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The object of this review is to study the feasibility of 
performing accurate calculations on the non-equilibzWm flow of a 
complicated gas mixture through nozzles, with partioular reference to the 
propulsive nozzle of the hypersonic ramjet. 

Equations are given for the steady, quasi-one-dimensional, 
adiabatic flow of a general reacting gas mixture, consisting of rl species 
related through N chemical reactions. A number of alternative methods of 
obtaining numerical solutions to these equations are described and evaluated. 

The formulation of the system of chemical reactions is also 
discussed, together with the availability of the large amount of 
thermodynamic and chemical kinetic data which is required before a numerical 
solution can be attempted. 

It is found that by far the most serious difficulti to be overcome, 
before accurate non-equilibrium nozzle calculations can be performed, is 
obtaining reliable data on the rates of the many chemical reactions which 
may be involved. 
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Chapter I 

1. Introduction 

There has been much interest recently in the ramjet as a means 
of propulsion for hypersonic vehicles (Refs,l -4). Calculations (Ref.4) 
have shown that the ramjet appears to offer an attractive and efficient 
means of propulsion at high Mach numbers. However, there are many 
severe problems to be solved before such an engine can be built, 
including the intake configuration, engine cooling, supersonic combustion 
of the fuel and recombination of the combustion products in the exhaust 
nozzle. The present note is concerned only with the last-named of these 
problems. 

It is well known that if a fuel is burned in a heated gas 
stream, a large proportion of the chemical energy released may be used 
in breaking chemical bonds to produce simpler species. If the initial 
temperature before combustion is high, very little energy goes into 
raising the temperature of the gas mixture. It follows that if the 
combustion products are then expanded through a supersonic nozzle, 
very little of the chemical energy can be converted to kinetic energy 
unless it is first made available to the gas through reassociation of 
the dissociated combustion products. 

The thrust produced by any propulsive system, in which 
combustion products are expanded through a nozzle, will be reduced if the 
recombination process cannot occur rapidly enough to remain in equilibrium. 
Unfortunately, the hypersonic ramjet engine is likely to be particularly 
sensitive to this effect. Two reasons may be given: firstly, the overall 
thrust of the engine is much less, than the jet thrust of the exit nozzle, 
consequently a fall of a few percent in jet thrust has a drastic effect 
on performance. Secondly, the density in the exit nozzle will be low 
because the hypersonic ramjet is most attractive at great altitudes; the 
rate of recombination is proportional to a positive power of the density, 
thus recombination will be slow under these conditions. Olsen (Ref.5) 
quotes simple calculations illustrating the importance of recombination 
on hypersonic ramjet performance0 These calculations indicate net thrusts 
per pound of air which are attractively high if equilibrium is maintained, 
but which approach zero between hi = 10 and Y = II if the combustion 
products are frozen with constant composition. 

performanc 
The sketch below defines the regions to be considered in ramjet 
e calculations. 

Intake Combustion Exhaust 
chamber nozzle 
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As the present note is not concerned with intake and combustion 
chamber performance, it is assumed that these have already been calculated, 
so that the thermodynamic state and velocity of the combustion products at 
station (3) are known. In general, v3 may be subsonic or supersonic. 
If it is subsonic, the exhaust nozzle will require a sonic throat whose 
area will determine the mass &ow rate through the nozzle. If it is 
supersonic, no throat is required. 

Calculations such as those outlined below are ultimately 
concerned with the thrust, F, which is conventionally defined as the 
exit jet thrust minus the momentum per second, m1v1, of the air entering 
the ramjet. That is 

F= mp, + (P,A, - P,A,) - mlvl . 

It would appear, therefore, that not only the nozzle mass flow rate, m4, 
and exit velocity, v4, but also the exit pressure, p4, are required. 

The conditions to be expected at the entrance to the nozzle, 
station (3), vary widely with such parameters as the flight Mach number, 
the altitude and the Mach number in the combustion chamber. However, 
numerous performance calculations have been carried out, e.g., Refs.1, 
2 and 4, and these give a 
For example, Dugger (Ref.,2 7 

ood indication of conditions to be expected. 
presents results for hypersonic ramjets using 

kerosene as fuel and employing either subsonic or supersonic combustion. 
For an engine with subsonic combustion, he predicts values of total 
temperature and total pressure at station (3) lying wi-B.dn the ranges: 
2 900 - 3 YOOOK and 53 - 280 p.s.i . at flight Mach numbers between 6 and 
10, and typical altitudes, (for a constant dynamic pressure trajectory 
with q, = 2*43 p.s.i.). Nozzle area ratios for complete expansion to 
atmospheric pressure are of the order of hundreds at the higher Mach 
numbers, but underexpanded nozzles may be employed in order to reduce the 
size of the exit area A4 . Corresponding typical static temperatures 
and pressures at station (3) for supersonic combustion are 2 300 N 3 lOOoK 
and 12 w 39 p.s,i, Maximum thrust and engine efficiency are obtained when 
sufficient heat is added to choke the flow at the combustor exit, i.e., 
Id3 = 1. 

It will be seen that supersonic combustion reduces both T3 and 
p3 below the corresponding values with subsonic combustion. A reduction 
in temperature favours equilibrium in the nozzle, whereas a reduction in 
pressure favours frozen flow, so it is not obvious which type of combustion 
will lead to a nozzle flow nearer to equilibrium. 

Although this review is concerned specifically with the problem 
of recombination of combustion products in a ramjet exhaust nozzle, the 
methods of analysis and main conclusions will apply to other nozzle flow 
problems involving chemical reactions. 

Chapter 2 

2. The Governing Equations for Non-Equilibrium Nozzle Flows 

It is assumed that the working fluid is a mixture of ideal gases, 
that the flow is steady, adiabatic and quasi-one-dimensional, and the effects 
of diffusion, heat conduction and viscosity are negligible. The derivation 
of the following equations is outlined in Refs.6 and 7. 
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The conservation equations are:- 

c 

s 

pvA = ms = constant 

H+&' = H,, = constant 

dV 1 dP 
-+-- = 0 
dx Pax 

and A= A(x) 

. . . (I) 

. . . (2) 

l *- (3) 

.*e (4) 

specifies the nozzle geometry. 

Let the total number of chemical snecies such as Y. in the nas 
mixture be n, of which the first n A are atomic species an& the v 
remaining (n- nA) are molecular species0 The rth chemical reaction 

takingplace in the mixture is formally written as, 

n 

c 
v ks 

n 

1' Mi + 
c 

rn 
'i 5. 

i=l $ i=i 

l ** (5) 

where r = 1, 2, . . . . N, and N is the total number of reactions, and 
k; and < are the reaotion rate parameters of the forward and backward 

chemical changes in the rth reaction. 

It can be shown (Ref.7) that the total possible number of 
elementary, inde endent reactions is equal to the nuziber of molecular 
species, b - nA? At least this number of reactions must be postulated 
in order that the problem may be completely formulated.. In fact, N will 
be greater than (n- nA) if, for example, a given chemical process brought 
about by more than one different catalyst is treated as several different 
reactions; the number of reactions being equal to the number of catalysts. 
This may be necessary when the reaction rate is greatly affected by the 
nature of the catalyst. The above general statements are not intended to 
imply that all of the N reactions will be of equal importance in a given 
flow system. 

The equations of state are 
n 

P = 
c 

= pTR 
n Yi 

pi c 
i=l i-1’ 

< 
. . . (6) 

l a* (7) 

There/ 
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There are (n - nA) differential continuity equations 
corresponding to the reactions (5), which will be written for the 
molecular species. The ith of these equations is 

x-1 j=l J j=l J 

. . . (8) 

D d 
where in the steady case - f v - . 

Dt ax 
There are also nA algebraic 

continuity equations for the atomic species 

n 

1 c 

-\ w. 
Yi + S. 

