C.P. No. 686
LIRR » "
ROCTAL ARG #d

BEDEC-

C.P. No. 686

MINISTRY OF AVIATION
AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

A Simplified Treatment of Losses for One-Dimensional

Mixing Between Hot and Cold Gas Streams at
Constant Pressure and Low Velocity

By
BS. Straford and J.G. Williams

LONDON: HER MAJESTY'S STATIONERY OFFICE
1963

Price net

FIVE SHILLINGS NET






C.P. No.686

A Simplified Treatment of Losses for One-dimensional
Mixing Between Hot and Cold Gas Streams
at Constant Pressure and Low Velocity
- By -
B, S, Stratford and J. G. Willians

June, 1962
SUMMARY

Standard theory for the one-dimensional mixing between hot and cold
gas streams is straightforward in principle, but the results can be rather
dafficult to interpret, as well as quite lengthy to calculate. The
interpretation can be dafficult either in obtaining a physical understandang,
or for seeing general trends.

Several simplified formulae may be put forward to supplement the
existing methods of analysis. Most of the formulae in the present paper are
concerned with the loss of total pressure during mixing; these formulae are
limited to flow at low Mach number. A further analysis concerns the gain of
thrust which results when two streams of air supplying a propelling nozzle in
compressible flow are mixed before the nozzle,
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ILLUSTRATIONS

1 The mixing of two streams at constant static pressure

2 Range of applacation of the iﬁg formula

3 Range of application of the (8/2 + ¢/5F formula

4 Example of the emparical fitting to a & curve of the
additional loss due to variation of the specific heat

5 Values of the coefficient A

6 Range of application of the 362 formula for the gain of
gross thrust

1. Introduction

Several methods exaist for calculating the pressure losses during
mixing between hot and cold streams, see, for example, References 1 to 3.
These methods are accurate within the assumptions of one-dimensional flow and
complete mixing. The formulae which they provide, however, do not readily
show the general trends of behaviour, while the calculations are fairly long.
Moreover, if the pressure losses are a small proportion of the total pressure
the result may be gaven as the small difference of large quantities and
dafficulty can be experienced in performing the calculation accurately -
particularly when allowance 1s made for the variation of specific heat. An
alternative approach is therefore provided in the present paper.

There could also be some advantage 1in a method of calculation which
gave an extremely simple answer even though 1t were not highly accurate.
Such a method could readily show general trends, it might facilitate an
inturtive or a physical understanding of the flow, and 2t might be of
assistance in assessing the behaviour of more complex {lows not satisfying
the 1dealised one—dimensional conditaons of the theory. Consequently the
exact results are further simplified with these possibilaties in view,

2. The Pressure Loss due to Mixang Between Streams of Constant
Specafic Heat

When two streams of mass flow rates m , m, and velocities w,, u,
mix completely at constant static pressure to form 2 stream m,, uw, as in
Fi1g.1, the final velocity 1s given by conservation of momentum to be

(myug + mu, )/m eee (1)

)

Uy

n

where Ty m, + M vee (2)

For ancompressible or low Mach number streams of the same perfect gas the
final temperature 1s

i

T, (m,T, + maTa)/m:, cee (3)

so that the final density 1s given by

'1/P3/
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Ve = (o /py + my/py)/m, cee (4)

Thus the final dynamic head, %psubz, 1s

Lo, (myu, + myu, ) )
tow?® = 3
(my + my) (my/p, + my/p,)

N
-

Equation (5) wall be found to be egquavalent to

. BPaw’m/p + 3paustmy/p mmy (up -y )?
2P Vs = —
m, /p, + m,/p, (m, +my) (m/p, + m,/p,)
ve. (6a)
7 mm(ue - u )
l.., By = — P, +— Pb —_— — -
’:(Pi )/< >} (m, +m) (m/p, + my/py)

eeo (6b)

The fairst term on the right hand side of Egquation (6b) 1s the volume flow

mean total pressure before mixing, and 1s invariant with respect to the stat.c
pressure at which the mixang occurs. The second term, which 1s entarely
dependent on the static pressure, may therefore be interpreted as the Zoss of
total pressure, say (-AP),, suffix 'a' denoting constant specific heat.

