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SUMMARY

It 1s found that, for turbulent flow at Mach number 2 over a thin delta
wing at zero 1lift, the effect of pressure gradient on the boundary layer is
negligible; thus boundary layer calculations allowing for convergence and
divergence of streamlines are simplifiied. When these are done it is found
that, except near the centre line, where streamline convergencc causes extra
thickening towards the trailing edge, the momentum thickness is nearly the
same as it would be for flow over a flat plate of the same planform. This
enables the boundary layer prcssure drag and the skin friction drag to be
determined simply. It is found that the pressure drag may bc neglected com-
pared with the total drag, whilst the skin friction is tho samc as that of a
flat plate of the same planform.
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1 INTRODUCTION

In an attempt to assess the effect of the boundary layer on the drag of
slender wings at zero 1lift, turbulent boundary layer calculations are made for
a oertain delta wing which has been tested at Bedford, using the measured
pressure 4istribution and, in cases where this does not give enough informa-
tion, using also calculated cross velocity components.

Firstly a simple calculation is made by Spence's mcthod1 assuming the
flow to be two-dimensionel elong a series of chordwise sections. This clearly
shows that the pressure gradients on the wing are so small that the boundary
layer (celculated on the very simple two-dimensional basis) behaves almost
exactly as though the pressure gradient were zero everywherc, that is, as
though the flow were over a flat plate., This simplifies thc subsequent work
since the pressure gradients can be ignored leaving it possible to concentrate
on the effect of diverging or converging streamlines. The wing concerned had
an 11% thickness chord ratio., For thinner wings one may expect this conclusion
to be even more justified.

A second set of caloulations is then made. It consists of two parts -
firstly the determination of the external streamlines, and secondly the calcula-
tion of boundary layor momentum thickness along these streamlines, allowing for
convergence but not for pressure gradient, It is found thet, except for stream-
lines very near to the centre line, the momentum thickness is still very close
to what it would have been on the flat plate assumption., Near the centre line
convergence of the streamlines causes considerable thickening of the boundary
layer towards the rear, but this effect decreases very rapidly as we go
outboard.

The next step, therefore, is to ignore the effect of convergence and to
assume that the momentum thickness and displacement thickncss over the wing are
the same as over a flat plate. Thus a displacement surfacc is very simply
obtained and the effect of this on the velocity potential ¢ is cxpressed in
terms of an added function A¢; thus Aop, the increase in tho pressure

coef'ficlent, can be calculated, and isobars of Aop may be plotted,

Finally by integration over the surface of the wing the boundary layer
normal pressure drag coofficient is found. This drag is positive in the first
example under consideration but it is very small, In faot its value at Mach
number 2 and Reynolds number 107 is 0:00008. At higher Reynolds numbers it
will of course be less than this. The calculated inviscid wave drag coefficient
is 0-00821; +thus the boundary layer pressure drag is 1. of the inviscid wave
drag. This indeed may be an overestimate, since it assumcs a displacement
thickness which, as has already been pointed out, is too small at the rear near
to the contre line, This incrcased thickness here will give an inocreased op,

which, being on backward facing surfaces, will reduce the drag. This effect,
howsver, only occurs over a narrow band and so the reduction will be small., It
seems unlikely to be sufficient in this example to give ncgative drag, though
this could possibly happen in other examples.

As already pointed out, the wing on which these calculations were made had

a maximum thickness chord ratio of over 119, For thinner wings one might expect
the flow to be even closer to that over a flat plate. The same line of approach
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may be used for other planforms besides deltas, though the analysis in such
oases would be more difficult.

Formulae are given which enable Aop to be determined at any point of any

slender thin delta wing at zero lift at any Mach number or Reynolds number.
Thus by integration the boundary layer pressure drag of the wing can be calcu-
lated. The skin frioction will be the same as that over a flat plate, or
possibly slightly less in the present example owing to the bchaviour of the
momentum thickness near to the centre linc, The main conclusion, however, is
that the boundary layer pressure drag is small and may probably be neglected
at full scele. A second ecxample was considered later and for this there is a
reduction in pressure drag which amounts to 3% at R = 10/, due to the thickness
of the boundary layer.

The flow is supposed to be compressible and everywhere turbulent. If
there are areas of both laminar and turbulent flow the calculation of Acp is

more difficult; another complication is the sudden decrease in displacement
thickness which occurs at transition owing to the sudden drop in the value of
the shape factor H which takes place, whilst the momentum thickness remains
continuous2, Since at full scale the flow is likely to be turbulent over most
of the wing we do not consider herc the case in which it is partly laminar.

