MINISTRY OF AVIATION

 aERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

A Simplified Trearment of Losses for One-Dimensional Mixing Between Hot and Cold Gas Streams at Constant Pressure and Low Velocity

By

B.S. Stratford and J.G. Williams

A Simplifice Treatment of Losses for One-dimensional Mixing Between Hot and Cold Gas Streams at Constant Pressure and Low Velocıty
- By -
B. S. Stratford and J. G. Williams

June, 1962

SUMMARY

Standard theory for the one-dimensional mixang between hot and cold gas streams is stralghtforward in princlple, but the results can be rather dafficult to interpret, as well as quite lengthy to calculate. The interpretation can be dufficult either in obtaining a physical understandıng, or for seezng general trends.

Several simplified formulae may be put forward to supplement the exasting methods of analysis. Most of the formulae in the present paper are concerned wath the loss of total pressure during maxing; these formulae are limited to flow at low Mach number. A further analysis concerms the gain of thrust which results when two streams of air supplyang a propelling nozzle in compressible flow are mixed before the nozzle.

CONTENTS

ILLUSIRATIONS

Fig. No.
1 The maxing of two streams at constant static pressure
2 Range of application of the $\frac{1}{4} \delta^{2}$ formula
3 Range of application of the $(\delta / 2+\phi / 5)^{2}$ formula
4 Example of the empirical fitting to a δ^{2} curve of the addztional loss due to varzation of the specıfic heat

5 Values of the coefficient A
6 Range of application of the $\frac{1}{8} \delta^{2}$ formula for the gain of gross thrust

1. Introduction

Several methods exist for calculating the pressure losses during maxing between hot and cold streams, see, for example, References 1 to 3. These methods are accurate within the assumptions of one-dimensional flow and complete maxing. The formulae which they provide, however, do not readily show the general trends of behaviour, while the calculations are farrly long。 Moreover, if the pressure losses are a small proportion of the total pressure the result may be given as the small difference of large quantities and dafficulty can be experienced in performing the calculation accurately particularly when allowance as made for the variation of specific heat. An alternative approach is therefore provided in the present paper.

There could also be some advantage in a method of calculation which gave an extremely simple answer even though it were not highly accurate. Such a method could readily show general trends, it might faczlıtate an inturtive or a physical understanding of the flow, and it might be of assistance in assessing the behaviour of more complex flows not satisfying the idealised one-dumensional condutzons of the theory. Consequently the exact results are further simplified whth these possibulıtıes in view.

2. The Pressure Loss due to Muxing Between Streams of Constant Specyfic Heat

When two streams of mass flow rates m_{1}, m_{2} and velocities u_{1}, u_{2} max completely at constant static pressure to form a stream m_{3}, u_{3}, as in Fig. 1, the final velocity is given by conservation of momentum to be

$$
\begin{align*}
& u_{3}=\left(m_{1} u_{1}+m_{2} u_{2}\right) / m_{3} \tag{1}\\
& m_{3}=m_{1}+m_{2} \tag{2}
\end{align*}
$$

where
For ancompressible or low Mach number streams of the same perfect gas the final temperature is

$$
\begin{equation*}
T_{3}=\left(m_{1} T_{1}+m_{2} T_{2}\right) / m_{3} \tag{3}
\end{equation*}
$$

so that the final density is given by

$$
\begin{gather*}
-3- \\
1 / p_{3}=\left(m_{1} / p_{1}+m_{2} / p_{2}\right) / m_{3} \tag{4}
\end{gather*}
$$

Thus the final dynamic head, $\frac{1}{2} \rho_{3} u_{3}{ }^{2}$, is

$$
\begin{equation*}
\frac{1}{2} \rho_{3} u_{3}^{2}=\frac{1}{2} \frac{\left(m_{1} u_{1}+m_{2} u_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} / p_{1}+m_{2} / \rho_{2}\right)} \tag{5}
\end{equation*}
$$

Equation (5) wall be found to be equavalent to

$$
\begin{aligned}
& \frac{1}{2} \rho_{3} u_{3}^{2}=\frac{\frac{1}{2} \rho_{1} u_{1}^{2} m_{1} / \rho_{1}+\frac{1}{2} \rho_{2} u_{2}{ }^{2} m_{2} / \rho_{2}}{m_{1} / \rho_{1}+m_{2} / \rho_{2}}-\frac{1}{2} \frac{m_{1} m_{2}\left(u_{2}-u_{1}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} / \rho_{1}+m_{2} / \rho_{2}\right)} \\
& \text { I.e., } p_{3}=\left\{\left(\frac{m_{1}}{\rho_{1}} P_{1}+\frac{m_{2}}{\rho_{2}} P_{2}\right) /\left(\frac{m_{1}}{\rho_{1}}+\frac{m_{2}}{\rho_{2}}\right)\right\}-\frac{\frac{1}{2} m_{1} m_{2}\left(u_{2}-u_{1}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} / \rho_{1}+m_{2} / \rho_{2}\right)}
\end{aligned}
$$

