ROYAL AIRCPORT BEDFORD.

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Propagation of Fatigue Cracks in Wide Unstiffened Aluminium Alloy Sheets

by

K. D. Raithby and Marie E. Bebb

LONDON: HER MAJESTY'S STATIONERY OFFICE

1963

PRICE 5s 6d NET

U.D.C. No. 539.431 : 669.715-4 : 539.219.2

C.P. No. 655 September, 1961

PROPAGATION OF FATIGUE CRACKS IN WIDE UNSTLFFENED ALUMINIUM ALLOY SHEETS

Ъy

K.D. Raithby

and

Marie E. Bebb

SUMMARY

Results are given for rates of propagation of fatigue cracks, from an initial central slit up to the length at which the cracks became unstable, for four commonly used aluminium alloys. The test specimens in each case were flat sheets 48 in. wide and approximately 96 in. long and were subjected to fluctuating tensile stresses in a direction parallel to the rolling direction of the sheet. The tests confirmed that the high strength aluminium-zinc alloy has a high rate of crack propagation and a short unstable length compared with aluminium-copper alloys, particularly if the aluminiumcopper alloy is in the solution treated state.

Replaces R.A.J. Tech Note No. Structures 305 - A.R.C. 23,573

LIST	\mathbf{OF}	CONTENTS

	Page
1 INTRODUCTION	3
2 TEST SPECIMENS AND METHOD OF TEST	3
3 DISCUSSION OF TEST RESULTS	4
4 CONCLUDING REMARKS	4
LIST OF REFERENCES	5
APPENDICES 1-3	6 - 9
TABLES 1 AND 2	10–18
ILLUSTRATIONS - Figs.1-8	
DETACHABLE ABSTRACT CARDS	
LIST OF APPENDICES	
Appendix 1 - Specification properties of materials used	6
2 - Description of hydraulic loading rig and method of crack	ß
measurement 3 - Summary of test results	9
LIST OF TABLES	
Table	
1 - Summary of results	10 11–18
2 - Results of tests	11-10
LIST OF ILLOSTRATIONS	₩i <i>e</i> ,
	• =====•
Central slit and positioning of indicator wires	, 2
Crack length v No. of load cycles	<u>د</u> ۲
Variation of dN with crack length)
Variation of $\frac{dI}{dN}$ with alternating stress DTD546	4
Variation of $\frac{d1}{dN}$ with alternating stress DTD610	5
Variation of $\frac{dl}{dN}$ with alternating stress DTD687	6
Variation of $\frac{dl}{dN}$ with alternating stress 2024-T3	7
General view of test rig	8

1 INTRODUCTION

In assessing the relative merits of different materials to be used in aircraft construction important considerations are the rate at which fatigue cracks will grow under various loadings and the length to which they will grow before catastrophic failure results.

A considerable effort has been put into the determination of the "unstable crack length" of various materials and the results of such tests will appear in the Fatigue Data Sheets of the Royal Aeronautical Society¹. The tests described in this Note were aimed primarily at determining rates of growth of fatigue cracks and, by testing wide sheets, it was hoped to minimise the effects of the free edges of the sheet. A length/width ratio of 2 was chosen to avoid as far as possible end effects from the test rig.

The object of this Note is to compare the behaviour of fatigue cracks in four commonly used aluminium alloys under mean and alternating stresses corresponding to typical stress levels that occur in flight in the wing of a transport aircraft.

2 TEST SPECIMENS AND METHOD OF TEST

Each specimen consisted of an 8 ft \times 4 ft sheet of clad aluminium alloy with a central slit, 1.25 in. long, of the form indicated in Fig.1. This slit was intended to simulate an initial fatigue crack. The following four alloys were tested:-

(i) DTD546 aluminium-copper alloy, solution treated and precipitation hardened.

(ii) DTD610 aluminium-copper alloy, solution treated.

(iii) DTD687 aluminium-zinc alloy, solution treated and precipitation hardened.

(iv) 2024-T3 American aluminium-copper alloy, solution treated.

Details of the specification properties of these alloys are given in Appendix 1. Three thicknesses of sheet were tested (0.04 in., 0.08 in., and 0.16 in.) but insufficient tests have yet been done to establish whether there is a pronounced thickness effect. The thickness of each sheet was measured close to the crack after failure.

Each sheet was tested in tension by means of a horizontally mounted hydraulic jack which applied loads to one end, the other end being connected by steel links to the vertical members of a test frame. Hydraulic pressure in the jack was used to indicate the applied load but the test rig was first calibrated using strain gauged links between the jack and the specimen.

Fine wires cemented to the surface of the sheet were used to measure crack growth. Each wire was in circuit with an electrical counter which stopped when the wire broke, hence the rate of growth of the crack could be determined from the counter readings. An approximation to the unstable crack length* was given by the length of crack at the beginning of the load cycle in which final failure occurred.

No attempt was made to prevent lateral buckling of the sheet.

Further details of the method of test are given in Appendix 2.

^{*}The unstable crack length is the length beyond which the crack continues to propagate across the sheet without any further increase in applied load.

3 DISCUSSION OF TEST RESULTS

In Appendix 3 the results of all tests are given but discussion will be confined to the 0.08 in. sheets, as there is insufficient evidence to show whether there is a significant thickness effect.

