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A study has been made of electron-ion recombination in the 
flow of a partially ionised Argon plasma through wind-tunnel nozzles. 
Effects of thermal conduction, convection and two-body recombination 
processes are neglected, but the temperatures of the ions and electrons 
are allowed to differ. The equations have been integrated for a variety 
of stagnation conditions and it has been shown that, for the cases 
considered, the flow is far removed from thermal equilibrium. 
Furthermore, as a result of this effect alone, large differenoes between 
the temperatures of the heavy particles and the electrons are predicted. 
The phenomenon of "sudden freezing" characteristic of atomio recombination 
is not encountered, because of the exponential temperature d.eFendence of 
the recombination rate which results from the assumed ionic recombination 
mechanism, 
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1, Introduotion 

This paper is a further step in the study of electron-ion 
recombination in the flow of partially ionised argon through wind-tunnel 
nozzles. A preliminary study was made by the authors1 by determining - 
the flow for the two limiting cases in which recombination is either 
completely frozen or in complete equilibrium, and it is not intended to go 
into any detail here concerning these results. The main aim of these 
studies is to obtain a theory which will predict with reasonable accuracy 
the magnitude of the flow variables for an initially ionised gas at any 
station in a supersonic nozzle of specified shape. It is not suggested 
that the results given in this paper represent the completion of these 
studies; rather, they are an intermediate step between the simple 
equilibrium and frozen flow oases and more accurate calculations. 

The mathematical model used in this intermediate analysis was 
constructed by making the following basic assumptions: 

(i) The flow is one-dimensional, steady and inviscid - a close 
approximation to this flow may be obtained in the central core of the 
gas, if the nozzle wall boundary layer does not fill the nozzle 
completely, and if the rate of change of effective cross-sectional area 
is small. 

(ii) Magneto-fluid-dynamical effects may be neglected - this implied 
that at any given station in the nozzle there will be a homogeneous' 
electrically neutral mixture of heavy particles (atoms and ions) and 
electrons, a condition which is not met if electron diffusion occurs. 
However th$s diffusion is strongly resisted by the resulting ohange 
separation o Furthermore, it is found in practice that the plasma 
potential can have widely different values between the arc chamber and 
the nozzle exit of a plasma-jet wind tunnel, a situation which can give 
rise to a large drift current, that is, to a flow of the electrons relative 
to the heavier particles. All currents and body forces on the gas are 
neglected in the present work. 

(iii) Ionisation resulting from the electric field in the aro chamber 
is also neglected, and it is assumed that the expansion of the hot gases 
takes place from a large reservoir in which equilibrium conditions 
prevail. 

(iv) Ionisation and recombination on the walls of the nozzle are 
not considered, as these are boundary-layer phenomena, and outside the 
scope of this work. 

(v) Conductive, radiative and convective heat transfer are 
neglected - this again is an assumption which may not be justified in 
practicej conduction in particular may have a very marked effect on 
the flow3. 

(vi) In general the temperatures of the heavy particles and the 
electrons will not be equal - a phenomenon observed by several workers 394 
which is attributed to the fact that atoms and electrons are effeotively 
isolated energetically. In the present work the electron temperature is 
determined from an energy balance for the electrons. Following Ref.& 
this considers only the effects of elastic and inelastic collisions 
between electrons and ions, effects of conduction and convection within 
the electron gas are neglected. The magnitude of these neglected terms 
requires further study. Recombination by radiative capture of an electron 
is assumed to be a slow process compared with the three-body process 
involving an ion and two electrons - a condition which cannot be met if the 
density is very low. 
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It is recognised by the authors that many factors, which may 
or may not be important, have been neglected. The reason for these 
omissions lies in the mathematical complexity of the problem, the aim 
of this paper is to suggest a crude but workable mathematical model 
which may be extended in the future. The next stage in this work wiU 
be to determine which factors may justiriably be neglected and which 
must be included, but this is outside the scope of the present paper. 