The first term on the raght hand sade of Equation (6b) as the volume flow mean total pressure before maxing, and is anvarlant with respect to the statıc pressure at which the mixing occurs. The second term, which is entirely dependent on the static pressure, may therefore be interpreted as the loss of total pressure, say $(-\Delta P)_{a}$, suffix 'a' denoting constant specıfic heat. Thus, if the volume flow mean dynamic head before mixang is q, and the ratios m_{2} / m_{1} and u_{2} / u_{1} are denoted m and u,

$$
\begin{align*}
q & =\left(\frac{m_{1}}{\rho_{1}}\left(\frac{1}{2} \rho_{1} u_{1}^{2}\right)+\frac{m_{2}}{\rho_{2}}\left(\frac{1}{2} \rho_{2} u_{2}^{2}\right)\right) /\left(\frac{m_{1}}{\rho_{1}}+\frac{m_{2}}{\rho_{2}}\right) \\
& =\frac{1}{2}\left(m_{1} u_{1}^{2}+m_{2} u_{2}^{2}\right) /\left(m_{1} / \rho_{1}+m_{2} / \rho_{2}\right) \tag{7a}\\
\frac{(\Delta P)_{a}}{q} & =-\frac{m_{1} m_{2}\left(u_{2}-u_{1}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} u_{1}^{2}+m_{2} u_{2}^{2}\right)} \tag{7b}\\
& =-\frac{m(u-1)^{2}}{(1+m)\left(1+m u^{2}\right)} \tag{7c}
\end{align*}
$$

Equation (7b) can be interpreted physically as showang that the proportional loss of dynamic head when two streans max at constant static pressure is the same as the proportional loss of K.E. when two inelastic masses collide. The two phenomena are in fact essentially the same and the equation can be derıved from this assumption. The loss in each instance is due to a dissipation of kinetic energy proportional to the square of the difference of the velocities.

Equation (7) is a reasonably convenient formula for the pressure loss in one-dimensional incompressible flow at constant statac pressure and constant specıfic heat, for which condıtıons it is exact. It will now be sımplified for special applıcations.

2.1 Equal total pressure before maxing

When the inatial total pressures of the two streams are equal,

$$
\begin{equation*}
\frac{1}{2} \rho_{1} u_{1}^{2}=\frac{1}{2} \rho_{2} u_{2}^{2} \tag{8}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u_{1}^{2} / u_{2}^{2}=\rho_{2} / \rho_{1}=T_{1} / T_{2} \tag{9}
\end{equation*}
$$

Equation (7b) then becomes

$$
\begin{equation*}
\frac{(\Delta P)_{a}}{q}=-\frac{m_{1} m_{2}\left(T_{2}^{\frac{1}{2}}-T_{1}^{\frac{1}{2}}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} T_{1}+m_{2} T_{2}\right)} \tag{10}
\end{equation*}
$$

or, from Equation (3),

$$
\begin{equation*}
\frac{(\Delta P)_{a}}{q}=-\frac{m_{1} m_{2}\left(T_{2}^{\frac{1}{2}}-T_{1}^{\frac{1}{2}}\right)^{2}}{\left(m_{1}+m_{2}\right)^{2} T_{3}} \tag{11}
\end{equation*}
$$

If a quantıty δ^{\prime} is defined by

$$
\begin{equation*}
\delta^{\prime}=\left(\mathrm{T}_{2}^{\frac{1}{2}}-\mathrm{T}_{1}^{\frac{1}{2}}\right) / \mathrm{T}_{3}^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

Equation (11) becomes

$$
\begin{equation*}
\frac{(\Delta P)_{a}}{q}=-\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \delta^{\prime 2} \tag{13}
\end{equation*}
$$

Equation (13) is still exact for the same condrtions as Equation (7) with the addational limitation that the inztial total pressures are equal.

Now for some applications a simpler expression than Equation (13) would be useful even though it were only roughly correct. It is readaly show that when the mass flow is unity Equation (13) becomes

$$
\begin{equation*}
-(\Delta \mathrm{P})_{a} / q=\frac{1}{4} \delta^{2}+O\left(\delta^{4}\right) \tag{14}
\end{equation*}
$$

where

$$
\delta=\left(T_{2}-T_{1}\right) / 2 T_{3} \quad \ldots(15 a)
$$

Fig. 2 shows that, although

$$
\begin{equation*}
-(\Delta \mathrm{P})_{a} / q \div \frac{1}{4} \delta^{2} \tag{15b}
\end{equation*}
$$

might be consıdered a severe simplification, yet nevertheless it is a reasonable representation of the loss over a range of mass flow ratios, m_{2} / m_{1}, from 0.6 to well over 2.5 , thus including most practical instances.