Typical crack growth curves (crack length against number of cycles) are given in Fig.2 for four different alloys tested under the same nominal stresses. It is evident from these plots that there is a big difference in rate of propagation between the materials tested and that there is some correlation between rate of propagation and unstable crack length. The high strength Al-Zn alloy DTD687 has only about one twentieth of the life and one fifth of the unstable crack length of the solution treated Al-Cu alloy 2024-T3.

In Fig.3 the variation of rate of crack growth, $\frac{dl}{dN}$, is plotted against total length of crack to illustrate how the rate of growth varies with crack length for the different materials. Again, this shows that DTD687 has a somewhat higher rate of growth than the other alloys, albeit of the same order as that for DTD546 when the length is short. However the low number of cycles to failure in the case of DTD687 is partly due to the fact that the unstable crack length is very much shorter. Unlike the results of Frost's study² of the early stages of a fatigue crack, there does not appear to be a simple relationship between $\frac{dl}{dN}$ and crack length. Plotting $\log \frac{dl}{dN}$ against log 1 gives even less consistency.

In Figs.4 to 7, $\log \frac{dl}{dN}$ is plotted against log alternating stress.

While the results available are too few to draw reliable conclusions they do indicate certain trends. For crack lengths of up to about one fifth of the unstable length the rate of growth appears to be roughly proportional to the cube of the alternating stress, thus agreeing with Frost's observations², except in the case of DTD687 which seems rather less sensitive to stress variation. At longer crack lengths the effect of stress becomes more and more marked, reaching something like the fifth power of the alternating stress at half the unstable crack length.

4 CONCLUDING REMARKS

The results presented are insufficient to draw definite conclusions but they do indicate certain trends.

The superiority of the solution treated Al-Cu alloys has been demonstrated with regard to both rate of growth of fatigue cracks and the length of crack which can be tolerated without catastrophic failure.

The sensitivity of rate of crack propagation to alternating stress indicates that extreme care must be taken to ensure accuracy of loading and of measurement of crack length in any experiments to determine rate of crack growth.

Further experiments are needed to investigate thickness effects. The major contribution to thickness effects is likely to be lateral buckling of the sheet as the crack progresses, but there are some inconsistencies in the present results which need further investigation.

Further work is also needed to investigate scatter, both in rate of propagation and in unstable lengths.

LIST OF REFERENCES

Ref. No.	Author	Title, etc.
1	-	Royal Aeronautical Society data sheets on fatigue. Data sheets on unstable crack lengths - to be published.
2	Frost, N.E.	Propagation of fatigue cracks in various sheet materials. J.Mech Eng Science Vol.1 No. 2 September, 1959.
3	Heywood, R.E. Norris, G.M.	Crack propagation and fatigue strength of some aluminium alloy panels. R.A.E. Tech. Note No. Structures 223 A.R.C. 19543 March, 1957.

APPENDIX 1

SPECIFICATION PROPERTIES OF MATERIALS USED

- 1 DTD546B Clad, high tensile aluminium alloy sheet.
- (i) Chemical composition

Copper	Not	less	than	3.5	nor	more	than	4.8	per	cent.
Iron	Not	more	than	1.0	per	cent.	,			
Silicon	Not	more	than	1.5	per	cent.	1			
Magnesium	Not	more	than	0.6	per	cent.	•			
Manganese	Not	more	than	1.2	per	cent.	ı			
Titanium	Not	more	than	0.3	per	cent	•			
Aluminium	The	remat	inder.	•						

(ii) Heat treatment

Solution treated by heating at 510 ±5°C. Quenched in oil or water. Aged at 155 to 205°C for an appropriate time.

(iii) Strength properties

- (a) 0.1 per cent proof stress: not less than 21 tons/sq in.
- (b) Ultimate tensile stress: not less than 27 tons/sq in.
- (c) Elongation: not less than 8 per cent for sheets thicker than 12 s.w.g. (0.104 in.).
- 2 DTD610B Clad, high tensile aluminium alloy sheet.
- (i) <u>Chemical composition</u>

As given for DTD546B above.

(ii) Heat treatment

Solution treated by heating at 510 $\pm 5^{\circ}$ C. Quenched in oil or water at not exceeding 40°C. Aged at room temperature not less than 48 hours.

(iii) Strength properties

- (a) 0.1 per cent stress: not less than 15 tons/sq in.
- (b) Ultimate tensile stress: not less than 25 tons/sq in.
- (c) Elongation: not less than 15 per cent for sheets thicker than 12 s.w.g. (0.104 in.).
- 3 DTD687A Clad, high tensile aluminium alloy sheet.

(i) <u>Chemical composition</u>

CopperNot more than 1.5 per cent.MagnesiumNot less than 2.0 nor more than 3.5 per cent.SiliconNot more than 0.5 per cent.

- 6 -

Appendix 1

Iron Not more than 0.5 per cent. Not loss than 0.3 nor more than 1.0 per cent. Manganese Not less than 4.5 nor more than 6.5 per cent. Zinc Not more than 0.3 per cent. Titanium Not more than 0.5 per cent. Chromium The remainder. Aluminium Chemical composition of coating. Not less than 0.8 nor more than 1.2 per cent. Zinc The remainder. Aluminium

(ii) <u>Heat treatment</u>

Solution treated by heating at 465 $\pm 5^{\circ}$ C. Quenched in water or oil. Precipitation treated at 110 - 140°C for an appropriate time.

(iii) Strength properties

- (a) 0.1 per cent proof stress: not less than 27 tons/sq in.
- (b) Ultimate tensile strength: not less than 32 tons/sq in.
- (c) Elongation: not less than 8 per cent for sheets thicker than 12 s.w.g. (0.104 in.).
- 4 2024-T3 Clad, high tensile aluminium alloy sheet.