-1 
lyq 

xq w 5 
= ri .*. (9) 

q=nA+l q 

where 'i .th is the total mass fraction of the Z. atomic species in the gas 
mixture in both atomic and molecular forms, and Siq is the number of atoms 

of the ith species in the qth molecular species. 

If the chemical kinetic data suggests that the rth reaction 
proceeds sufficiently fast to remain in chemical equilibrium, then the 
mass fractions of the species taking part in the reaction are related by 
the law of mass action, ioeo, 

kf' 

r"- yrr 

1:= 
% 

<JJ(!z$ i 

i=l 

. . . (IO) 

where, Klc' = = <ii< !p'- v;'. ... (11) 

i=l i 

Equation (IO) then replaces one of the set of differential equations (8). 
If all the N reactions remain in equilibrium, then clearly, N laws of 
mass action may be written. However, it will be found that only (n - nA) 
of these are independent and they will replace the (n - nA) differential. 
equations (8). 

The general non-equilibrium nozzle flow' problem is specified by 
the (n + 6) equations (1) - (4) and (6) - (9) above, of which (n - nA + 1) 
are differential equations. The independent variable is x and the 
(n + 6) dependent variables are: p, p, T, H, v, A and yi(i = 1, 2, . . . n). 

It is assumed that the area distribution A(x) is given. The initial 
conditions to be specified are the values of the dependent variables at the 
entrance to the nozzle where x=x 

3. 
If the velqcity is stisonic at x3, 

then/ 
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then one of.these initial values (v, say) must be determined from the 
condition that the velocity is sonic at the nozzle throat. In general, 
the value of vs which satisfies this condition can only be found by 
trial and error. Alternatively, all the initial conditions, including 
v3 J may be specified and the throat area determined by trial and error. 
No such trial and error process is required if v3 is supersonic. 

The choice of suitable thermodynamic and chemical data for 
substitution into the above set of equations is aiscussed in Chapter 5. 

Chapter 3 

3. Methods of Solution of the Governing Equations 

In this chapter, methods of finding solutions for the set of 
equations listed in the previous chapter will be reviewed. Some of the 
methods are taken from the published literature and others are new. 
However, the authors are not aware of ang published results in which more 
than one chemical reaction is considered 

The methods given below, for the general case of N reactions 
are much more complicated algebraically than those previously published 
for a single reaction, and a high speed digital computer will be required 
in most cases. The review does not include all the methods of analysis 
that have been described in the literature. No numerical results are 
given, but recommendations are made regarding the most suitable techniques. 

3.1 Equilibrium or infinite rate flow 

The solution of equations (1) - (4-h (6) - (7) ana (9) - (IO), 
which describe the adiabatic, quasi-one-dimensional flow of a gas mixture 
in which all chemical reactions are sufficiently rapid to Em& h 
equilibrium is by no means trivial. 
of the equations of state (6) 

The problem reduces to the solution 
- (7) and equilibrium composition (9) - (IO) 

along an isentropic path. Once this is done, the flow velocity follows 
immediately from equation (2) and the nozzle area ratio from equation (1). 

Brinkley has developed a general method for calculating the 
equilibrium composition of a complicated gas mixture at specif'ied 
temperature and pressure. This and other computational techniques are 
described in detail in Ref.& An extension of the Brinkley method to 
permit computation along an isentropic path was described in Ref.9. 

3.2 Step-by-step integration: non-equilibrium flow 

The full set of differential and algebraic equations, (1) - (4) 
and (6) - (Y), my b e solved by conventional step-by-step techniques 
from the given initial conditions at x3, to the nozzle exit at x4. 
This technique has been used (Refs.9 - 13) successfully for flows with a 
single chemical reaction. 

Comments 

(i) A very long but algebraically straightforward computer 
programme will be required if both N and n are large. 

(ii>/ 
--m-w-- ------------------------------ 
* 

Since this paper was written, results have been published from several 
numerical computations involving coupled chemical reactions. Examples 

* Eschenroeder, A.Q., Boyer, D. W. and Hall, J. C., Physics of 
F%ds, 2, 5, 1962 and papers by I. N. Momtchiloff and E. D. Tabac, 
and by A. A. Westenberg and S. Favin in the Proceedings of the Ninth 
Symposium (International) on Combustion, Academic Press, 1963. 



-Y- 

(ii) IT the initial conditions at x3 are subsonic, then a 
lengthy iteration process is required to find the mass flow rate together 
with one of the initial conditions at x3 . 

(iii) Comparison of equations (8) and (10) suggests that as the 
rth reaction approaches equilibrium, the term in the curly bracket in (8) 
approaches zero for the rth reaction. From this we deduce that in a real 
gas mixture in which k$ and s are finite, the flow can never be in a 
state of complete chemical equilibrium if the time derivatives of the flow 
variables are finite. However, the flow of a real gas may maintain a 
state very close to equilibrium provided that 

j=l J 

and 

j=l J 

are very large in comparison with the difference between them. In such 
circumstances, the term within the curly bracket is almost indeterminant, 
as shown by previous calculations (Ref.12), and then the interval size of 
the step-by-step integration process must be very small indeed. 
Consequently, if there are many reactions which are all initially close 
to equilibrium and which depart from equilibrium at different stages in 
the calculation, a prohibitively small interval size may be required 
everywhere within the nozzle. 

3.3 The partial equilibrium approximation 

The last difficulty, (iii) above, may be overcome by an extension 
to a technique introduced in Ref.12. The differential equations (8) are 
replaced by the corresponding laws of mass action (10) whenever the 
reactions are sufficiently close to equilibrium. Criteria for the 
determination of whether a particular reaction is sufficiently close to 
equilibrium will be discussed in Chapter 4; it is sufficient here to 
assume that such a criterion, which gives a reliable indication of when a 
reaction starts to depart significantly from equilibrium in any given flow 
system, can be devised. 

The procedure to be used is as follows. Step-by-step integration 
of the flow equations is begun at x3 with the (n - nA) equations (8) 
replaced by the (n - nA) laws of mass action (IO), After every few 
steps, each reaction is tested by a suitable criterion to determine whether 
the reaction is still close to equilibrium. If at any stage the reaction 
fails the test, then the relevant law of mass action is discarded and 
replaced by a corresponding equation (8). 

In order to clarify the above procedure, we will consider the 
following simple hypothetical system of reactions. 

Reaction I/ 



Reaction 1 

Reaction 2 

Reaction 3 

- IO - 

(1) 
kf 

M+Ale 2A+M 

kb) 
f 

A,+B+AB+A 

kt3) 
f 

A,B + B + 28B 

(3) 

% 

. . . (12) 

Reactions 1 - 3 involve three molecular species 
Aa B, 

A,, AB and 
and two atomic species A and B. !L%ree dirrerential. continuity 

equations (8) are therefore required, and these will be written in the 
following form:- 

a 

ZYA = 
a X”’ + b X(') 

a 

d 
g yjyjj = c x’“’ + d xt3) 

d 
x yAa = e d3) 

. . . (13s) 

l ** m4 

. . . (13c) 

where a, b, etc., are the relevant coefficients 
WJv:” - vfj 1 

9 and 
PV 

x(Q , Xta) and Xt3) are the contents of the curly brackets of equation (8) 
for reaction I, 2 and 3 respectively. These three latter quantities become 
numerically indeterminate in turn as each reaction approaches equilibrium. 
The algebraic continuity equations corresponding to (9) are 

wB wB YB + - yAB + - 
wb_B 'A,B 

'A&3 = rB . 0'. (I&) 

Under/ 
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Under conditions sufficiently close to equilibrium, 
equations (13a) - (13c) are replaced by the laws of mass action, 
equation (IO), these are 

KW = p ‘A, ‘: -- 
C 

': 'A, 

K’ 2 > = 'A, 'B 'AB yA -- 
C 

'AB 'A 'A2 'B 

(3) = 

KC 

'A,B 'B yb 
2 

wAB 'AaB 'B 

C.. (15a) 

. . . (13) 

. . . (15c) 

A step-by-step integration of equations corresponding to (1) - (4) 
and (6) - (7) together -vith (14) and (15) is begun at x3. After every few 
steps each reaction 1 - 3 is tested to ensure that it is close to 
equilibrium, if the equilibrium test fails, then a procedure similar to 
that outlined in the following two cases is employed. 

