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SUMMARY 

The paper presents an analysis of conrhtions at instabIlity of hollow rotating 
discs of unrform Initial thxkness. The analysis is based on Tresca's yield 
criterion and associated flow rule. The analysis is given more general applioatlon 
by assuming a strain-hardening law of the form u = AG. It is shown that when the 
ratlo of outer to inner radius of a disc is greater than approximately 3.3 then, 
at instabIlIty the circumferential strain at the bore is always greater than the 
axial stra;Ln at instabIlity in a tensile test on the same material. Results indicate 
that it would be worthwhile to attempt correlation of the theoretlcal results with 
experimental results on vacuum melted material. 
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Replaces A.R.C. 23 974. 



-2- 

. 

&y&B = natural strams in radial, clrcumferentxd and 
axml directions 

w = angular velocity of rotatmg disc. 

INTRODUCTION -- 

When the angular veloolty of a thin circular disc at room temperature is 
gradually increased the disc first of all behaves elastxally then, at a certam 
velocity, plastic yieldmg begins and proceeds, with work-hardening, untd all the 
material of the drsc has reached the initial yield point. Further increase in 
speed causes unrestricted plastic flow to take place. The system is stable as 
long as an increase in speed is necessary to produce further plastic flow. The 
follming analysis is concerned with conditions at the inception af instability, 
that is with conditlons at maximum speed. It will be assumed that the mterlal 
is homogeneous and isotropic and the elastic drams will be assumed to be 
negligible compared with the plastic strams. 

Several analyses have been made of this problem, the only difference between 
them being in the assumed plastx stress-strain relationships. The Levy-Mises 
plastic stress-strain relationships are usually agreed to be nearest to physical 
reality for this type of work but they are difficult to handle in this problem 
smce they predxt that the strain increment ratios vary throughout the process. 
Lee Wu (1950), Manson (1951) and Zaid (1953) have introduced a simplifxatlon by 
assumng the van Mises yield criterion and a defamation theory of plasticity 
rather than a flow theory. Lee Wu and Zaid. have sought to justify this simpli- 
ficatlon for partxular cases by showing 'a posterIorI' that the strain ratzos 
are nearly constant as the speed is increased. Weiss and Prager (1954) made the 
simplifying assumption that the disc material obeys Tresca's yield critemon and 
the associated flow rule. Mame Madden Smith (1958) adopted the same assumption 
in an analysis & rotating plastic discs of variable thickness. In the following 
work the analysis of Wems and Prager has been adopted and developed to cover 
much greater strains than contemplated in their paper. 

BASIC THEORY 

For a thin mrcular disc rotating about the central axis the principal stress 
components are the circumferential stress roe, the radial stress cr ?? and the 

axial stress uzn The axial stress, cs, will be assumed to be zero for the thin 

discs to be consdered here. For a disc of uniform thickness it can be proved 
(Weiss and Prager, 1954) that c0 and ur are both tewlle and that co is 

. 

everywhere greater than dr. Tresca's yield criterion and flow rule can then 

be written, 
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ue 
=Y>crr>O, o- =o 

z . . . . (I) 

kr = 0 , aEe = -dEz 2 0 
. . . . (2) 

where Y is the tensile yield stress and a&, , &r end dEz are respectively 

the circumferential, radial and axial strain increments. 

Let u be the radial displacement of a particle. Then, smce from the first 
equation (2) the radial stram rate is zero, this displacement u does not depend 
on the initial radius of the particle ro but only on the angular velocity. Thus, 

an annulus bounded initially by radii ro and ro + dro is at a particular 

speed (after undergoing a radial displacement, u) bounded by m&i r = r. + u 

and r + dr = r. + u + dro, from which It follows that dr = dro. Also, 

suppose that the initial thxkness of the &SC t o has ncau, at this particular 

radius, a thickness t. Since the material IS assumed to be incompressible 

tore *o = trdr 

or tr = tr 00 . . . . (3) 

The true stress c r is transmitted acrass a sectlon that is proportional 

to 'tr' and since tr = t r mr 
0 0' 

is equal to the nominal radial stress 'r* 
The true circumferential stress cO is transmitted across a sectlon proportional 

to 'Mr' and is therefore related to the mammal circumferential stress 
% 

by the relation, 

se (tobo) = ue(t ar) 

and since dr 
0 

= dr, 

% = +/to) . . . . (4) 

