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I JNTRODUCTION 

For preliminary design work it is essential to have a convenient 
method available fcr the rapid estimation of the normal force developed 
on siimple wings. Methods based on linearised theory are well known, 
but in the case of some aircraft and most guided weapons designed to 
operate at supersonic speeds, the maximum angles of incidence used are 
greater than those at which it is reasonable to assume a linear 
relationship between normal force coefficient and incidence, and it 
becomes necessary to take account of the non-linearities. In the case 
of guided weapons, angles of incidence up to 250 are not uncommon, and 
weapons or space vehicles designed to operate at very high altitudes may 
adopt angles of incidence considerably in excess of this. 

Besides its relevance to estimates of acceleration capability and 
drag due to incidence, a knowledge of normal force at high angles of 
incidence is a prerequisite for estimates of various aerodynamic moments 
which are estantially associated with normal force. 

The following method for the approximate estimation of normal force 
is semi-empirical, and is offered pCLi?tlj as a basis for discussion and 
further refinement, and also as our interim engineering method which is 
simple and consistent with existing theoretical and experimental results. 
It will be assumed that the initial force curve slope is known, the 
problem being to estimate the non-linear force. 

It is proposed to treat the contributions to normal force from the 
upper and lower surfaces quite separately, i.e. 

where suffices ( )u and ( >c refer to upper and lower wing surfaces 

respectively, Following the wedictions of linearised theory it will 
further be assumed that 

where a = @C,q'dd a+.0, a is the incidence of the mean chord plane and 

aU3 ae are the incidence angles of the upper and lower surfaces respectively, 

For thin wings with sharp trailing edges, au, a4 and a are equal, but for 
wings having a finite mean trailing edge thickness/chord z/G, then 
a*) "4 are defined by 

;j: a u = a-z 
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For the purpose of this analysis it is proposed to assume that effects 
of thickness (other than at the trailing edge) can be neglected. It 
is believed that thickness distribution may have an appreciable effect 
on the non-linear force components, especially in the case of very 
slender wings; hence consideration will be restricted in the main to 
wings with sharp leading edges and thickness/chord ratios less than 
about s;$. 

2 NORMALI FORCE ON TJPPXR SURFACE 

Two distinct reasons can be found why the variation of normal force 
on the upper surface should not be linear with incidence. The overriding 
reason is that the upper surface force cannot exceed a value corresponding 
to the attainment of zero pressure over the surface, so that the relation- 
ship between normal force and incidence must exhibit a maximum. Hence 
there must be a non-linear force component which causes the upper surface 
normal force ultimately to fall below the linear pediction and have the 
correct maximum value. Since it can be shown from two-dimensional flow 
theory that this component depends on the hypersonic parameter N:a, it will 
be referred to generally as the hypersonic non-linear force component for 
the upper surface. 

The second component of non-linear force which is associated in the 
main with the upper surface flow is that which Garises from the action of 
the coiled vortex sheets shed from swept leading edges and tips. This 
component is only present in the case of slender wings for which the mean 
Mach. No. ncrmal to the leading and tip edges is subsonic; it will be 
referred to as the non-linear force component due to leading edge vortices. 
Unlike the hypersonic component, it causes an increase in force above the 
linear prediction, but only at angles of incidence well below that at 
which the hypersonic vacuuD1 limit is approached. 

At angles of inoidence below iu (the incidence at which the upper 
surface normal force coefficient reaches its maximum value), it is 
proposed to assume that the relation between upper surface normal force 
and incidence can be expressed as follows 

‘Nu = $aU+b 2 
u 5.l (“U < Q (3) 

This general form for the equation has been chosen because it is consistent 
wit5 two-dimensional flow theory for angles of inc$dence not too close 
to UuY as shown in se&ion 2.1 below. For au > au, CNu is constant and 
equal to its maximum value, E,, which will be taken to be a fraction k of' 
the negative pressure coefficient corresponding to absolute vacuum, 

‘Nu z k(-Cp)vac = (“u > GUI (4) 

As outlined above, the upper surface non-linear force has two distinct 
origins and it is therefore proposed to assume that bU is the sum of two 
components associated with each, i.e. 

bU = (b,&., + (b& (5) 
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(a 1 u h at ard (bu)v a: Lare the hypersonic and leading edge vortex 
components respectively of the upper surface non-linear force coefficient. 
It is clear that since the factor (bu)h is associated &th the maximum 
value of GNU, (bu)v must be a function of incidence having the 
characteristics that it does not affect fi Nu and is zero for a ;a, G 

U U’ 

Wthods for evaluating (bu)h and (bu)v are described below, in 
sections 2.1 and 2.2 respectively. 