Case 1 

Assume that the reactions depart from equilibrium in the order 
3, 2, 1s When reaction 3 fails the equilibrium test, equation (15~) 

is discarded in favour of (13~) which should now be more amenable to the 
step-by-step integration process. However, equations (15a) and (15b) are 
retained. Later, reaction 2 fails the equilibrium test, and equation (13) 
is used to replace (1%). Finally, when reaction I has failed the test, 
equation (lja) is used in place of (15a). 

Case 2 

Assume that the reactions depart from equilibrium in the order 
I, 2, 3. When reaction 1 fails the equilibrium test, equation (15a) must 
be discarded since it no longer describes the first reaction accurately. 
Equation (13a) must be used i its place; however, we note that this 
equation contains a term X (8 which is indeterminate in the sense t at 
reaction 2 is still assumed to be in equilibrium. Now, although X (aP 
and Xc3) in equations (IJb) and (13c) are indeterminate, since reactions 2 
and 3 are sufficiently close to equilibrium for the infinite r te solutions 
to be valid, these equations may still be used to replace X caB in 

d d 
equation (lja) in terms of the derivatives z 'AB and g 'A2B a Then 

equation (13a) becomes, 

d 

g 'A a 
. . . (16) 
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and equation (16) is used together with (15b) and (15~). When reaction 2 
fails the equilibrium test, equation (13a) can be used to replace (16) 
and the following equation: 

a 

iiy”” = 
c xCa) +:iyAB 

a 
.a* (17) 

used to replace (15b), equation (15~) being retained. 
reaction 3 fails the equilibrium test, equations (13a) - 

Fi.n$$, when 
are used 

to replace the laws of mass action (15a) - (15c). 

For the three hypothetical reactions chosen here, there are 
four other orders in which the reactions may depart from equilibrium. 
The techniques outlined above may again be used in order to formulate 
the problem before step-by-step integration. 

Comments 

(i) The comments (i) and (ii) of Section 3.2 are still valid. 
However, provided that some of the reactions remain close to equilibrium 
over a reasonable nozzle length, the partial equilibrium approximation 
should give rise to a considerable saving in computation time, since the 
interval size for the integration will be longer than that used in the 
exact method described in Section 3.2. 
from equation (IO) to equations (8), 

The process of swapping over 
as described in the example above, 

will complicate the programme. 
. . 

t 1 
It is clear that at the point in the nozzle where 

equation qg is replaced by equation (8), the relevant 

will not be correctly predicted. For example, in case 1 above, 

d 
z yA B will be zero from equation (13~) at the point where reaction 3 

!a 

fails the equilibrium test. Calculations quoted in Ref.13 suggest that 
errors from this source will be small, and that further downstream y 

%B' 
calculated by the partial equilibrium method, will be close to the true 
value if the equilibrium test is sufficiently stringent. (See sketch below), 

Yi 
t 

Partial equilibrium 
rate sol ut ion solution 

I x 

3.4/ 
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3.4 Sudden freezing methods 

For a simple flow with a single chemical reaction 
through a nozzle with a large area ratio, it has been shown P 

assing 
Ref.12) 

that three flow regions msy be distinguished. These are: 

(i) A region of near equilibrium flow in which 
deviation from the infinite rate solution 
is small. 

(ii) A transition region. 

(iii) A region of nearly frozen flow in which the 
reaction has almost ceased. 

If the area ratio is very large, a good approximation to the 
conditions at the exit of the nozzle may be obtained by reducing the 
transition region to a point, which will be called the sudden freezing 
point, Upstream of this point, the flow is assumed to remain in complete 
equilibrium, so lhat the infinite rate solution applies. Downstream of 
the sudden freezing point, the reaction ceases and the composition of 
the gas remains frozen. This approximation cannot give the exact values 
of all the flow properties a long way downstream however well the sudden 
freezing point is chosen, because it does not take account of the entropy 
rise which actually occurs due to the non-equilibrium phase of the 
reaction. However, the errors may be very small. 

Various ways of extending this technique to flows with many 
reactions are discussed below. Empirical criteria, which may be used to 
define the sudden freezing points, are described in Chapter Ic. 

3.4.1 The most rigorous extension of the method is as follows. 
2-t is assumed that a sudden freezing criterion is defined for each of the 
N reactions (see Chapter 4). 
equations (I) 

Step-by-step integration of the flow 
- (4), the equations of state (6) - (i'), equation (9) and 

the equilibrium laws of mass action equations (IO), is begun at station x3 . 
After every few steps, the sudden freezing criterion is applied to each af 
the N reactions and each reaction is assumed to cease completely at the 
point where it first fails the test. 
sudden freezing points in the flow. 

In general, there msy be up to N 
This procedure will be illustrated by 

a simple example in which we sha.ll consider the hypothetical systems of 
reactions given by (12). At station x3 , all these reactions are 
assumed to be in equilibrium, so equations (15) are used to calculate the 
composition. Two cases will be considered as in Section 3.3. 

Case I 

The reactions are assumed to freeze j.n the order 3, 2, I. 
When reaction 3 passes the sudden freezing test, it is assumed to cease 
completely, so that equation (1%) is replaced by 

YA,B = constant ..e (18) 

the constant being determined from the condition that no discontinuity in 
the value of yA B 

a 
occurs'at the sudden freezing point. Equations (158) 

and (15b) are retained, 
equation (1%) 

Further downstream when reaction 2 freezes, 
is replaced by 

YA.B = constant . . . (IS) 

but/ 
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but, once again, (15a) is retained. Finally (15a) is replaced by 

yAp = constant . . . (20) 

at the sudden freezing point for reaction I. Downstream of the point 
the gas composition is completely frozen; it is given by equations (18), 
(19) and (20). 

Case 2 

The 
Downstream of 
replace y a 
with PP X ' = 0 

reactions are assumed to freeze in the order 1, 2, 3. 
the freezing point for reaction I, equation (15a) must be 
stoichirfrtrio condition which can be derived from (13a) 
and x replaced using (1%) and (13c) in terms of 

$ 'A B a 

a 
-.-&yA 

a 

This can be integrated to give: 

.e. (21) 

Equation (21) is then used together with equations (IS) and 
the gas composition. When reaction 2 also freezes, equation t 

15~) to give 
21) is 

replaced by equation (20), because both reactions affecting yAa have 
now ceased. Equation (IS) must be replaced by another stoichiometric 
equation, and this is 

a 
yAB - ; yAaB = constant 0.. (22) 

but (15~) is still retained.. 
equations (1%) 

Finally, reaction 3 also freezes, and 
and (22) are replace& by equations (18) and (IV) 

respectively. 

The four other possible orders of freezing are dealt with in a 
similar manner. 

Comments 

(i) The number of differential equations to be solved is 
reduced from (n - n A + 1) to only one, equation (3). 

(ii) The method is empirical and needs to be checked against 
a more accurate solution. 

. 

(iii) The problem of determining the mass flow rate for initially 
subsonic flows still remains. 
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3.4.2 A simpler sudden freezing analysis has been used by 
Boyer, Eschenroeder and Russ0 (Ref.l&), to study non-equilibrium flow 
of air in nozzles. One dominant reaction, the qth say, is chosen 
involving the most important reacting species. Then a single sudden 
freezing point is chosen from a criterion which tests the qth reaction 
only. Upstream of this point, all the N reactions are in equilibrium 
and downstream they are all frozen. 

