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SUMMARY 

A method of extrapolation based on a previously given formula for 
creep is derived, and examples are given of its application to creep rupture 
and creep strain data. The accuracy of extrapolation is statistioally 
evaluated and shown to be within the observed scatter of the experimental data. 
Seven other methods are shown to have errors significantly greater than that of 
the data. 

Limitations of the method are discussed. 

____________________--------------------------------------------------------- 
Replaces N.G.T.E. tip&t Il.&i - A.R.C.23,518. 
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1. Introduction 

The problem of devising a reliable method for extrapolating the 
results of practicable creep tests to the long periods over which many 
machines are required to operate has attracted considerable attention, but 
the view is widely held that the changes that take place in engineerjng 
materials during creep are far too complex to be governed by laws that would 
be simple enough to be employed. Nevertheless a number of simple methods has 
been proposed. The methods differ in detail, but in principle either 

(a) extrapolate a supposed law that relates time to stress with 
temperature constant, e.g. the well known methods of 
direct extrapolation on graphs of log stress versus log 
time or of stress versus log time 

or (b) extrapolate a supposed law that relates time to 
temperature with stress constant, e.g. those of Bailey, 
Larson and Miller, Manson and Haferd, and Darn. 

In effect, the advocates of these methods advance, collectively, 
the opposite view that the governing laws are so simple that a change of 
stress, according to (a), or a change of temperature, according to (b), 
changes the rate of creeping of every constituent of the material by exactly 
the same amamt. Several of the methods have shown an encouraging success, 
but all have been found seriously to fail on oocasions in which there was no 
especial reason, the contrasting view apart, for expecting them to fail 
;;. -P;;y. They are thus generally believed to have their uses but to 

. 

The method of the present paper lies between the opposed 
alternatives, and the results contribute evidence that the laws of creep are 
neither so complex as the one view would suggest nor so simple as would the 
other. It is based 
engineering alloyal-i: 

pon an extensive study of experimental data for 
for the purpose of establishing a firm quantitative 

expression for the relationship during creep between the four mechanical 
variables concerned, namely stress, strain, time and temperature. 

All interpretations of creep data for the purpose of guiding 
extrapolation have to contend with the extremely limited amount of data 
usually available relative to the considerable scatter in performance. The 
amount is seldom sufficient to confirm or deny any reasonable law that may 
be considered. The interpretation upon which the present report is based is 
supported by the fact that it has led to an acceptable evaluation of the 
scatter, and the soatter found has proved to be in quantitative agreement 
with that directly indicated by the available results for replicate specimens. 

In the working ranges of creep, the differences of scatter between 
different fully-developed alloys do not appear to be large, and a scatter 
band of width equal to twice the standard deviation (within pith only; of 
the points may be expected to fall) is seldom narrower than b cycle of log 

time. Thus whenever data plots are examined for evidence of quantitative 
trends, it is more realistic to associate with each point confidence limits 
of this crder of magnitude than to follow the frequent practice, when a 
smooth curve is drawn as far as possible through the experimental points, af 

accepting/ 
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accepting all but inconvenient points at their face value. The procedure 
leads to a rather different weighting of previous evidence for regular 
trends in creep. 

Almost. all the data examined have been consistent with the view293 
that the creep strain E comprises the sum of a number of terms of the form 

. . . (I) 

in which d is the stress, fl and II are simple numbers, C is an 
arbitrary constant, and $ a combination of time t and temperature T of 
which further details are given in Section 2. The data that are unambiguously 
exceptional are those for which a marked change in the nature of the material 
appesrs to occur within the experimental range. A con lusion to be drawn 
from the research of which the present work forms part 8 is that creep closely 
follows the law stated in an interval between changes of this kind, but departs 
widely from it when they occur. They may occur during the progress of a test, 
&s when decelerating creep follows a period of accelerating creep, or during 
loading, when unusually large strains may be observed. They may also be 
encountered within the range of stress or temperature covered by different 
tests, so that one part of the data applies to one condition of the material 
and another part to another condition. 

The need for fairly extensive sets of data for study, especially 
for tests of extrapc'lsticn, has the effect of confining attention principally 
to established materials. They are materials that have been suocessfW.ly 
developed to avoid these changes, or at least to reduce their effect to 
magnitudes comparable with the random irregularities in results. The need 
also to reject unusually scattered or ambiguous data, which is unavoidable 
in early studies, has the similar effect of selecting materials in which such 
changes are unimportant. However, this is a current limitation on the 
testing of any method of extrapoletlcn. 

The present method is based upon fitted curves that conform to the 
law given and which give uniform weighting to all the data available. The 
fitting of the curves is best performed by a graphical analysis of the data 
identioal with that whereby the laws were discovered. The scatter was 
evaluated by comparison of experimental points with theoretical curves 
fitted to each set of data as a whole. Accordingly the scatter results ere 
presented in Section 3 after a description of the method of fitting in 
Seotion 2. The method of extrapolation is described in Section 4 and 
results are discussed in subsequent sections. 

The various features of the formula couldbe set out in B farmal 
mathematical manner and the fitting and extrapolation be handled numerically. 
However, the procedure would be unduly cumbersome and without significant 
benefit. 

The data considered are principally those previously analysed in 
detail in Ref.5 and comprise all those in the Ti&en Digest, complete 
families of creep curves for Nimcnic alloys, together with data for other 
alloys that came to hand. Over 100 sets of data were studied relating to 
alloys of more than 40 compositions. The scatter of all the data was 

evaluated,/ 
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evaluated, but tests of' extrapolaticol were necessarily confined to the 
rather few sets that were both without undue scatter and sufficiently 
extensive to be usefully divided into shorter and longer time portions 
with enough detail in the former to define behaviour. All sets of this 
oategory that were available when the work was in progress were used. 
Analyses of creep data from other sources that have since cane to hand have 
also been made. 

In order to make details available without unduly extending the 
present paper, these are included in Refs.6,7,8,9 and 10. 

2. Analysis of Data 

The following summazy, which will be illustrated later by examples, 
will indicate both the first stages of the method of extrapolation and the 
experimental support and basis for the guiding theory. Rupture data involve 
two stages of analysis and families of creep curves three stages. 
Extrapolation requires a further stage. 