(i) <u>Chemical composition</u>

Copper	Not	less	than	3.8	nor	more	than	4.9	per	cent.
Magnesium	Not	less	than	1.2	nor	more	than	1.8	per	cent.
Manganese	Not	less	than	0.3	nor	more	than	0.9	per	cent.
Iron	Not	more	than	0.5	per	cent	•			
Silicon	Not	more	than	0.5	per	cent	•			
Zinc	Not	more	than	0.25	5 per	r cen	t.			
Chromium	Not	more	than	0.1	per	cent	•			
Others	Not	more	than	0.1	5 pe:	r cen	t .			
Aluminium	The	rema	inder	•						

(ii) <u>Heat treatment</u>

Solution treated by heating at 488 - 499°C. Quenched in water. Aged at room temperature for four days.

(iii) Strength properties

- (a) 0.2 per cent proof stress: not less than 18 tons/sq in.
- (b) Ultimate tensile strength: not less than 27 tons/sq in.
- (c) Elongation: not less than 15 per cent between 10 and 24 s.w.g. (0.125 - 0.021 in.)

APPENDIX 2

DESCRIPTION OF HYDRAULIC LOADING RIG AND METHOD OF CRACK MEASUREMENT

The sheets were tested in the slow loading hydraulic rig described in Ref.3, but with an improved loading jack. The ends of each sheet were clamped between pairs of 4 ft long steel plates and loaded through connecting links by a hydraulic ram. A general view of the rig is shown in Fig.8.

End clamping by means of forty eight $\frac{1}{2}$ in. diameter bolts was found an offective method of attaching the sheet.

All specimens were subjected to a repeated load cycle, alternating between some maximum and minimum value, read off pressure gauges on the line of the loading ram. The progress of the fatigue crack was followed by means of a number of fine wires cemented to the sheet normal to the direction of cracking and connected to electrical counters. The wires covered a total distance of about 20 in., which was usually enough to enable detection and progress of the fatigue crack to be followed until complete failure occurred. The wire used was No. 47 s.w.g. (0.002 in. diameter), enamel covered copper wire. The wires were spaced approximately 0.4 in. apart, and each wire was bonded to the sheet by means of cold setting synthetic resin glue.

Other methods of fixing the wires to the sheets were previously tried. The first method attempted consisted of the wire sandwiched between two strips of transformer paper, stuck to the sheet with adhesive. A second attempt was made using only a single sheet of the paper, under the wire. It was found that as the crack approached the paper, it rose from the surface of the metal, causing the wire to break many cycles before the crack reached the wire. Hot setting synthetic resin glue was also tried, but this was found to have insufficient shear stiffness, and there was a danger that the high temperatures required to set it might affect the mechanical properties of the sheet.

The ends of the wire projecting from the glue were fixed to the sheet by means of adhesive tape until the sheet was bolted into position in the rig. Then a small portion was stripped of insulation and soldered to contacts leading to electrical counters. As long as the wire remained unbroken, a micro switch, operated by extension of the specimen, operated the counters and associated indicator lights. As the fatigue crack reached and broke each wire the corresponding counter stopped and the indicator light went out. Successive counter readings indicated the number of cycles taken for the crack to travel from one wire to the next, hence it was possible to plot the total length of crack against number of cycles.

As a check on the accuracy of loading the rig was calibrated over the whole range of loads applied in the test programme. For this calibration a pair of strain gauged steel links was inserted between the loading ram and the specimen. The strain gauged links were previously calibrated in a Losenhausen static test machine, this being used as a criterion for all test machines in the fatigue laboratory.

The calibration showed that the loading was accurate to within -2 per cent at the highest loads applied and to within -5 per cent at the lowest loads.

APPENDIX 3

SUMMARY OF TEST RESULTS

Discussion has been confined to the results of tests on sheet of one thickness at a constant mean stress of $14,000 \text{ lb/in.}^2$. However, a number of other results were obtained for thinner and thicker sheets with the same mean stress and also with other mean stresses. The results cover four alloys under a mean stress of $14,000 \text{ lb/in.}^2$; three alloys under a mean stress of $12,000 \text{ lb/in.}^2$ and one alloy (MTD546) under a mean stress of $10,000 \text{ lb/in.}^2$.

A summary of these results is given in Table 1 and all test results are given in Table 2.