Thus, 1f the volume flow mean dynamic head before mixing i1s g, and the ratios
nb/ﬁﬁ and ub/h& are dencted m and u,

(ml 201 )+_(2pzu2 ))/ —"+E

q =
P Pa P2
= $(muw® + w?) / (n /o, + m/p,) ver (72)
(AP)a mima(ua - Ui)a
= - ee. {70)
g (m1 + mn) (m1u12 + mauaa)
m{u - 1)9
= - “an (70)

(1 +m) (1 + mu?)

Equataion (7b)/
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Equation (7b) can be interpreted physically as showing that the
proportional loss of dynamic head when two streams mix at constant stataic
pressure is the same as the proportional loss of K.E. when two inelastic masses
collide. The two phenomena are in fact essentially the same and the equation
can be derived from this assumption. The loss in each instance 1s due to a
dissipation of kinetic energy proportional to the square of the difference of
the velocities,

Equation (7) is a reasonably convenient formula for the pressure loss
in one-dimensional incompressible flow at constant static pressure and
constant specific heat, for which condations 1t 1s exact. It w1ll now be
simplified for special applications.

21 Equal total pressure before mixing

When the initial total pressures of the two streams are equal,

Foiw° = Epaug’® oov (8)

and therefore

uia/h22 = Pa/b1 = T&/q% oo (9)

Equation (7b) then becomes

1 1
(8P), mm, (To% - T,%)°
= - eoa (10)
q (my + m) (myT, + myTy)
or, from Equation (3),
1 1
(aP), mm (L% - T,2)°
= - - oo (11)
q (my +m )Ty
If a quantity &' is defined by
1 1 1
5' = (T22 = T:]_E)/Ta2 e (12)
BEquation (41) becomes
(4P)q B 43)
= - ' LI 15
q (mg + mg)?

Equation (13)/
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Equation (13) 1s st1ll exact for the same conditions as Equation (7)
with the additional limitation that the i1nitial total pressures are equal,

Now for some applications a simpler expression than Equataon (13)

would be useful even though 1t were only roughly correct. It 1s readaly
shown that when the mass flow is unity Equation (13) becones

- (&P)o/q 18% + 0(8%) eoe (14)

where
5 = (T, - T, )/2T, oo (15a)
Fig.2 sthows that, although

- (&P)a/q

Ak

18° aae (15b)

might be considered a severe simplification, yet nevertheless it is a
reasonable representation of the loss over a range of mass flow ratios,
m,/m , from 0¢6 to well over 2-5, thus including most practical instances.

202 Total pressure nearly equal before mixing

When the total pressures are nearly equal the result corresponding
to Equation {15b) becomes

-~ (&P)y/a (/2 + ¢/5)° oo (16)

4

where

¢ = (P, - P )/q eos (17)

Comparison with the exact expression of Equation (7) is shown in Fig.3.

2.3 , Sinusoidal temperzture distribution

One advantage of Equation (15b) may be secn in the simplicity with
which 1t may be applied to the internal mixing of a single stream having
initially a sinusoidal type of temperature variation,

In order to find the loss an element of the warmer flow is paired
with an element of the cooler such that the mean temperature of the two
elements is equal to the overall mean and their mass ratio the same as the
overall mass ratio of hot to cold. The loss is then obtained by integration
for all such pairs. Since the loss for each pair a1s approximately
proportional to the sguare of the value of & <for that pair, the ratio of the
loss with a sinusoadal profile, to that with a square profile between the sane
maximum and minimum temperatures, 1s Just

’}E/a
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"R /2 % fa
j sin®y dy / dy,
o 0

1.€., a half. Thus corresponding to Equation (15b), a sainusoidal type
of temperature distribution would give

- (8P)a/q # By p ... (18)

where 5m,m 1s the value of & Dbetween the maxinum and riznimum temperaturecs
loea,

6m,m = (Tmax - Tmln)/215 cee 19)

The result from Equation (16) is similarly halved for a sinusoidal
distribution, provided the, local value of ¢ for a pair of elements is
proportional to that of &.