In Section 2 the basic thermoQnamic relationship for the 
ideal ionising monatomic gas are derived, the results being given in 
terms of dimensionless quantities following the procedure suggested by 
the authors in Ref.1. Section 3 deals with the quasi-one-dimensional 
flow equations which are present in a form suitable for integration 
numericdly by a Runge-Rut-ta process. Section 4 deals with the 
computational procedure and indudes a discussion of the results of the 
integration. 

2. The Ideal Monatomic Ionising Gas 

The theory of the ideal monat 
has been formulated in several papers lgrm 

'c ionising gas in equilibrium 
I 17 and it will be sufficient 

merely to quote the results here. The equations governing the 
thermodynamic behaviour of the ideal monatomic ionising gas in equilibrium 
are : 

P = Pm + 4 

i= iT(l +a) ta 

u = $T(l + a) + a 

. ..(I) 

. ..(2) 

o..(3) 

a3 I 
- = - Ti e-'/T. o..(4) 
1 -a Q 

These equations have been non-dimensionalised by a technique 
similar to that employed by Lighthill for the ideal dissociating gad. 
A more detailed account of the method is given in a previous paper by the 
authorsI. The values of the characteristic temperature, density, pressure, 
internal energy and velocity which have been used as units are given for 
argon in Table I. 

Electronic excitation and multiple ionisation are neglected. 
Unfortunately, when this theory is extended to the case where 
equilibrium is not ttchieved these equations are not adequate. In their 
derivation it has been assumed that the atom, ion and eleotron 
temperatures are all equal, and in general this assumption is not valid 
in regions where thermal equilibrium is not attained. The remainder 
of this section will therefore be devoted to a detailed derivation of 
the equations governing the thermodynamic behaviour of the i&z&L 
ionising monatomic gas away from equilibrium. 

Table I/ 
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Table I 

Characteristic quantities 

Quantity 

Pj 

units 

lb 

fta 

Values for Argon Units Values for Argon 

dynes 
1.1976 x lOI - 5.7362 x -toI 

cm' 

T.!L OK 1.8210 x lo5 PK 1.8210 x IO5 

slugs gm 
Pi - 2.9326 x IO' - 145.9 

ft3 cc 

1 
ni 6.4538 x lOa8 1 

ft3 
2.2791 x ioa4 

CC 

V! 1 

ft 

set 
2.0208 x lo* 

cm 

set 
6.1594 x lo5 

ft lb 

slugs 
4.0836 x IO8 3.92990 x lO1’ 

slugs 

ft2 set 
5.9262 x -10~ 

gm 
8.9859 x IO7 

cm2 seo 

It will be assumed throughout the following analysis that the 
temperatures of the heavy particles (i.e., atoms and ions) are equal at 
all times but may be different from the electron temperature. The 
existence of the different temperatures in the atom-ion and electron 
gases implies that difrerent maxwellian velocity distributions exist in 
these component gases. This concept is amply justified in the literature. 
(See for example Refs.4,5.) 

The general expression for the equation of state for a mixture 
of gases as derived from statistical mechanics is: 

p'vt = k(nLT' + n\Tt + n:Ti) . ..(5) 

where V is the volume of the gas under consideration, 

But nJ = n: since the gas is electrically neutral 

hence p'V' = k[(ni + nA)Tt + n:Ti] 

also the total mass involved in the system is given by: 



if 

then 

ptV" = nima + nJm+ + n:me = (n: + nL)ma + n;me 

m a = m+ " m e 

P? 
-= "( Tt 
P' ma 

+ aTA). 

If this equation is written in a dimensionless form similar 
to equation (1) we obtain: 

The equation 
in a similar manner. 

P = p(T + aT,>. . ..(6) 

relating enthalpy and temperature may be obtained 
In general: 

-g - x)&T1 
Ze 

. ..(7) 

which may be reduced to: 

El = [(n: + nL)T' + nJeTi]k + nix 

so that 

ala 

e = $(T + aTe) + a . ..(8) 

i = $(T + aT,) + a. . ..(Y) 

There are two further equations required to completely 
specify the thermodynamic quantities, namely an equation giving the 
rate of production or recombination of electrons, and an e uation relating 
the two temperatures. In a previous paper by the authors ? a method was 
outlined by which an approximate rate equation could be obtained by 
combining equations derived by Petsohek and Byron4 and Bond5. A slightly 
modified and simplified form of this equation has been used in this 
analysis; it is given by: 

da 
-= 
dt 

ri - rr 

where 

. ..(lO) 
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A = B = 3.3@3 x 10” (Set)-’ 

TX = - r 0.7359. 
T' e 

This equation assumes that ionisation and recombination occur 
only through the reaction: 

A + e $ A+ + 2e. 

