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A NOT% ON THE GENERALISATION OF ELASTIC CURVES 
REPRESEI'JTI~JG PARACHUTX SHAPES 

The Note gives a concise treatment of the theory of parachute canopy 
shapes and stresses. An analysis is made of the equation 

where r is the radial distance measured from the axis of symmetry and a its . maximum value; 'p is the an$e the tangent to the curve makes with a plane 
normal to the axis of ,Tmmetry and h is a parameter. By varying X a family 
of elastic curves is generated representing the shapes of flat, conical and 
annular parachutes and also those with an axial cord. General equations for 
calculating the fabric surface area and canopy volume in the solid fabric 
construction are included, together with equations for determining the gore 
shapes for both the cords over canopy and solid fabric constructions. An 
approximate analysis is given of the stress distribution in the two con- 
structions. A parachute rith an axial cord is shown to have the minimum 
bulk for a given inflated diameter but it s merit on other parachute require- 
ments is doubtful, Experiments are suggested to relate danopy shape and 
volume with stability and a deep conical parachute is thought to have 
several desirable stabiljty characteristics. 
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1 JJTRODUCTION x- 

During the investigation of the equilibrium configurations assumed 
some rotationally symmetric fabric structures subjected to certain forms 
loading and with a constant pressure difference across the fabric it was -mm 
found that the shapes could be represented by an equation of the form 

I 
2 

sincp = 'i; 
c 

h-l+ L. 
a2 1 

. 

by 
of 

(1) 

In this equation r is the radial distance measured from the axis of symmetry 
and a is its maximum value occurring when cp =x/2; cp is the angle the tangent 
to the curve at a point distant r from the axis of symmetry makes with a 
plane normal to that axis and h is a parameter. By varying the parameter X 
a family of curves is generated, identical with the elastica OCCUrring in 
the theory of tho buckling of columns and struts as originally investigated 
by Euler. 

The following examples shotr the range of shapes arising in parachute 
theory and which can be represented by equation (?): 

(i) Jith h = 1 the equation becomes 

sincp = r2 
" 

which gives the well-known Taylor shape; in a solid fabric construction it 
is the shape theoretically taken up by a parachute when the fabric is about 
to crinkle and the tension in the circumferential direotion is zero'; for 
the design with cords over the canopy it represents the shape taken up by 
the cords2. 

(ii) With h such that $ < X < 1 equation (1) represents the shape of 
the parachute with an axial cord and zero circumferential tension in a solid 
constructions; it also represents the shape of the cords for the corresponding 
design with cords over the canopy&. 

(iii) Keith h > 1 the equation gives a family of conical shapes very 
similar to the conical parachute, although as far as the writer is aware no 
use of this has been made for design purposes. 

(iv> With 0 < X < & the curve does not meet the axis of symmetry and 
can be used to represent an annular parachute; again no use has been made of 
this in design. 

(v) In the theory of some inflatable lifting structures the whole 
range of values of h is encountered5. 

Prom these examples it is evident that equation (I) is of considerable 
interest and a general investigation of its properties is of vslue for both 
design purposes and in studies of canopy shapes and stresses. 

In earlier work associated nith particular values of h it has been 
usual to determine the arc length s in terms of 9, to give the intrinsic 
equation, and to obtain the distance x measured along the axis of symmetry, 
thus making it possible to plot the particular curves, The transfer to 
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cylindrical coordinates is not difficult but can be made to appear unduly 
complicated by retaining h in terms of certain geometric conditions and 
not using a portmanteau symbol (e.g. Ref.&). When treated generally the 
equation is quite easy to study although the information extracted is 
mostly in term3 of elliptic integrals. For the benefit of those who are 
not familiar with these integrals it should be remarked that for the 
purposes of this Note the only parts of the theory required are to be 
found in the elementary sections of any of the standard texts on the 
subject (e.g. Refs.6 and 7). 

The object of this Note is to present an analysis of equation (1) 
in aa simple a form as possible; to consider the stress distribution for 
different values of h in a solid fabric construction; and to give the 
methods for deriving the gore shape for both the solid fabric and cord3 
over canopy designs. The Note does not pretend to present any particularly 
original matter, the design of parachutes of the shaped gore and cords over 
canopy type is well-established, aa is that for the parachute with an 
axial cord; however, this theory does not appear to have been applied to 
either the conioal or the annular parachute. The fact that all these types 
of parachute can be described by one equation involving a parameter has not 
been realised; it is convenient to discuss the equation generally as a 
concise summary of the theory of parachute shapes has not been given 
previously and many of the original papers dealing with particular cases 
are not readily available. 

