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SUMMARY 

Slender-body theory is used to compare the flow over the bottom 

surface of a flat delta wing at incidence and the delta-like surfaces of a 

pyramid of rectangular section, interest being focussed on the centre line 

and on the flow attachment lines where they exist. Pyramids are found which 

reproduce closely the flow in the neighbourhood of the delta centre line. 

Other pyramids are found which have the same position of the attachment 
. lines as a delta wing, the approximation to the flow being good when the 

attachment lines are near the centre line but deteriorating as they move 

outboard. 

Replaces R.A.E. Tech Note No. Aero 2793 - A.R.C. 23,600, 
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1 INTRODUCTION 

Part of a general programme of research into the aerodynamic properties 
of lifting slender wings is concerned with the problem of heat transfer to 
the surfaces, especially near the edges and along the attachment lines. The 
free-flight technique is particularly suited to make an experimental con- 
tribution in this study, especially if it is possible to simulate the essen- 
tial features of the flow on non-lifting bodies since the complications 
aamboeiated with flying lifting models can then be avoided. The purpose of 
this note is to investigate whether non-lifting body shapes can be found with 
flows which are similar to those typically found with slender lifting wings. 
The investigation is restricted to lifting wings of delta planform and hence 
to non-lifting conical bodies with triangular surfaces. 

An obvious shape of this kind is the pyramid with rectangular section 
flying point first which is shown in Fig.1. All four surfaces in this are 
forward-facing like the bottom surface of a flat delta at incidence. To 
obtain a rearward-facing surface like the top surface of a delta wing we 
should need the tetrahedron also shown in Fig.1 flying edge first. The top 
and bottom surfaces here are like the top of a flat delta at incidence; the 
sides are deltas flying backwards? 

One way of investigating whether the flow over these bodies retains 
the features typical of the flow over a flat delta at incidence is to make 
some wind tunnel models and compare oil flow patterns in the surface. 
D.A. T=eadgold has made such tests with four models - one delta wing, two 
pyramids and one tetrahedron - at Mach numbers 1.57 and 4.4. His results 
will be incorporated in the report on the free-flight work that his tests 
were designed to help. A few flow patterns are reproduced in Fig.5. 

The present note is concerned with theoretical flows obtained by 
applying slender-body theory to a lifting delta wing (a solution which is, 
of course, well known) and to ajlender rectsnguliar pyramid. The type of 
flow considered is allowed to have, in general, infinite velocities along 
the edges. i.e. vortex sheets from the edges are not considered. The flow 
over the top surface of a delta wing is not therefore properly represented 
'3ut it will be soen that some deductions can be made about the similarity 
between the flows over the bottom surface and over the smaller zidos of a 
pyramid, Because of the non -slenderness of the tetrahedron near its loading 
edge, this shape is nc;t considered. 

2 SURFACE VELOCITIES @WXJLATED BY SLENDER-BODY THEORY 

In small-perturbation theory the equation for the perturbation velocity 
potential 4 becomes 

The slender body theory of Munk ana Jones assumes in nddition thst 

6, << Qp &’ Consequently the potential equation becomes 

$yy + d,, = 0 

and the potential is of the form 

#hY,4 = $,(Y,GX) 4 $,(x) 

(2) 

(3) 
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where #J, is the solution of this two-dimensional Laplace equation in the 

transverse plane x = constant, The solution of the equation depends on the 
conditions which the flow is required to satisfy at its boundaries. Usually, 
as in our problem, the disturbance created by the body must die out at 
infinity, and on the body the velocity must be tangential to the surface. 

Let us introduce complex variables and denote a point in the transverse 
plane x = constant by t = y + iz. Since the body is slender we can use the 
boundary condition on the surface to give explicitly Vn, the velocity in the 

transverse plane normal to and away from the body cross-section. If we know 
a relation which transforms the region outside this cross-section in the 
t-plane into the outside of a circle in some other plane where t' = y' + iz', 
the normal velocity in this new plane will be 

Vn’= +J I I n 

and we can appeal to a standard result, recalled in Appendix I, to give the 
corresponding velocities tangential to the cross-section, VI and Vt. Finally 

since the body is slender we can show that the other component of velocity in 
the surface, Vs, is to first order equal to U, the velocity of the undisturbed 
stream. 

2.1 Surface velocities on a flat delta wing at incidence 

We consider a flat delta wing inclined at an angle a to a uniform streqam 
of speed U. The velocity distribution on its surface is well known but for 
completeness is derived here by the same method as will be applied in the 
next section to a pyramid. The x-axis lies in the stream direction and at 
the point x = 4 bisects the trailing edge, which is parallel to the y-axis 
and of length 2a4. The nose lies on the z-axis at the point z = bC so that 
b = tan a. Fig.2 shows the notation. 