2. The maicimum loss oi total pressure

Lutz shows that there 1s a static pressure for which the mixing loss
1s a minimum?,

Returning to Equation (6b), i.e.,

Pom/py + Bprp/p, mop (uz - u )

m /P, + /Py “(m o+ m) (my /Py + 1/ps)

ves (6b) Das

the farst term on the right hand side 1s independent of the static pressurc

at which the mixing occurs, while the second term 1s essentially negative

or zero, being zerc if (u, - u&) 1s zcro. Thus the maximum total pressuve

possible after mixaing is equal to the volume flow mean total pressure before
mixing, and this total pressure is attained 1f the stream velocities ol 1y,

and uw, are equal - there then being no dissipation of kinetic energy.

For the velocities to be equal,

(P, -2)pe = 2w = $uw?® = (B - )}/ vou (20)

which will be found to give

PT -ET,
p = o use (21)
T, -,

and/



and hence

B,-p =T (B -B, /(% -T,) voe (22)

Bquation (21) gives the value of the static pressure at which there would be
zero loss. As would be expected intuitively the velocities can only be
equalised 1f the cooler stream i1s at the higher total pressure; Equation (22)
demonstrates this result as the quantity (F; - p) is essentlally positive,
requiring that (P, - P;)/TT; - T;) is also positive,

When the hot stream is at the higher total pressure Equation (6b)
shows that the criterion for minimum loss is that (u, - w) is a minimum -
i.e., that the static pressure is such that

(3/ap)(y - w) = O eee (23)
Since
ol = P-p
1e€.,
pudu = - dp eeo (20)
Equation (23) gives
P1U = Pale ees (25)

or

u /o, T:I./TB ees (26)

to be the condition for minimum loss when the hot stream has the greater
total pressure.

As would be expected differentiation of (uy - u, )?, in place of
(u - w) as in Bquation (23), gives the criteria for either stream being
at the greater total pressure.

2.5 Comparison between mixing at constant static pressure
and maxing in a duct of constant cross-sectional area

For the constant pressure mixing the area ratio is
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ag (my + mp) (m/p, + my/p,)
= aaw (27)
a, +2a  (n/pu +me/pw) (muy, + mu,)
If pw = pyu, this ratio is seen to be unity, so that mixing at constant

pressure is then identical with mixing at constant area. If the area ratio
is a little greater than unity the mean flow area during mixing 1s slaightly
greater than for mixing in a duct of constant area; hence the mean dyna'ac
head during the mixing is slightly less and therefore the loss will be slightly
less. This result holds typically for mixing between two streams at equal
total pressure, the difference between the losses being typically about 10%
of the loss. For example, using the method of Reference 1 the loss when

T, = 4T, and m, = m, becomes (AP)a/q = 111% when the flow area 1is
constant, compared with 10% given by Equation (13) of the present paper, for
mixing when the static pressure i1s constant. Since in this example the
total pressures and hence the dynamic heads are equal, p,w® = puw® and

1
hence [:niui/p,‘;u2 = (T, /T, )2 = 2, Thus the difference between the itwo types
of mixing would only be expected to be large when the products p,w, and
PeUy in Equation (27) are very different from each other.

As noticed by Lutz3, the analysis for mixing at constant static
pressure 1s rather simpler than for that at constant area.

3. The Pressure Loss with Varying Specific Heat

Returning to the initial analysis of Section 2, Equations(1) and (2),
for the velocity and mass flow after mixing at constant static pressure, hold
independently of the specific heat. Thus the only effect of a varying specific
heat on the final dynamic head of Equation (5) would be in the effect on the
density. If the actual final temperature is denoted Ty and that for ideal
gases Tj4, the proportional reduction in the final density as a result of
the variation in specific heat is

(pid = Pac)/Piga = (Tog! = Tao *)T4a = (Tac = Tiq)/Tac oo (28)

The corresponding reduction in total pressure, say (-AP)g ~ suffix 'b!
denoting the increment resulting from the variation of specific heat - is

= (AP)b (‘12'9311.32);]_5_ (Tae - Tid)/Tac ees (29)

il

so that

- (&P),/ {q - (&P),} (Tac - T18)/Tac oes (30)

Equation (30) 1s a reasonably convenient formula for the
additional pressure loss which results from the variation of specific heat;
1t should be exact for one-dimensional mixing of incompressible flows at
constant static pressure. The right hand side of Equation (30) is independent
of the initial difference in total pressure between the two streams.