2 PRELIMINARY AN&Y>= 

Consider equation (1): 

It is known that 1 sin 'pi d 1 and hence 

Por this to be satisfied 

2 
Hence, for L < 1, 

a2 

h > 0. 

(3) 

(4) 

If the curve given by (1) is to meet the axis of symmetry (r = 0) the 
inequality (3) must be valid for & r d a which implies that 



With 0 < h c $ the curve can only exist for values of r such that 

2 
~~>1‘-2h. 
a 

(5) 

It is apparent that separate consideration must be given to the cases where 
0 < h < 5 and X > 6. 

2.1 The case ')r 2 % 

Suppose we take as origin 0 one of the points where the curve meets 
the axis of symmetry and measure distance x along this axis and arc length s 
along the curve from 0. (See Fig.laJ How, using ordinary differential 
geometric relations 

and on substituting from equation (1) and integrating betvfeen appropriate 
limits 

(6) 

This integral can be expressed in the standard form (i) given in Appendix I 
when the range of integration is separated so that the upper limits are 
unity i.e. 

da 1 1 

1 f d(S) = / f d@-/ f d(Z) ; 
0 0 E 

a 

the result is 

In equation (8) F[B,k] is the Legendre elliptic integral of the first kind 
with argument 0 and modulus k. 

For the coordinate x the geometric relations give 

dX= sin cp ds = d6e dr 
cos q (9) 
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and aubstituting in this from equation (1) and integrating betneen 
appropriate limits the following expression is obtained:- 

ra 

% = a 
/ 

0 

Separating the range of integration as before the integrals in (10) are 
again standard forms and on evaluation: 

In equation (11) E[0,k] is the Legendre elliptic integral of the second 
kind with argument 8 and modulus k. 

To obtain the appropriate ranges for the arguments involved set 

cos’l 1; 

0 

--i -.-a 

a 
= 5 = cos-’ 

?i 
(h sin cp + I - h) , 

(11) 

(12) 

then for 

where “z$ corresponds to cp = sin 

(which is the angle the curve makes with the axis of symmetry when r = 0), 

and E = 0 corresponds to 'p = $ ; 
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where E = 0 correspotis to cp = 5 

7F. and E=-- corresponds to -1 A-? 
2 cp = 7c - sin 

( > 
- . A 

Equation (11) enables the curves for h >, & to be plotted in the 
cylindrical coordinates r and x, using a set of tables of elliptic integrals, 
e.g. Ref.8. The coordinates for a range of values of h. are given in 
Appendix 2 and the curves are shown plotted in Fig.2. These curves are for 
values of h corresponding to values of sin "k at intervals of 5' from 25' 
(X = 2.799) to 60' (h = 0*6667), and intervals of IO0 from 60' to 80°wlk at 
(A = 0*5156). Th e elliptic integrals are commonly tabulated with sin 
intervals of 5', to plot the curves for intermediate values of ii more com- 
plete tables are required than those of Ref.8; the tables of Ref.9 give 
sin-'k at intervals of lo and are probably the best available. The co- 
ordinates given include those for the values of h corresponding to 
sin "k = GO, 47O and 4.8' although, to avoid confusion, these have not 
been plotted in Fig.2. 

2.2 The case 0 < h < 4 f- 

When 0 < h < 3 the curve does not meet the axis of symmetry; arc length 
is measured along the curve where it exists from an arbitrary point P say, 
where r = r ,, to a point & where r = r, and the coordinate x is measured 
along the axis of symmetry from the point where the plane through P normal 
to this axis meets it, as is shown in Fig.lb. 

In this case 

Separating the range of integration so that 

l f d@ = ja f d($ -j; f d(2) 

1 1 

03) 

and using the appropriate standard form of Appendix 1, evaluation of the 
integral (13) leads to:- 
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where 

I- r2 
-^ 

A) 

: 

;j = co8 ~ 
a - (1 - 2X) 

; 

2h 

I 
and the suffix $1' refers to 'r* = r,. 

Similarly: 

X 
a 

05) 

(16) 

and integrating by means of the standard forms (iii) and (iv) of Appendix I, 

f 
a = E(<, , a) - E(rJ , a) - (1 - X) @(t;, , m) - Fk 9 m> 1. 

l ** (17) 

For the appropriate ranges of the arguments involved set 

where g = 2 2 corresponds to cp = - 4 

t;=o corresponds to cp = 4 ; 



where c = 0 corresponds to 'p = 5 

and Z=-: 22 corresponds to cp = 2 . 