1 71671	STINSAJ 10 Altaring
---------	---------------------

	· · · · · · · · · · · · · · · · · · ·		· • • • • • • • • • • • • • • • • • • •	
Net stress at ₂ fallure lb/in.	22,500 23,400 21,500 25,400	21,300 23,500 24,400 25,500 24,400 24,400 25,500 24,400 25,500 24,400 25,500 20,5000 20,5000 20,5000 20,50000000000	 > 30,900 > 32,700 > 32,700 > 32,700 > 30,200 > 30,200 20,500 21,700 21,700 21,700 21,700 21,700 21,700 20,500 21,700 21,700<td>> 28,400 > 32,000 51,500</td>	> 28,400 > 32,000 51,500
Unstable crack length in.	13.80 15.14 12.67 10.21	17. 25 19 19 19 19 19 19 19 19 19 19 19 19 19	◆ 28 ● 2	> 21 / > 21 / > 21 / 17.92 Treltable above 20
Cycles to fallure	31,547 31,547 23,180 23,952 13,837	131,503 14,418 17,049 7,522 98,869 16,554 6,472	155,819 155,819 13,904 13,104 24,5619 24,565 146,312 335,557 146,312 335,557 146,312 25,320 8,547 8,547 8,547 14,176 1,176 1,176	509,119 55,473 17,176
Alternating ₂ stress [*] lb/in.	4 ₅ 000 6 ₉ 000 6 ₉ 000 6 ₉ 000	2,000 5,000 6,000 6,000 6,000 6,000 6,000	4,4000 6,000 6,000 6,000 4,4000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000 6,000	2,000 1,000 6,000
ilean* stress lb/in. ²	12,000 10,000 14,000	14,000 14,000 14,000 14,000 12,000 12,000	14,000 14,0000 14,0000 14,0000 14,00000 14,0000000000	14,000 14,000 14,000 11,000 ectional area
llaxinul stress [*] in cycle lb/in. ²	16,000 16,000 18,000 20,000	7, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,	18,000 20,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000 16,000	16,000 18,000 20,000 20,000 20,000
Spec inen No.	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2225 575 2015	<i>አይጽ ጄፄጽ ጽድ ፄጜ ዀ</i> ርቈዾ ፞ዿጜ	33 34 35 14 131 atre
Thickness in.	0 . 04	0 . 08 0 . 15	0.04 0.16 0.08 0.04 0.15	* • •
laterial	DTD516		отрено 759010	2024-TJ
				,

- 10 -

TABLE 2

Results of tests

For each specimen the lengths in inches are given for both halves of the crack growing either side of the initial slot (see Fig.1). The initial slot length (1.25 in.) is not included in the lengths given

	Specine	n No. 7*			Sp ec i ne	en No. 9		Sp ec i nter	1 No. 10		Specimen No.11				
Top c	ereck	Dotton	1 crack	Тор	creck	ack Botton crack		Top crack		Lottom crack		Top crack		Tottom crack	
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles
0.27 0.69 1.07 1.49 1.28 2.28 2.68 3.10 3.50 3.91 4.33 4.73 5.14 5.54 5.95 6.33 6.72 7.13 7.52 7.93 8.34 8.73	8, c.30 12, 330 14, 020 14, 939 15, 451 15, 702 15, 930 16, 135 16, 249 16, 429 16, 460 16, 482 16, 482 16, 508 16, 525 16, 536 16, 554	0.28 0.70 1.03 1.47 1.96 2.26 2.66 3.06 3.43 3.86 4.28 4.70 5.09 5.49 5.90 6.29 6.70 7.13	8,353 12,129 14,033 14,921 15,492 15,788 16,135 16,295 16,431 16,499 16,539 16,543 16,543 16,545 16,550 16,554	0.26 0.69 1.06 1.47 1.84 2.25 2.66 3.03 3.44 3.84 4.03	51,611 91,119 102,713 120,762 125,054 127,459 129,219 130,666 131,503 131,903	0.25 0.53 1.05 1.49 1.29 2.25 2.65 3.10 5.49 3.90 4.30 4.30 4.30 4.30 5.50 5.50 5.50 5.50 5.50 6.74	47,964 92,635 103,894 113,167 123,931 127,013 120,351 130,724 131,179 131,463 131,616 131,728 131,608 131,867 131,898 131,903	0.26 0.68 1.06 1.46 1.67 2.27 2.68 3.03 3.49 3.90 4.30 4.70 5.10 5.51 5.91	13, 54,3 20, 373 24, 109 26, 674 27, 042 28, 563 28, 746 28, 854 28, 938 28, 938 28, 938 28, 951 27, 952	0.28 0.70 1.10 1.49 1.57 2.26 2.66 3.05 3.48 3.88 4.29 4.71 5.10 5.51	15,945 19,40 23,092 26,219 27,434 20,231 28,563 28,787 28,979 28,914 28,937 23,945 28,950 28,950	0.24 0.63 1.05 1.44 1.82 2.22 2.63 3.02 3.41 3.82 4.24	6,933 11,916 13,025 13,515 13,603 13,768 13,004 13,823 13,031 13,826 13,837	C • 27 0 • 68 1 • 08 1 • 51 1 • 90 2 • 28 2 • 70 3 • 10 3 • 52 3 • 92 4 • 34 4 • 7:-	7,390 11,540 12,785 13,410 15,636 13,723 13,781 13,809 13,824 13,831 13,836 13,837