Comments 

(i) This method is much simpler but also more approximate 
than 3.4.10 It is likely to give good results only if one reaction 
dominates the chemistry. 

(ii) If the one sudden freezing point is situated downstream 
of the throat, the problem of dete rmining the mass flow rate is greatly 
simplified. 

(iii) The approximation of freezing all reactions together with 
the dominant qth reaction may be justified to some extent. When the 
dominant reaction freezes, the rate of fall of temperature will be 
greatly increased due to the energy lost in freezing, and the reduced 
temperature downstream of this freezing point will tend to make the 
other reactions freeze more rapidly. 

3.403 It has been shown by Bray (Ref.15) that the sudden 
freezing point, calculated by the method of Ref.12 for the case of a 
binary gas mixture with a single chemical reaction, or by the method of 
Ref,lk for a more complicated mixture dominated by a single reaction, 
is a function of upstream stagnation entropy only, to a very close 
approximation. A Mollier-type of diagram may therefore be drawn to 
represent all non-equilibrium flows of these types through a given 
nozzle. On this diagram, sudden freezing is represented by a line above 
which the flow is in equilibrium and below which it is frozen. very 
simple graphical solutions may therefore be obtained. It seems likely 
that similar diagrams can be drawn from general calculations of the 
type suggested in Section 3.401 in which the sudden freezing of each 
specie is represented by a different freezing line, 

In the same paper (Ref.15) mention is made of the fact that 
the upstream stagnation entropy is a useful correlating parameter for 
step-by-step integrations of the full set of flow equations. Lf such 
integrations are started from the same reservoir entropy but different 
reservoir temperatures and pressures, then the solutions pass through 
very similar thermodynamic states. These states occur at differing 
area ratios and velocities depending on the reservoir conditions. 

Comments: 

(i) Very simple graphical solutions may be obtained from the 
Collier-type diagrams described above, and the accuracy obtained should 
be at least as good as that corresponding to some of the kinetic data 
referred to in Chapter 5. 

(ii) A large reduction in the number of oa.loulations required 
to cover a given range of operating conditions maybe obtained by 
correlating results on the basis of upstream stagnation entropy. 

(iii) Application of the method to systems with many chemical 
reactions requires further study. 

3.5/ 
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3.5 Small perturbation methods 

Under this heading are grouped several approximate teohniques 
for solving the equations of Chapter 2. The methods have in common the 
assumption that some specified quantity is small. A rigorous 
linearisation of the full set of equations is not descifibed here, but 
has in fact been used in recent numerical computations. 

3.5.1 A near equilibrium solution for flow with only one 
chemical reaction (N = I) but an arbitr 
developed by Penner (~ef.6). Equation 
first written in the form 

.ee (23) 

where 

n 

m= 
c 

"3 

j=l 

n If t 
K = 

Y J-r Yvj-vj je 
j=l 

n 
K' = 

Y T-T 
j=l 

mass fraction of the jth species 
Yje = under equilibrium conditions at 

truelocal T and pa 

yJ = true mass fraction of the 
jth spebies. 

The suffix r has been dropped as only one reaction is 
considered. 

KY 
* is treated as an equilibrium constant evaluated at a 

temperature T'. X' T' - T << T, then 

K' 
Y 

= Ky(T') "KY(T) + KY(T) [$4n Kyi (T' - T). O.. (24) ' 

It follows that the quantity (I - K' y 
P' 

in equation (23) is equal to 

-B--B----- ----- 
%schenroeder et al, lot. cit., ~~12. 
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-[ -+KylT (T' - T) e 

If equation (23) is multiplied by (v: - vi) and summed over i, the 

left-hand side reduces to to a first approximation, and 

this cancels out with the same quantitylon the right-hand side. The 
equation then reduces to 

DT 
T'-T = --Z .eo (25) 

Dt 

where Z is a characteristic reaction time given by 

z = pf pm-1 ir< Jb)“” f ($ - q : 3 -i 
j=l J j=l j 

and E 
Dt 

is dependent on the nozzle shape, 

Penner points out that equation (25) may be solved in a 
step-by-step manner, choosing a constant value of Z for each step. 
It also leads to a simple empirical criterion for near equilibrium flow, 
namely 

Z max 6 1o-3 

where Z max is the maximum value of Z and tr is the residence time 
of a typical particle in the nozzle. 

Comments 

(i) If the analysis is repeated for a case with several 
reactions (N > 11, the simple result, equation (25), cannot be repeated 
because: 

(a) There will be N different values of T' 
corresponding to the different reactions0 

(b) The cancellation of the term [s4nKYlT from equation (23) 

can no longer occur because of the summation over rO 

(ii) It might be possible to use this or a similar technique in 
a complicated gas mixture, to deal with a single reaction which is 
independent of all the other reactions, and which is known to be close to 
equilibrium. 

3.5o2/ 



- 18 - 

3.502 Penner has also developed (Ref.6) a similar analysis for 
near frozen flow with a single chemical reaction, agaL; beginning from 
equation (8). In this case the temperature T' at which K' is 

Y 
evaluated is assumed to be very close to the initial temperature T, , 
then 

K' 
Y 

= KY (T') = KY (T3) - KY (T3)[idnKy] CT3 -T') o 
m 

Substitution for into equation 
simplifications lea to the result 

T, - T' 

T, - T 

X I - (T, - T) 

I 
3 

(23) together with a number of 

d&n KY )T 
dT 

3 

1-I [ % :z;' - 1 ] 

Several criteria for near frozen flow may also be deduced. 

Comments 

As with the near equilibrium solution in Section 3.5.1, simple 
results cannot be obtained if N > 1, except for an isolated reaction 
which proceeds independently of all the others. 

3*5.3 If a constituent, !k, of the reacting gas mixture 
is present in such a low concentration that it is thermodynamically 
unimportant, i.e., Ho, " Yk f$ , and also kinetically unimportant, i.e,, 

the contributions to DY* 2 from all reactions involving Mk must be 
Dt 

negligible for all i : a condition for this is y, << I, then the 

following simplification may be made, 

The equations of Chapter 2 may be integrated with y, m 0 
to give values of all the remaining dependent variables. Tnese variables 

wk may then be substituted into equation (8) for - 
Dt ' 

which may then be 

integrated in a numerically straightforward mcanner to give yk(x)" 

Comments 

This technique together with other srnplifioations has been used 
by Eschenroeder and Daiber (Ref,l6) in a study of non-equilibrium ionisation, 
It is only suitable for species which can have little overall effect on 
the flow, 
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3.5.4 Another approximate technique involving linearisation 
is that of Hall and Russ0 (Ref.Y), which has been applied successfully 
to flows with a single chemical reaction. Xktension of the method to a 
general system of reactions is straightforward and is outlined below. 
Hall and Russ0 first noted that for a critical mass flow very close to 
the equilibrium value, the specific enthalpy H is not greatly affected 
by small departures from equilibrium because of two opposing effects. 
The fall in temperature due to the departure from equilibrium tends to 
reduce H, but the relative increase of the atom mass fraction above 
the equilibrium value tends to increase H. Consequen-Kly the net ohange 
in H is small. The same trend is to be expected in a oomplicated gas 
mixture. 

Thus, the assumption is made that for a gas flow close to 
equilibrium, 

H= He b) 

where the suffix e denotes equilibrium and He(x) is determined from 
the infinite rate equilibrium solution. Equations (2) and (I) then 
yield the results: 

v = v e (4 

and P = p, (4 l 

Having specified one variable H, without reference to the 
governing equations, one of these equations must be discarded and this 
is chosen to be equation (3). Incorporation of equation (3) would lead 
to the inaccurate restriction: 

P = P, (4 l 

Since comparatively large departures from their equilibrium 
values are to be expected for T and yi, we write 

T = T, (x) + AT ; AT << T e 

yi = yie ( X )  + AYi j AYi <’ Yie l 

Now equation (7) gives H as a f'unction of T and yi, so it follows 
from the assumption, H = He, that 

aH 

AT = - 
n ay. c Aby. 

aH J 
j=l - 

aT 

. . . (27) 

where,/ 
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where, to a first order ap roximation, 
evaluated from equation (7 P 

the partial derivatives may be 
and the known equilibrium solutions. 