2.2 Total pressure nearly equal before mixing

When the total pressures are rearly equal the result corresponding to Equation (15b) becomes

$$
\begin{equation*}
-(\Delta \mathrm{P})_{\mathrm{a}} / \mathrm{q} \div(\delta / 2+\phi / 5)^{2} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\left(P_{2}-P_{1}\right) / q \tag{17}
\end{equation*}
$$

Comparison with the exact expression of Equation (7) is shown in Fig.3.

2.3. Synusoidal temperature distribution

One advantage of Equation (15b) may be seen in the simplicity with which it may be applied to the internal mixing of a single stream havinc initially a sinusoidal type of temperature variation.

In order to find the loss an element of the warner flow is paired whth an element of the cooler such that the mean temperature of the two elements is equal to the overall mean and thear mass ratio the same as the overall mass ratio of hot to cold. The loss is then obtained by integration for all such pairs. Since the loss for each pair is approximately proportional to the square of the value of δ for that pair, the ratzo of the loss wath a sinusondal profile, to that wh th a square profile between the same maximum and minımum temperatures, is just

$$
\int_{0}^{\pi / 2} \sin ^{2} y d y / \int_{0}^{\pi / a} d y
$$

1.e., a half. Thus corresponding to Equation (15b), a sinusoidal type of temperature distribution would give

$$
\begin{equation*}
-(\Delta P)_{a} / q \div \frac{1}{8} \delta_{m, m}^{2} \tag{18}
\end{equation*}
$$

where $\delta_{m, m}$ as the value of δ betreen the maxinum and ainnmum temperatures 1.e.,

$$
\delta_{m, m}=\left(T_{\max }-T_{m I n}\right) / 2 T_{3}
$$

The result from Equation (16) is simalarly halved for a sinusoldal distribution, provided the local value of ϕ for a pair of elements is proportional to that of δ.

2.4 The mancmum loss of total pressure

Lutz shows that there is a static pressure for which the maxing loss is a minimum ${ }^{3}$.

Returning to Equation (6b), i.e.,

$$
P_{3}=\frac{P_{1} m_{1} / \rho_{1}+P_{2} m_{2} / \rho_{2}}{m_{1} / \rho_{1}+m_{2} / \rho_{2}}-\frac{1}{2} \frac{m_{1} m_{2}\left(u_{2}-u_{1}\right)^{2}}{\left(m_{1}+m_{2}\right)\left(m_{1} / \rho_{1}+m_{2} / \rho_{2}\right)}
$$

$$
\ldots(6 b) \text { bls }
$$

the first term on the raght hand side is andependent of the statac pressurc at which the mixing occurs, while the second term is essentially negative or zero, beang zero if $\left(u_{2}-u_{1}\right)$ is zcro. Thus the maximum total pressuire possible after mixang is equal to the volume flow mean total pressure before
 and u_{1} are equal - there then beang no dissipation of kinetic energy. For the velocaties to be equal,

$$
\begin{equation*}
\left(P_{1}-p\right) / \rho_{1}=\frac{1}{2} u_{1}^{2}=\frac{1}{2} u_{2}^{2}=\left(P_{2}-p\right) / \rho_{2} \tag{20}
\end{equation*}
$$

whach wall be found to gave

$$
\begin{equation*}
p=\frac{P_{2} T_{2}-P_{1} T_{1}}{T_{2}-T_{1}} \tag{21}
\end{equation*}
$$

and hence

$$
\begin{equation*}
P_{2}-p=T_{1}\left(P_{1}-P_{2}\right) /\left(T_{2}-T_{1}\right) \tag{22}
\end{equation*}
$$

Equation (21) gives the value of the static pressure at which there would be zero loss. As would be expected antuitively the velocities can only be equalised if the cooler stream is at the higher total pressure; Equation (22) demonstrates this result as the quantity $\left(P_{2}-p\right)$ is essentially positive, requiring that $\left(P_{1}-P_{2}\right) /\left(T_{2}-T_{1}\right)$ is also positive.

When the hot stream is at the higher total pressure Equation (6b) shows that the criterion for minimum loss is that ($u_{2}-u_{1}$) is a minimum i.e., that the static pressure is such that

$$
\begin{equation*}
(d / d p)\left(u_{2}-u_{1}\right)=0 \tag{23}
\end{equation*}
$$

Since

$$
\frac{1}{2} \rho u^{2}=P-p
$$

ュ.e.,

$$
\begin{equation*}
\text { pudu }=-d p \tag{24}
\end{equation*}
$$

Equation (23) gives

$$
\begin{equation*}
p_{1} u_{1}=p_{2} u_{2} \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
u_{1} / u_{2}=T_{1} / T_{2} \tag{26}
\end{equation*}
$$

to be the condition for minımum loss when the hot stream has the greater total pressure.