2.1 Stage I: Resolution of creep curves into components 

Creep curves for many conrmeroial alloys have been found to be a 
close fit to the equation3 

E = at'+ bt + ot! . . . (2) 

in which E is the c eep strain after subtraction of the elastic strain that 
occurs during loading F , t is time measured from the instant when the creep 
strain may be regarded as eero, and a, b and o are constants in a 
particular test that depend upon the constant stre'ss u and constant 
temperature T of the test. The exponents $ and 1 are those found by 
Andrade, Kennedy, and others for a variety of materials and relate to the 
primary and secondary stages of creep, while the term with exponent 3 
represents accelerating creep. The interpretations of E and t, and the 
values of the exponents have been derived and checked by detailed studies, 
espeoislly of the Nimonic alloys3,4,5,7,8,9 , and there is good reason to 
believe that the equation is of wide applicability. 

When extrapolation is based on families of creep curves, Stage I 
consists in the resolution of each curve into the three components of strain 
represented by the three terms on the right of Equation (1). They will be 
referred to as the t+, tr, and t, components and are represented by 

straight lines on a graph of log E versus log t with slopes of $, 1 and 
3 respectively. A convenient and accurate method of resolution of the curve 
into its ccnpcnent lines by the use of master curvea has been devisedo. 

2.2 Staa 2: Resolutian of components into terms 

The magnitudes of the three components of Equation (2) vary with 
time stress and temperature. At each temperature of testing, the oomponents 
are displayed by the above method for each of the testing stresses. Stage 2 

consists/ 
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aonsists in plotting, for the t;, t, and t, canponents at each 
temperature separately, the log stress of the test against the log time for 
the component concerned to reach an arbitrary value, say 0.1%. The curves 
obtained are analogous to plots of times to rupture, and indeed creep Npture 
data afford the simplest example. 

Experience has shown that the time to rupture corresponds closely 
to the time for the dominant component on the right of Equation (2) to reach 
a critical value. Materials that N ture after a prOnO.InCed stage of 

Y accelerating creep are usually found to have times to Npture that are 
effectively determined by only the component of Equation (2) far which the 
exponent is 3, while materials that display a long stage of steady-state 
creep and proceed to rupture without an appreolable accelerating stage have 

‘times to rupture that are effectively determined only by the component. whose 
exponent is unity. Thus for rupture data the direct experimental graphs of 
log stress versus lo 
(see Figs.1, 

rupture time for each of the temperatures of testing 
2 and 3 7 are equivalent to the graphs of Stage 2, Just desoribed. 

It is well known that the points in such plots of rupture data are 
liable to fall upon segmental curves formed by straight lines with abrupt 
afianges of slope; indeed, the onset of the changes o slope has been one of 
the problems of prediction. l Detailed study has shown that the slopes of the 
segments, where the segments are clearly present, take values from the 
sequence 

-1, “, -;, -;, -,;, -;, . . . . . . . (3) 

The clear experimental evidence for the existence of several segments 
indicates that each component on the right of Equation (2) is compound, 
i.e. each of the coefficients a, b, o consists in general of a sum of 
terms in stress raised to a power, so that the creep strain is to be 
represented by a sum of terms of the form . 

oonst. x o%w . . . (4) 

in whioh K has one of the values 

and the ratio K/p has one of the values at (3). The constant contains 
the temperature. 

The qualification “where the segments are clearly present” relates. 
to the fact that the proposed formula predicts, in agreement with experiment, 
that the log stress versus log time graphs are continucxls curves which may be 
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represented adequately by straight lines with abrupt changes of slope only 
when K has the value 3 (c.f. Fig.i)*. When K = $ or I, the theoretical 
curvature is more gradual, and the points nust be fitted with the curve 
appropriate to the value of K. The curves may be regarded as being asymptotic 
to lines of standard slope: Fig.2 is an example. 

Stage 2 thus consists of the resolution of the log stress/log time 
plots (either for rupture or for a constant value of the strain componept 
ooncerned) into their component segments (K = 2) or asymptotes (K = x or 1). 
These are conveniently referred to sa the I, a, i etc. aegoenta or 
asymptotes. Any one set of straight lines of common standard slope -K/p for 
all the temperatures of testing is the graphical display of a single term of 
formula (4). A master-curve methodi has been devised for determining the 
asymptotes. 

2.3 Stage 3: Determination of the temperature dependence of the terms 

The spacing in log time with respect to temperature between the 
lines of a given standard slope (whether segments or asymptotes) differs from 
slope to slope. The result is thought to indicate that the different 
metallurgical factors present are influenced by tempersture to different 
extents. The time-temperature relationship may be assessed for each term by 
cross-plotting the Stage 2 graphs for the slope concerned for any constant 
value of the stress, in order to obtain a graph of log time versus temperature. 
Examples sre inset in Figa.1, 2 and 3. 

The various time-temperature parameters that have been proposed by 
Darn, Larson and Miller, and others sre, in effect, equations of s curve to 
fit cross-plots of this nature. For many purposes, but not all,the choice at 
this stage of a time-temperature parsmeter is not critical, and even a freely- 
drawn curve in the manner used by scene authors would often be reasonable. 
For a number of heat-resistant alloys, however, the points derived from at 
least one of the atandsrd slopes are found to fall, as in Fig.lA;upon curves 
that sre convex towards longer times, i.e. to have both s negative slope and 
negative curvature. Such s result may be seen to be incompatible with all the 
familiar parameters, and indeed 6th the litersl use of the usual exponential 
law of temperature dependence. The following parsmeter2,3,'l has been found 
to meet requirements 

t(T' - T)-A = constant, when u and E are constant . . . (5) 

in which T' is a constant temperature greater than T and A is an 
empiricsl. constant. The different temperature dependence of the different 
factors in creep is represented by the use of different constants T' far 
different slopes. The exponent A is not critically determined by experiment 
and has been atandsrdized at the value 20 pending m&e definite evidence. The 
parameter5 accords with a feature to be observed in creep data that extend 
over a sufficiently wide range of temperature that properties beccvae anomsloua 
near a certain temperature. 

--------------------------------~------------------------------------------- 
*Thereis evidence for some materials that an additional term component of 

Equation (2) with K = 9 is needed. This is of no consequence in the 
analysis of rupture dsta since the changes of slope sre abrupt for any lsrgs 
value of K. The precise value of K is then of no ocnsequenoe. 
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When the log time/temperature graphs have the opposite, i.e. 
positive, curvature, one or more of the alternative parameters are available. 
However for consistency sith the above evidence and for a more specific 
reason given in Section 4 the requirement has been met by adapting Equation (5) 
to the form 

t(T - T’)+” = constant, T' < T . . . (6) 

Stage 3, which in principle completes the initial analysis of the 
data, consists in the determination, for each group of asymptotes of one 
standard slope, from a log t versus T cross-plot of a group at an 
arbitrary constant stress, of the various values of T'. In practice it is 
usually necessary to revise the analysis by one or more successive 
approximations in order to obtain the best overall fitting of the data. 