The work done here only applies to wings at zero 1lift. At higher
incidences it seems probable that the method of simplification given here would
not be possible; it may be so, however, if the flow is attached along the
leading edges of a cambered wing at a low 1lift coefficicnt.

There seems to be no check on this theory by experiment as yet. This
would be a difficult undertaking, but accurate measurement of a few boundary
leyer profiles on thc surface of the wing near to the trailing edge would be
of great help.

2 THE WINGS CONCERNED
Two examples were used. These were both of delta plan form and had
equations
2 3 Ut
= + L) 10X XY _g (X X X _ X
Z o= t55% b =10 ot 10 c 5(5) * 3 c sj/?

sfe = 1/3 , Vv o= 001 6° ,

known as the "Lord V" wing, which was tested at Bedford, and

2 3 L
o x x x A\ (%

pi
s

)

s/c = JI/l*' ’
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which was tested at Farnborough by Firmin3, who named it Wing 3. This wing
is such that at the trailing edge

¢ 03

§_'_(.1)./l’_ =z =16 ,

where S(x/c) is the cross sectional area and V is the total volume.
Here s is the scmi-span at the trailing edge and ¢ the root chord.

In the case of the Lord V wing agreement between calculations of pressure
distribution by slender wing theory was good. This did not apply to the
second wing and so calculations were made for it by Firmin by linear wing
theory. He found that this theory gave fair agreement with his experiments,
This gives ground for the hope that the calculated values of ¢& and ¢yy of

necessity used in Section 5 below may not be too much in error. The second
wing has large backwards facing slopes at the rear and thus cannot be considered
"slender".

3 EFFECT OF PRESSURE GRADIENT IN TWO-DIMENSIONAL CALCULATIONS

A cartesian co~ordinate system is used, the median plane of the wing
being z = O, with the x-axis along the centre line, Thc equation of the wing
surface is z = z(x,y) as in Seotion 2, and 3z/dx and dz/3y arc supposed small.

We choose the method of Spenoe1. In the absence of a shock the equation
for the momentum thickness © in a turbulent boundary layer may be written

1 1

14— Ba— D 1 E =P B
AN A W W S P R I A\ A tant
o u \ﬂ;/ " n T Te u \c/ + constent .

eeeel1)

In this equation the subscripts e, oo and m refer to values at the edge of
the boundary layer, at infinity and at a certain "mean" position respectively.
R, the Reynolds number, is equal to u‘x’c/voo .

Depending on the ranges of R6(= ueQ/ve) concerned (which overlap) n may

take the values 4, 5 or higher values, We give in Table 1 the values of the
constants for zero heat transfer wvhenn =4 and n = 5,

f



TABLE 1

Values of constants in Spence's equation. Zero heat transfer

n=4 n=5
C 0+0128 0+ 00885
E%- C 0+0160 0-0106
B 4125 40
D 14735 14665
E 1+332 14343
P 0-778 0822
H 2~5(1+O-178M2)—1
T /T, 140+ 1281°
Range of R 100-5000 500~50,000

The value n = 5 was chosen for the first calculations., Taking the
measured pressure distribution at various values of y/s for the firstwing at
Mach number 2 and Reynolds number 107, based on root chord, the solutions in
Fig.1 were obtained (circles).

If there had been no pressure gradient, so that u, = U, Te = TOO,M = Moo,

as on a flat plate, equation (1) on integration would have reduced to
1

+3 -4 -p
<§> = ol pom (1 N O-128M2> /% .
c n co \c

assuming © to vanish at the leading edge, which will be the case if this edge
is sharp.

r

]\, (2)

]
o/

7

For R = 10, M_= 2, n = 5 equation (2) becomes

<§>1.2 = 0+000300 <§ - £ > , (3)

or, for n =4 (_6_)1.25 = 0:000206 /E - .X
. \0 ;

\\
\
s/’

(&)

v

1.2
(%) obtained by cquation (3) is plotted for the first oxample as a full

line in Fige1 for comparison with the results with pressure gradient. As can
be seen the resulr is scarcely distinguishable from that obtained by a full
solution of equation (1). Equation (4) gives results virtually coincident with
those of equation (3. The same conclusions apply to the second example.
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Thus we may say that the measured pressure gradient of the wing at.zero
1lift is so small as to be negligible in boundary layer calculations, This may
not always be true, The equation from which (1) is derived is

ou
8 6 _efs pu?) = =
dx  u_ 9x 2
© Pele

and the effect of the pressure gradient lies in the second term. (It must also
affect © to some extent but this is genorally ignored.) Now from Table 4

2+ HU® = 3500 555M°
and this venishes when ¥ = 2+51, which is not very far away from the value
M = 2 used in the calculations, At any rate we have shown that the pressure

gradient has very little effect in our examples and we shall ignore it from now
onwards.