It has the same form as the rate equation derived in Ref.1 but 
two further simplifications have been incorporated. The production and 
recombination rate coefficients have been assumed to depend on Tx 00, 
whereas in fact they may also depend on T to an unknown extent. A 
similar assumption was made by Dond5. Also, the radiative recombination 
process discussed in Ref.1 has been completely neglected. Equation (10) 
is probably a gross over-simplification of the true ionisation and 
recombination process. However it is hoped that some of the main 
features of the full rate equation are retained. 

The remaining equation relating the two temperatures may be 
obtained by considering the conservation of energy for electrons. In 
general heat is transferred to the electron gas by radiation andby 
conduction and convection within the electron gas, furthermore electrons 
exchange energy by elastic collisions with heavy partioles and lose 
energy by inelastic collisions which lead to ionisation. However if 
all these factors are included a second order, second degree differential 
equation is obtained which makes the solution of the problem very 
difficult. It has therefore been assumed throughout this paper that 
convective, conductive and radiative heat transfer terms have negligible 
effects. No attempt will be made here to justify these assumptions since 
any one of the terms omitted or all of them may have a considerable effect 
on the flow; these assumptions represent a certain mathematical model 
which should be regarded as a tentative step towards a more complete 
solution. 

With these assumptions the equation of conservation of energy 
for electrons may be written 9?rr, = &1 where QWI, is the rate at 
which electrons gain energy by Coulomb collisions and Q, is the rate 
at which electrons lose energy by ionisation. 
we have: 

From Ref.4 and equation (10) 

3 

Q, = (Constant)~2a2T~z(T - Te>4n 

and hence (Constant)(l + ZT~)T," (t + 2)iTJTe[(1 - a) -p(x2!l!i Jhe] * 

T = Te+ 

. ..(n) 

Or 

T = Te + CJJerp,4 o 
Now/ 



Now #(T,,p,a> is positive when ri > rr and negative when ri < rr, 
when I' i = rr $(T,,p,d = 0, Physically this implies that: 

(4 when the gas is in equilibrium the two temperatures will 
be equal, 

(b) when the nett reaction rate produces ionisation T > T , this, 
occurs behind a strong shock wave, for example (Ref.4 , P 

(c) when the nett reaction rate produces a recombining flow 
T < Te, which is the case encountered in a supersonic nozzle. 

Using equation (II), the atom temperature has been plotted 
against the electron temperature for various densities and ionisation 
fractions, and the results are presented in Figs.l-4. 

The four equations (6), (Y), (10) and (II) completely specify 
the thermodynamic behaviour of the ideal ionising monatomic gas away from 
equilibrium within the initial assumptions. 

3. Quasi-One-Dimensional Flop Equations 

The frictionless adiabatic flow of an ideal ionising monatomic 
gas through a duct of slowly varying cross-sectional area A is 
desoribed by the equations of conservation of mass, momentum and energy: 

pvA = p%r” = jr . ..(12) 

dv 1 dp 
v-+-- = 0 

e PZ 
..&3) 

i+&vz = i. . ..(14) 

in which asterisks denote conditions at a sonic throat, 6 is a 
dimensionless distance defined below, and A is the area ratio At/A*'. 

The expression specifying the nozzle shape will be the same as 
that suggested in the previous paper by the authors: 

A' = A"' + g (x')" 

where xt is the axial distance measuredfrom thethroatas datum, and 
% is a constant dete rmining the expansion angle. 

4; the dimensionless distance is definedby: 

so that the nozzle shape becomes: 

A= I +c=o . ..(u) 

Equations/ 



Equations (12) - (15) together with the thermodynamic 
relationships, equations (6), (y), (IO), (11) and a knowledge of the mass 
flow jr, and the initial oonditions speoif+y the flow. 