2.4 Discussion 

The analysis corresponds to the assumption that creep strain is 
represented by a sum of terms of the form (1) in which # is the exprassion 
given in Equations (5) or (6). Alternatively and in summary, it assumes 
that a family of creep curves has the following structure. 

Each creep curve comprises three components represented by the 
three terms on the right of Equation (2). Each component is oompound and 
comprises the sum of several similar basic terms with common K of the fonu (4). 
If each basic term is considered in isolation, the graph of log SF versus 
log time is a straight line of slope K with one of the values z, 1 or 3; 
the graph of log stress versus log time is a straight line of slope - K/a 
with one of the values I, $-, t . . . . . the graph of log time versus 
temperature is a standard curve (Equation (5) or ('6)): the quantities not 
mentioned in each instance are treated as constant. The usual direct 
experimental graphs and cross-plots of these represent the joint contributions 
of several basic terms and are thus normally curves whose relation to the 
standard constants is not apparent until the data are analysed in terms 
of the present formula. 

It is a feature of a sum of terms of the present form that their 
relative magnitudes change rapidly with changes of the variables, so that 
the number of terms that is important in aIly one set of creep curves is not 
unduly large. 

For the purpose of prediction, the results of the graphical 
analysis of special interest are as illustrated in the examples of Figs.1 to 3, 
the set of straight lines of standard slopes on the graphs of log stress versus 
log time, and the associated log time versus temperature cross-plots. Before 
the method of prediction is discussed, however, it is desirable to consider 
the experimental support for the formula that has been derived and the closely 
associated question of the scatter of experimental data. 

3. Scatter in Creep and Direct Tests of the Formula 

The scatter in the sets of data referred to in Section 1 has been 
evaluated on the one hand by comparing experimental points with theoretical 
curves fitted as a family, by the procedure just outlined, to each set of 

data/ 
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data as a whole, and on the other by comparing the availaBle results, 
unfortunately rather few, of replicate tests for the same condition. Results 
are summarised in Tables I to III. The scatter in log time was found to be 
substantially uniform and Gaussian over the range of stress and temperature, 
and has accordingly been treated on these assumptions. Evidence for the 
randomness of the scatter of some of the sets of data is provided by the 
results of Section 5. On the other hand the scatter appears to be significantly 
less in the tertiary stage than in primary and secondary stages of creep. 

3.1 General magnitude of scatter indicated by analysis of rupture data 

Table I gives the scatter, expressed as a standard deviation in log 
time, as evaluated for all the creep rupture data of Ref.5. The values are 
grouped into two supposedly random populations comprising those for materials 
whose times to rupture appeared to be controlled by terms in +? and those by 
terms in t (see Section 2.4). The mean s-d. for the first group is 0.14 in 
log time and for the second group 0.21. A check on the general correctness of 
these magnitudes is provided by the analysis by an independent method of the 
present and other data by Monkman and Grant'2. They found that the scatter 
in rupture lives had s.d. 's ranging between 0.14 and 0.23 cycles of log time. 
For IO sets of data, where no figure is given in the table, no scatter values 
were assigned. Where a dash occurs, the experimental points were too few in 
number effectively to define the theoretical curves, a cross denotes the 
presence of .s characteristic anomaly referred to in Section 3.3 below, and an 
asterisk one of the following not immediately distinguishable possibilities: 
more terms should have been used in the formula to obtain satisfactory fitting 
(no more terms were used than for which there was clear evidence); the formula 
did not represent the true behaviour; or the data were unsatisfactory. 

3.2 Assessment of scatter by analysis of cre.ep data and comparison 
with replicate data 

Table II presents in summary form the results of an analysis of the 
scatter in families of creep curves for the Nimonic series of alloys, an 
analysis set out in some detail in Ref.7. The second column of Table II(a) 
shows the scatter of the points that make up the experimental creep curves 
about the theoretical creep ourves of the best fitting family. The second 
column of Table II(b) shows the scatter in tertiary creep alone as assessed 
by a comparison of the times to reach a given value of o+?, in Equation (2), 
in each individual test with times to reach the same value taken from the 
corresponding curve of the best fitting family. In the third columns of 
these tables are given the corresponding s.d.'s for the available replicate 
tests and, in brackets, the number of pairs of tests upon which the s.d. is 
based. There is no olear evidence that the indicated differences of scatter 
between these materials are significant, and since the number of results 
concerned were about the same for each material, simple mean values are given. 
Since there were large differences between the numbers of replicate tests, 
however, both a simple mean of the results of these and a mean weighted for the 
number of tests are given. The s.d.'s estimated by fitting the formula and as 
directly indicated by replicate tests are in good agreement. The scatter in 
ter%sy creep is seen to be about half the average soatter over the whole 
extent of the creep curves. 

3.3 Assessment of scatter by analysis of rupture data and oanparison 
with replicate data 

For the materials of this table, the rupture data wsre analysed 
independently. The scatter of the rupture points about theoretical curves 

fitted/ 
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fitted to the rupture data is given in the fourth column of Table II(b). 
The mean in brackets at the foot of the column excludes the rather high value 
for Nimonio 90-111. This material shaved a tendency at the highest temperature 
for the accelerating creep to be followed before rupture by 8 further period of 
decelerating creep instead of immediately by rupture in the usual way. The 
onset of this behaviour was irregular. The scatter in t, values is seen to be 
similar to that for the other materials. The scatter in rupture times is seen 
to be in good agreement with the scatter in the ts term. 

Creep curves for materials that do not exhibit tertiary creep and 
whose rupture appears to be determined by the et terms have not been studied 
in detail, but the scatter in rupture time for the two groups of materials in 
Table I is seen to correspond generally to the pattern of Table II. 

For only four of the materials in Table I and two in Table II were 
results available from replicate rupture tests. The scatter of the rupture 
data about the fitted theoretical curves is compared in Table III(a) and (b) 
with the scatter in replicate tests, the two types of material being treated 
separately, The agreement indicated by the previous tables is here largely 
repeated, but there is a larger spread in some of the values. The scatter of 
the data about the fitted curves is indicated as being less then the scatter 
in replicate tests, but the result is probably due to the sampling. The 
opposite result indicated by S.590 may be significant. The data were 
particularly extensive and on this score alone would be expected to provide 
* stringent test; on the other hand, many of the points relate to tests of 
extremely short duration with the loading period comparable with the creeping 
period. Such tests are not then creep tests, but are oomblnations of creep 
and tensile tests. The question of the homogeneity of the data also arises. 