Equation (8) may be rewritten in the following form: 

where, 

N 
= 

c 
G; f 

I=1 
. . . (28) 

G; = 

and Yr is the function within the curly brackets. Under conditions of 
complete equilibrium we note that Yr = 0, thus it follows that for a 
flow which is close to equilibrium 

D D N 
-yi = u-y 
Dt Dt ie 

+ % (A Yi> e 1 Gze A F a*. (29) 

now 
n ar’ 

Af= c 
a? 

-Ayj+- AT 
'Yj aT 

j=l 

a.0 (30) 

thus, from equations (27), (29) and (30) we have: 

aF 

D 
- Yie Dt 

+;(Ayi) = f GFe[ f;A yJ -c f 5 A yj] . 

I=1 j=l J - j=l J 
aT 

D 
The derivative - yie, is a known function of x, so equation (31) is 

Dt 
the ith member of a set of (n - n*) linear first order differential 

equations in the A yj's. The coefficients are given by the equilibrium 
solution0 This set of equations may be solved together with equations (9) 
by standard numerical techniques. 

&Xl. and Russ0 noted a further simplification to equations (31), 

namely, that in the cases they considered, A (A Yi) s ' Yie* If the 
Dt 

smaller terms are omitted, equations (31) reduce to the following &+=.io 
set: 

&Yie 
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- 
I~T$,~H -, D 

A y.1 
J-l 

999 (32) 

I-1 j=l J 
aT 

which may be solved much more simply, It is also suggested that 
equations (32) may be used as the first step in an iterative solution 
of (31). 

Comments 

(i) The coefficients in equation (31) are algebraically 
complicated functions of the infinite rate equilibrium solution. 

(ii) The assumption H = H e requires further justification 
for the case with N > 1, similarly for the assumption 

D 
~ ( A  Vi> << -  Yie l 

Dt 

(iii) If numerical calculations justify these assumptions then 
the technique appears to be attractive since it only requires the 
solution of the algebraic equations (27) and (31). 

(iv) The method as it is outlined above, is only valid for a 
region of near equilibrium flow; considerable caution is required in 
extending it too far downstream, although the results of Ref.9 suggest 
that this can be done under certain circumstances. 

Chapter 4 

4. Method of Choosing Important Species and Reactions 

The various methods of analysis which were outlined in the 
previous chapter, cannot be applied to the solution of specific problems 
until the n chemical species and N reactions have been chosen. 

We consider first the choice of species. From prior knowledge 
of the elements contained in the mixture, it is possible to choose the 
various species which are likely to be present. Then isentropic 
equilibrium calculations, over the range of temperature and pressure likely 
to be encountered, will give an indication as the concentrations of the 
various species present in the mixture, and as a consequence, will suggest 
which of them may be thermodynamically important, To illustrate this 
point, calculations (Ref.17) on the equilibrium flow of a stoichiometric 
hydrogen- air mixture with p,,s = 0.2 atmos., T,, = 6 COOoK and p4 
corresponding to an altitude of I02 and IO5 ft, show that only H, N,, 
0 and N will have equilibrium mole fractions greater than low2 at 
any point in the nozzle., The other species considered in descending 
order of mole fractions are A, NO, CO, Hz, OH, Oz, Ne, CO and HO. 
Thus, over the range of pressure and temperature covered by the ~alculati&s, 
the last nine species will be thermodynamically unimportant in equilibrim, 
since their contribution to the gross specific enthalpy will be small. 
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Even in a non-equilibrium flow, the species A, Ne, CO and CO, 
will still be thermodynamically unimportant, since the elements involved 
are known to be present in the mixture only in very small proportions. 
The rate of any reaction between CO and CO, cannot affect this 
oonclusion because of the small amount of carbon available to form either 
of these species. 

The position regarding the remaining species considered in 
Ref.17 which have a low equilibrium concentration, i.e., NO, Hs, OH 
and 02, is not so straightforward. Consider 0, as an example. If 0, 
is formed in a reaction involving 0 and an inert third body, then it is 
clear that departure from equilibrium of this particular reaction within 
the nozzle will tend to reduce the 0, concentration. However, departure 
from equilibrium of another reaction involving neither 0, nor 0, may 
reduce the gas temperature and so increase the 0, concentration provided 
that the three-body oxygen recombination reaction still remains close to 
equilibrium. Also, if 0, is consumed, for example in an exchange 
reaction involving NO, then departure of this reaction from equilibrium 
will tend to increase to 0, concentration. 

Departure from equilibrium may therefore either increase or 
decrease the 0, concentration, and it cannot be concluded that 0, is 
a negligible constituent simply because its equilibrium concentration 
is small. In the particular example cited above, the 0, mole fraction 
in equilibrium is always less than 5 x 10e5, and it seems likely that 
this species will still be thermodynamically unimportant if' equilibrium 
is not maintained. However, it must be emphasised -that this conclusion 
cannot be substantiated without detailed numerical computations. 
Similar arguments may be applied to the species NO, H, and OH. 

Now, although a particular species may be thermodynamically 
unimportant, this fact does not necessarily preclude it from being 
kinetically important. For example, it may be a very efficient third 
body in promoting either dissociation or recombination in a particular 
reaction which does involve thermodynamically important species. Thus, 
having established all the species which ma.y be present in the mixture, 
it is desirable to consider all the possible reactions which can take 
place, and then endeavour to decide which reactions are likely to be 
dominant. 

An unimportant reaction must be one for which the rate of 
production of the species is slow in comparison with the goss rate of 
production of the same species due to the remaining reactions. Such 
reactions we shall call "slow" reactions; "fast" reactions are those 
which make substantial contributions to the gross rate of production of 
the various species, and for this reason they are important. So far, 
the terms "slow" and "fast" have only relative meanings, and thus any 
parameter which measures the speed of the various reactions requires to 
be related to the flow transit time through a particular nozzle 
configuration before one can say whether a particular reaction may be 
regarded as being in equilibrium or not. Such relationships have so far 
been empirical, and they require further verification from calculations 
on the flow of more complex mixtures before reliance can be placed on them. 

A fundamental difficulty associated with all the empirical 
criteria used in dealing with non-equilibrium flora problems, is that as 
soon as one of the N reactions departs from equilibrium, the thermodynamic 
state of the gas is affected by the extent to which this reaction has 
departed from equilibrium. In other words, the rates of all other reactions 
are affected in a manner which cannot be accurately predicted without solving 
the whole flow problem. Thus it is only possible to give an approximate 
answer to the question, which reactions are "fast" in a given flow, prior 
to floiv problem being solved. 
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Two criteria are considered below. The first is derived without 
reference to any particular flow configuration, and it results in the 
definition of a parameter for each of the N reactions called the 
"characteristic reaction time". These quantities, which are analogous 
to Penner's reaction time Z (Section 3.5.1), may be evaluated under 
typical conditions of density and temperature to give a measure of the 
relative speeds of the reactions under near-equilibrium conditions. 
The second criterion to be considered in this chapter is that which was 
introduced in Ref.12 as part of a sudden freezing analysis. It leads to 
definitions of near-equilibrium and near frozen flow for a particular 
nozzle configuration, and also to an empirical equation for the sudden 
freezing points referred to in Section 3.4. 

4.1 Criteria based on characteristic reaction time 

According to the classical theory of chemical kinetics (Ref.6), 
the net rate of change of the mass of the ith species per unit volume 
of a reacting mixture of gases is 

0.. (34) 

We shall consider a given closed volume of such a mixture to be held at 
rest and at a constant temperature T. Since g is classically assumed to 
be function of temperature alone and also the volume of the sample considered 
remains constant, it follows that y. 

