTER - -/ 
D = Data 

D:Basic airfoil 

CHANGE AXES 

D:tan$, c',,' 

(x9 y> 

1 D:(x,Y) 

I :L'I&NGE AXES I 
D:tanK, flo qt 

@P 7) 

1st JOUK.TRANSFN, 

D:h Y>, C2 

- -- 
, C?%NGE AXES 

D:tanK, El9 q' 

(s9 v-1 

R:(xs Y> 

--. 4 
SUBSEQUENT JOUK.TRANSN.~ 

D:(XSY)S C2 

Rdfs ds /$$I 
i 

I 

R = Results -.-- 
\I/ 

ARGUhaNT & RADIu 
VaTOR ON OPTI- 
MUM IRREGULAR 
CIRCLE. 

EQUALLY SPACED 

OTHER PARAMETERS 

D:ae+ aeh+co 

ael(equall 
spaced 7 

R:a,$o, h-co,h-toa9 

h (equally 
spaced) 

I 
,I/ 

MODIFIED FOURIER 
COEFFl" o 

D:h (equally 
spaced) 

R:A', B' 

1 

I 

___. -.. .--- _- 
.,- 7----- --..-&--~~ 

=A,: 9 B; s $0 

R: 60 

VELOCITY COEFFICI?jNTQ 
OF THEODORSEN 
TRANSF". 

R: 

R: &go&o) c 

AIR ANGLES 

\I/, 
F'RESSURE COEFFIC- 
IENTo 

D:~I sm(fo,gosho) 

3: Cp” 



Appendix E ADAPTATION OF THJ3 &Ki$THOD OF DISTRIBUTED 
SII'JGUI&XtTIES TO USE ON AN ELECTRONIC COKPUTER 

1 

PROGRAM ? i 
DiiTA-E i---+ - FOR ~OGRAM 

RESULTS-$ f 

1 .a 
._---I-. I 

-PROGRAM 2 1 
DATriLT _ I 

AC_.. FOR PROGRtW 
17 , I RESULTS-$ .i 
1 I 

I .-.-. .-.--- 
PROGRiW 3 -. -. 

t ! 

I 
D;lr'I!A-l?ROFILE COORDINATES(xn~yn) , 

i RESULTS-ORDINATES AT INTERMEDIATE 1 
i 

POINTS 
i 
I . .- 4 

PROGRAi\!I 4 i 
DA'IX-ORDINATES OF PROFILE 

RESULTS-DIFFERENCE Td3LE PiiRl- j 
I'JETERS t 

I -- 
PROGRAM 5 

DATA-DIFFEREWE TASLE PsIRAMETERS 

L--.2 RESULTS-GP,-DIENTS (3;) y;,(j.i) yc 
------ - 

] 
.- - ---- .~. .-_._ ~_ _._ - ._.._ 

H3CJGR.U 6 
DAlTA-$ 

' RESULTS-GRiiDIENTS 
: (FOR c1RcuL,A~ ARC 
: CAMBElR LI.NE ONLY) . ._-_.__ -..--__- --. - .,- . . . . 

I PROGRAM 7 
z j DATA-$@ ; 

I 

I 
i'RESULTS-R(F),I(F)I 

! PROGRAX- 8 -~- ' 
DATA-E, ii;,R(F),I(F) 
dT(SPACING OF 
INTEGRiiTING PTS.) 

,-- 

PROGRAM 9 
DATA--$ d&&R(F)J@'~j 
RESULTS-g ,f' 

-qn _ .__ %l 

; PROGRAM IO 
- DATA- y;, y; 

gyo9gy~9fy 9f 9 

,gqo 92 ;tT 90 
O YY' 

qn' qn 
:RESULTS-P,Q,R,Spy& 

. _. _.. _. --- --.. -' 
NOTE 1 &&i&-j, &‘, i3 

USE y;, FROM PROGRkM 5 
IS CAMBER LINE CIRCULAR 

DATA-P,Q,R,S,y& y; - 

ARC? IF SO USE RESULTS 
RESULTS-Anflno; 

B 9B 
OF PROGRAM 6 IF NOT USE - .- - i;.~"pl_.~~~- _ - , _ ._ - _.__ .-.. 
RESULTS OF FROGRAM 5 PROGRAb! 14 _. __-. .- --.. -~.-.-. 

' 
. ..-. _ __._ -__ - _..-- .-_.-_ - 

FROM XROGRAM d5 -- 1 1 DATA-$ h, CXI 

PROGRAM 16 
DATA - A9 aI 

K 
A n9 Bn 

FIjOH j 
Y;, YC 

PRO- ---i 
CZRAX : d 
-I ; gYo9gYl 9fYo9fYl 9gqo9fYo I 

f . . gqn9 9n 

A 
OP 9AOO9-$ 

-1 RESULTS K9 
pf" I 0 1 

2 / 
I V 9 : 
: a29ci “x : -___ -_- _---___-_. _--, 

I _.__.-. --___ _-.__-_. .__-._ _ 
; PROGRAM 15 
1 DAT:*I- K t 
/A 

n@9AnO' 
'B n@9Bno + 

[ ..* FROM PROGRAii“ 
i RES~TS-Q,Bn _ _ 

--- -- .- 
8 

;,I -7 -- 
-'. TO PROGPiAM -- 

~ FROM PROGRAM 9 16 -- ---.- - _ - .___. _ _ -__.. _.- __.__.____ -- I7 RESULTS p 9 v"u- 9 + 9 + 9 Y49 Y; c c 9 

mX mX mX 
m Pu9 PL Y,t Yt" ( 

x I 
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FIG.4.3.2. COMPARISON OF PRESSURE DISTRJBUTION AS 



PROFILE IOC+/SO CSO 
STAGGER M ISo 
A(R INLET ANGLE Do 
LIFT COEfFlClENT 
-HOWEL I. 0617 
-em SCHLICHTINC 0+89b 

cc--------- 

l I 
20 40 60 

FIC.4.3.3. COMPARISON OF PRESSURE DISTRIBUTION 
AS DETERMINED BY THE TWO METHODS. 

DEVIATION 

4 
TURBINE 

e 

2 

I I I 
- 60 - 40 - 20 I 

COMPRESSOR 

- 40 r 
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A.R.C. C,P. No.618 
June, 1962 
Pollard, D. and Wordsworth, J. 

A COMPARISON OF TWO METHODS FOR PflEDICTING THE 
POTENTIAL FLOW AROUND ARBITRARY AIRFOILS IN CASCADE 

A method of conformal transformation due to Howell 
and a method of distributed singularities due to 
Schlichting, for predicting the performance of cascades 
of arbitrary airfoils, have been adapted for use on an 
electronic computer‘ Much greater accuracy than 
h,itherto is thus possible, and this has enabled xxmerous 
r=f:-:eaents to 3e made. YI A.._ For an airfoil section 
d~f"lzed at 30 potits, the former method reqkres about -- 
I hours equailjj divided between automaticcomputing and 
graphical work) while the latter is completely xzlytical 

A.R.C. C.P. No.618 
June, 1962 
Pollard, D. and Wordsworth, J. 
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