As would be expected differentiation of $\left(u_{g}-u_{1}\right)^{2}$, in place of ($u_{2}-u_{1}$) as in Equation (23), gives the criteria for either stream being at the greater total pressure.
2.5 Comparison between mixing at constant static pressure and maxing in a duct of constant cross-sectional area

For the constant pressure mixing the area ratio is

$$
\frac{a_{3}}{a_{1}+a_{2}} /
$$

$$
\begin{equation*}
\frac{a_{3}}{a_{1}+a_{2}}=\frac{\left(m_{1}+m_{2}\right)\left(m_{1} / \rho_{1}+m_{2} / \rho_{2}\right)}{\left(m_{1} / \rho_{1} u_{1}+m_{2} / \rho_{2} u_{2}\right)\left(m_{1} u_{1}+m_{2} u_{2}\right)} \tag{27}
\end{equation*}
$$

If $\rho_{1} u_{1}=\rho_{2} u_{2}$ this ratio is seen to be unity, so that mixing at constant pressure is then identical with mixing at constant area. If the area ratio is a little greater than unity the mean flow area during mixing is slightly greater than for mixing in a duct of constant area; hence the mean dynaice head during the maxing is slightly less and therefore the loss wall be slightly less. This result holds typically for maxing between two streams at equal total pressure, the difference between the losses being typically about 10% of the loss. For example, using the method of Reference 1 the loss when $T_{2}=4 T_{1}$, and $m_{2}=m_{1}$, becomes $(\Delta P)_{a} / q=11 \cdot 1 \%$ when the flow area is constant, compared with 10% given by Equation (13) of the present paper, for mixing when the static pressure is constant. Since in this example the total pressures and hence the dynamic heads are equal, $\rho_{1} u_{1}{ }^{2}=\rho_{2} u_{2}{ }^{2}$ and hence $\rho_{1} u_{1} / \rho_{2} u_{2}=\left(T_{2} / T_{1}\right)^{\frac{1}{2}}=2$. Thus the difference between the two types of mixang would only be expected to be large when the products $\rho_{1} u_{1}$ and $\rho_{2} u_{2}$ in Equation (27) are very different from each other.

As noticed by Lutz3, the analysis for mixing at constant static pressure 1 is rather simpler than for that at constant area.

3. The Pressure Loss with Varying Specyfic Heat

Returning to the initial analysis of Section 2, Equations (1) and (2), for the velocity and mass flow after mixing at constant static pressure, hold independently of the specific heat. Thus the only effect of a varying specific heat on the final dynamic head of Equation (5) would be in the effect on the density. If the actual final temperature is denoted $T_{a c}$ and that for ideal gases T_{id}, the proportional reduction in the final density as a result of the variation in specific heat is

$$
\begin{equation*}
\left(\rho_{i d}-\rho_{a c}\right) / \rho_{i d}=\left(T_{I d}{ }^{-1}-T_{a c}^{-1}\right) T_{i d}=\left(T_{a c}-T_{i d}\right) / T_{a c} \tag{28}
\end{equation*}
$$

The corresponding reduction in total pressure, say ($-\Delta P)_{b}$ - suffix ' b ' denoting the increment resulting from the variation of specific heat - is

$$
\begin{equation*}
-(\Delta P)_{b}=\left(\frac{1}{2} \rho_{3} u_{3}^{2}\right)_{i d}\left(T_{a c}-T_{i d}\right) / T_{a c} \tag{29}
\end{equation*}
$$

so that
$-(\Delta P)_{b} /\left\{q-(\Delta P)_{a}\right\}=\left(T_{a c}-T_{i d}\right) / T_{a c} \quad \ldots(30)$

Equation (30) is a reasonably convenient formula for the addıtional pressure loss which results from the variation of specific heat; It should be exact for one-dzmensional muxing of incompressible flows at constant static pressure. The right hand side of Equation (30) is andependent of the initial difference in total pressure between the two streams.

Now If in a gas the increase in specific heat were linear with temperature the right hand side of Equation (30) would be found algebralcally to be proportional to δ^{2}, for small values of $\delta ; \delta$ is defined as in Section 2^{-}by Equation (15a), T_{3} being understood as T_{3}, id. Consequently the right hand side of Equation (30) has been evaluated numeracally for a real gas - alr, with zero fuel - and values of a coef'ficient 'A' sought which would enable Equation (30) to be replaced by

$$
\begin{equation*}
-(\Delta \mathrm{P})_{\mathrm{b}} /\left\{q-(\Delta \mathrm{P})_{\mathrm{a}}\right\} \div \mathrm{A} \delta^{2} \tag{31}
\end{equation*}
$$