Je' 
evaluated at local p and T, is 

constant. Equation (34) can thus be rewritten in the form 

dY* 1 -= 
dt 

j=l J 

By making the assumption that the mixture is initially very close to 
equilibrium, so that 

‘3 = Yje + A Yj where A y. 
J 

<< y. 
Je 

then equation (35) reduces to the approtimate form 

' (A Vi> = 
dt 

n Ay. 
n 

c 

2 (Y;’ - v;‘j . . . (36) 

j=l Yje 

j=l J 
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The set of equations (36) above, may be solved explicitly to 
give expressions for A y.. However, 

J 
since the various reactions taking 

place in a mixture are usually coupled, it is difficult to extract any 
parameter which gives precise information on the speed of any particular 
reaction0 In order to overcome this difficulty, it is necessary to 
consider equation (36) in the following form, 

$ (A Yi) = ~ [~ (A Yi)Ir 

??=I 

where 
[ dt 

" (A y-1 
1 lr 

wi (u;” - urt > l$ n a Yj rf 

c = p f@ ";; yV$* j=, yje ('j - "" 

j=l 

and then i (A Yi)]' is the rate of change of yi due to the rth 

reaction alone. By assuming that the remaining (N - 1) reactions are 
very slow by comparison with the rth reaction, Le., they are 
effectively frozen, it follows that for any j : 

A Yj = Ayi 
wj (u;” - 2’ 

J) 
II 

Wi(L$ -2) 

and thus 

I 

C 
d(Ayi)-jr = 

A yi dt 

1 
= -- 

7 r . . . . (37) 

The parameter Tr is a characteristic reaction time for the rth reaction. 
It is the time taken for a given small deviation from equilibrium of the 
mass fractions associated with the rth reaction to fall to l/exp. of 
their initial values as a result of the rth reaction alone, the 
temperature and density being held constant, 

The relative speeds of the various reactions taking place in any 
mixture can thus be deduced by comparing the magnitudes of the various Tr’SO 

If, for example, rr >> rq, over the range of temperature and pressure 
likely to be encountered, then the rth reaction may be considered to be 
sufficiently "s10~" in comparison with the qth reaction, and thus 
neglected. 

me/ 
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The near-equilibrium solution for the rth reaction alone, as 
developed by Penner (Ref.6) and outlined in Section 3.,501, also yields a 
characteristic reaction time Z', where 

1 DT I 
- = --e 

T' - T Dt Z' 

The temperature derivative is the actual temperature gradient occurring 
in the flow. If z' 
p and Yi) 

is evaluated on the basis of equi&ibrium values of 
then it may be shown to be identical to T O However, the 

formulation of the present section is thought to be more relevant here 
than that outlined in Section 3*5.1, because it defines the characteristic 
reaction time without reference to any particular flow conf'iguration. 

4.2 Criteria based on a sudden-freezing analysis 

The (n - nA) equations (8) are first written in a form similar 
to that used in equations (13): 

'Yi 
N 

-= 
dX >-_' 

ai Xr 

rd 

ooo (38) 

where r X , which represents the curly bracket in equation (8), is 
given by 

and 

If the rth reaction proceeds at an infinite rate and so remains in 
complete equilibrium, both Rf' and q are infinite. The difference 
between these two infinite terms 

rt h 
which is proportional to the net rate 

of change of yi due to the reaction, must then be determined 
from equation (10) rather than from equation (8), This argument suggests 
that, if the rth reaction proceeds at a finite rate which is 
sufficiently fast to remain close to equilibrium, then 

so that 

R; c %' 

>> X" o I I 

00. (39) 

00. (40) 
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If equation (39) 
equation (10); 

is nearly satisfied, then so is the law of mass action 
thus the quantities Rrf and Xr in the criterion (40) 

may be evaluated on the basis that the rth reaction remains in complete 
equilibrium. Evaluation of Xr under these conditions requires care. 
Calculated as the difference between Ri and < , where kg and $ 
are infinite according to the above equilibrium approximation, it is 
indeterminate. However, Xr is in fact finite even for the infinite 
rate solution. 

4.2.1 Case when number of reactions equals number of 
molecular species 

If the total number of reactions considered, N, is equal to 
the number of molecular species present, nm, then Xr can always be 

found from the system of equations (38) if the 2 values are suitably 

calculated (see below),, On the other hand, if N > nm , Xr cannot be 
determined in this way because there are more Xr values than equations (38). 
The physical explanation of the apparent anomally is that, when the reactions 
are all close to equilibrium, the chemical problem is over-specified if 
N > nmJ because only n m laws of mass action are required to determine 
the composition. It is not then possible to determine the contributions of 

the individual reactions to 
dYi 
dx* 

We shall assume in this section that 

N = nm and the development of a criterion for oases where N > nm will be 
postponed until the following section. The criterion (40) for the rth 
reaction to be near equilibrium may be rewritten in the form 

.*. (41) 

where the suffix e indicates that the functions are evaluated with the 
rth reaction in equilibrium. Unlike the criterion of Section 4.1, this 
equation can only be used as part of a detailed computation of a 

particular flow system, dYi because the derivatives - are required. It is 
dx 

accurate in the sense that the rth reaction must always be close to 
equilibrium if Br >> 1. 

Equation (41) is directly applicable to the partial equilibrium 
method of solution outlined in Section 3.2. At positions where Br 
becomes equal to some number greater than unity (Ref.13 suggests that 
Br = 20 is a suitable criterion, but this needs checking for flows with 
complicated chemistry), an equation (10) 
equation (8). 

is replaced by a corresponding 
No assumptions need be made about the rates of the other 

(N - 1) reactions0 dYi The derivatives - are automatically found in the 
dx 

step-by-step integration process, so Xr can be found from equations (38) 
(if N = nm) and Br then follows. 
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A criterion similar to (41) may be used to define a region in 
which the rth reaction is nearly frozen, namely; 

Br << I .ee (42) 

However, this condition is not accurate to the same degree as (41), 
because the evaluation of @' assuming that the rth reaction is in 
equilibrium must lead to errors when this reaction is in fact nearly frozen. 

The two conditions expressed by (41) and (&2), suggest a 
criterion (Ref.l2), which may be used to define the sudden-freezing 
points referred to in Section 3.4. Since the sudden-freezing point of a 
particular reaction lies between the near-equilibrium and near-frozen 
limits defined by (41) and (42) respectively, we write 

Br = Qr **e (43) 

at the suMen-freezing point. The constants Qr are expected to be of 
order unity. Clearly, equation (43) is purely empirical. 

Another empirical criterion for the sudden-freezing point has 
been developed by Hall and Russo (Ref.9) for a binary mixture of atoms 
and molecules with only one reaction. It has been extended in Ref.14 to 
deal with a multi-component mixture with one reaction. This criterion 
leads to results similar to equation (43). 

4.2.2 Criterion when the number of reactions is greater than the 
number of molecular species 

In a reacting gas mixture in which N > nm, there are more 
quantities X r than equations (38), so the Xr's are indeterminate 
and the criteria given by equation (41) cannot be applied directly. 
This difficulty may be overcome by a suitable technique of grouping some 
of the reactions together. 

If the members of a certain group of nm reactions out of the 
total N are all sufficiently fast, then nm laws of mass action are 
available (equations (10)) and the equilibrium composition can be 
completely specified. Therefore, (N - nm) reactions can depart from 
equilibrium without altering the equilibrium composition. 
(N - nm 

However, if 
+ I) of the reactions depart from equilibrium, one of the n m 

laws of mass action must be dropped in favour of a particular dirferential 
continuity equation (38). 
groups of (N - nm 

Clearly it is necessary to test all possible 
+ I) reactions in order to test when the composition 

departs from equilibrium. As soon as any one of these groups fails the 
equilibrium test one of the laws of mass action must be replaced by a 
differential continuity equation. 