These equations must now be solved to obtain the flow 
variables downstream of the throat and this is most easily achieved by 
reducing them to six simultaneous differential. equations in 
PI PI T, Tel a and i with c asindependentvariables. These may 
then be integrated by a numerical teohnique. 

Equation (10) may be written: 

da 
z = tBs f Tk;( t + 2) LTpe[(l - a) - pa’$elbe] . ..(16) l 

is the dimensionless rate parameter analangous 

to that used by ~rayy 

Combination 

5 

2 

for the case of the ideal dissociating gas, 

of equations (6) and (9) yields: 

dP 

z 
= (i-a)$+,:- 

and eliminating d.p/% and di/e xi.-& the aid 
(12) - (15) we obtain: 

dP 

da 
5 
of equations 

-= -- 
de L Va 

P - + p\i - a) 
2 I L a I +ga I 

ap 1 dp 2PE - = --- 
a-5 va ag 1 + g= 

ai 1 dP 
- = --• 
ac P WI 

Finally equation (11) may be differentiated yielding: 

dT aT dp dcc 
F,z+F,---+F -+F4- = 0 

G G 3 G a% 

. ..07) 

. ..(18) 

. ..(lY) 

. ..(20) 

where 

FL = Ae 'T$r e (I 
-i l/T, 

- a) - paaTe e ][(1+:Te)(:+2)T;(;+3) 

- (1 + ~T,>T,T, + - ;(; + 2)4+ +c?(; + 2)(1 +;Te!C;/s;Tpe:'e 

e 

l 

-- ; (T - T,> 
e 
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F= a . 

. F = - 
3 

A(1 + $T,) T# BTpe Ibe e a 
e u _ " (T _ T ) 

e 
P 

F4 = A(1 +zTe) P ’ i+2paTe e -' "e)+(~-~e)pn(2)-Yj 

m 
G c F’s P; = - -+-T’ 

!a Fa 
e 1 . ..(22) 

where 
afJ da 

Fs = Fs - + F4 - . 
de dC 

Equations (?6), (f7), (18), (lg), (21) and (22) together represent a 
system of six equations with seven unkncwns, and befcre attempting a 
solution the velocity must be eliminated in terms of the mass flow (f) 
which may then be treated as a boundary condition. The remainder cf 
this seotia will be devoted to a short discussion of the %WO Mach 
numbers whioh may be defined for the flar. 

that: 
It may be shown from the continuity and momentum equations 

dP dp/G 
- = aa 

ap = aq/a 
=Tp- 

2 pfei 

(* + e )dph& l 

. ..(23) 

This equation shcws that the flew ve1coi-Q is that of sound 
at the throat, unless dp/iy = 0. 

Furthermore if equations (17) and (18) are combined it may be 
shown that: 

and hence irrespective cf the mass flew Ha = ? when Z = 0 8% the 
throat unless dp/E = 0. This is an important result for the 
computational procedure that follows. FinalJy, if the speed cf sti 
is written in terms of the two temperatures we have: 

, 
aa = ; (T + a,) 2P da ---* - 

3 ap/iy iy 
and if we define a frozen speed of s-d (I&f.&) 8s 

. ..(25) 

o= = 5 (T + .aTe) . ..(26) 
3 

aen/ 
------ --------w ----em ---I---- ------w --* 
Note: The quanti@ a defined in equaticn (23) is not B true speed # 

sound in a non-equilibrium gas. 
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then 
&a = ca _ 2 

w= 

3Pap/aF;' 
. ..@7) 

A frozen Mach number being defined as 

MC = v/c. 

Now if the flow is supersonic, rip/G will always be negative and 
da/E will be negative or zero. Therefore: 

and 
c2a 

MC d Ma 

also equation (17): 

dP 

L 

(i - a) 3 -' da 

3 [ pzc 

z 

G= -2 + p(i - 4 va 1 + ga- 1 
. 
1-a 3 

which has a singul&rity at a point where - = - i.e., when 
va 2 

va = E(j. - a) = ca. This singular point will therefore occur when 

% 
= 1, that is, downstream of the throat. At the singularity point 

dP 
we must have either - +oo or 

a 

(l+Ea) aa 
F: = - l -0 

2(i - a) d& 

Clearly, it is the latter condition which represents the physical flaw. 