3.4 Discussion 

Differences between the scatter values assigned to different 
materials may in some instances represent actual differences in variability, 
but the possibility of sampling differences and of varying systematic 
departures from the formula must be recognised. 

In regard to systematic effects, one that is thought to be 
characteristic has been mentioned in connection with Nimonio 90-111 and 
Table II(b). Another is exhibited by the materials marked { in Table I 
(see Ref.5). The points in the log stress/log time graph associated with a 
line of given standard slope fall in two distinct groups related by a 
parallel displacement. Two flow regimes appear to be present with either 
a random or systematic relation between them. The effect msy well be 
present in some degree in other data, especially the other marked data in 
Table I, for it is only clearly identified by 8 suitable number and 
distribution of experimental points. 

A more elaborate statiatioal analysis would be necessary to decide 
the significance of the ocoasional discrepancies. However, the tables show 
that the differences of soatter between different. materials ars usually little 
more than the differenoe for any one material between the scatter in its 
aoaelerating and decelerating stages. The results may therefore be simply 
summarised by the statement that the standard deviation in accelerating creep 
and associated rupture times appears to be generally rather more than & cycle 
of log time, while the standard deviation in the earlier stages and associated 

rupture/ 
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rupture times is at least i cycle. rupture times is at least i cycle. Apart from certain systematic effects Apart from certain systematic effects 
upon which there is too I=&13 information for study, the formula has been upon which there is too I=&13 information for study, the formula has been 
shown to be in agreement with experiment to within the lxamts of the least shown to be in agreement with experiment to within the lxamts of the least 
scattered data. scattered data. 

4. Extrapolation 

Extrapolation is based upon the sets of straight liges with standard 
slopes -K/P on graphs of log c versus log t together with their associated 
cross-plots of log t versus T. Limiting positlons can be assigned for lines 
of those standard slopes for which there 13 no direct experimental evidence, 
and these lead to upper and lower limits to extrapolated values. 

The method is best explained by means of examples. 

4.1 Rupture data. with tertiary stage 

The simplest case to consider is that of a material which ruptures 
after a pronounced stage of accelerating creep whose life is effectively 
determined (o.f. Section 2.1) by only the terms for which K = 3 and for 
which the expected log stress/log rupture life graphs effectively consist of 
segments of standard slope Joined by rather abrupt transitions*. The lower 
part of Fig.lA is an example of data that directly show the standard slopes 
+ and +. (The scale of log stress 13 four txnes the scale of log time, 
hence e.g. the line of slope -: 13 at 45' to the horizontal.) This figure 
has been selected as a converuent illustration of the features and problems of 
extrapolation. It 13 not however one of the best examples of the usefulness of 
the method, because the test conditions, chosen for other reasons, do not 
establish the extrapolated values very closely. 

The points relate to Stage 2 of the analysis and represent a direct 
plot of rupture data for Nimonic 8OA. They have been arbitrarily divided into 
two groups: the open points are for times longer than 2000 hours and the 
filled points for shorter times. For a test of extrapolation, attention is 
first given to the filled points. The unbroken lines in this part of the 
figure and the whole of the upper part (which relates to Stage 3) are based 
on the filled points only, and represent the completed analysis of the 
shorter-time data. The points in the upper part are derived from the fhorter- 
time points in the lower part by cross-plotting, for slopes G and -7, at 
stresses of 20 and 10 t.s.i. respectively. (For slope -& -discussed below 
the stress is 2 t.s.i.) Each curve shows the relation between log time and 
temperature for hioh the basic terms of the form (4) vnth K/p = -i and f 

have each a standard value. In more detail, the points in the upper part 
correspond to lines of standard slope in the lower part that were first drawn 
in tentatively by inspection. For clarity these lines, which would be parallel 
to but slightly displaced from the solid lines shown, have been omitted. The 
lines actually shown correspond to the curves in the upper part, and both are 
as found by trial and adjustment to secure the best fitting of Equation (4) 
to the filled points. They complete the initial analysis, and extrapolation 
may now be considered. 

slope f, 
Direct extension beyond 2000 hours of the lines of the steeper 

as shown in broken line in the lower part, afford. an extrapolation 

that/ 
-------------------_-------------------------------------------------------- 
*See footnote on page 8. 
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th‘lt is liable to be optimistic because at any instant the trend may change 
abruptly on to a line of steeper slope. In this instance the next steeper 
slope is -&: the possibility of a still steeper slope is considered later. 
The worst possibility - still steeper slopes apart - is thus that at any of 
the temperatures in the figure, the result of a further experiment at a lower 
stress may fall on a line of slope -4 drawn through the last experimental 
(filled) point at that temperature. "Pessimistic" lines of this kind srs 
indicated at 815'C and 750°C. They pass through points A and B 
respectively. 

At the other temperatures, however, a similar possibility is not 
open because of a peculiarity of the time-temperature relationship. 
Equations (5) and (6) show that the spacing A log t/AT between lines of 
any one slope at different temperatures is 20//T.- T'l. If the temperature 
T' , at which properties are indicated by the formula tobecome anomalous, 
is to have a metallurgical significance, it nolst presumably lie between O'K 
and the melting point; thus the spacing is indicated to be not less than a 
minimum value corresponding to the use of the more remote of these 
temperatures for T'. Apart fron a circumstance that appears to be definable 
and will be discussed in the final section, this condition on the spacing and 
magnitude of T' has been found to hold for all the data examined. There 
has been no clear osse in the study of data for more than 40 alloys in 
which T' was indicated to fall outside this range. Date for Nimonic 90 
has also provided direct evidence to confirm the prediction of very large 
spacing A log t/AT when T approaches T'. 

In view of the condition of minimum spacing, the lines of slope -4 
at 7oO°C and 650~~ are shown in the lower part spaced fron the line of this 
slope through the last point B at 750°C by the minimum amount corresponding 
to- T' = O'K. The corresponding points and curves are shown In the upper part, 
the curve being chain-dashed and the points being arrowed since they refer to 
a minimum time rather than to a definitelyoestablished. time. The condition is 
of no assistance for extrapolations at 815 C and 750°C because the spacing 
enforced by the final points A and B at these temperatures happens to be 
already greater than the minimum. The lines of slope -& through these 
points thus afford a pessimistic extrapolaticm. 