2.1 The hypersonic non-linear factor, (bu)h 

From equations (3) and (4), and the prescribed condition that&the 
non-linear component due to leading edge vortices shall not affect CNu, 
it follows that 

(bJh =; - +g for a < Su 

! 
(6) 

where (7) 

It has been pointed cut by Relf', Igayer and others that 
(ICp)maJ(-Cpkd the ratio of the maximum negative pessure coefficient 
achieved on wings or bodies to that corresponding to vacuum is remarkably 
constant over a wide range of Uach Nos. from subsonic to hypersonic. 
The most frequently quoted value for the ratio is 0,7, although slightly 
higher values are someti;?es measured. Since any departure from a value 
of unity is presumably an effect of viscosity the ratio may depend on the 
state of the boundary layer. NCFX the mean suction on the upper surface 
of a wing arises from the effeats of both thickness and incidence, and 
hence the appropriate value of' k in equations (4), (6), (7) ~$11 be less 
than (--Cp)ma./bCp)vac by an amount (-Ep)t/(-Cp)vac, where (wC~)~ is the 
mean negative pressure coefficient due to thickness. Since this analysis 
is expressly concerned with thin wings, it is proposed to assume k = O,i' 
for all cases, (except where otherwise stated), wh&ch is tantamount 
to overestimating cNuby an amount (-Ep)t if au > au, the error being 
less for au < E;, This error is unlikely to be significant in the case 

of_tings with supersonic leading edges, since in two-dimensional flow 
c-c,) t c: 0, but clearly thicknes s may have an important effect in 
reducing CNu on wings vfith subsonic leading edges. 

The validity of equations (3) and (6) can be checked in the 
particular case of two-dimensional flow (for which (bu)v = 0 and 
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bU = (b&) by co* aring the empirical -prediction of CNu for this case with 

exact Prandtl-Meyer values for inviscid flow. This coqarison is made in 
Fig. I, by plotting the force coefficients in two-dimensional flow in the 
form 

&?(CNu)2D = f[K(a)2D.W.u] (8) 

For au < Gu the empirical prediction (equations (3) and (6)) cast in this 
form is 

The full lines in Fig. 1 show this prediction for two typical values of k, 
0.7 and 0.75, while the exact Prandtl-Meyer values are plotted as points 
for various Xach Nos. and angles. It will be noted, first that equation (8) 
correlates the theoretical results extremely well, and second that with 
these observed values of k, equation (9) y edzcts the theoretical values 
with good accuracy at angles up to about /3 ~1~. At higher angles of 

course the empirical curve falls below the theoretical values since the 
latter tend to the absolute vacuum maximum, never attained in practice. 

Equations (6) and (7) show that (bu)h depends on the parameters 

tia and Mau. Since (a)2D + 4/N as 12 + 00, equation (8) takes the well- 

known hypersonic similarity form for 14 >> 1, and lJiu then has the value 
unity with k = 0.7. 

2.2 The leading edge vortex factor, (b,,)v 

The quantity (bu)v.aE is the increment in normal force coefficient 

due to the action of the vortex sheets which spring from the swept leading 
and tip edges when the flow separates from these edges. The theoretical 
studies of Mangler and Smith3 give (bu)v 2 4 for the case of a slender 

delta wing for which the slenderness parameters PcotRo and Pa tend to zero, 
where !3 E 

F 
b -1 and no is the leading edge sweepback. In a comprehensive 

survey of flow round swept edges, Stanbrook and Squire 4 have observed 
that at moderate angles of inc$denoe (11(x 2 0.5) the flow separates if thg 
Mach No. normal to the edge, &h, is subsonic, but is always attached if 1?N 
is supersonic.* iii is given in terms of mean edge sweepback 'i and wing 

incidence a by 

I- ---- r -- zjj = zi P 2- I cos SLcos2a i- k sin a 2 2 = II 
L?cos2B + 2sin2a.sin2G 

* There is some evidence that if Mcr > 0,6, separated flow may persist up 
to low supersonic values of I$.. 
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Clearly, then, the term (bu)v will only appear in the case of slender 
wings with subsonic edges9 
appreciably less thzn 2). 