The coordinates for some values of X are given in Appendix 2 and the 
curves shown in Pig.3. Pigs.2 and 3 now show the wide range of shapes which 
equation (1) represents and the curves for intermediate values of X can be 
obtained using equations (11) and (17) and suitable tables of elliptio 
integrals. 

3 THE SOLXFABRIC CONSTRUCTION E-I- 

In this form of construction the canopy is made up of a number of 
gores cut from a plane sheet of fabric and seamed together. It is assumed 
that, when inflated, the whole canopy forms a surface of revolution and the 
gores do not bulge outward from the seams running between the apex and the 
peripheral hem; in practice the gore fabric does tend to bulge outwards and 
the theory of the stress distribution given can only be regarded as providing 
an approximate guide. 

Rith n gores the width of each at distance r from the axis is 2Xr/n 
and the length of the gore is s measured from either the canopy vertex or a 
suitable origin. The tables of Appendix 2 give corresponding values of r/a, 
s/a and x/a for a range of values of h and it is a simple matter to determine 
the gore shape for a given In* and X from these. A few gore shapes are shown 
in Fig.& 

If it is desired the width of the gore at a given distance s from the 
vertex or origin oan be derived as follows:- 

Let E --T- = 
a cn u, (zi > TX 

where 
h P 3. 

cn(u, k) is the elliptic function usually denoted by those symbols and 
Then 

-a 

= FE, 
I' 

U 

(Jj 
2x 

and in equation (8) 

where 

22 = 
a li 

-$ (a - u) 

K = F($+). 
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Hence u = K- 

and in (18) 

Thus the width of the gore at distance s from the vertex of the canopy is 

09) 

where w is the semi-gore width and X b 3. 

For the cases where 0 c h < $ the gore width is still 2-xr/n and a 
similar smnalysis to that of the previous paragraph enables one to determine 
the gore width for a given aro length se 

Let 
f \ j :, ( 

2 
- (1 - 274 

‘I 

_1___c--s-- m 
2h 

I 

r 
2 

= cn(u, 47X) l 

Then, from (14): 

s 
a = h[ul - u] 

where u, = F(C,, m), and thus 

I 9 u = ul -'i; 2 

(20) 

(21) 

The width of the gore at distance s from the position where r = r, is then 

where O<h<&. 

3.1 Stressss in the fa& 

In the solid fabric construction the stresses in the fabric can be 
obtained using ordinary thin membrane theory. Regarding the canopy as a 
surface of revolution and supposing that the tension in the generator 
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direction is T, and in the circumferential or hoop direction is T2, it can 
be shown (c.f. Ref.?) that 

&(rT,) = T2 (23) 

T, r =& (sin cp) + T2 sin cp = pr (24) 

where p is the pressure difference across the fabric, which is assumed to be 
constant. 

Substituting from (23) in (24): 

& (r T, sin cp) = pr 

therefore r T, sin 'p = 9 + c 
2 

(25) 

where c is a constant of integration. 
equation (25) 

Substituting from equation (I) into 

and from (23) 

(26) 

(27) 

It is usual to determine the constant of integration c by considering 
the equilibrium of the axial forces acting on the system. 

(i) For a parachute without vent or axial cord: 

2%rT, sin 'p = pxr2. (33) 

Evaluating this at r = a, cp = n/2 and equating the value for TW1 at r = a 
with that given by (26): 
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and hence 

c = 0. (29) 

(ii) For a parachute with a vent of radius b but no axial cord: 

2nrT, sin cp = px(r2 - b2). 

Hence 

and C = A$. 

(iii) For the parachute with an axial cord: 

271rT, sin cp + Tc = pxr2 

where To is the tension in the axial cord. 'Ahen 'p = 0: 

Tc = pna2(l - X) ; 

and when 9 = ;: 

2na T, + p7ca2(l - h) = p7ca2 
(r=a) 

therefcre 

Hence 

T'(r=a) 
= @f = a[$+-)] from(26). 

c = $(x-1) . 

(30) 

(31) 

(32) 

(33) 

(34) 
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It is important to note that, as a consequence of equation (34), the circum- 
ferential tension given by (27) is zero. The solid parachute with an axial 
cord is thus on the verge of crinkling and it is to be expected that it would 
be easily distorted by external aerodynamic forces resulting from, for 
example, gusts of wind. 

It is also possible to obtain the value for c for the annular parachute 
with both central and outer peripheral cords; the value depends on the inner 
radius of the annulus and the angle the central cords make with the axis, 
together with the number of cords used. 