Difficulty is experienced in performing the step-by-step 
integration through this point, and it is therefore useful to compute 

% 
at intervals during the calculations. 

4. Computational Procedure 

It was decided to integrate the set of equations (16) - (ly), 
(21) and (22) numerically an a Ferranti Pegasus high-speed digital 
computer using the Runge-Kutta process due to C. 

7 
tratchey which ia 

particularly suitable for high-speed computation' . 

There are two difficulties which must be surmounted before the 
equations may be integrated, these are: 

(a) Starting the integration. 

(b) Determining the mass flar (jr>. 

It was decided to commence the integration at E = -00, i.e., in the 
stagnation region upstream of the throat. To obtain the stagnation 
conditions it was assumed that the gas started in equilibrium 
(when T = T,), and then by specifying any two variables the remaining 
four may be calculated. 

Unfortunately,/ 
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Unfortunately, in the stagnation region all the deriwd3ves 
vanish, and the integration was therefore started by constructing an 
asymptotic series solution for the flow variables at large area ratios 
upstream of the throat by expansion about the stagnationconditions at 
g = "do. This was the method employed by Hall and Russo~2 and a 
detailed discussion of the technique is included in their paper. 

The expansion was carried out for the hyperbolic axisymmetrfc 
nozzle specified by: 

A = 1 +ga 
l 

in terms of the expansion variable Z = A+ assuming that the @AS 
remained in equilibrium. 

The leading terms in the series were found to be: 

a = uo+aaZa 

T = To + TaZa 

P = PO + PaZa 

P = PO + Ps@ 

i = i. + iaP 

Y = ITo + viz = v,z 

where 

“a - 

1 
aa =- 

(1 + ;To) 
+ 50 + noIT, 1 

The series shows only a very slow departure from stagnation 
conditions, and at an area ratio of IO (E = - 3.0) the variables 
have changed by less than 1% of their initial values. 

having established a suitable starting series, the next stage 
in the integration is to determine the mass flow yielding supersonio 
flow downstream of the throat. Itwillbe rememberedfrcmthe 

previous/ 
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previous section that the velocity was eliminated from the equations to 
be integrated, in favour of the mass flow. The reason for this 
substitution is that the mass flow is known to lie between quite narrow 
limits, i.e., those for equilibrium and frozen flow. There is no 
straightforward analytical method of obtaining the mass flow and hence 
a method of trial and error was adopted. A value for the mass flow 
was chosen, and then the integration was carried out from - 00 to the 
throat, when various parameters were investigated. It was shown in 
the previous section that the actual Mach number (la,) will be equal to 
unity at the throat regardless of the value of the mass flow, unless 
Q/E = 0, nevertheless this is a fairly sensitive parameter. If 
the mass flow chosen is too large then the Mach number reaches units 
before the throat is reached. Hence by starting with the largest mass 
flow (i.e., the frozen mass flow), and then decreasing it gradually a 
value is reached when the Mach number increases smoothly from zero at 
x. = - 00 to unity at the throat. If on integrating downstream of 
&e throat supersonic flow was obtained then it was assumed that the 
correct mass flow had been determined. 

This is a very crude method for finding the correct mass 
flow, and it is further hindered by the location of a singularity at a 
point slightly downstream of the throat. Fortunately, it was found 
that the solution downstream of the throat was not sensitive to the mass 
flow and an accuracy of three or four significant figures was found to 
be sufficient; small perturbations of the chosen value were found to 
induce negligible errors in the solution. 