(e,g, if M > 2, wings having an aspect ratio 
FOT Wch Nos. not too near_ unity, it is 

reasonable to expect the value of (bu)v to vary with I$, from about 4 at 
iQ = 0 d01m to zero at f;IN c 1.0. Although Sr is not necessarily the 
only parameter on which (bu)v may depend - for example at k&h Nos. near 
unity PcotE and @LX may also be important, nevertheless the empirical 
assumption is made that for a given type of edge (bu)v depends mainly on 

%* The strength of the vortex and hence the magnitude of (bu)v is 
likely to be affected by the ltsh~qne~s" of the edge, Le. by the wing 
thickness distribution in the region of the edges. This will be of 
particular importance in the case of very slender wings where a small 
wing depth in terms of chord has a large effect on the included angle 
at the leading edge neer the wing apex, For these reasons, consideration 
is restricted in this survey to thin wings with sharp edges. 

merimental values 3 of (bu)v ‘are plotted in Fig, 2 as a function of 

%' the Xach Nos. normal to the mean swept edge. z!$ is given by equation 
(IO) using the mean edge sweep 3 of the line joining the leading edge of 
the centre--line chord to the trailing edge of the tip chord, (see sketches 
in Fig. 2). Using a meran edge steep so defined, results for delta wings 
correlate reasonably well with those for wings with a curved leading edge 
or a finite tip chord. The values of (bu)v have been derived from the 
slopes of lines dravm tahrough experimental values of CrJ/a plotted against 
a, due allowance being made for the effect of the hypersonic non-Zine~tr 
term (assuming k = 
(see section 3.?), 

0.7) me! the non-linear force on the lower surface 
For all the plotted points the mean C& vs. a lines 

were drawn to cut the ordinate at a = 0 at n value corresponding to the 
linear theory lift curve slope. The general trend of the points for 
a > 4' supported this procedure in almost all cases, but CN/a at 01 < 4' 
tended to be below the lines so drawn, 

It can be seen that the trend of the points in Fig. 2 is ngt 
inconsistent with the slender -&ng tneory result (bu)v + 4 for 1% * 0. 
However, no points are available on thin wings for 0 < F!K 0.3 at 
supersonic stream i$ach numbers, so in the absence of some guide to its 
shape, the curve in this range is shownbroken. 

At trLansonic speeds (say I,0 < M < 1,2) the conditiops for the 
validity of slender wing theory may be satisfied although I$ JP 0, 
Under these conditions the curve of Fig, 
("J VI 

2 vlould pTobably underestimate 
This is cor,tirmed by the results of tests" on a thick, A = I.2 

ogee wing, shovm on Fig. 2, which gave values of (bu)v well above the 
curve at M = 1.0 but broadly in agreement with it for M = 1.25. 

2.3 Upper surface force as a function of Ma <and KU,, 

In the foregoing it has been postulated that (bu)v is a function 
of iii& - which in turn depends on Mcos8 and Esina.sir$ whereas the other 
upper surfac o non-linear force factor, (bu)h depends on Na and Nau. 
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It would obviously be very convenient if both (bu)v and (bu)h, and hence 
bu could be expressed solely in terms of Ma and MauP since M2CNu woxild 
then be a fun&ion of these two parameters by virtue of the relation 

P cNu = $- Ma.Mau + bU (Mcc~)~ 

Now since (bu)v is a factor most likely to be of importance in the 
oase of slender wings, for $ich sin5 c 1, it will usually be valid to-make 
the approximationMsina.sinR 2 Mau. Again, the relation between McosQ and 
Ma for 5 delta wing of vanishingly small aspect ratio is a fair approximation 
to MgosG for a variety of low aspect ratio wings, as shown in Elig. 3. 
McosQ for a very slender delta is shown as a dashed line, and will be 
designated (McosR)~. Hence a new p‘arameter @ii), xl.11 be defined as follows, 
(cf equation(?O)). 

o&J,, = J (Mcosfi): + (E/Icx~)~ 02) 

where (i&>, 52 i$ and is a function only of Ma and MaU. 

All the experimental values of (bu)v shown plotted against %N in 
Fig. 2 are plotted against (%N)s in Fig. 4. The mean line through these 
points is slightly different from that of Fig. 2, but the scatter about the 
line is much the same. 