Equations (26) and (27) reveal several interesting features. For the 
parachute without vent or axial cord 

T2 = A(h - 1)pr 

h 
i 

-1 +L 
.3’ l 

(36) 

If the parachute is on the verge of crinkling and is as flat as possible the 
circumferential tension T2 must be zero, this implies from (36) that X = 0 
or X = 1, but h = 0 is inadmissible (see para.2) and hence h = 1 and the 
parachute takes up the Taylor shape. With h = I it can be seen from 
equation (35) that the generator tension T, is always infinite when r = 0 
i.e. at the canopy apex; in practice this is not possible but there is a 
high stress concentration at this point which is relieved to some extent by 
the elasticity of the fabriclO. To avoid the stress concentration the para- 
chute can be made slightly conical so that h > I; the stress at r = 0 is then 
theoretically zero and although the parachute is not on the verge of crinkling 
the circumferential tension, which must exist with h * I, is always positive 
and can be kept small by a suitable choice of X. Similarly the inclusion of 
a vent helps to reduce the stress concentration near the apex of the canopy* 
3xidt$,oase, for the circumferential stress to be zero9 from equations (271 

: 

for r 2 b. This equation is satisfied if X = 0, which is excluded, or 

The generator tension Tl, with this value for h, is 

a2 - b2 2 T, = -- r 2 (37) 
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and remains finite when r tends to b which is the minimum possible value 
for r, The canopy equation is 

sincp = r2 -,b2 
a2 - b2 

and this shows that the canopy is quite flat at r = b (cp = 0) where the 
vent commences. Whilst the stress given by (37) still increases near the 
vent this is not so serious as that in the Taylor shape. 

It is desirable to have a slight positive circumferential tension in 
the fabric 30 that there is some resistance to distortion of the canopy 
shape by external forces; with zero or negative tension the canopy is prone 
to a form of instability in which the gores cling together and only partial 
inflation take3 place. This should be overcome by making parachutes slightly 
conical. 

3.2 The surface area of the fabric u__- 

In the solid fabric construction the canopy is assumed to form a 
surface of revolution and the surface area A is given by 

A = 2x 
J 

rds = 2% -• 
J 

rdr 
co3 cp 

Using equation (1) 

A = 27ca2h 
J 

= 27ca2h 

fd i 
0 

7 2 
i 
1 - ro/a 

where the integral is evaluated between appropriate limits. 

As an example, the area of the Taylor shape (X = 1) from the apex, 
r = 0, to the maximum diameter, r = a, is 

(38) 

\=I 
= &a2 c -1 

- sin 0 + sin 
7c2a2 -' $# ] = T . 
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It is of interest to determine the particular design in Nhich the sur- 
face area of fabric is a minimum. Consider only those canopies which meet 
the axis of symmetry, i.e. those for h > 3, and the surface area lying between 
r = 0 and r = a; it is.assumed that below r = a all canopies require approxi- 
mately the same amount of fabric before the peripheral hem and this particular 
area is ignored. 

Betvfeen r = 0 and r = a the fabric surface area is 

A= 

For a critical value 

iki 
dh = 27ca2 

The relevant root of #$ = 0, which gives a minimum for A, is found graphically 
-a 

to occur Nhen & + 
d- 

O-92 or X + O-5907. The canopy using the minimum fabria 

area is thus one with an axial cord and its surface area between r = 0 and 
r = a is 4*336a2. If this is compared with a Taylor shape parachute with the 
same inflated diameter i.e. drag area of ?r;a2 and fabric surface area of 
7t2a2 L- 

2 = 4*935a2, the csnopy with h = O-5907 represents a saving in fabric of 
about 173; the total saving including the fabric between r I' a and the peri- 
pheral hem would be somewhat less than this and probably about 8-l@. If it 
is assumed that the drag coefficients of the Taylor shape and the oanopy with 
an axial cord are the same under identical conditions, an increase in drag of 
about 13$, corresponding to a decrease of about 6$ in the descent speed, might 
be expected from the canopy with h = 0*5907 over the Taylor shape with the 
same fabric surface area. Some experimental evidence tending to support these 
conclusions appears in Ref,&; a direct comparison is not possible since the 
experiments were conducted by varying the length of the axial cord, and hence 
the parachute shape, on a parachute Nith cords over the canopy. 