*Specimens numbered 1-6 and 8 were discarded

1 → → 1

	crack	Cycles	3, 395	5,421	6,194	7,129	7,434	7,513	7,52											
. No. 15	Bottom	Length	0.28	0,63	1.09	1.49	8,	5° 30	2.70											
Spec imen	rack	Cycles	3,872	2.404	6,338	6 . 711	7,008	7,315	201.4	7,444	7,473	7,502	7,519	7,522						
	Top c	Length	Q.•0	69 ° 0	1.10	8.1	8	2 . 29	5,69	3.07	3.48	3°89	4.e.31	4.72						
	crack	Cycles	S , 114	13,033	15,331	16, 30	16,785	16,931	15,990	17,020	17,035	210.71	17,047	17,048	17,049					
No. 14	Bottcm	Length	0.25	0.66	1.07	1.47	1.58	2.26	ی 2 8	3.10	3.50	3,8	4.31	4.71	5,11					
Spec inen	rack	Cycles	9 * 0214	14,556	15,547	16,416	16,791	16,931	16,986	17,013	17,029	17,041	17,045	17,043	17,043	610,71				
	Top C	Length	0.28	0.68	1.08	1.47	1.96	2 , 25	2.66	3 . 05	3.45	3.37	4.29	4.70	5.10	5.50				
	crack	Cycles	11,288	16,333	20,250	21,520	22,117	22,606	22,068	23,015	23,092	23, 126	23,146	23,158	23,163	23,174	23, 177	23, 178	23, 180	
10. 13	Botton	Length	0.21	0.65	1.02	1.46	1.85	2.27	2.67	3.08	3.48	3,39	4.29	4.59	5 • 09	5.3	5.89	6°3	6°30	
Spec traen	srec k	Cycles	10,136	16,102	20,001	21,314	22,036	23,330	27,693	22,904	23,019	25,008	23,127	23,149	23,160	23,169	23,174	23,178	23,179	23,180
	Top c	Length	0.23	0.65	1.06	1.45	1.84	2,21	2°8	3.04	3.42	8° 8	4.29	4.63	5.07	5.49	5 .33	6.29	6 . 68	7.10
	crack	Crcles	15,397	23,965	27,858	29,101	30,305	30,682	31,105	31,344	31,125	31,177	31,192	31,526	31,535	31.542	31,545	31,547		
n 110 . 12	Dottom	Length	0 * 50	0.61	1.02	1.41	ء دي	2,21	2.61	3.01	3.40	3.81	lie22	t65	5 ° 02	5.6	5.83	6 . 21		
Spec ine	rack	Cycles	13,301	25,675	20,260	29,584	30,465	779. QE	31,214	31,358	31,430	31,469	31,492	31,520	31,534		31,543	31,547		
	Top C	Length	0,26	0.67	1.06	1.45	1.83	23	ខ្ល	5,10	3.50	3.91	4.31	4.71	5.13	5.3	Je91	6.34		

TABLE 2 (contd.)

- 12 -

TABLE 2 (c ontd.)

	Spec imer	1 No. 16		Specimen No. 17					Spec imer	n 110. 18	8	Specimen No. 19			
Тор с	preck	Botton	1 crack	Тор	crack	Bottem	crack	Top C	rack	Bottom	crack	Top C	rack	Botton	ı crack
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles
0.29 0.68 1.09 1.48 1.90 2.28	12,179 18,973 23,500 24,870 25,311 25,320	0.25 0.67 1.06 1.45 1.83	11,579 20,019 24,120 24,801 25,320	0.26 0.68 1.05 1.49 1.88 2.27 2.69	3,695 6,140 7,495 8,353 8,494 8,643 8,643 8,647	0.28 0.68 1.09 1.48	3,895 6,397 7,963 8,647	0.26 0.68 1.10	400 535 559	0.26 0.69 1.09	444 458 459	0.28 0.71 1.11 1.48 1.86 2.27 2.67 3.05 3.46 3.87 4.29 4.70 5.10 5.51 5.91 6.30 6.72 7.12 7.55 7.96 8.36	54,702 72,732 84,600 89,613 92,454 95,052 96,298 97,182 97,845 98,334 98,611 98,709 98,741 98,772 98,788 98,809 98,825 98,842 98,856 98,868 98,869	0.27 0.65 1.04 1.47 1.85 2.27 2.69 3.08 3.47 3.89 4.28 4.69 5.11 5.53 5.92 6.31 6.71 7.09 7.52 7.91 8.33	44, 326 66, 515 78, 610 86, 634 89, 729 92, 849 95, 385 96, 805 97, 546 98, 370 98, 689 98, 736 98, 736 98, 736 98, 804 98, 820 98, 836 98, 868 98, 868 98, 869

	crack	Cycles	2,419 3,776 3,958 3,969
No. 23	Bottom	Length	0.22 1.65 1.45
Spec Inen	reck	Cycles	2, 968 2, 969 2, 969
	Top c	Lergth	0.28 0.67 1.07
	crack	Cycles	21,045 21,355 22,355 22,355 22,355 22,355 22,355 22,355 22,355 22,355 22,355 22,355 22,355 24,55 25,55 24,55 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 25,555 2
No. 22	Bottem	Length	0.23 1.051 2.45 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.
Spec fraen	rack	Cycles	12, 309 19, 107 21, 326 22, 336 22, 340
	Top C	Length	0.25 1.48 2.27 2.27 2.27
	orack	Cycles	2,984 1,481 5,613 5,613 5,613 5,613 5,613 5,613 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147 6,147
No. 21	Bottom	Length	480
Spectmen	orack	Cycles	5,472 6,447 6,447 6,447 6,464 6,467 6,464 6,467 6,467 6,467 6,467 6,467
	Top	Length	。。
	crack	Cycles	5,716 9,991 11,912 13,811 14,534 14,538 14,411 14,411 14,411 14,411 14,411 14,411
No. 20	Bottom	Length	00
Spec Inen	rack	Cycles	6,336 10,539 11,560 12,539 14,509
	Top c	Length	868488768888265 86848268888265

\$

TABLE 2 (contd.)

- 14 -

TABLE 2 (contd.)