The cross-section in the transverse plane x = constant is the line 

2 = b:&x), -ax<yCax . (5) 

Introducing complex variables t = y + iz, we can relate the t-plane 
outside this line to the t'-plane outside a circle of radius a~/2 by the 
transformation 

t- ib(&x) = t' + 

whence 

dt=l-- ax 

0 
2 1 

at' 2 
- . 
v* 

On the circle, let 

. 

(7) - 

03) 
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Then 

t = ax cos 0 + ib(C-x) 

at -2iO dt' = l-e 

(9) 

00) 

and 

If we assume that a and b are both small - O(E) where E CC I - then 
according to Ward' (b# is even smaller - O(fz2 log E) . To satisfy the 
boundary condition that requires the component of velocity norm,al to the 
surface to be zero we must have 

(II + $,) sin a + $z 003 a = 0 

whence 

I$/J = - b + O@) . 03) 

(12) 

The velocity Vn has the same magnitude as 9, but is directed away from the 
surface so that 

(14) 

vp = -b + O(s2), above the wing 

= b + O(e2), below the wing. 

In the t'-plane therefore, by (4) and (II), 

VtJ = - 2b sin 8 + O(E~), OdOC27c . 05) 

We can now apply the result of Appendix 1 to give Vt as follows: 
since VA is an odd function of 8 we use equation (40) which becomes 

= 2b ~03 6 + O(&, 068$27t . (16) 
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If the oorresponding velocity in the t-plane is Vt, taken anti-clockwise 
around the cross-section, we have by (LI-) and (II) 

Vt/u = -m + O(E2>, 0,<0<27c . 07) 

In this case Vt is always parallel to the y-axis, so that equation (77') can 
also be written 

vy/u = - b cot e + O(E2>, ocee7t . 

The other component of velocity tangential to the surface, Vs, is 
given by 

vs = (U + 4,) cos a - +z sin a 

= (U + $,) set a 

using the boundary condition (12) to eliminate $,, whence 

VJU = 1 + O(E) . 

(18) 

09) 

PO> 

2.2 Surface velocities on a rectangular pyramid 

We consider a pyramid of rectangular section pointing into a uniform 
stream of speed U. 'Ihe origin of co-ordinates is at the apex of the pyramid, 
The x-axis lies in the stream direction and coincides with the axis of the 
pyramid, which is of length 4. The edges of its base are parallel to the y 
and z axes and are of length 2a& and 2b4 respectively. Fig.2 shows the 
notation, 

%ne cross-section in the transverse plane x = constant is the rectangle 
with sides 

2 = + bx, - ax < y C ax 

Y = t ax, -bx< z<bx . ml 

Introducing complex variables t = y + iz, we can relate the t-plane outside 
this ret-tangle to the t'-plane outside a circle of radius r by the transforma- 
tion* 

, 
at 
dt'= 

J( 
I 2r2 r4 - - 00s 2y -!-- 

t'* , A  l 
)  

(22) 

The corners of the rectangle t = t ax + ibx correspond to the four points 
t' +iy =tre . 

*This is a particular case of a transformation given by Jeffreys and Jeffreys*. 
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It can be shown that r is a function of a, b and x but y depends only on the 
ratio a/b. We must find this dependence in order to work specific examples; 
details are given in Appendix 2 and Fig.10. On the circle, let 

Then 

- = 2eoiB -T( cos2 8 - oos2 y) at 
ati 

at 
I I at' 

= 2 qoos2 0 - cos2 yl 

m-1 

(25) 

and 

t = 2ir <(cos2 8 
J 

- oos2 y) at3 . (26) 
,. 

If we assume, as in section 2.1, that a and b are both O(E) where 

E CC 1 then +x/U is O(s2 log E) and we can obtain VI1 from the boundary 
condition that requires the component of velocity normal to the surface 
to be zero. The top and bottom face s are inclined at an angle a to the 
horizontal where tan a = b, and Vn on these faces has the same magnitude as 
9, but is directed away from the surface, To satisfy the boundary condition 

on these faces we must have 

(U + $x) sin a = Vn cos a (27) 

whence 

',/u = b + O(e2) . 

Similarly on the side faces 

y/J = a + O(.s2) . 

In the t'-plane, therefore, by (4-) and@5), 

v/u = 2a q(cos* 0 - oos2 y> + O(e*), 0 C 0 d y 

= 2b J(cos* y - oos2 e) + O(E2), y d 0 < 742 

and by symmetry 

y-p> = v( -e) = V&C - e) . 