Finally, using equations (5), (6), (II), Fig, 4 and the theoretical 
relation between (Mcosfl)s and Ma shown on Fig. 3, Fig. 5 has been drawn 
showing M% Nu as a function of Ma and M~ia~ for thin, sharp edged wings at 
b&h. Nos. in excess of Mach 1.2. This picture makes clear the separate 
effects of (bu)h and (b,)v, 

It will be seen that for Ma < 3 there is a maximum in the CNuvsa au 
curve occurring at MaU 2 0.7, (i,e. at an incidence well below Gu) which is 
more ponounced the smaller the value of Ma. Since the curves for higher 
incidencoa &~~iy!. a&tic&ly on tho shape of tie ?'i&+ CUr\~e, - wk..iCh 1s ilot 
w&L &fino~ by the expcr5wntal data - the dashed parts of Fig.5 should be 
regarded as tentative, 
3 NORMAL FORCE ONLOVER SURFACE 

In the prediction of normal force coefficient on the lower surface 
of thin wings, a distinction is made between wings which have substantial 
areas of two-dimensional flow with shocks attached to the leading edges 
(assumed sharp) up to a fairly large incidence, and those which do not 
come into this category. For clarity, an outline of the proposed method 
will first be made, showing how these two cases are dealt with, then 
details will be given in subsequent paragraphs, 



Fig. 6 illustrates the proposed method for constructing the 
CN4 VSP ad curvea The curve labelled CN; is essentially the "fully 
detached shoclc" ease, It applies to wings with subsonic leading edges 
or with a shock detachment angle small enough to have a negligible 
influence on the shape of the CN4 vs. a4 curve) and to any wing at an 
incidence about 30' above the shock detachment angle. Thus to sum up 

OX- a > a$ + 30' 

Here, aiis the lower surface incidence for shock detachment. Theoretical 
values of a*, for wings with plane lower surfaces, assuming a perfect gas 
with y = l.L+, are shown in Fig, 7 as a function of Mach No. and leading 
edge sweep, a. For the pesent analysis a4 * will be assumed to be given 
by these theoretical results, surface curvature due to thickness being 
ignored, 

If ai is not too small and the tips do not influence each other 
the normal force coefficient will correspond with the upper curve in Fig. 6, 
which is the "shock-attached" ease. This curve has two distinct phases. 
The first, CNe = Cl& extends up to a4 E: ai and in this incidence range 
there is an attached lesding edge shock tith extensive two-dimensional 
flow on the wing. In the second phase the shock is detached but the 
normal force curve follows on from the first phase without discontinuity, 
and in this transition or ltpartislly detached" phase CN4 = CNi + ACN4. 
To sum upI 

'N4 = 'Ni + "NJ? for a& > q 

(ACN4 = 0 for a4 > a; + 30') 

The only remaining ease is a% > 5' and PA less than IchJlch, For 
this, interpolation between the attached and detached cases is suggested, 
proportional to PA(1ch)/U. 
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In the following sections 3+1, 3.2 and 3.3, the estimation of CNi 

Cd and ACNe sre discussed in turn. 

3.1 Lower surface force with shock detached, CNZ 

It is proposed to base the estimation of CNL on theoretical results 
strictly applicable to slender wings. Mti has shown7 that in inviscid 
flow the normal force on a slender wing or body is proportional to the 
product of the axial and transverse velocity components, i..er it varies 
as sina oosa. Hence considering the lower surface only, there will be a 
normal force coefficient s sina.cosa due to the action in combination of 
axial and tra,nsverse velocities, and an additional force due to the 
transverse velocity alone. Remembering that the transverse flow is 
two-dimensional in the case of a slender wing or body, this additional 
force must be equal to that on the lower surface of the wing or body at 
90° incidence in a stream of speed Vsina and Mach No. Msina; (pressure 
measurements cn inclined infinite cylinders, for which a = 0, confirm 
this), Thus for a slender wing we can write 

(CNds = $ sina4,cosae + (be)s sin2 ae 

where ('b4)s is the lower surface normal force coefficient on the wing 
at 90' incidence at a stream Mach No. Msinafl It may be noted that if 

Msinae > I there will be a shook parallel with the lower surface to which 
the transverse flow Mach No. Msinae is normal. 