	Spec inen	1 No. 24		Specimen No. 25					Spec inen	No. 26		Specimen No. 27			
Top o	erack	Botton	crack	Тор	crack	Botten	n crack	Тор с	orack	Bottom crack		Top crack		Bottor	crack
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles
0.27 0.63 1.06 1.46 1.89	2,829 3,663 4,001 4,147 4,147 4,176	0.26 0.67 1.09 1.86 2.35	2,629 3,754 4,011 4,160 4,176	0.28 0.67 1.07 1.51 1.92 2.30 2.69	13,287 23,152 29,391 32,763 33,668 34,221 34,426	0.25 0.55 1.02 1.42 1.81 2.20 2.53	15,540 24,033 30,185 32,409 33,486 34,220 34,426	0.65 1.06 1.17 1.87 2.26 2.67 3.09 3.50 3.90 4.30 4.30 4.30 4.69 5.09 5.51 5.92 6.29 6.69 7.10 7.51 7.92 8.31 8.72 9.13 9.54 > 10.0	142,823 153,610 158,809 160,977 162,355 163,251 134,128 164,550 164,837 165,099 165,243 165,263 165,513 165,513 165,582 165,638 165,678 165,777 165,78 165,777 165,801 165,819	0.63 1.04 1.64 1.83 2.21 2.62 3.02 3.41 3.83 4.65 5.14 5.44 5.44 5.86 6.24 6.66 7.07 7.51 7.91 8.29 8.69 9.12 9.52 >10.0	137,814, 150,257 157,568 160,336 161,570 161,570 164,929 163,939 164,479 164,815 165,071 165,242 165,380 165,458 165,564 165,666 165,703 165,666 165,703 165,765 165,765 165,786	0.23 0.64 1.03 1.41 1.81 2.21 2.59 2.99 3.40 3.81 4.23 5.04 5.45 5.04 5.45 5.64 7.09 7.51 8.30 8.68 9.10 9.51	7,188 11,410 12,872 13,236 13,446 13,581 13,658 13,706 13,755 13,778 13,800 13,827 13,835 13,848 13,093 13,910 13,919 13,934 13,942 13,970 13,975 13,983 13,990 13,994	0.27 0.66 1.04 1.45 1.86 2.29 2.67 3.08 3.49 3.90 4.30 4.30 4.30 4.30 4.70 5.13 5.52 6.32 6.71 7.09 7.51 7.92 8.32 8.72 9.12 9.51 > 9.6	8, 183 11, 469 12, 875 13, 241 13, 477 13, 594 13, 674 13, 763 13, 763 13, 763 13, 763 13, 763 13, 803 13, 816 13, 836 13, 842 13, 842 13, 842 13, 916 13, 926 13, 942 13, 956 13, 954

Specimen No. 28				Specimen No. 29				Specimen No. 30				Specimen No. 31				
Top crac k		Bottom crack		Top crack Bot		Bottom	Bottom crack		Top crack		Botton creck		Top crack		Bottom crack	
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	
0.25 0.65 1.05 1.46 1.83 2.23 2.63 3.03 3.43 3.84 4.25 4.66 5.05 5.46 5.05 5.46 5.05 5.46 5.05 5.46 5.05 5.46 5.05 5.46	90,350 155,116 197,265 228,136 216,891 259,098 266,816 273,216 273,216 273,216 278,217 282,066 285,792 208,301 290,285 292,062 293,132 291,502 295,595 295,215	0.28 0.70 1.07 1.50 1.89 2.29 2.70 3.11 3.53 3.90 4.33 4.73 5.13 5.54 5.94 6.32 6.72 7.12	91,504 157,873 197,780 227,745 245,800 259,893 267,348 273,911 279,587 283,927 287,285 290,175 290,175 290,175 295,447 295,815 296,474 295,815	0.23 0.65 1.03 1.44 1.87 2.24 2.65 3.05 3.45 3.87 4.26 4.66 5.07 5.48 5.90 6.29 6.69 7.09	17,162 28,531 34,710 39,266 42,113 43,063 43,809 44,585 44,585 44,585 44,906 45,043 45,153 45,269 45,335 45,461 45,514 45,514	0.26 0.67 1.08 1.48 1.85 2.25 2.66 3.02 3.45 3.86 4.27 4.60 5.08 5.49 5.88 6.26 6.68 7.10	18,710 30,178 37,1,84 40,827 42,535 45,334 44,016 44,398 44,712 44,989 45,155 45,263 45,263 45,263 45,261 45,500 45,530 45,538 145,568	0.32 0.72 1.13 1.53 1.92 2.31 2.72 3.09 3.50 3.90 4.32 4.72 5.10 5.52 5.90 6.31 6.73 7.16	10.694 16,204 20,101 22,249 23,264 23,637 23,960 24,114 24,210 24,342 24,418 24,521 24,535 24,535 24,558 24,558 24,558 24,558	0.26 0.64 1.03 1.44 1.87 2.28 2.68 3.08 3.49 3.90 4.31 4.71 5.11 5.52 5.93 6.32 6.71 7.11	10.037 16,159 19,961 22,221 23,325 23,730 23,980 24,173 24,553 24,553 24,553 24,553 24,553 24,553 24,553 24,615 24,615 24,637 24,615	0.21 0.62 1.04 1.43 1.81 2.20 2.59 2.98 3.40 3.00 4.22 4.64 5.03 5.44 5.84 6.23 6.62 7.08 7.46	11,654 23,165 30,703 34,752 37,883 40,131 41,522 42,938 42,724 44,408 44,922 45,470 45,644 45,942 46,052 46,052 46,108	0,29 0,70 1,09 1,51 1,93 2,32 2,74 3,14 3,55 3,95 4,36 4,36 4,76 5,17 5,58 5,98 6,38 6,78 6,78 6,76 7,17	13,953 24,609 31,193 35,520 38,471 40,303 41,824 42,908 43,875 44,433 44,674 45,368 45,560 45,739 45,894 45,971 46,056 46,140 46,184	
7.48 7.50 8.29 8.72 9.11 9.52 >10.0	296,861 297,211 297,549 297,764 297,820 297,820 297,860 297,879	7.54 7.94 8.33 8.74 9.15 9.54	297,761 297,831 297,848 297,860 297,871 297,879	7.49 7.90 8.29 8.71 9.12 9.51 > 9.6	45,546 45,569 45,588 45,594 45,63 45,612 45,619	7.52 7.93 8.33 8.74	45,578 45,594 45,608 45,619	7.56 7.98 8.37 8.78 9.16 9.58 > 10.0	24,,626 24,637 24,9645 24,9654 24,9654 24,9654 24,9670 24,9686	7.52 7.92 8.33 8.73 9.13 9.51	24,645 24,654 24,652 24,671 24,679 24,679 24,636	7.46 7.89 8.28 8.69 9.07 9.49 10.30	46,233 46,271 46,282 46,302 46,314 46,324 46,324	7.59 7.99 8.37 8.79 9.19 9.55 10.95	46, 134 46, 221 46, 241 46, 279 46, 302 46, 342	