L THE SHAPE OF THE EXTERNAL STREAMLINES

The streamlines are calculated from the equation

dy | ve
ax ~ u_ ' (5)
e

where ug and v_ are the x and y components of the externsl vclocity. Only the

value of u, cen be obtained from the measured pressure distribution and so vy

was found by a slender thin wing calculation for the given wing. The solution
of equation (5) is straightforward but involves some interpolation and
iteration, If v, is caloulated for a few values of y/s near to the particular

one concerned the interpolation can be done graphically. Once y is found, ¢

(which is required in later calculations) may also be found by interpolation,

Some of the streemlines for the first example are shown in Fig.2. They
diverge near to the leading edge but converge later., However, the convergence
is very slight except near to the centre line, This convergence is very much
less in the second example,

5 THE EFFECT OF STREAMLINE CONVERGENCE OR DIVERGENCE

According to the axi-symmetric analogy4 the boundary layecr along any
streamline on the wing z = z(x,y) bchaves like that over an axiclly symmetric
body of radius r, where r is given by

ou v
3 2 .2\ _ ) e
Uy 33 <log r Ue) = 2 <ax + 3;{) , (6)
assuming that 9z/dx and 3z/dy are small., Here we have written Ug = u§+v§ end s

represents distance mcasured along a streamline,
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Hence we have

U ov
= £ e (7)
r ds 9y

ignoring the velocity gradient aUe/as and ignoring also aue/ax compared with
ave/ay in accordance with the usual slender body theory. In any case aue/Bx

is approximately equal to aUe/as which we have already decided to ignore.

If the external perturbation potential is u&? and we write Ue = U,

equation (7) becomes
1 dr _
r a5 - %y (8)

Now Spence1 gives the form of his eguéyion for an axi-symmetric body. It
is the same as equation (1) except that r'+1/? is to be inserted in the left
hand side anl also inside the integral on the right hand side. In using the
axi-symmetric analogy we must follow a streamline and hence d(x/c) should be
replaced by d(s/c). Ve must also replace u, by U, As we are ignoring the

pressure gradient we shall write Ue T = qx; M =I{m. It is more con-

=u

<’ e
venient to differentiate the equation. Using the version n = 5 in Table 1 and
writing © = (6/¢)1°2 we find

’

ao 1 ar -0+ 2 2,~0822
s/ * 127 /ey C 0-0106 R (1 + 0-128i )

or,for M =2, R = 107, using equation (8)

TG%%Y +120¢ @ = 0-000300 |, (9)

where we have replaced s/c by x/c, since the streamlines are nearly parallel to
the x-axis,

If ¢yy = O this equation has equation (3) as its solution, as was to be

expected. Thus the effect of convergence or divergence of the streamlines is
expressed by the term 1:2¢c ?yy ® in equation (9).

The solutions of equation (9) for the first example are shown in Fig.3
for various streamlines, numbered 1 to 5 in TFig.2, together with values from
equation (3),

The main feature of the curves in Fig.3 is that the solutions by equation
(9) and the flat plate solution run very near to each other, except near to the
centre line, where the error in 6 rises to about 50%. This is, however,
confined to an area very near to the centre line. At other locations the
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initial divergence reduces the valuc of @ slightly and the convergence which
occurs downstream has little effect on ©. Consequently in calculating the
effect of displacement on pressure drag we may assumec flat plate values and
expect that the error near to the centre line will only have a small effect on
the total drag. In the second example the values are closer together, the
extra thickness only rising to about 5% near the centre line.