This nominal stress is related to the circumferential engineering strain, 

ee = r . . . . (5) 
0 

by the strain-hardening law 

-s F f(e) . . . . (6) 

The plastic.~l"ow, described. by equetions (2) is independent of thG value of 
the intermediate p&xi~el stress cbmponent ur and it will therefore be assumed 

that s can be‘~nter;pysted.as~the-nomintll circumferer.tial strezs s8 and e as 

the circumferential eI;@neC&ing strain eg. That is, 

% = f(ee) . . . . (7) 
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Finally, the equation of ra&al equlibrium in the deformed state 1s 

sbJ,m = tie - tpdk2 . . . . (8) 

where w is the angular velcclty and p is the density of the m3teria.l. 

With reference to the underformed state, equation (8) can be wrItten as 

s(‘03,)/6’o = se - P”“ro b. + 4 

= r(u/r,) - pw2ro (r. + u) . . . . (9) 

If the disc IS not loaded at the bore, r. = ao, or at the periphery, 

r0 = bo, then sr is zero at these radii and the integral of the right-hand 

sde of equation (9) between the limits a0 and b must vanish. Putting 

a = b&,, q = u/a0 and & = rho, this zondition yields 

a 
pay/6 = 

1 / 

f(dC)% Ma3 - 1) + 31(a2 - 1) 1 . . . . (10) 
1 

This is the equation derived by Weiss and Prager. Far a known strain- 
hardening characterutlc and given initial dimensions the right-hand side of 
equation (10) must be evaluated, analytlcdly or numerxally, for various values 
of l-j = u/so. Each assumed value of q gives the correspondzng value of w2 

and a plot of q against w2 can be carned od to deterslre the maximum value 
of angular velocity and hence the point of instabdity. 

Equation (10) is base6 on the nominal stress-enpneemng s'craln axve 
determIned in s:mple tenslon and the equation used In tiis form gives valid and 
easily derived results provded the longitudinal strmn at InstabIlity in slvple 
tensIon 1s greater than the maxmum circumferential stra3n at InstabIlity of the 
rotatLng dzic. Thu is so for the particular example given by Weus and Prager 
for an aluminium alloy with a = 2. However, it will be shown that in general 
when (I 1s greater than approximately 3 then the maxImum strain at imtabll=Q 
of the disc is greater than the InstabiliQ atran in simple tension. It is then 
more convenient to base the solution on the true stress-natural strain diagram 
of the material. Such a work-hardening characteristic would be best determuxd 
by the torsion of a sollcl round bar. 

SCLUTION BASED ON THE TFUE STRESS-STRAIN CCTRVE 

It is uxiended to examine the effect of work-hardenmg and of radu~s ratio, 
129 on the lnstablllty of holloFi rotating dxcs. A strain-hardening law 

ae = J-E; . . . . (11) * 

~111 be adopted, dere A and n are constants for a parbcular disc. This 
relation does not eve full representation of a rigid-plastic material, since 
there 1s no Initial yield point, but it 1s a simple and useful expresslen for 
~ISCUSSIOII of conaxtlons at udabllity. 
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The relation between true cucumferentxd stress and nonnnal circumferential 
stress is 

ce = se(l + ee) = se(l + d&l 

and the natural strain is related to the engineering strain by 

Ee = Cn(1 + ee) = en(1 + q/g) ..*. (13) 

Therefore, making use of equations (II), (12) and (13), the function in 
equation (10) to be integrated can be written, 

I 

a 
f(dCb.5 = A 

i 

a [-Ml + d&II” 
.G 

I 1 (1 + da 

Now change the variable from c to en(l + d&l = se. Denoting the 

cu-cumferential strain at the bore by e8 and at the periphery by ~0 and 
b 

remembering that 

% 
= En(1 + q) 

"b 
= en(1 + q/a) 

the expression becomes 

For a given value of IL?, Q = u/r0 is constant and therefore equation 

(10) can be written 

% % 4i 4i 
rl rl 

pat.? pat.? I I c c 
. ace . ace 

--!I..- = --!I..- = 
(exp. Ee - I)" (exp. ce - 1)” 

6A 6A [2(a3 [2(a3 - - 1) + 3dd - 111 1) + 3dd - 111 

To determine the integral of the above equation the term 

53 will be expressed ~-'a series. 
. (e--p. Ee - 1) 

‘8 
1 

‘8 Bi &“e SE48 Bs&Qe 
---+- 

(exp. se - 1) = - 2 + 2: 
. . . . . . 