It follows from this construction, as Fig.lA shows, that the last 
point B at 750°C provides, with the remaining data, a sector S of 
unambiguous extrapolation. Outside this sector, there is a range of increasing 
ambiguity as shown shaded. 

In regard to the choice of the value -;, data are known that 
clearly exhibit the scope of -1, but steeper slopes have not been encountered. 
In the present example, if attention is confined to stresses greater than the 
lowest stress at 75O'C for the short-time set, namely point B, the condition 
of minimum spacing may be seen to exclude the possibility of lines of slope 
steeper than -$. If lines of a steeper slope were present, the line for 815% 
could reasonably pass through the point A at 6 t.s.i., but then those far 
700'% and 650°c respectively are not permitted by this condition to pass to 
the left of positions C, II, where C and D are spaced from point B 
(at 10 t.s.i.) by the-minimum spacing appropriate to their temperatures. At 
higher stresses than 10 t.s.i. (but not smaller stresses) such steeper lines 
would provide more optimistic extrapolations than the lines of slope -& 
drawn in the figure. Indeed, for extrapolations towards high stresses, the 
smallest permissible slope is the most pessimistic. In the present instance, 
however, the existing points will not tolerate any slope smaller than -$. 
The rule for pessimistic extrapolation is therefore to use the most 
unfavourable slopes of the series that the data and minimum spacing conditia 
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will allow. The range of useful extrapolation is rather limited in this 
example because of the small duration of the longest test at the highest 
temperature (point A). A further test for a smaller stress at this 
temperature would.have defined a wider sector of unambiguous extrapolation. 

The value of such a test can be seen in the example of Fig.3, 
considered later. 

Supplementary information that will assist extrapolation can be 
obtained from results from neighbouring materials of a related series. As 
an illustration, it appears that the value of T' for slope -$ for 
age-hardened Nimonic alloys is always greater than lO@C, also no line of 
slope -1 has been observed, even at the longest times. If this T' is 
adopted as a minimum value for the present data, the lines of slope -3 
will fall in the positions shown by the dot-dashed lines of the slope in 
Fig.lB, and the unambiguous sector becaoes much larger. 

The results are aggregated with the other examples in the discussion 
of the accuracy of extrapolation in the next section. The differing choices 
of T' in the present instance do not affect the test of extrapolation because, 
whichever method is used, the longer time points deviate by the same amount cw 
remain ambiguous. 

4.2 Rupture data. no tertiary stage 

Fig.2 is an example of rupture data for a material without tertiary 
oreep and for which rupture is apparently governed by terms czf form of 
Equation (4) with K = 1. 
4 to @ Cr-Mb0 steel. 

It is a direct plot of the Timken data for a 
The data have been arbitrarily divided into shorter 

and longer time groups dth the division at 10 hers. The graph does not 
now approximate sufficiently closely to a set of segments of standard slope 
because, with K = I, the curvature of the transitions is more gradual and 
they extend over much of the experimental range. 

'The shape of the transition curve appropriate to two terms of 
form (4) is dependent only upon the values of ,¶ and K for the terms and 
not upon the constant factors. Thus the strain contributed, at a given 
temperature, by two terms with common K (unity in the present instance) is 

in which 4 and A, are constants. Choose quantities A and us such that 

i.e., 

Then 
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NOW choose a quantity to such that 

A = t -K 0 

Then == cy + (;,“I c;,” 
This equation for the cross-plots of log u versus log t at constant strain 
represents a master curve whose shape is speoified by p p and K, and 
whose position is specified by log us andlog to. hi.4 ‘pives examples of 
master curves for a few commonly-occurring combinations of K and K/,9. The 
shapes of curves for more than two terms of form (4) depend upon the relative 
magnitudes of the terms, and are no longer standard8 they need to be calculated 
as they arise. 

The principles of analysis and extrapolation of rupture data for K 
smell are exeotly the same as those just described for K large, the prcoedure 
being now applied to the asymptotes rather than to the directly fitted lines 
of standard slopes. Each asymptote represents the independent oontributicm at’ 
e separate term. 

The upper part of Fig.2 represents the completed analysis of the 
data represented by the shorter-time filled points in the lower part. The 
significance of lines and points is similar to that in the previcus figurei 
thus in the lower part the broken straight lines and curves represent 
respectively the optimistic direct extrapdations of the asymptotes and curves 
fitted to the filled points, while the chain-dashed lines and curves represent 
the pessimistic interpretation. For extrapolation, instead of setting, as 
previously, a pessimistic line directly thr(Algh the longest-time point at the 
temperature ooncerned, the standard curve appropriate to the indicated standard 
oonstants is now placed at the shortest time that is allowed by the kend of 
the points. The appropriate value of the term is defined by the asymptote. 
The curves of the upper part of Fig.2 relate each to the asymptote of 
indicated slope. 

When the data are such that, as at the lower temperature in Fig.2, 
three or more terms are present and their transition regions overlap, the 
details are more complicated but the principles remain the same. Itbeccmes 
necessary to estimate the positions of the asymptotes that represent the basic 
terms by successive approximation. The results of Fig.2 are discussed in 
Section 5. 

Fig.3 for “killed carbon steel” from the Timken Digest, is another 
example. In this, the data are sufficient to define the asymptote of slope -3 
at the highest temperature: as a result there is no ambiguity at this 
temperature, and the extent of ambiguity at other temperatures is reduced. 

In both Fig.2 and Fig.3 the slope of -I was found not to be more 
pessimistic then that of -4, except at the highest experimental temperature 
(& 5% and 760% respectively) ; it has not therefore been shown. 

4.3/ 
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4.3 creep curves 

For the analysis and extrapolation of creep curves, the procedure 
outlined is applied separately to each of the components $9 t,, and t3 

obtained by analysis in Stage I of the curves. In regard to Stage I, it is 
easy to show, by the method of the last paragraph, that the contribution of 
any pair of terms in Equation (I) to the creep curve is represented by a 
standard curve. Two of the three standard curves concerned are illustrated 
in Fig.5. For creep curves with an accelerating stage, It is convenient to 
fit the (&, 1) standard curve to the earlier portion of the curve and obtain 
the t, term by subtraction of the ordinates of the curve from those of the 
experimental points. In Stage 2 the log stress/log time cross-plots of the 
t*, t, ana t, terms are separately fit&ii with the appropriate standard 
CUF&?S. Since K is precisely known, there is no need to use segmental 
curves for K = 3. The method leads to extrapolated values of the tl, t, 
and t, terms separately: the predicted creep curve is then obtained by 
setting the master ($, 1) curve in the predicted position and then adding 
on the predicted t, contribution. 