TABLE 2 (contd.)

- 1

1 16

1

TADLE 2	(contd.)
---------	----------

Specimen No. 32				Specimen No.33				Specinen No. 34				Specimen No. 35			
Top crack Dottom cra		n crack	Top crack		Botton crack		Top crack		Bottom crack		Top crack		Bottem crack		
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles
0.30 0.68 1.08 1.48 1.93 2.32 2.71 3.13 3.53 3.94 4.35 4.76 5.15 5.56 7.59 7.59 7.59 7.59 0.37	107,909 17881 220,022 249,564 276,104 295,668 304,377 314,000 318,634 323,041 3.6,428 323,675 330,265 331,619 332,543 333,284 334,064 334,807 335,417 335,856 335,054	0.23 0.64 1.02 1.42 1.81 2.20 2.59 2.99 3.40 3.31 4.22 4.63 5.02 5.43 5.02 5.43 5.83 6.20 5.43 5.83 7.06 7.48 7.90 8.28	94,438 167,458 212,693 245,455 269,514 288,371 299,765 308,088 314,024 320,148 323,500 327,409 329,013 330,797 331,950 332,832 333,664 334,483 335,003 335,534 335,380	0.27 0.71 1.11 1.49 1.88 2.27 2.67 3.05 3.45 3.65 3.45 3.67 4.29 4.71 5.10 5.50 5.37 6.29 6.71 7.14 7.53 7.93 8.36	179, 311 302, 133 373, 693 398, 844 431, 069 459, 945 471, 190 479, 480 484, 590 489, 579 493, 257 495, 772 499, 211 501, 235 505, 157 506, 553 507, 152 508, 036	0.23 0.65 1.04 1.46 1.87 2.27 2.66 3.07 3.48 3.83 4.30 4.69 5.10 5.50 5.50 5.52 6.72 7.11 7.52 7.91 8.32	194, 786 302, 587 375, 315 406, 691 445, 593 463, 807 473, 541 481, 145 487, 201 492,006 495, 728 498, 413 500, 543 502, 798 504, 950 506, 110 507, 034 507, 985 508, 640 508, 827 508, 950	0.24 0.65 1.05 1.47 1.87 2.27 2.57 3.07 3.48 3.90 4.31 4.70 5.10 5.51 5.91 6.33 6.72 7.11 7.50 7.91 8.33	18,518 35,022 42,702 46,445 50,443 52,415 53,535 54,106 54,466 54,732 55,059 55,240 55,220 55,220 55,239 55,339 55,339 55,339 55,407 55,427 55,441 55,454	0.26 0.67 1.06 1.46 1.46 2.25 2.65 3.03 3.45 3.45 3.45 3.86 4.28 4.68 5.08 5.48 5.08 5.48 5.08 5.48 5.08 5.48 5.68 5.48 5.68 5.48 5.68 5.48 5.68 5.48 5.69 6.70 7.12 7.53 7.93 8.32	18,935 35,142 42,622 47,282 50,219 52,271 53,42 54,021 54,435 54,021 54,435 55,027 55,146 55,216 55,289 55,336 55,336 55,122 55,122 55,142	0.26 0.67 1.07 1.47 1.38 2.28 2.66 3.07 3.48 3.89 4.32 4.71 5.11 5.53 5.94 6.32 6.72 7.11 7.54 7.92 8.34	8,053 12,411 14,167 15,505 16,230 16,534 16,730 16,857 16,941 17,011 17,056 17,091 17,116 17,130 17,147 17,155 17,161 17,172 17,175 17,176	0.26 0.67 1.09 1.47 1.85 2.25 3.04 3.46 3.87 4.27 4.68 5.08 5.50 5.90 6.29 6.70 7.12 7.52 7.94 8.33	8,032 12,165 14,055 15,427 16,168 16,517 16,857 16,934 17,056 17,056 17,056 17,115 17,126 17,149 17,152 17,156 17,168 17,171 17,174 17,176
9.18 9.57 12.08	336,306 336,302 336,557	8,69 9,08 9,50 12,56	336,305 336,305 336,360 336,557	8.76 9.15 9.57 >10.0	508,997 509,097 509,106 509,119	8.73 9.13 9.52 >10.0	509,006 509,103 509,109 509,119	8,72 9,12 9,51 >9,6	55,461 55,468 55,475 55,475	8.72 9.13 9.53 > 9.6	55,456 55,466 55,471 55,476				

•

.