Now/
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Now 1f in a gas the increase in specifiic heat were linear with
temperature the right hand side of Equation (30} would be found algebraically
to be proportional to &, for small values of &; & 1s defined as an
Section 2 by Equation (15a), Ty being understood as Ty ,3- Conseguently
the right hand side of Equation (30) has been evaluated nimerically for a real
gas - air, with zero fuel - and values of a coefficient 'A' sought which would
enable Equation (30) to be replaced by

- (&P),/ {q - (AP) 1 = A®® oao {31)

The calculations were made for a range of values of & at each of several
values of the mean tempature, for four mass flow ratios. For a mass flow
ratio of unity the quantity (Tgc - Tid)/Tac was found to be very closely
proportional to &%, as shown, for example, in Fig.l for a final temperature
Tjg of 1000°K. For the other mass flow ratios the result did not fit a &
curve so well, but the absolute discrepancy 1is small. The resulting values
for 'A', as given in Fig.b, when used i1n conjunction with Equation (31),
gives (AP)y/ {1 - (&P),/a} correct to within 3% of g, for temperature
ratios up to 4/1. The values of 'A' are seen to be only slaghtly affected
by the mass flow ratio of the two streams and, for temperatures T,3 above
1000°K, may be represented by

A = 0°080 - 07030 { (T,3/1000°K) ~ 1 } ... Tiq > 1000°K oo (22)

To the accuracy of Equation (14b) Equation (31) may be simplilied
to

- (0P)p/q = AP cor (33)

Equations (15b) and (33) may then be combined to give that the loss of total
pressure for two streams of air of equal total pressures mixing at constant
static pressure is

- 8B/q = - (8P)y/q - (6P}y/a # (§ + A)F e (34)
where A 1s given by Fig.5 or Equation (32).
In the range of temperatures likely to be met in a turbogjet engane
Equation (34} may be replaced by

- AP/q % 0-32 8 see (35)

For streams whose initial total pressures are nearly equal
Equations (16) and (33) give

- 8P/q % (8/2 + ¢/5) + A8? oo (36)
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As for Equation (18) the loss for an initial sinusoidal temperature
distribution is a half of that for a rectangular distribution between the
same maxamum and minimum temperatures.

For air containing fuel the values of A are greater than shown in
Fig.5. A limited number of calculations at unit mass {low ratio gave increases
in A of 50 and almost 100% for fuel/air ratios in the hot stream of 0-02 and
0+0L4 respectively. The coefficients in Equation (35) increase correspondingly
to 0*36 and 0-39.

3.1 Comparison with the exact method of Lewis and Drabble

The method of calculation for constant pressure mixing in the
Appendix of Reference 2 has been used to calculate the following example:

m; = my,T, = 1800°K, T, = 600°K,

t

with zero fuel/air ratio and the Mach number in each stream 0+500. The two
total pressures are very slightly different (by 6% of the static pressure)
owing to the values of y being different.

Taking values of y appropriate to the mean of the static and total
temperatures for each stream, and using four significant figures in the
calculations, the loss given by the method of Reference 2 becomes about 8%% of
the initzal dynamic head.

Using the "0+32 6°" formula of Equation (35), & = 0¢500, and the
loss is 8+0%.

Using Equation (13), and ignoring the slight difference of total
pressure mentioned previously, the loss for a constant specific heat is 6-7%,
while Equation (31) and Fig.5 give a 1+7% increment due to variation of
specific heat; +thus the total loss using Equations (13) and (31), together
with Fig.5, is 8:4%.

The comparison appears satisfactory and the methods of the present
paper would seem applicable at least up to O*5 Mach number. In the
comparison the dynamic head, g, in compressible flow has been taken as the
difference of the total and static pressures, rather than as %pu?. The
ratio (P - p)/apu® is 1-064 at M = 0°+5, so that the effect on the
calculation is small.