For non-slender wings which yet have detached leading edge shocks 
the flow picture is exceedingly ccmplex and there is no simple theoretical 
basis for the estimation of CN$ In the absence of an equally simple 
alternative it is proposed to retain the general form of equation (13) and 
to regard the first term as applicable to all wings in this category. 
However, in the general case the transverse flow factor bC is likely to 

differ from that for slender wings (be)s if only because the mean 
inclination to the stream of the detached shock will be less and the 
effective Mach No. for the transverse flow will lie somewhere between 
the slender wing value, Msina& and the maximum value which is of course 
the stream Mach No. M, The latter will probably apply to the case of 
an unswept wing of high aspect ratio with detached shock because the 
flow affecting the lower surface passes almost normally through the 
shock, In order to take account of these considerations, albeit crudely, 
it will be assumed that be is a function of gi, the Uach number normal 
to the mean leading edge (equation IO) which tends to the required limits 
for both slender wings and unswept wings. 

CNi 2 2 sinae,cosa + be 2 
4 sin ae 
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where be, the transverse flow faotor is the lower surfaoe normal force 
coefficient at yO" incidence in a stream of l&ch No. Kg, where the latter 

is given by equation (10) with a = a,, 

Experimental values9 of be ,are shown on Fig. 8 for both flat circular 

plates and flat two-dimensional strips. On this evidence there seems to 
be no significant, consistent difference bettPeen these two extreme cases, 
so be wi.1; be assumed to be independent of planform. Also shown on this 
Fig. for MN > I is the thecrctioal curve of be for ciroular plates 
obtained by Maocoll and Codd 10 , and since this curve fits the experi- 
mental data reasonably well it is proposed to use these theoretical values 
of bC in equation (14). 

The result obtained by ?~%~coll and Codd is 

bC = 0.9054 cp _ 0,1892 

s Y’sy? 
(15) 

where C 
PS 

is the pitot pressure coefficient, shown on Big. 8 far 

Y = 1.4, corresponding to the effective normal Mach No. $. To complete 

the picture, the trend of experimental results II for b4 at subsonic 

normal H&h Nos. up to 0.8 is also given, and a plausible line joining 
these to the supersonic theoretia=al curve can readily be drawn as shown, 

342 Lower surface force with shock attached Cd 

If there is a shock attached to the leading edge and at the same 
time the angle of incidence is great enough for non-linearities in the 
normal force curve to be appreciable, the Mach angle (sin-1 l/M) will in 
most cases be small enough to ensure that the flow over the larger part 
of the wing will be two-dimensional. Accordingly it is proposed that 
the normal force coefficient ($&be estimated by modifying theoretical 

values of the pressure coefficient on a two-dimensional wedge of semi- 
angle a4 to allow for three-dimensional tip effects. Those wings which 

have interfering tips are excluded so that the conditions for the 
following method to apply are 

A!& PA ’ l+h . 

There are two semi-empirical methods for estimating C&, both 
of which give good agreement with experiment if the above conditions 
are fulfilled. 
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(a) The first is to use the oblique shock equations or tabulated 
solutions thereof to obtain (CPfi)2D, the two-dimensional value of C.& ) 

and correct this by assuming linear theory tip losses, i.e. 

(16) 

where a is of course the wing lift slope according to linearised theory. 

(b) A more convenient and no less accurate method is to use a modified 
form of the so oalled strong shock approximationl2,14, By assuming NT 
large and a& small the following expression far (CN$2D can be derived 
from the oblique shock equations 

(17) 

This expression can be empirically modified 
applicability, first to lower IGach Nos. and 
finite wings, as follows, 

(1) The first term on the right hand 
by the analogous coefficient of cc: in 

side, (y+1)/2 is replaced 
the Busemann expansion'3 for 

('N392D' In effect, this means adding a term (Bj2D = f(N) 
to the right hand side of the equation, where 

to extend its range of 
larger angles, second to 

(qlJJ = r-l*Y+*l 
p2 204 

08) 

This term is negligible for 14 > 3* 

(ii) The dependent variabie(C&)2b: is replaced by the impact 

theory I4 equivalent (C&)&in2a4, thus giving the correct 

limit for Ma4 -, 0~~ 

(iii)The small angle hypersonic similarity parameter Mae is 
replaced by a large angle, supersonic-hypersonic equivalent 
Psinol ,cosQ: 4 4. The substitution of P for 14 follows Van Dyke's 
supersonic-hypersonic similarity rule 15 , but the substitution of 
sina .cosR e e for a4 is an empirical change justified by the very 
good correlations of exact solutions for both wedges and cones 
which are thereby obtained. The resulting expression for 

Q&D is then 

(%%)2D 
2 sin a4 = 2 ti c (B)2D 
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Fig. 9 shows the ratio of (Cd), estimated by means of equations 

(18) and (IT) to ((JJ$,)~ obtained from solutions of the oblique shook 

equcLtions, tith y = 'r.& The difference between the two methods is 
not greater than 5$ for angles of incidence up to about b" below that 
for shock detachment, and is within 25 for angles up to about 8' 
below that for shock detachment. These differences care of little 
practical significance, since thickness and viscosity effects oause 

the actual lower surface force coefficients to fall below the 
theoretical values at angles of incidence just below a;. 