The calculations were made for a range of values of δ at each of several values of the mean tempature, for four mass flow ratios. For a mass flow ratio of unity the quantity $\left(\mathrm{T}_{\mathrm{ac}}-\mathrm{T}_{\mathrm{id}}\right) / \mathrm{T}$ ac was found to be very closely proportzonal to δ^{2}, as show, for example, in Fig. 4 for a final temperature $T_{i d}$ of $1000^{\circ} \mathrm{K}$. For the other mass flow ratios the result did not fit a δ^{2} curve so well, but the absolute discrepancy is small. The resultang values for ' A ', as given in Fig. 5 , when used in conjunction wath Equation (31), gives $(\Delta P)_{b} /\left\{1-(\Delta P)_{a} / q\right\}$ correct to within $\frac{1}{2} \%$ of q, for temperature ratios up to 4/1. The values of ' A ' are seen to be only slightly affected by the mass flow ratio of the two streams and, for temperatures $T_{2 d}$ above $1000^{\circ} \mathrm{K}$, may be represented by

$$
A=0.080-0.030\left\{\left(T_{I d} / 1000^{\circ} \mathrm{K}\right)-1\right\} \ldots T_{I d}>1000^{\circ} \mathrm{K} \quad \ldots(j 2)
$$

To the accuracy of Equation (14b) Equation (31) may be simplified to

$$
\begin{equation*}
-(\Delta \mathrm{P})_{\mathrm{b}} / \mathrm{q}=A \delta^{2} \tag{33}
\end{equation*}
$$

Equations (15b) and (33) may then be combined to glve that the loss of total pressure for two streams of alr of equal total pressures maxing at constant static pressure is

$$
\begin{equation*}
-\Delta P / q=-(\Delta P)_{a} / q-(\Delta P)_{b} / q \div\left(\frac{1}{4}+A\right) \delta^{2} \tag{34}
\end{equation*}
$$

where A Is given by Fig. 5 or Equation (32)。
In the range of temperatures lakely to be met in a turbojet engane Equation (34) may be replaced by

$$
\begin{equation*}
-\Delta p / q \div 0.32 \delta^{2} \tag{35}
\end{equation*}
$$

For streams whose inztial total pressures are nearly equal
Equations (16) and (33) give

$$
\begin{equation*}
-\Delta \mathrm{P} / \mathrm{q} \div(\delta / 2+\phi / 5)^{2}+A \delta^{2} \tag{36}
\end{equation*}
$$

As for Equation (18) the loss for an initial sinusoldal temperature distribution is a half of that for a rectangular distribution between the same maximum and minimum temperatures.

For air contalning fuel the values of A are greater than shown in Fig.5. A limited number of calculations at unit mass flow ratio gave increases in A of 50 and almost 100% for fuel/air ratios in the hot stream of 0.02 and $0 \cdot 04$ respectively. The coefficients in Equation (35) increase correspondzngly to 0.36 and 0.39 .

3.1 Comparison with the exact method of Lewis and Drabble

The method of calculation for constant pressure maxing in the Appendix of Reference 2 has been used to calculate the following example:

$$
m_{2}=\mathbb{m}_{1}, T_{2}=1800^{\circ} \mathrm{K}, \mathrm{~T}_{1}=600^{\circ} \mathrm{K}
$$

with zero fuel/air ratio and the Mach number in each stream 0.500. The two total pressures are very slightly different (by 6% of the static pressure) owing to the values of γ being different.

Taking values of y appropriate to the mean of the static and total temperatures for each stream, and using four signıficant figures in the calculations, the loss given by the method of Reference 2 becomes about $8 \frac{1}{4} \%$ of the initial dynamic head.

Using the " $0.32 \delta^{2}$ " formula of Equation (35), $\delta=0.500$, and the loss is $8 \cdot 0 \%$.

Using Equation (13), and ignoring the slight dufference of total pressure mentioned previously, the loss for a constant specific heat is 6.7%, whlle Equation (31) and Fig. 5 give a $1 \cdot 7 \%$ increment due to variation of specific heat; thus the total loss using Equations (13) and (31), together with Fig.5, is 8.4%.

The comparison appears satisfactory and the methods of the present paper would seem applicable at least up to 0.5 Mach number. In the comparison the dynamic head, q, in compressible flow has been taken as the difference of the total and static pressures, rather than as $\frac{1}{2} p u^{2}$. The ratio $(P-p) / \frac{1}{2} p u^{2}$ is 1.064 at $M=0 \cdot 5$, so that the effect on the calculation is small.
4. The Thrust Gain due to Mixang