A complication of the Stage 1 analysis of creep curve5 15 that 
their shapes are appreciably affected by an uncertainty in the amount of 
elastic and creep strain that occur5 during loading, and thus in the 
appropriate zeros of strain and time. Although the uncertainties are small 
in comparison with practical magnitudes, their effect on the analysis needs 
to be considered. The matter is discussed in detail in Refs.7 and 9 where 
the procedure of choosing the amount to suit Equation (1) is supported. 
Fig.6 shows the set of creep curves at 815°C from a family of creep curves 
for temperatures of 700°C to 940% for Nimonic 100. The difference between 
the crosses, and open circles where shown, represents the difference between 
independent estmates of this amount and lies within the experimental latitude. 
The solid lines are derived from a fitting of all the data for times up to 
1000 hours; where they are extended to longer times, or are interpolated as 
at 9 t.s.i., they represent unambiguous extensions. 

Experimental points for times greater than1000 hours and not used 
for the fitting are shown by fdled triangles. The broken curve5 (to be 
regarded as coincident with the full lines where not drawn) refer to an 
independent fitting of data a5 a whole over the full range of time, which 
extends in this case to 15,000 hours. 

5. Tests of Extrapolation 

Owing to space limitations, the results of tests of extrapolation 
are mainly presented in summary form, but the examples of Figs.1, 2 and 3 are 

given in more detail. 

Figs.1, 2 and 3 are typical of those given in Ref.5 for the seven 
sets of rupture data and one of fatigue data that, of the sets available, were 
the only ones sufficiently extensive and of small enough scatter to provide a 
critioal test. For these three materials predicted and observed rupture times 
are compared in Table IV. Two sets of pessimistic values are given for 
Nimonic 8OA, the first uses slopes of -& ana -I, with T' of -273"C, as 
in Fig.lA, the second uses only the -4 slope with a T' of lOO'% as in Fig.lB. 
The confidence limits on the observed times in column 4 correspond to standard 
deviations in log time of tO.07, 20.17 and 20.18 for the three materials 
re5PectivelY, a5 found by comparison of individual points with curves from an 

independent/ 
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independent fitting of each set of data as a whole. The results given in 
Section 3 show that the scatter of the dsta ia fairly estimated in this manner. 
Single extrapolated times represent unambiguous values, and a range of times 
the extent of an ambiguity. The average ranges of extrapolation in time are by 
factors of 6, 104 and 11.5 respectively and the extreme extrapolations by 
factors of 17, 540 and 54. The errors of prediction are aeen to be 
distributed in the asme manner as the random scatter of the data, with 3 out of 
38 results deviating by more than twice the appropriate standard deviation. 
The Gaussian figure would be 2 in 38. Results for the remaining 5 sets, 
(treated individually in Ref.10) are treated collectively below. 

For the family of creep curves for Nimonic 100, of which Fig.6 is a 
sample, predicted and observed values are compared in Table V. The bracketed 
values in the extrapolation column are given only to complete the table: they 
are for times less then 1000 hours and are not therefore extrapolations: 
differences from observed times represent the scatter in direct fitting. For 
the long-time comparisons that these data afford there is no ambiguous range of 
extrapolation. Where two figures are given in the extrapolation column, the 
raw experimental data exhibited one of the anomalous effects noted in Section 3 
and was double valued. The average range of extrapolation in time is by a 
factor of 4.4 and the extreme factor is 10.6. For this material, the standard 
deviation of points about fitted curves, averaged over the data as a whole, 
is 0.21 in log time. It may be seen that fl out of 36 extrapolated values fall 
within this range. The number to be expected for random error8 is 25. This 
better-than-random result is probably because the value 0.21 relates to the 
whole range of creep, while the scatter is appreciably smaller in the tertiary 
stage than in the primary and secondary stages. To distinguish between the 
three stages would involve consideration of the errors of tiatributing the 
observed creep amongst the three terms of Equation (2) and was not thought 
worth while. 

5.1 Statistical presentation of scatter in rupture times 

The results for the three sets of rupture data in Tables II and III 
are joined with those for the remaining five sets of data and reduced to a common 
basis in Fig.7. The solid stepped curve represents the distribution of scatter 
in log time es obtained by direct fitting of the theoretical curves, while the 
stepped curve in broken line represents the observed distribution of errors in 
prediction. The distribution to be expected from the normal curve of errors 
is shown by the continuous curve. To obtazn the broken curve, the scatter of 
the points for esch material about the fitted curves for that material have 
been scaled to correspond to a common s.d. in log time for all eight materials. 
For example, the individual differences in log time for 4 to % Cr-MO steel in 
column 4 of Table IV were divided by 0.18, the value of the s.d. for the data. 
Those for the other materials were similarly divided by their s.d. and all 
values 80 obtained were treated as a. single population. To obtain the broken 
curve, the errors of extrapolation for each material wsre similarly divided by 
the appropriate 8.d. and aggregated together. The close agreement between the 
three ourves suggests that the distributions are Gaussian and that predictions 
are in error mainly because of the uncertainty of the data. The average 
extrapolation we8 by s factor of 26 in time. 

5.2 Statistical presentation of scatter in oreee 

The above method of aggregating the rupture results for different 
materials may conceal irregularities in the data for a single material. A more 
penetrating teat is offered by a set of creep curves that is adequate to 
define the scatter OgiVe in detail. Fig.8 for Nimonic 100 and Fig.9 for 

Nimonio 90 show the ogives for two sets of this kind. 

In/ 
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In both figures, A gives the observed scatter of' short-time points 
about Creep curves fitted to these points, B the scatter of long-time points 
about curves extrapolated from the short-time data, and C the scatter of all 
the points about curves fitted to all the points. The observed ogives are the 
stepped curves: each is to be compared with the continuous Gaussian ogive which 
in both figures is drawn for a standard deviation of 0.2 in log time. 

In regard to Fig.8 for Nimonic 100, the central sections of 8A and 8C 
fit closely to the calculated curve, suggesting that the scatter is essentially 
Gaussian with a standard deviation of 0.2; 8B is of similar form but steeper, 
suggesting that for extrapolated points the scatter is less than 0.2. 

The upper and lower sections of Figs.8A and 8C - but more particularly 
the upper sections - depart significantly from the Gaussian curve. The points 
observed at three to four times the standard deviation (whose number is 
considerably in excess of those predic$ed by the Gaussian curve) are attributed 
to a double-valued behaviour in the ts term which was clearly observed at 87O“C 
and 940°C (c.f. Ref.7, Section 4.3). The effect is not observed in Fig.8B, 
presumably because very few of the extrapolated points fell in the primary range. 
It will be observed from Fig.8B that the double-valued behaviour of the short-time 
data has not biased the extrapolation, suggesting that the method of analysis has 
been successful in distinguishing regular behaviour at larger strains in the 
presence of irregularities at smaller strains. 