41 6: 

.  ..D (14) 

. . . . (15) 

where Ed < 2 and the Bernoudli numbers have the values B, ='_ 
6 ' B, =&, 

B5 = 5. 
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Usmg this series it can be shown that the right-hand side of the equation 

I 

% 

3 

a 
n 1 - se + 5 

&3 
E2 - (exp. 

Ee 
- 1) 12 8 ,; 

1s correct to better than 0.5% for 0 < sB < 0.5. (Provided sB < 0.1 taking the 

first two terms of the n&t-hand side of equztlon (16) gives a result correct to 
better thm 0.5%. The error of taking the first two terms when Ed = 0.3 1s 5s 
lncreaslng to a 2@ error wh?n Ee = 0.5.) 

Substltutmg expressIon (16) mto equation (14), 

n+l 

rl 
i c 

Eea 
n-2 n-l 

‘8 - &e 
5n ‘e 

+ Dee - V dEe 
paaCJ2 Eeb - 

I 

-C.--z . . . . (17) 
6~ 1 2($ - 1) + 3q($ - 1) 1 

Integrating equation (17) 

n-l 
&en 

WI nt2 
E8- - + 2_ -_ 'e 'e 

1 

'8 
q 

a 
n -1 n 12 n +I 

pa2wa 
12(n+2) 

-2-z seb 

6~ 
[ act” - I) + 3d9 - 1) 1 

If for a particular radius ratlo, CL, a value of Q is assumed then 

"a 
and E 

'b 
dan be calculated. Hence, the correspondmg value of w2 can be 

determined from equatlcn (18). When this is repeated s plot of w2 against se 
a 

can be obtamed. Such curves are sham m Figs. 1 and 2 for materials with 
n = 0.05 and n = 0.1, and for values of cz = 2 and cz = IO. (The 
value of the stra3n-hardenmg Index n for turbme disc materials usually lies 
between 0.05 and 0.1.) The values of the maximum velocity cm be determned 
accurately from curves of d against se but inspection of Figs. 1 and 2 will 

a 
show that it is not possible to determme accurately the value of 'ea at 

mstabdity. To deterrnme the mstablllty strain equation (18) 1s differentiated 
5~1th respect to 11 and equated to zero, 



d(d 1 z(2 -1) 
- = 0 = 

atl 2($-l) + 37$2-l) 

( n+l n+l 
5 &ea - &eb 

> 
+- 

12 (n+ 1) 

I 

( 

n-2 

Eea a 
- $-I 

+? 
) 

(1 +d 

7- 

r ’ n-l ( n-l 
%, - Eeb 

> 
_ (sit, - Gb) 

(n- 1) n 

1 
( 

n+2 

&ea 
n+2’ 

- ‘eb ) - - 
12 b + 2) 1 -( $;;2 - q) , (5q - q’) 

(a + 7)) + 12 (1 + d 

1 
n+l 

1 
5E,n --E 

b Ob 
-- >I . . . . (19) 

12 (a + 17) I 

Instability strains have been calculated from equation (19) with the aid of 
an electmnia digital computer. Derived instability strains for a range of 
materials and far values of a between 1 and 20 are shown in Fig. 3. 

For a material with a strain-hardening characteristic u = Asn the axial 
strain at instability in the tension test is 'n'. Fig. 3 shows that the 
circumferential hoop strain at the bore of a disc at instability can be much 
greater than 'n'. In fact, it is seen that for all values of radius ratio 
01 > 5 and n > 0.01 the instability stram at the bore is greater than n. 

The values for a = 1 have been calculated as a separate case. When 
a = 1, that is a thin rotating ring, the circumferential stress is 

ue = pU?ra . . . . (20) 

where r is the current mean radius af the ring. At mmimum velocity 

be dr 
- = 2- = 2dEe 

ue r 

or . . . . (21) 

for a material with a strain-hxrtrdening characteristic ce = As:. This means 

that the circumferential strain-at-instability is n/2, that is half the amount 
of strain atteind at ~nst$St~~iti simple tension. 