The Taylor shape was originally suggested' as that Nhich would be of 
minimum bulk but from the present analysis it appears that the parachute with 
an axial cord and h = 095907 is an improvement; however only conventional flat 
parachutes were considered in Ref.1. The process of minimising the bulk of a 
parachute could be carried further; one would expect an annular parachute, 
capped over the vent by a canopy with h = 0*5907 and with an axial cord, to 
use a smaller fabric area for a given inflated diameter than the parachute 
Nith x = 095907 on its own, and by adding further annular rings it may be 
possible to improve the ratio of fabric area to drag area even more. The 
improvements, if any, to be expected from modifications of this nature would 
probably be marginal; both the Taylor shape and the parachute Nith an axial 
cord are on the verge of crinkling (in the solid construction) and are liable 
to the instability mentioned in para.3.1; the presence of axial cords oan 
also result in canopy malfunctions since they prevent total inversion in the 
case of a blown periphery, Research on parachutes with axial cords seems to 
have ceased at the end of World ?ar II and very little data are available 
with regard to such factors as opening characteristics and stability and it 
is difficult to make comparisons; if there is a requirement for a particularly 
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low bulk parachute the more sophisticated experimental techniques now 
available should enable an assessment to be made. It may be added that the 
axial cord probably reduced the tendency for a parachute to breathe; 
breathing is known to produce a considerable variation in descent speed - 
in the case of the man carrying parachute this is of the order of 
23 ft/sec with a mean descent speed of 16 ft/sec - and this is a con- 
tributory factor in landing injuries and damage. 

ume enclosed by the canopy -n - sLz.B -1 

The volume enclosed by the canopy is given by 

v = 
.i 

zr*dx = 
J 

7Cr*tan cp dr . 

Using equation (1) 

_..---- ._.__ __.--_ 
J(, -($j;2A- 1 +$j 

d(g). a 

Care is needed to ensure the regions of integration give the volume 
interior to the canopy and it is often necessary to separate the volume 
into a sum of integrals taken between several limits with the correct 
signs for each part of the total volume. The method of integration is 
briefly oytlined in Appendix 1 and there are two separate cases: 
with h 2 y, 

v = --na3j(y) mE 

I 
i 

( 
oos-’ ,r L 

a ’ 
+ 

4-Z > 

F (cos-’ f , &) t 

taken between appropriate limits; and with 0 < X < $ , 

V = -,a3 F(c,~)+ 
i 

(39) 

(40) 

(41) 

between appropriate limits. 
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For the Taylor shape with X = 1, the volume enclosed between the maximum 
diametral plane, r = a, and the apex is 

,a3 c2 = -- x 1 l 8541 6 = 0,437 *a3 . 

For the parachute with an axial cord and h = 0*5907 the volume enclosed 
between r = 0 and r = a is found to be O*28.!+7ca3; and for the conical. para- 
chute with a semi-vertical angle of 60" (h= 2) the corresponding volume is 
0*707 7ta3. To these volumes must be added the volume contained in the skirt 
below r = a which can be assumed constant for a given inflated diameter. 

Whilst the volume of air contained in the canopy has no gravitational 
effect it does contribute to the inertia of the canopy which is of importance 
in considerations of stability: there are indications that stability is con- 
siderably improved as the canopy volume increases, against this must be 
balanced the facts that the large volume conical canopy requires more fabric 
and is slower in opening, It is desirable that experiments should be made to 
determine how canopy volume affects stability and opening; a deep conical 
canopy, with X = 2 say, seems to offer several advantages in that the circum- 
ferential tension in the fabric is always positive, there is no stress con- 
centration at the apex, the inertia of the canopy and contained air is high 
and should therefore produce less tendency for the parachute to breathe or 
oscillate laterally, and the opening shook should be low on account of the 
slow filling time for the canopy. 

4 THF: CORDS OVER CANOPY DESIGN -a-- 

In this design, in the case of a parachute, the rigging lines are con- 
tinued from the peripheral hem and run right over the apex of the canopy. 
The object is to relieve the stress in the fabric by having the cords taut 
in comparison with it and thus bearing much of the load; a stronger canopy 
than that given by the solid fabric construction is thus produced. 