I 7.- 

(28) 

(29) 

(30) 



We can now apply the result of Appendix I to give Vt as follows: since 
VL is an even function of 0 we use equation (39) which becomes 

f OS/U = f sin 6 a y \/(cos2 t: c I 2 - cos y 
cos ;: - co3 0 )at; 

0 

X-Y 
+b J ( 

2 fl cos y - cos * z-1 
cos c - cos 0 

Y 

Y 
: sin20 a c I ( 2 J cos 2-J 2 - cos y = 

*z 
2 lar; 

00s - cos 0 
0 

-I- 0(2)7 0 
j’ 

6ec27t . 

7t lqoos* ;: 
1 

2 - cos +a y 
00s i: - cos 8 )az: 

dg + o(e2) 3 ,o<ec27X 

2 2 
+b cos y - cos $ 

2 )a;: 
co9 r, - cos *e 

Y 

(31) 

If the corresponding velocity in the t-plane is Vt taken anti-clockwise around 
the cross-section, we have by (Lt.) and(25) 

Y 
sin 28 2 2 

VtAJ = 
4 cos ;: - cos y g 

7dj 00s * e - cos* y: a i s ( cos *t: - co9 *e 
0 

2 
+b - cos 

uc 
- cos *e 

Y 

+ o(s2) 3 ,Ob0<27c . (32) 

Equations (26) and (32) for t and the corresponding velocity Vt involve 
elliptic integrals. They can, with a little manipulation, be expressed in 
terms of elliptic integrals of first and seoond kind. This is an important 
step in evaluating specific examples, but the details have been confined 
to Appendix 2. 

The other component of velocity tangential to the surface, 'Is, is given 
on the top and bottom faces by 

-8- 



vs = (U + #,) co3 a + Vn sin a 

= (U + f$x) set a (33) 

using the boundary condition (27) to eliminate Vn. 

Henoe . 

vs/u = 1 + O(E) (34) 

an expression that holds true on the side faces as well. 

3 RESULTS 

To compare the bottom surface of a flat delta at inoidence with any 
one surface of a rectangular pyramid let us take new axes in the surface: 
the origin at the apex, Og along the centre line and Oq perpendicular to it. 
The components of velocity in these two directions are Vs and Vt, derived in 
section 2 by slender body theory. The form of the results confirms, of course, 
that the flow is conical since Vs is constant and both Vt/U and q/c are 
functions of a single variable 0. Figs.3 and 4 show the variation of V.,/Ja 

with r&a on the surface defined by q = j: EJa for different values of b/a. 
At first sight there appears a marked similarity between the two sets of 
curves but notice that among the pyramid curves only those for b/a > 1 
resemble the delta family, This means that it is the two smaller faces of 
a pyramid that correspond to the bottom surface of a delta. 

For these results to be valid they must be consistent with the s1e11der~ 
body assumptions which imply that Vs/u = 1 + O(E) and V$J = O(e) where 
E <<I. The condition on Vt is apparently violated near the leading edge 
since V@a + 00 as q 3 Fi;a, both on the bottom surface of a delta and on the 
smaller faces of a pyramid. Experimental evidence is known to show that 
viscous flow cannot negotiate these corners without separating. The oil flow 
patterns reproduced in Fig.5 from Treadgold's photographs suggest the 
separations sketched in Fig.6. To take proper account of this we should 
have to introduce some model of the separated flow such as that devised by 
K.W. Nangler and J.H.B, Smith'. This would alter appreciably the flow over 
the faces on which the vortices lie but on the faces that we are comparing 
our results should still be significant away from the leading edge, The 
broken curves in Fige3 that su;pport this assertion are from unpublished 
calculations by Smith, 

An important part of the free-flight programme is an investigation of 
the heating effects of the flow. Of particular interest are the heating 
rates along the flow attachment lines, These lines are not easy to define 
in generai but if the flow is conical they must be straight lines through 
the apex which form a parting fromwhich the surface streamlines diverge. 

In all our results the c-axis is just such a line and of interest as a 
line of symmetry. Fig.7 therefore takes each of the relevant curves from 
Fit.4 and pairs it with that curve of the delta family which best fits it 
near the origin. This relates each pyramid with b/a 2 1 to a delta with 
b/a > 0.43. 
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In general the flow is directed along a stra'sht line through the 
apex wherever 

or, since Vs'U = 1 + O(E), wherever 

VtDa = rl/Eta . 