The gross thrust M from a jet of mass flow m and uniform nozzle velocity u is

$$
\begin{equation*}
\mathrm{M}=\mathrm{mu} \tag{37}
\end{equation*}
$$

If the total temperature of the jet is T and if the fluad is a perfect gas the thrust for inviscid flow ray be expressed

$$
\begin{equation*}
M=m T^{\frac{1}{2}} f \tag{38}
\end{equation*}
$$

where/
where f is a function of the total to static pressure ratio, the flow here being considered compressible. Consequently the gain of thrust obtained when two streams of a perfect gas at the same total pressure, but different temperatures, are maxed at stagnation pressure before expansion through the nozzle (unstead of being expanded separately) is

$$
\begin{equation*}
(\Delta M)_{a}=\left(m_{1}+m_{2}\right) T_{3}^{\frac{1}{2}} f-\left(m_{1} T_{1}^{\frac{1}{2}} f+m_{2} T_{2}^{\frac{1}{2}} f\right) \tag{39}
\end{equation*}
$$

where $\left(m_{1}+m_{2}\right) T_{3}=m_{1} T_{1}+m_{2} T_{2}$
Thus

$$
\begin{equation*}
\frac{(\Delta M)_{a}}{M}=1-\frac{m_{1}}{m_{1}+m_{2}}\left(\frac{T_{1}}{T_{3}}\right)^{\frac{1}{2}}-\frac{m_{2}}{m_{1}+m_{2}}\left(\frac{T_{2}}{T_{3}}\right)^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

M being the thrust from the pre-mixed jet.
From Equation (40) the following relationships may be obtained:-

$$
\left.\begin{array}{l}
T_{1} / T_{3}=1-2 \delta m_{2} /\left(m_{1}+m_{2}\right) \tag{42}\\
T_{2} / T_{3}=1+2 \delta m_{1} /\left(m_{1}+m_{2}\right)
\end{array}\right\}
$$

where

$$
\delta=\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / 2 \mathrm{~T}_{3} \quad \ldots(15 \mathrm{a}) \mathrm{bis}
$$

Equation (41) then becomes

$$
\begin{equation*}
\frac{(\Delta M)_{a}}{M}=\frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)^{2}} \frac{\delta^{2}}{2}+O\left(\delta^{3}\right) \tag{43}
\end{equation*}
$$

the term $O\left(\delta^{3}\right)$ becoming $O\left(\delta^{4}\right)$ when $m_{1}=m_{2}$. For a reasonable range of mass flow ratios Equation (43) may be simplified to

$$
\begin{equation*}
(\Delta M)_{\varepsilon} / M \div \frac{1}{6} \delta^{2} \tag{44}
\end{equation*}
$$

Fig. 6 shows the results from Equation (44) in comparison wath the exact results from Equation (41). For sinusoidal distributions the effect is approximately halved as in previous sections.

The simplification from Equation (43) to Equation (44) loses the property that $(\Delta M) / M$ becomes zero when m_{2} / m_{1} becomes zero or infinite. Use of the full farst term of Equation (43) would have retained this property, but, as most practical applications seem likely to be within the range of applicability of the very short $\frac{1}{8} \delta^{2}$ formula of Equation (44) (see Fig.6), the $\frac{1}{8} \delta^{2}$ formula seems the most appropriate simplification.

For a real gas, for which the specific heat varies with temperature, a similar argument to that in Section 3 can be used to determine the additional gain of thrust. Considering initially the jet at low Mach number, so that the total and static temperatures are nearly equal, the proportzonal gain in u^{2}, resulting from the actual mixed temperature exceeding the ideal, is the same as the previous proportional loss in $\frac{1}{2} p u^{2}$. Thus the proportional gain in velocity, and hence thrust, is a half the previous proportional loss of dynamic head, l.e.,

$$
\begin{equation*}
(\Delta M)_{b} / M=\frac{1}{2} A \delta^{2} \tag{45}
\end{equation*}
$$

where A is as an Fig.5. For compressible flow the increment of work output by the gas in accelerating the jet relative to the nozzle during any given increment of pressure change during the expansion is proportional to the temperature of the gas, while the temperature drop is proportional to the work output, and therefore to the inctial temperature. Following such general arguments, and noting that the variation of A is fairly small within the practical range of turbojet engines, it would seem that Equation (45) would hold also for compressible flow provided A is taken as a mean over the range of static temperature during the expansion. Thus, to the accuracy of Equation (44), the total gain in a gas with varying specific heat may be written

$$
\begin{equation*}
(\Delta M) / M=0.16 \delta^{2} \tag{46}
\end{equation*}
$$

For fuel/aur ratios of 0.02 and 0.04 respectively in the hot stream the coefficient in Equation (46) would become 0.18 and 0.20 respectively.

The following two examples compare results from the preceding equations with those from the standard method of analysis based on the data of Reference 4. In each example the mass flow ratio of the two streams is unity.