For the canopy to form a surface of revolution any cords passing over 
it must be slack in comparison with the fabric and can perform no useful 
function since they then might as well terminate at the peripheral hem. If 
the cords are made tighter than the fabric the canopy no longer forms a sur- 
face of revolution and the gore fabric bows out between adjacent cords. The 
tension in the fabric produces a force component to support the tension in the 
cords and it is possible to arrange this so that the circumferential tension 
in the fabric is approximately constant over the whole canopy. The basic 
assumption made in the design theory is that by gathering the gore fabric 
along the cords the stress in the generator direction can be made negligible 
so that only circumferential tension exists in the fabric, the cords bearing 
sll the load in the generator direction. The problem essentially consists of 
finding the shape taken up by the cords and then determining the shape of the 
gore to be out from a plane sheet of fabric which, when fitted, satisfies the 
assumptions of the theory. A method for determining the gore shape for the 
parachute has been given in Ref.2; this gore is generated by a circle of 
constant radius lying in the plane containing the normals to a pair of 
adjacent generator cords at corresponding points equidistant from the vertex 
and passing through these points, except for crinkles the gore surface is 
swept out by the circle as it passes down the cords from the vertex to the 
peripheral hem. 
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In Ref.2 which only concerns parachutes without vent or axial cord, 
it is shown that the cords over the canopy take up approximately the 
Taylor shape of equation (2); in an Appendix to Ref.5 a more accurate 
approach is made to determining the shape which takes into account the 
bowing out of the fabric between the cords, and shows that, depending on 
the number of cords, the shape they take up is slightly conical and is 
given by a member of the family of curves represented by equation (1). 
According to the type of parachute and the loading the shapes taken up by 
the cords can, in general, be represented by equation (1) with the 
appropriate values for X. It is not intended to reproduce here the whole 
of the theory of the cords over canopy construction; for parachutes without 
vent or axial cord the reader is referred to Ref.2 and for parachutes with 
an axial cord to Ref.& For a more general discussion covering a wide 
range of values of X Ref.5 gives full details of the derivation of the 
cord and gore shapes+ In this Note it is assumed that the cord shape is 
given by equation (1) and the equations for calculating particular gore 
shapes to satisf. the assumptions are only given. 

It is shown in Ref.5, with a slight difference in notation, that if 
the radius of the gore generating circle is h, and the gore length 
measured along the mid-gore line is S, then the semi-gore width w is 
given by 

w = h sin-' (; sin E) 

where n is the number of cords, and the length of the gore, for the case 
where A b 3, by 

S - 9 
a 

where s/a is given by equation (8). The method of evaluating the 
integral in (43) is given in Appendix 1 and the result is 

(43) 

b-4) 



Similarly, with 0 < h < 3 

S - s 
a 

s 
ii a 

0 
(45) 

where s/a is given by equation (14). 

On evaluating this integral the result obtained is 

s 1-19 = sin' s 
a n 

i 
\ > 
I'+$" S(G) l,mt) - 

- f (I - h) sin-’ . (46) 

‘,/a 

bJhen the values of 
out using equation 
value of X. 

a/h and n have been chosen the gore shape may be worked 
(42) and either equation (44) or (46) depending on the 

Consideration of the equilibrium of the axial forces determines the 
tension in the cords and since it is assumed in the theory that the pressure 
difference across the fabric is constant and the tension in the fabric in the 
generator direction is zero the relation between hoop stress and pressure is 
approximately 

2 
h = Pr (47) 

for the radius of curvature of the fabric in the circumferential direction 
is h if the elasticity of the fabric is neglected. The equation for the 
equilibrium of the axial forces also provides a relation between the pressure 
difference p, the loading and the geometric characteristics of the parachute 
which, in conjunction with equation (47), enables an estimate to be made of 
the tensile strength required in the fabric. 
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The value of a/h determines the fullness of the gores. If the number 
of oords for a parachute of maximum radius, a, is fixed, then the gore width 
must exceed the minimum required to cover the surface. For relatively small 
increases of width the rate of' increase in the curvature is substantial but 
falls progressively. Since, for a given pressure difference, the tension T2 
and h are proportional, initial small increases in fullness of the gore 
enable the tensions, and consequently the fabric weight and thickness, to be 
reduced. The exact relation between the tension and fabric thickness cannot 
be formally represented for analytic use and the question of determining an 
optimum value for a/h has never been rigorously pursued. There is an element 
of diminishing returns as the value of a/h is increased and, in practice, 
values about two (2) have been chosen. 

It should be emphasised that the approximate stress analyses given in 
this Note, for both types of construction, are only applicable to parachutes 
which are fully inflated and in steady descent; the assumption of constant 
pressure difference is then reasonable. 

5 CONCLUSIONS 

An analysis has been given of the shapes represented by the equation 

I sincp =x 
[ 

h~l+~ 
a'1 

with particular reference to those factors which may be useful in parachute 
design both in the solid fabric and cords over the canopy constructions. 
The equation is shown to give a range of shapes including those taken up by 
conical, flat and annular parachutes and those with axial cords. 