6 SOME ACTUAL MAGNITUDES IN A TYPICAL CASE

It may be of interest to give some idea of the actual maznitudes of the
various boundary layer thicknesses near the trailing edge of a full-scale wing.
We consider a delta wing with a root chord of 200 feet, {lying at a Mach number
of 2¢2 at a height of 55,000 feet, © is obtained from the first example whilst
8* and 6 are found on the assumption that the velocity in the boundary layer
follows a 1/7th power law., It has been assumed of coursc that the boundary
layer is turbulent all over the wing, and that there is zero heat transfer,

TABLE 2

Boundary layer thicknesses at the trailing edge

y/s 0 &% &

0 05 l;.' qn 1l 5» 55.7!!
0-2 2 3" 82" 3q.2t
0,5 1,61' 5.5n 21_1"
0-8 0'7" 2.6n 9.8n

7 THE EFFECT ON THE PRESSURE DISTRIBUTION

Putting ¢ = 1 for convenience we may take the momentum thickness 6 to be
given by

1+1 -1 ~F
o ® = iiﬁc(x-l-‘éDR n<1+o-128Mi‘_ ,
/

no allowence being made for convergence or divergence of streamlines, C and B
are given in Table 1 for values n= 4 or n = 5. We shall choose n = 4 as being
slightly simpler numerically, with no loss in asccuracy.

Since 6% = HO

where H is given in Table 1, we have

08 _p. ~0622
& = 00370 {2-5 (1 + 0'178M§> - 1} (x - r§.> R 0 2<1+O-128M§> .

eree(10)
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We shall write 2
% = L <x - I%’) (11)

and note that for ¢ = 08 (corresponding to n = 4) M» =2, I = 107 we have
L = 0-00374. |

The effect of the boundary layer on the flow is the same as though the
fluid were inviscid, but that the wing z = z(x,y) were replaced by

z = z(x,y) + &%,

We shall use slender thin wing theory, which is a linear theory. Hence
if u“$ is the velocity potential due to z(x,y) and u Ad is that due to &% the

two values may be added to obtain the overall velocity potential, A¢ is
calculated in Appendix 1 by methods cxplained in Ref.5. We aim to determine
Aop, the change in pressure coefficient due to displacement thickneass.

The result for € = 0+8, corresponding to n = L, is, if

2 2
n =L, B° = M -1

_ & 02
bo, = £R sx {K(m)

.
2 log %st , (12)
assuming a8 before that C = 1. The value of K is given in Table 3.

TABLE 3

Value of K(n) for & = 08

n 000  0-10 0:20  0-30 0:40  (+50 060
K(n) 0-000 0004 0023 0063 04130 0:233 0388

M C-70 0-75 0-80 085 0-.90 095 1+00
K(n) 0-627 0-798 1:027 1°349 1+852 2841 oo

In the first examplo, for which s = 1/3, ¥_= 2, R = 10, T = 0-00374
Bs = 0:577, qu is always positive. Isobars of Aop are shown in Fig.4. These
are likely to be reasonatly accurate except in the rear part of the wing near
to the centre line, where the increasing displacement thickness should cause
an increasc in Aop.

It may be noted that we muy not suppose that Acp can be obtoained from

simple wave theory. Ve show in Fig.5 the value of Aop compared with that
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obtained by simple wave theory, along the line y/s = 0:225, Similar divergences
occur everywhere on the wing.

Ao has a singularity at Inl = 1., In fact when n = 1-¢ it can be shown
that

K(1-e) = 43206"0"2 = 5:0606 + 0-583¢ + 0(c?) , (13)

and 80 the singularity is integrable.

8 THE BOUNDARY LAYER PRESSURE DRAG

Once Aop is known the boundary layer pressure drag coefficient is

calculated from the formula
s 1
2 2z
ACD = = dy j‘ Aop 3% dx ,
=2 y/s|

taking into account both surfaces of the wing. Hence

1 1
- oz 1,
ACD"L*faka"paxdx’ (14)
o X

or writing k = y/s .

In our first example we evaluate the integral numerically using equation
(13) near the singularity. We find for R = 107 that

ACD = 0-+00008 .
This is only 1% of the invisoid wave drag, which is 0:00821. The wing
considered is rather thick (maximum thickness/chord ratio of 41:2 ) and the
inviscid wave drag varics as the square of the thickness, whilst ACD varies as

the thickness., Hence if the maximum thickness of the wing were halved the
inviseid drag would be reduced to one quarter the above value whereas ACD would

be halved. Henoe ACD would rise to & of the inviseid value. On the other hand

ACD varies ais'pT? so that an increase in Reynolds number from 107 to full soale

(say 4 x 108) has the effect of halving ACj.