For the furst example the initial total temperatures are $1800^{\circ} \mathrm{K}$ and $600^{\circ} \mathrm{K}$ when unmixed, gavang a total temperature of the maxed stream of $1200^{\circ} \mathrm{K}$ for an Ideal gas and $1223^{\circ} \mathrm{K}$ for air. The nozzle pressure ratio is 30. The standard method of calculation gives a gain of gross thrust of about $4 \frac{1}{4} \%$ using pure air. Equation (41) gives the gain to be $3 \cdot 45 \%$ for an adeal gas having constant specafic heat. Equation (45) with Fig.5, taking a mean value of A to be 0.071 between $1200^{\circ} \mathrm{K}$ and $500^{\circ} \mathrm{K}$ - the approximate range of static temperature of the maxed stream - gives the increment due to varlation of specific heat to be 0.89%. Thus the total gain becomes 4.34% 。 On the other hand using the " $0.16 \delta^{2 "}$ formula from Equation (46), $\delta=0.500$ and so the gain for alr is 4.0%. For a fuel/alr ratio of 0.04 in the hot stream the standard calculation gives a gain of about 4.95% while the $" 0 \cdot 20 \delta^{2}$ " method gives a gain of $5 \cdot 0 \%$.

For the second example the initial temperatures are $1200^{\circ} \mathrm{K}$ and $600^{\circ} \mathrm{K}$, and the nozzle pressure ratio 10. The standard method gives a gain of $1 \cdot 9 \%$. Equation (41) gives 1.45% for an Ideal gas and Equation (45) with Fig. 5 gives an increment of 0.37%, 1.e., a total of $1 \cdot 82 \%$. The " $0.16 \delta^{2}$ " formula with $\delta=\frac{1}{3}$ gives $1 \cdot 78 \%$.

In these examples the simplest formula appears quite adequate for calculatang the gain of thrust resulting from premixang.

5. Conclusions

The algebraic analysis for the pressure loss in one-dimensional mixung between two streams of ancompressible flow can be treated very simply when the mixing occurs at constant statce pressure, while the formulae obtained for the loss hold also as a good approxumation for maxing at constant area. By suitable algebralc manipulation the results may be expressed in a manner which is very readily anterpreted physically as, for example, for Equation (7). The exact answer when the total pressures of the streams are equal may be simplified even further if an error of the order of 15% of the loss is acceptable - e.g., when the dynamic head is low. The loss of total pressure is then given by

$$
-(\Delta P)_{a} / q \div \frac{1}{4} \delta^{2} \quad \ldots(15 b) \text { bis }
$$

for an ideal gas in which the specific heat is constant, or

$$
-\Delta P / q \div 0.32 \delta^{2} \quad \text { (35) bls }
$$

for pure alr withan the temperature range of gas turbines. In these formulae q is the initial dynamic head and δ represents the proportional difference of temperature definned as

$$
\delta=\left(T_{2}-T_{1}\right) / 2 T_{3} \quad \ldots(15 \mathrm{a}) \mathrm{bis}
$$

For fuel/air ratios of 0.02 and 0.04 in the hot stream the coefficient 0.32 In Equation (35) is replaced by 0.36 and 0.39 respectavely. These formulae apply for hot, to cold mass flow ratios in excess of $0 \cdot 6$, $1 . e$. , for "by-pass" ratios less than about $1.7 / 1$.

For a propelling nozzle having two aur supplies at different temperatures but the same total pressure the proportional ancrease of gross thrust, $\Delta M / M$, which results from maxing the alr at stagnation before expansion through the nozzle, may be expressed

$$
(\Delta M)_{a} / M \div \frac{1}{8} \delta^{2} \quad \ldots\left(44_{4}\right) \text { bis }
$$

for compressible flow in an ldeal gas having a constant specific heat, and

$$
\Delta M / M \div 0.16 \delta^{2} \quad \ldots(46) \mathrm{b} 1 \mathrm{~s}
$$

for pure alr within the temperature range of gas turbines. For fuel/air ratios of 0.02 and 0.04 in the hot stream the coefficient 0.16 in Equation (46) is increased to 0.18 and $0 \cdot 20$ respectively.

The results for temperature distributions which are inıtially rectangular are halved in a flow having initially a sunusoldal type of temperature distribution between the same maximum and minimum values.

References

No.

Author(s)

Title, etc.
1 W. R. Hawthorne and H. Cohen

Pressure losses and velocity changes due to heat release and muxyng in frictionless compressible flow. R.A.E. E. 3997. A.R.C. 7623. May, 1944.

2 W. G. E. Lewis Ejector experıments. and
J. S. Drabble
A. R.C. 17342. February, 1954.
0. Lutz

Die Anwendung Des p,w Diagramms auf Stausstrahltriebwerke. D. F. L., Braunschweig F. B. S7/54. 1954.

4 D. Fielding (Metropolitan-Vıckers Electrical Co. Ltd.)
J. E. C. Topps

Thermodynamic data for the calculation of gas turbine performance. A. R.C. R. \& M. 3099. June, 1954.