Knowing the insiabl1rt.y s&in for a given value of a, the maximum speed 
is determined from equation (18). Values of pa:$/6A, calculated in this 

manner are plotted against a in Fig. 4. The calculated strains at 
instability have also been indicated on Figs. 1 and 2. 
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DISCUSSION 

The aim of the design en@.neer is to produce an econormc structure which will 
not fal catastrophically. In the particular case of the design of tirbine discs 
for aircraft en~nes it is important that high strength should go rnnth minimum 
weight but unfortunately in trying to obtsln high strength, for a chosen metal or 
alloy, the ductility is reduced. According to the present analysis this in itself 
should not lead to a catastrophic fa~~lure. Indeed, the most xap~tant point that 
energes frcol the analysis 1s that for all practical discs the lnstabllity strain 
at the bore is greater than the axial lnstabdlty strain in slniple tension. In fact 
for (I = 20 the predicted bore instabIlity strain in a disc is very much greater 
than the Instability strain in simple tension, see Fig. 3. 

Nevertheless, experiments on mdel discs reported by Waldren and Ward (1961) 
demonstrate that some dz~scsf3~cture at stra,ns much smaller than predxted by the 
present theory. It must be remembered that the theory deals n1t.h an ideal material, 
which meam a flawless material. If a material contains flaws, cracks or other 
stress raisers, the flnal flc6v and fracture rm&t not follcm the pattern set down 

ln the theory. The crucial point is whether or not any etistlng crack can propagate 
and cause a premature fracture. If a materxd IS ductxle encugh it is possible that 
the stress can be redlstrlbuted and a particular crack may then take no further part 
rn the mechanism of fracture. On the other hand for less ductile materials a crack 
of the same geometry could cause an early fallure. 

The theory, then, lays down the ideal flow behaviour which is to be aimed at. 
The practical answer mqht be the better metallurgical control of disc materials. 
Waldren and Ward (1961) reported an experimental result on a model disc of hqh 
strength, vacuum-melted, turbine disc material. The maximum strain attained 111 this 
case was much greater than that attalned III similar discs made cf more usual non- 
vacuum-melted materlals, havrng the same elongation at the maxumxn load in simple 
tension. More recent experlmentsl work at the Natlonsl Gas Turbirr? EstablIshrent, 
using vacuum-melted ~~terlals, confmms that greater strains are obtmned before 
fracture with this type of material. In view of this recent work it would seem 
worthwhrle attemptIng a correlation between experxzntsl results on vacuum-melted 
materials and the present theory. This would entail determinlng the stra;Ln- 
hardening characteristics of the materials to much higher values than could be 
cbtmned in simple tension. 

The present analysis gives a genersl solution to the problem of xnstabillty 
in boll@ rotating discs of umform Imtlal thickness. As far as IS known the 
results obtained are more general than any other existing results. However, it 
is necessary to keep note of the slmplificatlons that have made the solution 
possible. The theory is based on a flow rule of p1astxlt.y whch 1s recognlsed to 
be mare cm-rect physically tin a deformation thecry, but this particular flow rule 
is necessarily coupled mth the Tresca yield criterion. These facts have to be 
borne In mind when attemptlng any correlation with experxnent. The assumed flow 
rule states that the ra&al stran is zero throughout the &SC. Experiment (Waldren 
and Ward) shows this to be true except very near to the bore of the disc. 

The behaviour of materlsls with the same tensile strength but with different 
ductility is discussed XI an Appendix. 
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APPENDIX 

Fig. la shoxs theoretical values a? bursting speed for materials having 
the sane tensile strength but having different values of 'XI', that is 
varying amounts of ductility. It is shown that the lower the ductility of 
a particular material the greater is the bursting speed. However, it is 
clear that such variations in speed with ductility are relatively small. 

A correlation is often made between theory and experiment on the basis 
that at the bursting speed the nominal average tangential stress in the 
disc corresponds to the tensile strength of the material. This is, in effect, 
an approximate comparison between .m instability condition in simple tension 
and an assumed instability condition in the rotating disc. The deformation 
of the disc, elastic or plastic, is not taken into account except in so far 
as the existence of an instabilIty condition is assumed. This has been 
found to give good correlation between theory and experiment even for discs 
which are not of uniform thickness. The bursting speed calculated on this 
basis is shown in Fig. 5. 
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