The final difficulty which had to be surmounted was the 
integration through the critical point where M = 1. In order to 
determine the region of influence of the singu&ity the computer 
programme was designed to give the value of dp/s at discrete values 
upstream of the throat. It was found that dap/aa underwent a sharp 
change as the region of influence of the singularity was entered, and 
the integration was curtailed at this point. The procedure from here 
varied slightly depending on the condition of the flow. If the flow 
was frozen or near frozen considerable difficulty was encountered but 
plotting en(p) or p and Te against a yielded straight lines 
which facilitated extrapolation. For equilibrium or near equilibrium 
flow it was found that a graph of aTe against &n(p) was a straight 
line, and then by plotting a and Te against Jn(p) two further 
crude extrapolations could be made and the mean of the resulting values 
taken. These extrapolation techniques were used to estimate values of 
all the dependent variables at a point downstream of the critical 
point, which were used as initial values for a step-by-step integration 
in the supersonic flow region. It is not suggested that this is the 
best method for getting through the singularity, but an empirical 
justification was obtained by perturbing the extrapolated values, and 
noting that only small errors were introduced into the downstream 
solution. 

5. Results 

In Figs.1 - 4 the variation of atom temperature (T) with the 
electron temperature (Te) is shown for various ranges CSE' ionisation 
fractions (a) and densities (p), as described by equation (11). In 
all cases the graphs may be divided into two halves about the line 
T = Te (equilibrium condition). Points above this line (T > T ) 
represent states in which the ionisation level will increase with &me, 
while points below the line (T < Te) represent states in which 
recombination will occur. 
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It may be seen from Figs.1 and 2 that the density dependence 
is relatively unimportant in the ionising region, large variations in 
density showing only small changes in temperatures. In the recombining 
region however changes in density are 'important, producing large swings 
in the temperature. 

Figs.3 and 4 show the effect of the ionisation fraction on 
the temperature relationship. The ionising regions of these graphs 
have the same form as those formulated by Petschek and Byron&; there is 
a slight shift towards the equilibrium line (T = Te) due to the 
inclusion of the recombining terms in this work. For low densities in 
the recombining region variations in a are of little importance. 
There is a wide range of conditions at low density for which T aTe. 

Figs.5 - 30 describe the flow conditions downstream of the 
sonic throat in a near conical nozzle. The equations describing the 
flow have been solved for a number of stagnation conditions and the 
results will be described below. Figs.5 - 11 have been obtained for 
stagnation conditions of @'i = 4.0 x 10" and p, = IO-a, To = 0.09. 
Fig.11 shows that the ionisation fraction (a) changes only sla~rly through 
the nozzle, and hence the flow is tending towards a frozen region where 
a = constant with distance. Conditions are in fact, far removed from 
equilibrium but the sudden freezing phenomena so characteristic of 
dissociation in nozzlesl, is not encountered in ionisation. Thb 
statement has been verified for a wide range of conditions and may be 
attributed to the different form of the rate equation which has evolved. 

Fig.8 shows the variation of the two temperatures with 
distance through the nozzle, and it is found in regions where thermal 
equilibrium does not prevail, that the electron temperature falls less 
rapidly than the temperature of the heavy particles. Consequently at 
large area ratios the two temperatures differ by large amounts. For 
example at an area ratio of 1000 (Fig.5) the difference (Te - T) = 0.01 
on a non-dimensional scale; this represents a temperature difference 
of approximately 18OO'K. Large differences between atom and electron 
temperatures have in fact been measured in plasma-jet wind tunnels3. 

The remaining graphs describe the other flow variables in the 
nozzle and it may be seen that they lie between the two limiting 
solutions of equilibrium and frozen flow as is to be expected. 

Figs.12 - 18 show the effect of reducing the stagnation 
temperatures, a value of 0.06 being chosen in this case. The ionisation 
fraction (a) is found to be small at all times (Fig.18) although still 
not completely frozen. However the other variables are closer to the 
frozen solutions in this case, and for a given area ratio (A) the difference 
between the two temperatures is increased. The temperature of the heavy 
particles is close to its limiting value (zero) at an area ratio of about 
1000, and at this point the electron temperature is falling only slowly, 
and is in fact tending to “freeze out". 

In Figs.19 - 
1o-g 

25 the stagnation pressure has been reduced to 
and the stagnation temperature maintained at 0.09. These figures 

must be compared with Figs.5 - II. 