Fig.9 for Nlmonic 90 show: generally similar features, again being 
affected by double values in the t3 group of terms. Fig.9B indicates that 
the extrapolation is slightly pessimistic overall, to the extent of 0.05 in 
log time or about lZ$ in time, an error which is much less than the uncertainty 
of a single point. This overall pessimism is probably due to .s tendency to 
caution in the analysis. There is a suggestion of the influence of double 
values in the extrapolation ogives (see Fig.YB), probably because, for this 
material, as many as one third of the extrapolated values were in the t, region. 

5 
6. General Discussion 

The feature of the formula that has been least critically tested is 
the precise form of the time-temperature parameter. One of the more usual 
exponential forms was not used because these predict, in particular instances, 
the wrong curvature of the log time-temperature cross-plots. The form proposed 
meets the experimental requirement that the plots may have either positive or 
negative curvature. The condition of minimum spacing to which it leads, 
between lines for different temperatures on the log stress/log time cross-plots, 
has enabled the most unfavourable slopes of the lines to be selected for 
pessimistic extrapolation. The condition 1s part and parcel of the result 
that T' lies between the absolute zero and the melting point which was 
yielded by direct analysis of all the sets of data as a whole, and is not 
independently checked by the examples of extrapolation given, which relate to 
the same data. 

The method evidently provides means of predicting the onset of the 
metallurgical changes that are responsible for a steepening at longer times 
of the graphs of log stress versus log life. However, metallurgical changes, 
presumably of another kind, are known to occur, of which the onset is not 
directly predicted by the method. In sane, though apparently not all instances, 
these appear tobe associated with .a flattening rather than a steepening of the 
graphs, and the present method will then be unduly pessimistia. Further research 
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along the present lines is necessary however, both to define the 
circumstances in detail and t6 assess the significance of the anomalies 
that have been mentioned. 

The operations of fitting the formula have been carried out without 
difficulty by junior staffI a typic31 time for fitting a set of creep rupture 
data, including plotting of- primary data, is 4 to 6 hours, and for a set of 
creep curves, 3 to 5 days. These times .sre appreciably reduced when suitable’ 
copying equipment is available. The saving in machine time on the 3 sets of 
creep curves disoussed in Ref.7 amounts to 4.8 machine years. 

A farmula whose agreement with the data was achieved by a purely 
arbitrary flexibility would be most unlikely to provide satisfactory 
predictions, and the result found for the present formula that the errors of 
prediction are in substantial agreement with both the erraP3 of direct fitting 
and the directly-measured scatter in replicate tests is thus evidence for the 
validity, within the circumstances concerned, of both the formula and the 
method of prs&l.otim.~ 
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TABLE I 

Sbatter of Rupture Data about Fitted Curves 
for Materials of Reference 2 

Standard deviation3 in log time 

Nimonio Nimonic Nimonio Nimonio Nimonio 
80-I 80-11 8OA-I BOA-II BOA-III 
0.1 3 0.05 0.07 0.14 0.04 

Nimonio Nimonic Nimonio Nimonic Nimonic 
90-I 90-11 90-111 95-I 95-11 
0.10 0.11 0.23 0.14 

Nimonio G.32 Inoonel G.34 35-15 
100-I X 
0.09 0.14 0.25 0.18 0.11 

Material3 H.46 ia-8+cb Bed Fox FCB(T)-I FCB(T)-II 
that 36 

rupture 0.18 0.1 2 
on t3 
term DM.2 25-20 G.I 9 2512 16-133 

0.10 0.24 0.17 0.22 

Rex Rex Red Fox 2; cr-1 MO CML-I 
337A 
0.1-7 "i" 7 0.11 0.20 

CML-II CR&I CR&II CRM-III Killea 
0.11 0.16 0.15 0.1 8 carbon 

0.18 

Silmo Mean of ts 
0.11 rupture 0.14, 

C-M0 $ Cr-Mo Sicromo Sicromo 4-q 
2 3 Cr-Mo+ 

0.26 * 0.13 * 0.17 
Material3 

that 4-616 Sicromo Sicromo Sicrcmo Sicromo 
I-llpture Cr-Mo+Ti 5MS 7 9M 

on e 0.1.3 
5: 

0.24 0.14 0.28 
term 

18-8 S.016 s.590 Mean of t' 
0.16 0.22 0.32 rupture 0.20, 

- data were too sparse to define scatter 

* systematic error3 of fitting curve3 to data were 
present, so that scatter figures would be unreliable 

f characteristic anomaly 
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TABLE II 

ccmpariscn of scatter in Creep 

Standard deviations in log time 

(a) Creep data 

Nimcnic EOA-I 
Nimcnic 8011-111 
Nimcnic 90-I 
~im0ni0 90-11 
~im0ni~ 90-111 
Nimcnic 100-11 

Data about Replicate 
fitted curves data 

0.14 
0.27 
0.18 
0.1 5 
0.25 
0.21 

I 
Mean 0.20 

1 
0.18; 
0.17 

(b) Creep and rupture data 

Material 
Creep data 

t, values about Replicate 
fitted curves ts values 

Rupture data 
about fitted 

CUl-VBS 

Nimcnic BOA-1 0.07 
Nimcnic 8OA-III 0.06 
Nimcnic 90-I 0.11 
Nimcnic 90-11 0.08 
Nimcnio 90-111 0.09 
Nimcnic 100-11 0.11 

0.07 
0.04 
0.10 
0.11 
0.23 

Mean 0.09 0.12- 0.11 

i 0.08 

l Mean weighted by number of tests 

i unweighted mean 

bracketed figures indicate number of pairs 
of tests 

TABLE III / 
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-TABLE III 

Ccmparisons of Scatter in Rupture Data 

stana8ra aeviations in log time 

I Materiel 
Nimonio WA-111 0.04 

0.11 
0.12 

0.23 
0.X weighted I 

TABIJtIV/ 
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TABLE I?.' 