Notation

m_{2} mass flow of the hot stream
m_{1} mass flow of the cold stream
$m_{3} \quad$ mass flow of the mixed stream
m m_{2} / m_{1}
$u_{2} \quad$ velocity of the hot stream before mixing
$u_{1} \quad$ velocity of the cold stream before mixing
$u_{3} \quad$ velocity of the mixed stream
$u \quad u_{2} / u_{1}$
ρ density
T total temperature
P total pressure

- $\Delta \mathrm{P}$ loss of total pressure
p static pressure
q volume flow mean dynamic head before maxing (Equation (7a))
a cross-sectional area of the flow
(' $\quad\left(T_{2}{ }^{\frac{1}{2}}-T_{1}{ }^{\frac{1}{2}}\right) / T_{3}{ }^{\frac{1}{2}}$
$\delta \quad\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) / 2 \mathrm{~T}_{3}$, id
$\delta_{m, m} \quad\left(T_{\max }-T_{\min }\right) / 2 T_{3}$
$\phi \quad\left(P_{2}-P_{1}\right) / q$
y ratio of the specafic heats $\mathrm{Cp} / \mathrm{Cv}$
y distance measured transversely
A coefficient of δ^{2} for Equation (31)
M gross thrust

Suffices

1 cold stream
3 mıxed stream
a result for constant specific heat
b acidutional effect resulting from the variation of specific heat 1d after mixang, for an ideal gas with constant specific heat
ac
hot stream after maxing, for actual gas (a1r)

FIG.I.

THE MIXING OF TWO STREAMS AT CONSTANT STATIC PRESSURE.

FIG. 2.

FIG. 3.

FIG. 4.

EXAMPLE OF THE EMPIRICAL FITTING TO A δ^{2} CURVE OF THE ADDITIONAL LOSS DUE TO VARIATION OF SPECIFIC HEAT.

FIG. 6.

RANGE OF APPLICATION OF THE $\frac{1}{8} \delta^{2}$ FORMULA FOR THE GAIN OF GROSS THRUST
A.R.C. C.P.No. 686

June, 1962
Stratford, B.S. and Wıllıams, J.G.
A SIMPLIFIED TREATMENT OF LOSSESS FOR ONE-DIMENSIONAL MIXING BETWEEN HOT AND COLD GAS STREAMS AT CONSTANT PRESSURE AND LOW VELOCITY

Standard theory for the one-dumensional maxing between hot and cold gas streams is stralghtforward an princlple, but the results can be rather dıfficult to interpret, as well as quate lengthy to calculate. The interpretation can be dufficult either in obtaining a physical understanding, or for seelng general trends.

Several simplified formulae may be put forward to supplement the existing methods of analysis. Most of
A.R.C. C.P.NC. 686

June, 1962
Stratford, B.S. and Williams, J.G.

A SIMPLIFIED TREATMENT OF LOSSES FOR ONE-DIMENSIONAL MIXING BETWEFN HOT AND COLD GAS STREAMS AT CONSTANT PRESSURE AND LOW VELOCITY

Standard theory for the one-dzmensional mixing between hot and cold gas streams is stralghtforward in principle, but the results can be rather dufficult to anterpret, as well as quite ler thy to calculate. The interpretation can be difficult either in obtazning a physical understanding, or for seeing general trends.

Several samplıficed formulae may be put forward to supplement the existing methocis of analysis. Most of

```
A.R.C. C.P.NNO. }68
```

June, 1962
Stratford, B.S. and Willıams, J.G.
A SIMPLIFIED TREATMENT OF LOSSES FOR ONE-DIMENSIONAL MLXING BETWEEN HOT AND COLD GAS STREAMS AT CONSTANT PRESSURE AND LOW VELOCITY

Standard theory for the one-dzmensional miying between hot and cold gas streams is stralghtforward in principle, but the results can be rather difficult to interpret, as well as quite lengthy to calculate. The anterpretation can be d_fficult either in obtainang a physical understanding, or for seeing general trends.

Several simplifiled formulae may be put forward to supplement the existing methods of analysis. Most of
the formulae in the present paper are concerned with the loss of total pressure during mixing; these formulae are limited to flow at low Mach number. further analysis concerns the gain of thrust which results when two streams of alr supplying a propelling nozzle in compressible flow are mixed before the nozzle。
the formulae in the present paper are concerned whth the loss of total pressure during maxing; these formulae are limıted to flow at low Mach number. A further analysis concerms the gain of thrust which results when two streams of aur supplying a propelling nozzle in compressible flow are maxed before the nozzle。

(C) Crown copyright 1963

Prınted and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w 1
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
50 Farfax Street, Bristol 1
35 Smallbrook, Rıngway, Bırmıngham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England