(iv) Binally, for three-dimonsional wings the l'two-dimensional'f 
vcariable &&xx4 cosae is replaced by its ".t~ce-dimc3nsSonal" 
equivalent, $ sinae. cosae, 

_---I-I--.----- 

y = Y + B J(*sina~,oosa4~ + pj 
%% 

2 sin a 

It may be noted that at I\~ach. Nos. great enough fm B to be 
negligible, i,e. 14 > 3, the above expression is consistent with 
the small an le 
C&/us = 

supersonic-hypersonic simi&arity rul.ei5, 
f Pa&,pA), since for tsimilarr wings @a = f(PA). f 

The low Mach No. correction term B is a function of' P and is probably 
affected by tip losses, On the evidence of exTerimenta1 data, the 
empirical assumption is made that B is proportional to a* The final 
expession for C~rearrnnged in a form suitable for graphical 

presentation is 

%% B ---sina cosrx p-J 
atmae a 4’ e= 2 

. . . . . Gfd 

where 

A chart for the estimationof C& based on this equation with 

Y = 1.4 is given on Fig, 10. 

3.3 Lovrer surface force with shock 'partially attached', CN>, + hoWa 

Although the leading edge shock is, strictly speaking, detached if 
a4 > a%, the lower surface normal force does not fall to the value 
appropriate to the fully detached shock case (equation 14) until 
6x4 > a% + 30'. In the range u$ < a5 < tie * + 30' the shock can be regarded 
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as 'partially detached' and the lower surface normal force coefficient 
exceeds C N4 f by ACNe, ieee 

CNe = cN; + ACNe for a$ < a4 < a; e 30' (22) 

A curve for estimating ACN&, derived purely from experimental data, 

is given in Fig. 31, ACN4 is expressed in terms of a4 - a>, ACN% and 8*. 

ACN* is the difference between Cr;% and CNk at a4 t a> while @is the 
difference between dC&da& and dCN4/da, at a4 = a%, The form of the 

the curve of ACT& is prescribed by the assumed condition that there should 

be no discontinuity in dCNe/da4 through a> 

Direct experimental support for this curve is not given in the figure 
because oting to the small quantities involved there is inevitably a lot 
of scatter. The effectiveness of the method for Fedicting CN4 for 

a4 > u% can better be judged from the comparisons between measured and 
estimated CN described in the follcwing section and on Fig. 13. On 

the latter the estimate of total CN assuming a fully detached leading- 
edge shock, CNu + CNb is shown as a dashed line, the difference 

between this and the actual estimate in each case, shown as a full line, 
being ACHE for u4 > a$. 

4 COWAFG3ONS BETYEER ESTIM&I'ED AND !>W&URED NCF&ii FORCE 

Estimates of normal force coefficient based on the foregoing method 
have been made for a number of thin wings, (thickness/chord < 5>), for 
which measured values are available to fairly high angles of incidence. 
These comparisons are presented graphically, in Figs. 12 for the shock 
detached cases and in Fig. 13 for shock attached cases. 

All estimates shown as full lines in these figures have been made 
with the following assumptions 

(ii> Initial force curve slope, a, as given by linearised theory. 

(ii) k = 0.7 and (bu)v = f(x&),, i.e. CNu given in Fig. 5. 

The contribution of CNu to CN is shown for each comparison, and in 

the case of wings having a$ > 5O, the 'shock detached' estimate, 

cNU + CNk . 
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In Pig, +J2 measured values of CN on delta wings are compared with 
estimates, all these cases being 'shook detached'. The full lines show 
the estimates of CN, while the dotted lines assumes be = f(Msina) instead 
of f(%N), (i.e. the slender wing case). These results do not allow a 
choice to be made between the two methods, the difference between them 
being small, and the agreement of theory with experiment being good in 
each case. 