Extrapolated Creep Rupture Times compared with Observed Times 

Nimonic 8OA 
- 

Observed Range for Range for Extrapolated lame (hours) 

(6) t.Z.i. (EL) 
k standard k2 x standard' 

error error T' = -273°C T' = 100°C 

650 22 2650 2250-3130 3160 3166 
20 6200 5300-7300 4400-8600 
20 4803 kloo-5700 3900-4200 4200 
20 5300 4500-6200 3700-72~ 3 I 
18 8200 7000-9700 59oo-11400 4700-6400 6400 
16 13400 11400-15900 9700-18800 10300 

700 13 4803 &loo-5700 y6g;i;r 4200 
IO 11000 9400-13000 6200-12100 9500-I 21oc 

i! 
j4000 2yOOO-40000 8500-49000 19ooo-49o0( 

750 4500 3800-5300 2400-4600 BOO-4600 
6 13loo 11100-15500 froo-14500 56Oo-145W 
4 22700 19300-26700 460O-730K1 1150+73~C 

4-q Cr-Mo steel 

Observed Range for Range for 

&I 
p.s.1. x time + standard +2 x standard 

(hwrs) 
Extrapolated 

1000 error error time (hours) 

538 24 104 70-154 114-125 
1600 1100-2400 420-740 

593 :; 3lO 210-460 200-260 
11 1400 930-2100 QQ-ZJI~ 450-730 

649 
P' 

140 93-210 lo5-ii6 
2800 1900-4200 128G61OO 

704 6 86 57-129 4::1186303 

: 1100 250 170-370 730-i650 500-244x 140-225 290-620 
3.5 1200 800-1800 420-1160 
2.5 5300 3500-8000 1000-5000 

si5 2.0 90 60-l 35 1l4-i80 
1.5 160 110-240 73-350 280-670 
1 .I $0" 320-720 600-2500 
0.9 45~loo0 970-6000 
0.7 890 600-1340 41M95O 1780-16900 

Killed carbon steel 
I 

538 12 
IO 

:z2i 1030-2340 680-3500 570-660 
2400-54Qo ' l580-8200 102~1550 

z 13400 4800 3200-7200 210041000 1430-2500 
8900-20000 649 3 620 410-930 4;~;;;;oo 

2 2100 14CG32CO 1300-2750 
704 2 290 19~440 2jo-320 

I .8 450 300-680 320-450 
1.5 850 560-1280 540-840 

760 0.75 9oo 600-1360 870 

TABLEV/ 
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Extrapdated Times compared with Observed Times for Creep of Nimonic 100 

1 I Times for indicated strains, hours 
I I 

Tic 1 0.1% i 0.g 1 0.5% 
OC 

700 

750 

&5 

870 

940 

t.s.i. 

23 
20 
17 
$7 
15 
12 
11 

i 
4 

2 
3 

2.5 

200 
1250 
2500 

1650 

260-680 
I 90~-4800 
2500-6500 

190-480 
590-1540 

3700-97co 
210-w 
500-1300 
6001570 

2300-6000 
- - 

120-320 
770-2000 

1500-4000 

lOC@-2700 

2 3750 2300-6000 

2 280 170-450 

1.5 940 580-1520 

1 1400 870-2300 

Observe 

4.20 

4% 
303 

6:: 
335 

;?I 
3700 

Range for 
+ standard 

error 

(7300) 
1850 
4500 
(670) 
1400 
3700 

1870 
X50 
8600 
(730) 
1500 
2900 
1300- 
4500 
3750- 
8600 
(560) 

1130 

12cQ- 

Observec 

t 

1400 

I woo 
920 

2800 

I 790 
1750 
3900 
9800 

520 
3200 
6600 

5000 

10600 

780 

2400 

5wl 

Range for 
? standard 

error 

870-2300 

62ok6200 
570-1500 

1700-45~ 
- - 

490-1280 
1080-2800 
2400-6300 
6100-15800 

320-840 
2000-5200 
4100~10300 

3100-8100 

6600-17100 

480-1260 

1500-3900 

33OG-8700 

Extrapo- 
lation 

1850 
4300 
8800 
1500 
2850 
7400 

I%:) 
4500 
7500 

21500 
1590 
3500 
7000 
4900- 

10800 
11500- 
17400 

1420 
2550- 
2850 
4mo- 
6500 

4Ew 

2900 
5200 

I 800 
3850 
7800 

jOcXr7800 
- - 
- - 

1800-4700 
32co-8400 

- - 
1100-2900 
24X-6200 
4800-12600 

- - 

5000 
88cn 

15800 
2900 
6800 

13lw 
1420 
3550 
8900 

16200 
47000 

g: 
- - 17000 

I 8700- - - 
29000 
37000- - - 
49000 

2450 1500-4oca 3500 
6800 420041000 5500- 

7800 
IIWO- - - 
12700 

TABLEVI/ 
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TABLE VI 

Scatter about Extrapolated Curves compared with 
Scatter about Fitted Curves 

Material 

Nimonio 8OA-II 
Nimonio go-111 
Nimonio 100 

Mean weighted for 
numbers of points 

I Standard deviation in log time I 

0) (ii) (if.0 

0.22 0.27 0.22 
0.21 0.16 0.17 
0.17 0.21 0.1 3 

0.19 0.21 0.15 

(i) Longer-time points about extrapolated curves 
(e.g., triangles about solid curves in Fig.6). 

(ii) Shorter-time points about directly fitted curves 
(crosses about solid curves). 

(iii) Longer-time'points about directly fitted curves 
(triangles about broken curves). 

APPENDIxI/ 
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APPENDIX I 

Test of Other Methods of Extrapolation 

Seven other methods described in the literature (see Section 1) 
have been tested upon the two sets of rupture data of Figs.1 and 2 and 
Table IV. Signifioant errors viere found, and in view of their magnitude, 
it was not considered necessary to extend the testing to other materials. 
The methods generally require comparisons of results at c-on stresses or 
temperatures, and consequently involve the use, unless the experimental 
conditions are specially selected in advance, of a supplementary and 
unspeoified method of interpolation or even extrapolation. The procedure 
is subjeot to personal errors, and was therefore avoided; thus the number 
of experimental points that could be used was rather limited. They were 
sufficient to provide the cumulative distribution diagrams of errors shown 
in Figs.10 and 11. The methods considered are indicated in the figures. 

Each method gives a roughly Gaussian distributian of errors whose 
standard deviation is between two and five times that of the curve of data 
scatter shown by the continuous curve. Thus they can all be significantly 
in error. Althatgh the comparison is limited to two sets of data, the foxm 
of the Gaussian distribution is such that even if a very large number of 
prediotions with small error were added, the observed errors, whioh include 
some in excess of five times the standard deviation, would remain 
significant. The general view that these methoda are unreliable is thus 
confirmed. 
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