There is apparently no simple physical meaning for the parameter h; 
in any parachute it is largely determined by extraneous features: a particular 
shape may be required; only certain materials may be available; the parachute 
may have to occupy a fixed spatial region so as not to interfere with the 
structure to which it is attached; it may have to occupy a certain bulk and 
so-on. No rule can be given enabling a designer to choose a particular h, 
this can only be decided in the light of experimental evidence of the most 
suitable parachute to perform a particular task taking into account any 
extraneous features. 

Approximate methods for calculating the fabric stresses in the solid 
construction show that it is desirable, in order to avoid serious stress 
concentrations and provide some resistance to deformation by external forces, 
to make parachutes slightly conical. Consideration of the fabric surfaoe area 
required for the various canopy shapes in the solid construction shows that 
the minimum amount of fabric is used by a parachute with an axial cord and 
A = 0*.5907, this gives about 1% more drag than a Taylor shape of the same 
fabric surface area; some of the disadvantages of the parachute with an axial 
cord are remarked on. The volume enclosed in canopies of solid fabric con- 
struction is calculated and that of the conical parachute with h = 2*0 shown 
to be considerably higher than that of a Taylor shape with the same inflated 
diameter; this has the advantage of increasing the inertia of the system and 
promoting stability but the disadvantage of requiring more fabric. It is 
concluded that experiments on the effects of canopy volume and shape on 
stability and opening are desirable and that the deep conical paraohute 
merits particular investigation. 
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LIST OF SYMBOLS 

fabric surface area in the solid construction 

the Legendre elliptic integral of the 2nd kind 

the Legendre elliptic integral of the 1st kind 

arc length measured along the mid-gore line of the fabric in the 
cords over canopy design 

generator tension 

circumferential or hoop tension 

axial cord tension 

volume enclosed by the canopy in the solid construction 

maximum radius of the canopy 

radius of the canopy vent 

a constant of integration 

(In Appendix 1 a, b ati c are not used in these contexts) 

h radius of the gore generating circle 

k modulus of the elliptic integrals 

k' the complementary modulus defined by k2 + kt2 = 1 

n number of cords 

P constant pressure difference across the fabric 

r the radial coordinate 

S arc length 

W the semi-gore width 

X the axial coordinate 

zi defined by equation (15) 

0 argument of the elliptic integrals 

h a parameter 

5 defined by equation (12) 

cp the angle made by the tangent to the curve with a plane normal 
to the axis of symmetry 
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APPENDIX 1 .T- -a- 

ELLIPTIC INTEGULS ------ 

The Legendre elliptic integrals of the first and second kind respectively 
are defined by the relations 

8 

F(0, 1s) = 

J 

all, __I--- a- 

d--= 

I r - . . - w  

0 1 - k2 sin29 

6 SC>-_l- 01 
E(0, 1s) = I--- 1 - k2 sin'* d$ , 

0 

E(8, k) and I?@, k) 
k 

are usually tabulated in terms of 0 and CL, where 
= sina., for the ranges 0 6 0 < n/2, 0 < a < n/2. The range of the tables 

can be extended by using the following relations:- 

E&0, k) = -E(f3, k) 

F(-8, k) = -F@, k) 

E(mn + 8, k) = 2m E 

F(mx 5 8, k) = 2m 2 F(8, k) . 

In this Note most of the integrals involved can be evaluated using one 
or more standard forms. 

With 

2 2 a2+b =c, k=: 

the required forms are:- 

vihere c0se = $; 
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/ ~($$-$)dt = c E(0, k) 

X 

where case = %; 

where li(0, k) = 5 ; 

Appendix 1 

(ii) 

(iii) 

(iv> 

where A@, k) = : . 

The integral in equation (43) csnbe written as a combination of 
integrals of the type 

cm = - 
t" at cosm 0 de -B-J mm- = 

J 

sc s s--n s-a 
x.‘s. 1 *-l--r 

- t2) (kt2 + k2t2) 

= J cnm u au 

where t = cos e = cn u 

and k2 + kt2 = 1. 

Recurrence relations for evaluating Cm are given in Ref.11; the method of 
deriving these relations is given in Ref.6 but it should be noted that the 
relations 

The 
integrals 

quoted there are incorrect due to misprinting. 

integral in equation (45) can similarly be written in terms of 
of the type 

*m=- --- J 
t" at --*-__I --=a?* wND.-z1_LY*.-- 

(I - t2) (t2 - kt2) 

where t = dn U* 

= J an" u du 

Recurrence relations for evaluating D, are apain to be found in Ref.11. The 
integral in equation (39) f or the cases h 2 2 and 0 < h < 5 is evaluated 
using these same recurrence relations. 