L. The Thrust Gain due to Mixang

The gross thrust M from a jJet of mass flow m and uniform nozzle
velocity u is

M = mu o (57)

If' the total temperature of the jet is T and if the fluad 1s a perfect gas
the thrust for inviscid flow nay be expressed

M = nT2f eso (38)

where/
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where f 1s a function of the total to static pressure ratio, the flow here
being considered compressible, Consequently the gain of thrust cobtained
when two streams of a perfect gas at the same total pressure, but different
temperatures, are mixed at stagnation pressure before expansion through the
nozzle (instead of being expanded separately) 1s

kR 1 1
(&) o (my + my)T°f - (myT,2F + myT,2f) ee. (39)

I

where (m1 + my )T, mTy + m,T, ... (LO)

Thus

(ST

I
-
|

(a), L(Ef _i"_';._<31> e (1)

M m, +mg \Ty m, +mg \T,

M being the thrust from the pre-mixed get.

From Equation (40) the following relationships may be obtained:-

Ti/Ta = 1 - 28mﬁ/(m1 + ma)
} e (82)
T,/T, = 1+ 261111/(1:11 + ma)
where
8§ = (Ty - T,)/2T, ... (15a) bis
Equation (41) then becomes
(o), my g &
= ————— —+ 0(8") cee (43)
M (m, +my)® 2
the term O0(8) becoming 0(&*) when m = m,. For a reasonable range of
mass flow ratios Equation (43) may be simplified to
()M * 30° een (44)

F1g.6 shows the results from Bquation (44) 1n comparison with the exact results
from Equation (41). Por sinuscidal distributions the effect is approximately

halved as in previous sections.

The simplafication from Equation (43) to Equation (44) loses the
property that (MM)/M becomes zero when my/m, becomes zero or infinite.
Use of the full farst term of Egquation (43) would have retained this property,
but, as most practical applications seem likely to be within the range of
applicability of the very short 38 formula of Equation (44) (see Fig.6),
the §52 formula seems the most appropriate simplification,

For/
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For a real gas, for which the specific heat varies with temperature,
a similar argument to that in Section 3 can be used to determine the
additional gain of thrust. Considering anitially the et at low Mach nunmber,
so that the total and static temperatures are nearly equal, the proportional
gain in u?, resulting from the actual mixed temperature exceeding the 1deal,
1s the same as the previous proportional loss in #pu®. Thus the
proportional gain in velocity, and hence thrust, is a half the previous
proportional loss of dynamic head, 1.e,,

(aM)y/M = ZAS® vee (45)

where A is as in Pig.b5. For compressible flow the increment of work output
by the gas in accelerating the jet relative to the nozzle during any given
increment of pressure change during the expansion 1s propeortional to the
temperature of the gas, while the temperature drop 1s proportional +to the work
output, and therefore to the initial temperature. TFollowing such general
arguments, and noting that the variation of A 1s fairly small wrthin the
practical range of turbojet engines, 1t would seem that Equation (45) would
hold also for compressible flow provided A 15 taken as a mean over the range
of static temperature during the expansion. Thus, to the accuracy of
Equation {44), the total gain an a gas with varying specific heat may be
written

(aM)/M = 0-16 &° ero (46)

For fuel/air ratios of 0+02 and 0+O4 respectaively in the hot strean
the coefficient in Egquation (46) would become O0°18 and 0-20 respectively.,

The following two examples compare results from the preceding
equations with those from the standard method of analysis based on the data
of Reference L. In each example the mass flow ratio of the two streams is

unity.

For the first example the initial total temperatures are 1800°K
and 600°K when unmixed, giving a total temperature of the mixed stream of
1200°K for an 1deal gas and 1223°K for air., The nozzle pressure ratio is
30. The standard method of calculation gives a gain of gross thrust of
about 4% using pure air. Equation (41) gaves the gain to be 3+45% for an
1deal gas having constant specific heat. Equation (45) with Fig.5, teking
a mean value of A to be 0¢071 between 1200°K and 500°K - the approximate
range of static temperature of the mixed stream ~ gives the increment due to
variation of specific heat to be 0'897. Thus the total gain becomes 4'34%.
On the other hand using the "0:16 §" formula from Equation (46), & = 0500
and so the gain for air is Is O For a fuel/air ratio of 0+Ok in the hot
stream the standard calculation gives a gain of about 4*95% while the
"0.20 & " method gives a gain of 5¢0%.