Figs. 13(a), (13(b), 13(c) cow are measured and estimated CN far 

various wings in the 'shock-attached' category, Le. a'$, $ 5'. J%z. 13(a) 
deals with rectangular wings with PA $ 2, i.e. tips which do not interfere, 
The agreement in these cases is good in general, the least satisfactary 
correlation being the sspoct ratio I wing at fihch 6.85 (Ref. 20) at 
incidences greater than 4-O'; this wing however had rounded edges, which 
may account p‘artially for the discrepancy. Fig. 13(b) shows two rectangular 
wings having interfering tips, i.e. with PA < 2; in these cases the 
estimates are interpolations between the shock detached and shook attached 
values. The A = 1 wing at Mach 1.45 has an appreciable leading edge 
vortex contribution to normal force, 8s 
results for delta wings having a; > 5 , 
higher I&ch. Nos. 

Perhaps the most striking featwre 
small contribution to normal force from 
the Mach No. exceeds about 3, 

5 SUMMARY OF MEJ!HOD 

shown, Lastly8 Fig. 13(c) compares 
which tend, of course, to be at 

of these results is the relatively 
the upper surface at high angles if 

It will be assumed that the initial force curve slope is known, and 
the problem is to estimate the non-linear force. The normal foroe 
coefficient CN on a thin wing with sharp edges at supersonic speeds 
(M > 1.25) may then be estimated from the following summary, in conjunction 
tith the list of symbols 

'N = 'Nu + 'Nd (1) 

where GNU is given by Fig, 5 as a function of M, Mau andMa. Obtain a$ 

from Fig. 7. 

If a; < 5O 

cN4 = CNk = 2 2i sina oosa c e + bE sin2ac 04) 

where bt is given by Fig, 8 as a function of ?$ z M 
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&L If "5 > 5' and PA > ,+\ 
2.2 

CNE = C& given by Fig. 10 for t14 < a$ 

CNe = CNi f ACNe for a4 > a; 

where ACNe is given by Fig. 11. 

J&L If a% > 5' and PA < ,+h 

CNCinterpolated between CNk and the estimate for PA > 
in proportion to FA(l++)//L 

6 CONCLUSIONS 

A simple semi-empirical method has been devised for the prediction 
of non-linear normal force on thin wings with sharp edges, which is 
compatible with relevant theoretical and experimental results at angles of 
incidence up to yO". 

An extension of this analysis is desirable to include effects of 
thickness, which are thought to be particularly important in the case of 
slender wings, 

Experimental confirmation is required of an implication of the 
proposed method that there is a pronounced double maximum in the upper 
surface normal force vs. incidence curve if M.&h No. x lift curve slope 
is less than about 2. 

LIST OF SYMBOLS 

a 

bU’bC 

initial force curve slope, (dCN/da)a+O 

non-linear force factors, associated with upper and lower 
surfaces respectively 

(bu'h component of bU associated with hypersonic parameter Na 

(see section 2.1) 

(bu)v 

ii 

component of bU associated with leading edge vortices 

(see section 2.2) 

mean chord 

;i mcGan thickness at trailing edge 

k ratio 6Nu/(-Cp)vac 
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LIST OF SYkiBOLS (Contd) 

A aspect ratio 

B function of a and M, given by equation (21) 

cN normal force coefficient, normal force + 3 V*S 

cN45 part of normal force coefficient contributed by lower surface 

%a CNe with attached leading edge shock (see Fig. 6) 

CNk CN,with detached leading edge shock (see Fig. 6) 

AcNNe CNc - CNb for a: < ae -c a; e 30' (see Fig. 6) 

‘Nu paxt of normal force coefficient contributed by upper surface 

?NU maximum value of CNu = fb,) 

C 
P 

pressure coefficient, (local pressure - stream statio 
pressure) + &pV* 

(-C,'max maximum negative pressure coefficient 

c-g) t mean negative pressure coefficient due to thickness 

C 
PS 

pitot pressure coefficient 

(mcp)vac negative pressure coefficient corresponding to absolute 
vacuum, = z/f9 

la stream Mach No. 

% Mach No. normal to mean edge, (see Fig. 2) 

(~1, approximation to -s in terms of &ta and Mau (see Figs. 3 and 4) 

S wing plan carea 

V stream velocity 

a incidence of chord line 

“U’“C 
inoidence of upper and lower surfaces respectively, See 

equation (2) 

ii 
U 

P 

Y 

is first attained value of cxu at which eNu 
_--._ 

&F -1 

ratio of speoific heats, assumed to be 1.4 
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