---_I 
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AP?ENDIX 2 ----n.e- 

CANOPY, CX-RD AND GORE COORDINATES 

The coordinates r/a and x/a for the canopy or cord shape are given in 
Tables 1 and 2. In order to determine the gore shape in the solid fabric 
construction values of s/a for the gore length are given and the gore width 
can be calculated from 

2Ti C-AU = 2 f; 
a 0 n a 

where n is the number of gores. 

Table 1 is calculated for several cases where h > 3; the corresponding 

values for h and sin -1 -1 k= sin 
d- 

& respectively are as follows:- 

0.5156, 80°; 0*5664, 70~; 0.6667, 60~; oe7500, 55'; Oe8522, 5o"; 0~9055, 1+8O; 
oe9347, 47O; 0.9664, 46"; 1~000, 45"; ~210, 40~; le520, 35O; 2*000, 30'; 
and 2*799, 250. The intervals for r/a are those corresponding to values of 
g (= co2 r/a) from EJ = 90°, r/a = 0 to 5 = 0, r/a = I*0 at intervals of 5', 
these give the part of the curve lying between the point where it meets the 
axis and the points r = a, 'p = 7c/2; the continuation of the curve from cp = 'IF/~ 
onwards until the axis of symmetry is met again is a mirror image in the 
plane containing r = a as is shown dotted in for the curve h = 0*51 6 in 
Fig.2. The curves shown plotted in Fig.2 are at intervals for sin" ? k of 5" 
from 25O to 60' and then at intervals from 60" to 80' of IO'. 

Table 2 is calculated for three cases where 0 c h < & and the curve 
does not meet the axis of symmetry. The corresponding values for X and 

-1 sin k= sin -I JE are as follows:- 0*&849, 80'; O~&15,70°; and O-3750, 60°. 
The intervals for r/a in each case are those corresponding to intervals of 
IO0 from cp = -90" to 'p = +yO" and the continuation of the curve is a mirror 
image in the plane containing r = a as shown dotted in for the case X = O-3750 
in Fig.3; this figure shows the curves for the three values of h, 

Some examples of the gore shape for the solid fabric construction are 
shown in Fig.4. The gore shapes for h = 0.5156, I*00 and 2*00 are to fit 
canopies extending from a vertex r = 0 to the maximum radius r = a. The gore 
for h = 0.3750 is that for r/a = 0*5 to r/a = I*0 since the curve does not 
exist if r/a ( 0.5. 

- 
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h a family of elastic3 aurves is generated representing the shapes of flDtS 
conical and annular -chutes and also those with an axial cord. CetierQl 
equations for calculating the fabric surfaoe area and canopy volume in the 
solid fabric construction are included, together with equations for 
determining the gore shapes for both the cords over mnopy and solid 
fabric constructions, An approxllnate analysis is given of the stress 
distribution in the two constructions. A parachute with an axial cord is 
shown to have the minfmLm bulk for a given inflated diameter but its merit 
on other parachute requiranents is doubtful.. Experiments are suggested 
to relate canopy shape and Volume with stability and a deep conical nora- 
chute is thought to have several desirable stability characteristios. 

), a ?etily or elastic curves is generated representing the shapes of flat, 
conical and annular parachutes and also those with an ax$U cord. Genera1 
equatJons for calculating the fabric surface area and car~py volme in the 
solid fabric construction are included, together with equations fcr 
determining the gore shapes for both the cords over canopy and solid 
rabrlc constructions. An apFroxinmte analysis is given 0r the stxess 
distribution ln the two constructions. A parachute %ith an axial cord is 
shove to have the minimum bulk for a given inflated diameter but its merit 

onother pornchute requirements is Qubtful. EX@riments are sueeested 
to rclatr-, cmopy et-2pe and volux with stability and a deep Conical ~a- 
chute is thought to have seveF.1 des:rable stability charaCterlst1cs. 

), a family of elastic aurves is genaated representing the shapes of flatS 
conical and annular parachutes and also those with an axial cord. General 
equations for calculating the fabric surface area and canopy volume in the 
solid fabric construction are included, toGether with equations fcr 
determining the gore shapes for both the cords over canopy and solid 
fabric constructions. An approximate analysis is given of the stress 
distribution in the two constructions. A Pmchute with an axial cord is 
shown to have the minimum bulk for a given infiated diameter but its merit 
on other parachute requirements is doubtful. Experiments are suggested 
to relate canopy shape and volume with stability and a deep conical pax-a- 
ohute is thought to have severe.1 desirable stability cIEmctwistlcs. 
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