In general, there are 
N! 

(N - nm + l)!(n, - I)! groups Of 

@ - nm + I) reactions. In order to test tiese groups of reactions, it 
is necessary to form further ezytions from the set of equations (38), 
by elimjnatingthe unwanted X s. These equations have the form 
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where r takes the chosen group of (N - nm + I) values and Dj is a 

‘Yi 
function of the terms pv - . 

ax 
The criterion that all (N - nm + I) 

reactions have departed from equilibrium is then 

B. 
J 

f 
> 

.b; R; 
-+ 

Dj ‘3 

and one of the laws of mass action must subsequently be replaced by 
either one of equations (38) or (4.4). 

(N - nm 
In any reacting system there may be groups of less than 

+ I) reactions, for which the reactions remaining when such a 
group is removed are not linearly independent. Groups of this type will 
be called "essential groups". For example, a group of less than 
(N - nm + I ) reactions would obviously be an essential group if none 

of the remaining reactions involved a particular molecular species Mi. 
If an essential group departs from equilibrium, one law of mass action 
must be discarded in favour of the differential continuity equation 
for Mi. The equilibrium test for such a group is simply: 

Bi 

’ N c ar R if" 

I=1 

dYi 
PV - 

dx 

d Qi . 

If an essential group of less than (N - nm + I) reactions 
exists, then it usually has the effect of reducing the number of 
equilibrium tests which need to be carried out at each stage in the 
step-by-step calculations. 

In order to clarify the above discussion, we shall illustrate 
the technique by means of an exam&e. The example chosen assumes six 
reactions which are likely to be important in air at high temperatures. 

(i> ZN+M+N,+M 

(ii) N+O+M+NO+M 

(iii) NO + N $N,+O 

(iv> OS + N *NO+0 

b> 20 +L+O,+M 

(vi> N,+O,+ZNO o 
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In this example N = 6, nm = 3 and (N - nm + I) = 4. The differential 
continuity equations corresponding to the n m molecular species may be 
written in the form, 

dY 
-02 = ai," + a" X 5 + a6 X6 
ax 02 02 

l ** (45) 

dY 
-NO = a&L" + Gox3 + Goti + Gox" l . . (46) 
dx 

dY 
- N, = afi Xt + { X3 + 4 X6 . 
ax 2 2 2 

*a* (47) 

From equations (45) and (47) it is apparent that two essential 
groups are (iv), (v), (vi) involving 02 and (i), (iii), (vi) involving 

N2 . Also, the grou 
reactions,(iii), (iv , P 

(i), (ii), (v) 
(vi), 

is essential, because the remaining 

rearranges to give (vi)) 
are not linearly independent ((iv) - (iii) 

and therefore do not provide sufficient 
inf'ormation to determine the equilibrium state. These essential groups 
reduce the number of equilibrium tests which need to be applied initially 
from firteen to nine. The groups to be tested initially are tabulated 
below 

I I 4 1 I I 2 2 2 

2 3 5 2 2 3 3 3 3 

5 6 6 3 4 4 4 4 5 

46 5 56 6. 

Suppose reactions (i), (ii), (iii) and (iv) constitute the first 
group of reactions to depart from equilibrium. The criterion which tests 
this condition is g$ven by equations (46) and (47) on elimination of the 
terms containing X , Le., 

Pv c 
c 

$0 
+ Go--- 

4 
G, 2 

x3 + Gox: . . . (48) 

The function B. is then given by the modulus of all the positive terms 
on the right-haid side of equation (48) divided by the entire left-hand 
side of the equation. The step-by-step calculations are then continued 
by using equation (48) together with the two laws of mass action 
correspontig to reactions (v) and (Vi). Only two equilibrium tests 

need/ 
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need now be applied at each stage in the calculation until either 
reaction (v or reaction (vi) departs from equilibrium. The test for 
reaction (v follows from the elimination of the terms containing X6 
from either equations (45) and (4-6) or (45) and (47). The test for 
reaction (vi) follows directly from equation (47). 

A similar technique to that outlined above may be carried out 
if any other of the groups of reactions tabulated above is the first to 
depart from equilibrium. 

Chapter 5 

Thermodynamic and Chemical Kinetic Data 

5. Thermodynamic Data 

Once the chemical reactions and species have been chosen, the 
thermodynamic data W., C 

J pii' 
AI-q and 5 etc., may be found tabulated 

in standard works of reference, e.g., Ref.18. The accuracy of this type 
of information will not be discussed here, such details can be found in 
the original papers which are usuaUy referred to in the standard works. 
Errors in the thermodynamic data are likely to be small by comparison 
with the errors associated with most of the published chemical kinetic 
data, as we shall see in the next section. 

The presentation of tabulated thermodynamic data to a computer 
might give rise to the problem of computer storage space, thus it may be 
worthwhile to undertake fitting the data over the likely range of 
interest, to empirical formulae of the type: 

and 

C 
pi 

= aj + bjT + cjT2 

= A" exp (-Br/T) etc,, 

where a., b Ar J j¶ 'jr and Br are empirical constants. 

5.1 Chemical Kinetic Data 

Essential requirements for solving the s ties continuity 
equations are that the reaction rate parameters F f and kb" are known, 
Reliable chemical kinetic data of this type is lacking for the majority 
of reactions which are likely to be important in the study of non-equilibrium 
nozzle flows. This must therefore be one of the biggest barriers in the way 
of carrying out realistic ramjet nozzle performance calculations. 

Consider a general three-bodied reaction of the type: 

kf A +M;A+A+M 

in which Ad is assumed to be an Y.nert" third body which can either serve 
as an energy source for the forward dissociation reaction, or as an energy 
sink for the backward recombination reaction, To the best of the authors' 
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knowledge, only the forward reaction rates have been experimentally 
observed in reacting gas flows under conditions of interest to the 
present work (e.g., Refs.19 and 20). The backward reaction rates have 
then been deduced using equations (10) and the tabulated values of the 
equilibrium constants KE e This process involves assuming an 
equilibrium relationship between k; and l$ even when the state of 
the gas is greatly different from an equilibrium state. The correct 
relationship between k; and kb' at conditions removed from 
equilibrium, appears to be one of the major unsolved problems of 
chemical kinetics. 

Another complication arises because the values of r kf' and kb 
may differ by as much as an order of magnitude (Ref.21) depending on the 
nature of the third body. This fact greatly increases the amount of 
data which ought to be specified, but present knowledge does not permit 
us to make this refinement in the majority of cases. However it must 
be noted that errors are bound to arise when we assume that a rate 
parameter, deduced for a particular third body, can be applied unchanged 
for all the many third bodies present in the system0 

The rate parameters are known also to be functions of 
temperature, but their variation with temperature has not been predicted 
in a large number of cases. Much of the available data has been obtained 
near room temperature, and its extrapolation to conditions of interest 
here will be very inaccurate. 

In order to demonstrate the present limited availability of 
chemical reaction rate data, some of the reactions which may be involved 
in a hydrogen - oxy en mixture 
These reactions are $ 

at elevated temperatures will be considered. 