For the second example the initial temperatures are 1200°K and
600°K, and the nozzle pressure ratio 10. The standard method gives a gain
of 1+9%. Equation (41) gives 1+45% for an a1deal gas and Equation (45) with
Fi1g.5 gives an increment of 0¢37%, 1.c., a total of 1+82%. The "0+16 &3
formula wath & = % gives 1+78%.

In/
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In these examples the simplest formula appears quite adequate for
calculating the gain of thrust resulting from pre-mixing.

5 Conclusions

The algebraic analysis for the pressure loss in one-dimensiocnal
mixing between two streams of incompressible flow can be treated very simply
when the mixing occurs at constant static pressure, while the formulae
cbtained for the loss hold alsc as a good approximation for mixing at
constant area. By suitable algebraic manipulation the results may be
expressed 1n a manner which is very readily interpreted physically as, for
example, for Equation (7). The exact answer when the total pressures of the
streams are equal may be simplified even further if an error of the order of
15% of the loss is acceptable - e€.g., when the dynamic head is low. The loss
of total pressure i1s then given by

. 182 ,
- (8P)y/q % 28 eeo {15b) Dbis

for an 1deal gas in which the specific heat 1s constant, or
- AP/q * 032 & (35) bas

for pure air withan the temperature range of gas turbines, In these formulae
q 1s the 1nitial dynamic head and & represents the proportional difference
of temperature defaned as

5 = (T, - T,)/2T, oee (15a) bis

For fuel/air ratios of 0°02 and O+O4 in the hot stream the coefficient O+ 32
in Bquation (35) 1s replaced by 0¢36 and 039 respectively. These formulae
apply for hot.to cold mass flow ratios in excess of 0°6, 1.e., for "by-pass"
ratics less than about 1:7/1.

For a propelling nczzle havang two air supplies at different
temperatures but the same total pressure the proportional increase of gross

thrust, AM/M, which results from mixing the air at stagnation before
expansion through the nozzle, may be expressed

(OM)g/M & £6° oo (4) Dbis
for compressible flow 1n an 1deal gas having a constant specific heat, and
AM/M = 0-16 &° eee (46) bas

for pure air within the temperature range of gas turbines. For fuel/air
ratios of 0¢02 and O*Q4 in the hot stream the coefficient 0¢16 in
Equation (46) 1s increased to 0+18 and 0°20 respectively.

The/
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The results for temperature distributions which are initially
rectangular are halved in a flow having initially a sinusoidal type of
temperature distribution between the same maximum and minimum values.
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Notation
m,, mass flow of the hot stream
my mass flow of the cold stream
m, mass flow of the mixed stream
m m,/n,
u, velocity of the hot stream before mixing
u, velocity of the cold stream before mixing
u, velocity of the mixed stream
u u, /u,
P density
T total temperature
P total pressure

- AP loss of total pressure

P static pressure
q volume flow mean dynamic head before mixing (Equation (7a))
a cross—-sectional area of the flow

TR Y

5 (T, - T, )/2T; 14

bw,m  (Tmax - Tmin)/2%

¢ (B, - P )/a

y ratio of the specific heats Cp/Cv

¥y distance measured transversely

A coefficient of & for Equation (31)

M gross thrust

Suffices/
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Suffices
2 hot stream
. cold stream
3 mixed stream
a result for constant specific heat
b additional effect resulting from the variation of specific heat
1d af'ter mixing, for an i1deal gas with constant specific heat
ac after mixing, for actual gas (air)
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Standard theory for the one-dimensional mixaing
between hot and cold gas streams is straightforward in
principle, but the results can be rather daf'facult to
interpret, as well as quate lengthy to calculate. The
interpretation can be daffacult eirther 1n obtaining a
physical understanding, or for seeing general trends,

Several simplified formulze may be put forward to
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the formulae in the present paper are concerned with
the loss of total pressure during mixing; these
formulae are limited to flow at low Mach number. A
further analysis concerns the gain of thrust which
results when two streams of air supplying a propelling
nozzle 1n compressible flow are mixed before the
nozzle,
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