Fig.3 and 4 confirm that this is always true along the centre line where 
rl= Vt = 0 and show that for limited ranges of b/a there is a second pair of 
lines on both delta wing and pyramid where equation (36) is satisfied, and 
from which the streamlines diverge. On a delta wing the range of b/a is 
0 G b/a < 1; on a pjrramid it is 1 < b/a Q 1.84. In each case the lines move 
inwards from leading edge to centre line as b/a increases from one limit to 
the other. Fig.8 shows a selection of results between these limits paired 
according to the position of these attachment lines, Fig.9 shows how the 
position varies with b/a. Unfortunately none of Treadgold's models allow US 

to check the existence of these lines since for his values of b/a the theory 
either predicts no attachment lines at all or places them too close to the 
leading edge for the theory to be reliable. 

Summarising - for a delta wing of given b/a, we can find a pyramid 
which gives quite a good approximation to the flow in the vicinity of the 
centre line whenever b/a is greater than about 0.43. For values of b/a less 
than 1 there is another pair of attachment lines and we can find a pyramid 
which exactly reproduces the position of these lines; but the smaller b/a 
becomes the further the lines move from the centre line and the worse the 
approximation becomes 

a9 b 

E, F, K 

e 

r 

t =ytiz 

t' = y' + iz' = re iG 

U 

V n9 'A 

vS 

vt9 v; 

V 
Y 

over the rest of the flow. 
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APPENDIX 1 

THE TANGENTIAL Vl3LOCITY ASSOCIATED WITH A GIVEN 
RADIAL VELOCITY DISTRIBUTION AROUND A CIRCLE 

The solution of Laplace's equation in two dimensions which produces e 
given radial velocity around a circle can be constructed by distributing 
elementary sources around the circumference and at the centre*, 

A source of strength m at the centre of a circle of radius r produce3 
a radial velocity m/r at the circumference. A source distribution of 

2% 
intensity q(8), where 

J 
SW de = 0, around the circle produces a radial 

0 
velocity 7t q(0) at the circumference. A radial velocity Vn(0) can therefore 

be produced by a source distribution of intensity $ (Vn(e> - ",) where 
27. 

i$ z & 
I 

Vn(@) de, around the circle and a source cf strength rvn at the 

0 
centre. 

The potential at the circumference is 

2x 
$(reie) = rVn log r + 

s 
+ (Vn(g) - v,) rdZ log Zr[sj.n 71 . (37) 

0 

The oorresponding tangential velocity is therefore 

'+ . 27t 
s 5 

2x = 1 

r 2x s 
v,(Q cot 2 a;: + 2X I 

cot y ag 
0 0 

2x 
I 

=-G i 
vn(<) 00t y a< . 

0 

If Vn is an even function of 8 so that Vn(0) = Vn(-0) then equation (38) 
reduces to 

. 
3!ddg!l= 1 

i 
sin 0 V,(G) 

r 7t co9 g - cos 0 a;; (33) 

0 
and if Vn is an odd function of 0 so that Vn(0) = -Vn(-0) then it reduces to . s!iG$!2=1 ’ sin ;j V,(G) 

r K s cos tj - co9 0 az: 

0 
(40) 

*This technique appears in a paper by J, Weber5 who attributes it to A. Betz, 
- 12 - 



APPE'!JDIX 2 

EVALUATION OF CERTAIN ELLIPTIC INTEGRALS IN TERMS 
OF THJ3 FUNCTIONS E(@,k) and F($,kt 

Since notations vary so much from book to book we shall first define 
the elliptic integrals that appear in this Appendix. They are: the elliptic 
integral of the first kind 

F(bk) s & ) 
Jlik2 sin' $ 

K(k) E F(%/2,k); 

the elliptic integral of the second kind 

+ 
E(W) E J J l-k2 sin' $ %, E(k) E E(x/2,k); 

0 

and the complete elliptic integral of the third kind 

Also appearing are K(k)Z(+,k) and Ao($,k)which are defined as they arise. 
All relations quoted here can be found in the introduction to Ref.6. 

1 Evaluation of equation (26) 

t = 2ir 
JJ 

(cos2 3 - cos2 y) d0 . 

When 0 < 6 d y we substitute Cp for 0 where sin $ = sin B/sin y and write 
sin r = k so that 

0 

t(o) - t(0) = 2ir 
s 

J (~03~ e - 00s' y) de 

0 

= 2ir 

0 

= 2ir {E(+,k) - (I-k2) F(+,k)f l 
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Appendix 2 

When y G 0 Q 7c/2 we substitute 4' for 0 where sin +' = cos B/ocs y and write 
cos y = k' so that 

7c2 

t(e) - t(7E/2) = 2r &0s2 y - 003~ 0) de 
.i’ 
0 

= 2r IE(#',k' ) - (l-kt2) F($',k' 

In particular, when 0 = y we deduce 

ax/2r = E(k') - k2 K(k') 

bx/2r = E(k) - k' 2 K(k) . 