The flow conditions are seen to be very close to the frozen 
conditions in this case, and again the graph of the ionisation fraction 
against distance shows only very small changes. The complete "freeze" 
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is not accomplished even now however, and a falls gradually from 0.99 
to 0.90 at an area ratio of 1000. The atom temperature (Fig.19) lies 
very close to the frozen value and has almost attained its limiting 
value at an area ratio of 1000, where the difference between the ho 
temperatures is approximately 27ooOK (0.015 on a dimensionless scale). 

The remaining curves (Figs.26 - 32) show the effect produced 
on the flow condition by varying the rate parameter, a. The first 
three solutions described above were all obtained for a value of . 

4xld0 
?t fs to be no:ed that if one assumes the rate constant (A of equation'$ij) 

whereas this final solution employs a value of 45 = 

to have a fixed value then variations in 0 correspond to variations in 
the nozzle geometry; this is demonstrated in Fig.33, where the rate 
parameter is plotted against throat diameter for various expansion angles. 
It may readily be seen from these curves that if the v&e assumed for A 
is correct, then @ = Id' has no physical signifibance for nozzles of 
feasible proportions. However it has been found that under a wide range 
of starting conditions the flow is not in equilibrium (Q1 = 00) and tends 
towards the frozen solution (@ = 0); it was therefore decided to try to 
obtain a solution which remained near equilibrium at least to some point 
downstream of the sonic throat. Also, as mentioned in Section 2, the 
value assumed for the rate constant A may be in error by orders of 
magnitude. The present set of calculations shows the effect of'such an 
error on the results. 

Fig.32 shows that the ionisation fraction falls quite rapidly 
down the nozzle, but begins to depart appreciably from the true 
equilibrium solution at an area ratio of about 1.02. The temperature 
variations (Fig.26) produce an interesting result since the temperature 
gradients are larger than for equilibrium but the two temperatures 
remain approximately equal. This perhaps could have been predicted 
from Fig.1. If the effect of variations in a is assumed to be 
unimportant in the recombining region of this curve, then it is clearly 
possible for the two temperatures to remain close to one another, as the 
density decreases, under certain favourable conditions. 

The velocity curve (Fig.27) is particularly interesting, 
since it is known that conditions substantially depart from equilibrium 
at an area ratio of 1.02, but the velocity remains at the equilibrium 
value to an area ratio of about 20. This may be attributed to the 
form of the governing equations. Since v = f(io - i) it follows 
that the enthalpy also must be close to the equilibrium solution for 
area ratios less than 20. It may be seen from equation (9) that the 
enthalpy can remain at the equilibrium value provided a, T and Te 
vary suitably. In the present case the temperatures are falling more 
rapidly than at equilibrium, but the ionisation fraction maintains a 
high level. The enthalpy is therefore subject to two opposing effects 
and happens to remain at the equilibrium value for some distance 
downstream of the throat. This phenomenon also occurs during atomic 
recombination in nozzles as noted by Hall and Russo12. 

6. Comments and Conclusions 

In conclusion it may be stated that, in the absence of 
conduction and convection, the atom and ion temperatures may differ 
considerably from the electron temperature under a wide range of 
stagnation conditions. This difference in temperatures is predicted 
entirely from the effects of lack of thermal equilibrium in the nozzle. 
It is thought that the equations employed show the correct trends in 

the/ 



- 15 - 

the flow conditions, but perhaps overestimate the difference in 
temperatures, which most probably result from a combination of oonduction, 
convection and non-equilibrium effects. Further work is in progress to 
study the effects of conduction and convection, and also to allow for a 
two-body recombination process. 

It has also been found that reducing the stagnation pressure and 
temperature tends to remove the solution from the limiting case of thermal 
equilibrium. 

These results are in qualitative agreement with the empirical 
freezing criterion suggested in Ref.1. However, freezing does not occur 
nearly as suddenly as in the case of atomic recombination, because of the 
exponential temperature dependence of the assumed recombination rate, 
which leads to the prediction of very high rates of recombination at low 
electron temperatures. 

List of Symbols 

A 

A' 

A* 

C’ 

C 
P 

cV 

e' 

e; 

h 

i' 

k 

Y 

m 

m e 

m + 

n' 

n' a 

n' e 

% 

area ratio 

area of nozzle at a given station 
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