- 17

1

	Specimen	No. 36		Specimen No. 37				
Top c	rack	Bottom	crack	Top c	rack	Bottom crack		
Length	Cycles	Length	Cycles	Length	Cycles	Length	Cycles	
0.25 0.65 1.07 1.47 1.88 2.26 2.68 3.09 3.49 3.90 4.30 4.70 5.10 5.51 5.91 6.30 6.70 7.09 7.51 7.92 8.31	8,486 14,967 16,667 17,142 17,496 17,707 17,855 17,941 17,954 18,036 18,067 18,067 18,105 18,126 18,164 18,169 18,164 18,169 18,172 18,177 18,184	0.24 0.64 1.06 1.44 1.82 2.22 2.61 3.03 3.41 3.83 4.25 4.67 5.05 5.45 5.5 5.	7,989 13,863 15,709 16,723 17,120 17,505 17,704 17,872 17,934 17,992 18,036 18,065 18,039 18,105 18,121 18,129 18,149 18,149 18,149 18,149 18,149 18,149 18,149 18,149 18,149 18,149 18,149 18,166 18,171 18,176	0.32 0.45 0.58 0.72 0.84 0.95 1.08 1.21 1.33 1.45 1.58	1,349 1,577 1,732 1,842 1,947 2,035 2,094 2,145 2,166 2,190 2,197	0.22 0.35 0.48 0.60 0.71 0.84 0.97 1.10 1.22 1.35 1.49 1.61 1.74	1,121 1,516 1,601 1,730 1,832 1,947 2,052 2,088 2,129 2,153 2,172 2,191 2,197	

TABLE 2 (contd.)

_

FIG.I. CENTRAL SLIT AND POSITIONING OF INDICATOR WIRES.

FIG. 3. VARIATION OF de de MITH CRACK LENGTH.

NOTE: ALL STRESSES ARE NOMINAL STRESSES ON GROSS AREA.

NOTE: ALL STRESSES ARE NOMINAL STRESSES ON GROSS AREA.

MEAN STRESS 14,000 LB/IN2

FIG. 5. VARIATION OF delan WITH ALTERNATING STRESS - D.T.D. 610.

NOTE : ALL STRESSES ARE NOMINAL STRESSES ON GROSS AREA.

FIG. 6. VARIATION OF d?/dN WITH ALTERNATING STRESS - D.T.D. 687.

NOTE: ALL STRESSES ARE NOMINAL STRESSES ON GROSS AREA.

FIG. 7. VARIATION OF dl/dN WITH ALTERNATING STRESS - 2024-T3.

FIG.8. GENERAL VIEW OF TEST RIG

۰	D	n	0	÷,	11.5	6EE
174	n.,	U .	· U .	۰.	11.74	055

539.431 : 669.715-4 : 539.219.2

PROPAGATION OF FATIGUE CRACKS IN VIDE UNSTIFFENED ALUMINIUM ALLOY SHEETS. Raithby, K.D. and Bebb, Marie E. September, 1961.

Results are given for rates of propagation of fatigue cracks, fr n an initial central slit up to the length at which the cracks become unstable, for four cornenly used aluminium alloys. The test specimens in each case where flat sheets 48 in, wide and approximitely 96 in, long and were subjected to fluctuating tensile stresses in a direction parallel to the rolling direction of the sheet. The tests confirmed that the high strength cluminium-zine alloy has a high rate of crack propagation and a short unstable length compared with aluminium-copper alloys, particularly if the aluminium-copper alloy is in the solution treated state. A.R.C. C.P. No.655

539.431 : 669.715-4 : 539.219.2

PROPAGATION OF PATIGUE CRACKS IN WIDE UNSTIFFENED ALUMINIUM ALLOY SHEETS. Raithby, K.D. and Bebb, Marie E. September, 1961.

Results are given for rates of propagation of fatigue cracks, from an initial central slit up to the length at which the cracks became unstable, for four cormonly used aluminium alloys. The test specimens in each case were flat sheets 48 in, wide and approximately 96 in, long and were subjected to fluctuating tensile stresses in a direction parallel to the rolling direction of the sheet. The tests confirmed that the nigh strength aluminium-zine alloy has a high rate of crack propagation and a short unstable length compared with aluminium-copper alloys, particularly if the aluminium-copper alloy is in the solution treated state.

A.R.C. C.P. No.655

539.431 : 669,715-4 : 539.219.2

PROPAGATION OF "ATIGUE CRACKS IN WIDE UNSTHFFENED LUMINIUM ALLOY SHEETS. Raithby, K.D. and Bebb, Harie E. September, 1961.

Results are given for rates of propagation of fatigue cracks, from an initial central slit up to the length at which the cracks became unstable, for four commonly used aluminium alloys. The test specimens in each case were flat sheets 48 in, wide and approximately 96 in, long and were subjected to fluctuating tensile stresses in a direction parallel to the rolling direction of the sheet. The tests confirmed that the high strength cluminium-zine alloy has a high rate of crack propagation and a short unstable length empired with cluminium-copper alloys, particularly if the aluminium-copper alloy is in the solution tracted state.

© Crown Copyright 1963

Published by HER MAJESTY'S STATIONERY OFFICE To be purchased from York House, Kingsway, London w.c.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

s.o. code No. 23-9013-55 C.P. No. 655

.