The ratio a/b is therefore a function of y only and, given this ratio, r is 
directly proportional to ax and bx which are the dimensions of the cross- 
section at x. Fig.10 shows the relation between a/b and y. 

2 Evaluation of equation (32) 

x2 i Jc 2 
+b cos y - cos 

2 r, - cos2 
2 zJ cw, + o(e2) . 

co5 0 3 
Y 

Of these two integrals, the first is singular when 0 < 8 < y and the second 
when y c 8 G x/2. In the first integral we substitute E for c where 
sin E, = sin Z/sin y and write sin y = k, sin y/sin 3 = a so that 

Y 

1"' 

2 
X2 

cos t: - co3 2) y a;: = 
/ 

a2 cos 2E ffE 

COS 2z - cos 2e l-a* sin2 g 
0 0 

J;-k2sin 

= K(k) - (I-a2) TI (a2,k) . 

- 14 - 



Appendix 2 

If 0 d 0 G y then a, 3 1 and 

(I-u2) II (a2,k) = a 

2Q 2 )' 
-co3 y 

q sin 0 cos 8 [K(k) E(W) -  E(k) Fb,k)~ 

where 

sin@ = l/u = sin B/sin y . 

But if y < 0 6 n/2 then k Q a Q 1 and 

. 

(I-u2) II (a2,k) = a -& ; A0 (4' $1 
u -k 

Jc 2 co9 y - cos 2 0) = sin 0 cos 8 [E(k) F(+',k') + K(k) Et+' ,k') 

- K(k) F(Q',k')l 

where 

cos e/co3 y . 

In the second integral we substitute 5 for G where sin E; = cos LOOS y and 
write CDS y = k', cos y/co3 0 = ct' so that 

742 
SJ’ 

- 742 
2 2 cos y - co3 5 a< = 

s 

d2 cos2 E E 
COS 2t: 2e - cc3 ur2 sin2 < 1 JGi2-T~ - 

= (,-,") II (d2,kt) - K(k') . 

If 0 G 8 c y then kl $ ctr d 1 and 

- 15 - 



. 

(I-d2) l-l (d2,k’) = a’ 

Appendix 2 

2e - co3 2 ) y = 
sin 0 co3 0 [E(k' ) F(W) + K(k') E(W) 

- I@') F(W)l 

where 

1 sin 4 = 2 sin B/sin y . 

But if y a 0 G 7~/2 then a1 b 1 and 

(I-CL’ 2, II (d2,k') = a' K(k') Zb',k') 

2 co3 y * cos = 2 Q 
sin 0 co3 8 {K(k’) E(+‘,k’) - E(k’) F($‘,k’)l 

where 

sin (p' = l/a' = co3 e/co3 y . 

Collecting t!lese results together we have when 0 c 8 4 y 

VtAJ = [aK(k) - bK(k')] 
sin 28 ,--,'---2--~ - 1 E(+,k) 

74co3 - co3 y) 7. 1 
+ i [&E(k) + bE(.li') - bK(k')] F(#,k) 

and when y Q 9 S 7c/2 

vtFJ [aK(k) bK(k')] -@ 20 - 2 = - 
7c-c 

2 E(+',k') 
CO3 y-co3 e) 7c 1 

-$ [aE(k) + bE(k') - aK(k)} F($‘,k’) q 

@.2078.C.P.537.%3 - ?dnted Cn %qla?hl - 16 - 



FIG. I. MODELS WITH DELTA- LIKE SURFACES. 
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FIG.5 S”R;ACE VELOCITIES ON THE BOTTOM SURFACE OF A DELTA. 
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FIG. 7. SURFACE VELOCITIES MATCHEO 
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FIG. 8 SURFACE VELOCITIES MATCHED 
AT THE ATTACHMENT LINE. 
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FIG. 9. VARIATION OF ATTACHMENT LINE 
POSITION WITH b/a. 
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FIG. IO. VARIATION OF b/a WITH 8. 
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Slender-SOdy theory is used to compare the flow Over the bottom 
surface of a flat delta wing at incidence and the delta-like surfaces of a 
pyramid of rectangular section, interest being focussed on the centre line 
and on the flow attachment lines ,,here they exist. Pyramids are found which 
reproduce closely the flow in the ncighSourho0d of the delta centre line. 
Othe pyramids are found which have the s0me position of the attachment 
lines 3s a delta wing, the approximation to the fli;w Sting good when the 
attachment lines are near the centre line Sut deteriorating as they move 
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