In the'seobna-ekamplq the pressure drag was dircotly calculated by the
supersonic area-#ule;- This drag was found to be negative and the reduction in
drag thereby produced-amounted to as much as 4+ 3% for a Reynolds number of
2 x 10°. The résults are given in Table 4. With a machine programme available

it was possible to take into account the inereased thickening of the boundary



layer near to the sentre line, It was found, however, to makc no appreciable
difference to the overall drag. These calculations were performed by
J.A, Beasley, who devised the machine progreomme.

TABLE 4
Pressure drag coefficients for the wing tested by Firmin. M = 2-2
R CD Decrease due to
boundary layer
) 0:00562 -
107 0+ 00544 3+2%
6 x 10°  0-00543 3+ 4%
2% 10®  0-00538 L 3%
9 THE SKIN FRICTION DRAG

For a thin wing with a boundary layer development as described above the
total skin friction drag will be approximately the same as that over a flat
plate with the same planform, A fair approximation to this may be found by
assuming the plate to be rectangular with a chord equal to the mean chord of
the wing. We may then find the drag in the manner recommended by Monaghané.
This gives an overall drag coefficient, taking both sides of the plate into
consideration, of

2:8 =26

Ty T,
Cp = 0-9271-‘-{log1oR<-f—-> } , (15)
w w

where R is the Reynolds number based on mean chord and on freec stream conditions
and, in the case of zero heat transfer,

Tw 2
T = 1 + 0'1781\’[<>° .
5
This gives for the wing discussed earlier, with a mcan chord of 100 feet,
flying at Mach 2:2 at 55,000 feet

CF = 000257 .

This will apply even if the wing varies in shape and thickness, so long

a8 the Reynolds number, based on mean chord, is unchanged and the wing is thin
and has a low 1lift coefficient with attached flow,

If the wing is a delta with rhombic cross-sections and Lord V area
distribution and maximum thickness chord ratio 11+2% the wave drag coefficient
is 0-00821, whilst for 5+€% thickness the coefficient is 0+00205. In the
latter case the skin friction drag and wave drag are roughly of the same order
of magnitude, whilst the boundary layer pressure drag is 0+5% of the total
wave drag plus skin friction drag.
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The streamline convergence towards the rear near to the centre line,
ignored in the above estimates, will cause an increased pressurc coefficient,
and this, being on backwards facing surfaces, will reducc the pressure drag
slightly in the first example. In the second example the chan c is negligible.

10 CONCLUSIONS
The main results are that at moderate Mach numbers:-

(1) The boundary layer over a thin delta wing at zero lift develops in
much the same way as though the wing were a flat plate of the same planform
placed edge on to the stream, cnd the skin friction is the same as that of a .
flat plate.

(2) At test and full scale Reynolds numbers the boundary layer normal
pressure drag is in general small enough to be neglected compared with the
inviscid wave drag and skin friction drag, though this may not be true for a
wing with large slopes at the rear, as in our second example.

There seems to be no reason why these conclusions should not apply to
other planforms besides deltas so long as the wings are slender and thin,

Little experimental evidence for these results is availdble; however it
was found for the first example that the sum of the calculated inviseid wave
drag of the wing and the skin friction of a flat plate of the same planform was
in fair agreement with the measured overall drag the maximum crror being about
2%, Agreement was not quite so good in the second examplc, the error being
about 5%,

It is likely thet the cause of the disagreement lies mainly in errors in
the boundary layer part of the calculations. These ultimately depend on the
assumption of some skin friction law for flow over a flat plate. In view of the
small effect of pressure gradient which the calculations show, the use of flat
plate laws may possibly be justified, but one must remember that Monaghan6 did
not claim better than 10% accuracy even for flat platc flows.

There are nevertheless other sources of error which should not be
forgotten, One of these is the use of linear theory to determine the inviscid
flow. In the first example considered here (Lord V) slendcr theory leads to
quite accurate pressure distributions, but it does not do so for the second
example (Firmin's Wing 3). Calculations by linear thin-wing theory give
improved results for this case, but even so the measured pressure near to the
trailing edge does not agree too well with calculations., Finclly, one must
bear in mind that in the experiments the bands of roughness put on near the
leading edges to induce transition may provide yet another source of error, in
spite of efforts made to allow for this,

If boundary layer profiles near to the trailing edges of slender wings

were measured at a number of spanwlse stations it might be possible to obtain
further verification of the suggestions here presented.