0) 0, + M 

(2) 

(3) 

(4) 

Ha + M 

Q + OH 

H +Oa 

(5) H, + 0 

(1) 
!?A 
’ (1) 
% 

(2) 
kf 

(2) 
% 
k(3> 

f’ 

t- 
(3) 

k’ 4 ) 
f 

(4) 

%I 

k(5) 

f, 
T 

(5) 

% 

O+O+M 

H+H+M 

H,O + H 

OH + 0 

OH + H 

Reaction (I)/ 
^- -_____ --------^----- 

* 
More recent data on the chemistry of H, w 0, reactions is provided by 
several contributions in the Proceedings of the 9th Symposium 
(International) on Combustion, Academic Press, 1963. 
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Reaction (I) has been studied extensively. Experiental results 
at elevated temperatures are reported in Ref%.lY, 20 and 22, and at room 
temperature in Refs.23, 24 and 25. Theoretical estimates of the rate 
parameters are given in Refs.26, 27 and 28. Mathews (Ref.19) has proposed 
values for the reaction rate parameters based on his interferometric 
measurements in the non-equilibrium region behind normal shock waves in 
oxygen. He also reviewed previous work concerned with reaction I, 
The values which he gives are 

(1) 
kf = 5.42 x lo7 r& ( 5y FooK )' exp ( -5y $"""> litre mole-lsec-I 

(1) 1 
% = 18.5 x 1010T-2 litre' mole-' set-I 

for the temperature range 3 OOOOK < T < 5 OOOOK. Both the above results 
assume the third body to be an oqgen molecule. Mathews suggests that his 
results are not likely to be in error by more than a factor of two, which 
is indeed a high degree of accuracy when compared with some of the following 
data for the remaining reactions. It is noteworthy, however, that even in 
this case it was not possible to determine the temperature dependence of 
the rate parameters experimentally, and Mathews was forced to rely 
theory for this dependence. Qln> The magnitude of Mathews' value for kb 
appears to be greater than the recent theoretical value due to Keck (Ref.28) 
by a factor of about three at 3 OOO'K, but they are both in very close 
agreement at 5 OOO°K. 

A survey of some experimental values for the recombination 
reaction rate parameter for reaction (2), suggests that g2' lies 
within the approximate range (O-1 - 2.0) x IO” (litre2. mole-s -1 . set -1 
at room temperature with either H, or H as the third body, see 
Refs,29 - 33. Bulewicz and Sugden (Ref.%) give an experimental value of 

(21 
% = 2.2 x IO’” (litre2 . molee2 . set-I .) 

atI 65OOK with H,O as the third body, and Schott (Ref.35) gives 

(2) 
% = 2.0 x IO9 (litre' . mole-' . set-' .) 

at 2 lOOoK with H, as the third body. Two experimental values of the 
forward reaction rate parameter kg' 9 are given by Chesick and 
Kistiakowsky (Ref.22), these are 

k(') = l-5 x IO5 f (litre . mole-' . sed' .) at 2 850°K, 

and ky) = 2.5 x lo5 (litre . mole-' . set -i .) at 3 250°K, 

both the above results were obtained using mixtures of H, and X, . 
Comparison of Refs.2 and 35 suggests that the nature of the third body 
can significantly influence thevalues of kg' and G2), and clearly 

their temperature dependence is not known. However, the dissociation 
energy is quoted (Refs,&j and 44) as 103.2 k.cal., and it would seem 
reasonable to postulate an Arrhenius form for the reaction rate parameters, 
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Semenov (Ref.35) quotes Avramenko's (Ref.36) experimentally 
determined value of the forward reaction rate for reaction (3) as: 

k$ 
-10 k.cal. 

) = 4*2x109 dexp 
RT 

(litre . mole-' . see-I . ) 

over the temperature range 6000~ - 800oK. There appears to be no more 
experimental data available for reaction (3) at present. 

Reaction (4) h as been studied by Karmilova et al. (Ref.37), 
the results of their experiments give 

kg) 
( 

-15.1 k.cal. 
= 5.64 x 10~ exp 

> 
(litre . mole-l . set-I e) 

RT 

ever the temperature range 733OK- 873OK. Shott and Kinsey (Ref.38) have 
also determined ky) at I 650°K, i.e., 

kp' = I.43 x IO9 (litre o mole-l . set-I .) 

and this is approximately 2*5 times the value given by Karmilova's 
expression for kg' extrapolated to 1 65OOK. Schott and Kinsey have 

deduced an Arrhenius form for kg' by combining a value reported by 
Baldwin and Walsh (Ref.39), i.e., 

kg' = 5~10~ (litre . mole-l . set-I .) 

obtained at 793OK with their own at 1 650°K, to give 

kg) = 
( 

-17.5 t3 k.cal. 
3 x IO" exp 

> 
litre . mole-l -1 osec o 

BT 

The quoted error in the exponent could easily change the value of kp' 
by order of magnitude. 

Clyne and Thrush (Ref.40) have recently studied reaction (5), 
and they give the following value for the forward reaction rate parameter 

k;"' 
-9*2 k.cal. 

= l-2 x lOlo exp 
> 

(litre . mole" . set-' .) 
RT 

over the temperature range 409OK m 733OK. They claim that the above 
Arrhenius form fits their results to within IO%, However, there is also 
evidence (Refs.41 and 42) that the activation energy for reaction (5) 
is near 6 k.cal. 

The values of k: and g quoted above, are not intended to 
constitute a comprehensive review of the reaction rate data appropriate 
to hydrogen m oxygen reactionso However, they illustrate that a great deal 

more/ 
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more fundamental work is still required before all the necessary reaction 
rate data can be tabulated for a wide range of conditions. 

The authors have found references in the literature to the rates 
of eight more reactions between hydrogen and oxygen, in addition to the 
five quoted above. For these eight reactions they could only find three 
sets of experimental results, and all of these had been performed at low 
temperatures. Rough theoretical estimates were given for the rates of 
all the other reactions. 

The results of theoretical calculations, eogo, Ref.12, indicate 
that the length of a nozzle required to maintain a reacting gas flow 
close to equilibrium, 
parameter kbO 

is directly proportiona& to the recombination rate 
Any errors in the value of kb would therefore be 

reflected in the theoretical estimates of required nozzle dimensions. 
Thus, it would appear unwise to embark on extensive theoretical calculations 
by a method likely to give great numerical accuracy, until considerably more 
reliance can be placed on the reaction rate data for the complicated 
chemical changes that are likely to be involved, The authors believe that 
some of the approximate methods described in the previous chapter can 
easily yield a numerical accuracy compatible with present knowledge of most 
common reaction rates. A first step must be to check the approximate 
methods against results of more accurate calculations for a system of 
several reactions. 

Chapter 6 

6. Conclusions 

(1) The formulation of a one-dimensional nozzle flow problem 
involving arbitrary numbers of species and reactions is mathematically 
straightforward, and techniques exist for the numerical solution of the 
resulting equations. 

(2) A number of approximate methods of solution have been 
discussed, The assumptions involved in these methods have been tested 
for flows with a single chemical reaction, but still require confirmation 
in cases where several reactions occur0 It is necessary, therefore, to 
perform an accurate integration of the flow equations in a case where 
several reactions occur, and to compare this result with computations 
based on the various approximate methods, The most suitable approximate 
method may be chosen from this comparison. 

Concerning the methods of analysis described in Chapter 3, the 
authors believe that the Partial Equilibrium Technique (3.2) can yield 
solutions of the governing equations to a high degree of accuracy, if 
the near-equilibrium criterion (Chapter 4) is sufficiently stringent, 
Several of the more approximate techniques appear to be attractive, and 
should be tested against results obtained by the Partial Equilibrium 
Technique. The Sudden Freezing Analysis (3.4.1) may be more generally 
applicable than some of the other approximate techniques, as it is not 
limited by near-equilibrium or near-frozen flow assumptions. 

(3) There is a very serious shortage of the chemical kinetic 
data which is essential for the solution of non-equilibrium nozzle flow 
problems. Accurate data is completely lacking for the majority of reactions 
which are likely to occur, and resort must be made to order-of-magnitude 
guesses and extrapolations over large temperature ranges. 
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(4) Until very much more accurate kinetic data is obtained, 
comparatively simple approximate methods of analysis isuitably tested, 
as described in Conclusion (2) above] may be expected to yield numerical 
results whose accuracy til be limited by the available data, rather than 
by the method of computation. 
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