LIST OF SYMBOLS

1= |nl, 1+ |l

see equation (1) and Table 1

sce equation (1) and Table 1

root chord of wing

pressure coefficient

drag coefficient

increment in drag coefficient
skin friction drag coefficient
see equation (1) and Table 4

see cquation (1) and Table 4
defined in equations (16) and (17)
5%/9

defined in equation (19)

y/s

see equation (20) and Table 3
index in equation (11)
coefficient in equation (41) for &%
Mach number

index in skin friction law Ref.2
see equation (1) and Table 1
defined by equation (6)

Reynolds number = qxp/g”

uee/ve

semi~-span at trailing edge

area of scction of wing by plane x = constant

distance measured along streamlines in Section 5
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LIST OF SYMBOLS (Cont'd)

T temperature

u,v velocity comﬁonents in x and y directions
U resultant velocity

v total volume of wing

x,¥,2 Cortesian co-ordinates, x along the centre line, the medien plane

being 2 = O.

p 4ot
Y Euler!s constant = 0:577216
) boundary layer thickness
&% displacenment thickness
> given by 1 = 1-e¢ in equation (13)
n ¥/ sx

momentum thickness
o (e/))"®
v kinematic viécosity
¢ velocity potontial
¥ Euler's {: function

Subscripts: -

oo refers to volues at infinity

e refens to values Just outside the boundary layer
w refers to values on the surface of the wing

m refiers £o wolues at a "megor position
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APPENDIX 4

DETERMINATION OF A¢ AND Aop

The equation of the displacement surface is

£
Az = & = L()C-l%’) .

By Reference 5 we have

u A o= lp +-§E F

oo T 1 2

where

SX
1
F, = f 902(6.7') 106 |y-y'] oy, (16)
=-38X

X
F, = 43'(x) log %8 - fAS"<x) log (x-x') ax' , (17)
o

8X

8(x) = 4 j pa(x,y) ay , (18)

From equation (18) we have

£+1

B(x) = EE_ L sx) = me® S = aea®?,
and so x
F, = thxz log 3B - 4Lse x1 &1 log (x-x') dx*

thx°\{log = logx + y + ¢(£+1)} ’

- 18 -



Appendix 1

on putting x' = tx in the integral and noting that, if y is Euler's constant

and ¥(€+1) is Buler's ¥ function/,
1
2 /’ &1 log(1=t) dt = =y =y(&+1) .
0

This may be_verified by term-by-term integration and the use of the
series for Y(&+1)!, nomely

(o)
N

Wewl) = o+ £ }L'-;(%:gy .
n=

1

Hence
oF ~
3;2 = th€x6-1 {log 2B - log x + ¥ + W(e)j ’
since Wew1) = '% + ¥(e) .

Now F1 may be written, putting y' = sxt'

1
F, = & j‘sx8 (‘l--t')e”1 {log |y-sxt] + log (y+sxt')} dt!
o
1
N
= eLsxe'[ Tl {2 log sx + log |t-a] + log (b-t): at ,
5 J
on putting
8= =t , a = a-lnl , v o= 10l , n= y/ex,
Henoe
1
oF, 1 2 1
S5 & fbsx {2 log sx + 5 + & f t {1og [t=a] + 1log (b-t)} dt
o
1
e (1 1
+ [l jat (— e b_t> dt} :

0

i

s



Appendix 1

On evaluating by parts of the first integral we may reduce this to

oF
1 _ &1 _
3% ° fLsx [I&+J&+210g Inl:‘,
1 1
where te-1 te.1
1y = [ toa o0 o Je T f pot 4t - (19)
0 o

Cauchy principal values are to be taken where necessary.

Hence we have

ho - 2 L 2 A
P U

=1
%EL—{Mm—zhg%% ,

b1d
where
K(n) = I,=J,-210g [n] =2 fr+i(e)] .
If ¢ = 4/5 we find from the tablesC that
(0°8) = =0:96%009 , 4 = 0:577216
and hence

K(n) = Iyg=Jg.g=22log |n| +0:77559 , (20)

IO-B and JO-S may be evaluated numerically for a series of values of m and
hence K determined, Table 3 gives values of X for a series of values of Ne

If n = 1-¢, where ¢ is small, K(n) behaves like 3-0.2; in fact it can be

shovm that for & = L/5

K(1-e) = 43240 6™0"% - 5.0606 + 0-583¢ + O(e%) ,

and 30 K(n) las an integrable sinrularity at n = 1.

- 20 -
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