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SUMMARY 

.' 
It is found that, for turbulent flow at Mach number 2 over a thin delta 

wing at zero lift, tho effect of pressure gradient on the boundary layer is 
negligible; thus boundary layer oalculations allowing for convorgenoe and 
divergence of streamlines are simplified. When these are dono it is found 
that, exoept near the centre line, where streamline oonvorgencc causes extra 
thiokening towards the trailing edge, the momentum thickness is nearly the 
same as it would be for flow over a flat plate of the same planform. This 
enables the boundary layer pressure drag and the skin friction drag to be 
determined simply‘. It is found that the pressure drag may bc neglected com- 
pared with the total drag, whilst the skin friction is the same as that of a 
flat plate of the same planform. 
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1 INTRODUCTION 

In an attempt to assess the effect of the boundary layer on the drag of 
slender wings at zero lift, turbulent bounda.ry layer oalculations are made for 
a oertain delta wing which has been tested at Bedford, using the measured 
pressure distribution and, in oases where this does not give enough informa- 
tion, using also calculated cross velooity components. 

Firstly a simple calculation is made by Sponoe's m&hod' assuming the 
flow to be two-dimensional along a series of chordwise sections. This clearly 
shows that the pressure gradients on the wing are so small that the boundary 
layer (calculated on the very simple two-dimensional basis) behaves almost 
exactly as though the pressure gradient were zero everywhere, that is, as 
though the flow were over a flat plate. This simplifies the subsequent work 
sinoe the pressure gradients can be ignored leaving it possible to oonoentrate 
on the effect of diverging or converging streamlines. 
an 11% thickness chord ratio. 

Tho wing concerned had 

to be even more justified. 
For thinner wings one msy expect this conclusion 

A second set of caloulations is then made. It consists of two parts - 
firstly the determination of the external streamlines, and secondly the oalcula- 
tion of boundary layer momentum thickness along these streamlines, allowing for 
convergence but not for pressuro gradient. 
lines very near to the centre line, 

It is found that, except for stresm- 
the momentum thickness is still very olose 

to what it would have been on the flat plate assumption. Near the centre line 
convergenoe of the streamlines causes considerable thickening of the boundary 
layer towards the rear, but this effect deoreasos very rapidly as we go 
outboard. 

The next step, therefore, is to ignore the effect of convergence and to 
assume that the momentum thickness and displacement thickness over the wing are 
the same as over a flat plate. Thus a displacement surface is very simply 
obtained and the effect of this on the velooity potential 4 is expressed in 
terms of an added function A$J; thus Ao , the increase in the pressure 
ooefficient, can be calculated, and isobpars of Aop may be plotted. 

Finally by integration over the surface of the wing the boundary layer 
normal pressure drag coefficient is found. This drag is positive in the first 
example under consideration but it is very small. In faot its value at Maoh 
number 2 and Reynolds number 107 is 0*00008. At higher Reynolds number3 it 
will of course be less than this. The oalculatod inviscid wave drag coefficient 
is 0*00821; thus the boundary layer pressure drag is 1:: of the inviscid wave 
drag. This indeed may be an overestimate, since it assumes a displacement 
thiokness which, as has already been pointed out, is too small at the rear near 
to the centre line. This inoreased thiokness here will give an inoreased o , 
whioh, being on baokward facing surfaces, will reduce the'drag. This effeci 
however, only occurs over a narrow band and so the reduction nil1 be small. #It 
seems unlikely to be sufficient in this example to give nogative drag, though 
this could possibly happen in other examples. 

As already pointed out, the wing on which these calculations were made had 
a maximum thickness chord ratio of over II?. For thinner wings one might expeot 
the flow to be even closer to that over a flat plate. The same line of approach 



may be used for other planforms beside3 deltas, though the analysis in such 
oases would be more difficult. 

Formulae are given which enable 00 
P 

to be determined at any point of any 
slender thin delta wing at zero lift at any Mach number or Reynolds number. 
Thus by integration the boundary layer pressure drag of the wing can be calcu- 
lated. The akin friotion will be the same aa that over a flat plate, or 
possibly slightly less in the present example owing to the behaviour of the 
momentum thickness near to the centre line. The main conclusion, however, is 
that the boundary layer pressure drag is small and may probably be neglected 
at full scale. A second example was considered later and for this there is a 
reduction in pressure drag which amounts to j$ at R = 107, due to the thickness 
of the boundary layer. 

The flow is supposed to be compressible and everywhere turbulent. If 
there are areas of both laminar and turbulent flow the calculation of AC is 

P 
more difficult; another complication is the sudden decrease in displacement 
thickness which occura at transition owing to the sudden drop in the value of 
the shape factor H which takes place, whilst the momentum thickness remains 
continuous*. Since at full scale the flow is likely to be turbulent over moat 
of the wing we do not consider here the case in which it is partly laminar. 

The work done here only applies to wings at zero lift, At higher 
inoidences it seems probable that the method of simplification given here would 
not be possible; it may be so, however, if the flow is attached along the 
leading edges of a cambered wing at a low lift coefficient. 

There Seems to be no check on this theory by experiment as yet. This 
mould be a difficult undertaking, but accurate measurement of a few boundary 
layer profiles on the surface of the wing near to the trailing edge would be 
of great help. 

2 THE 'KINGS CONCERNED 

Two examples were used. These were both of delta plan form and had 
equations 

2 = 
?2% c 49IO%+ ,o($ - 5($ +($](qg), 

a/o = l/3 # v = O*Ol o* , 

known aa the "Lord V" wing, which was tested at Bedford, and 

-50 



which was tested at Farnborough by Firmin 3 , who named it Wing 3. This wing 
is such that at the trailing edge 

s’o_ 5 = -16 , 
C 

I c 

where S(x/c) is the cross sectional area and V is the total volume. 

I  Here s is the somi-span at the trailing edge and c the root chord. 

In the case of the Lord V wing agreement between oalculations of pressure 
distribution by slender wing theory was good. This did not apply to the 
second wing and so calculations were made for it by Firmin by linear wing 
theory. He found that this theory gave fair agreement with his experiments. 
This gives ground for the hope that the calculated values of $y and $yy of 
necessity used in Section 5 below may not be too much in error. The second 
wing has large baokwards faoing slopes at the rear and thus cannot be considered 
"slender". 

3 EF$!UJ,T OF PRESSURE GRADIENT IN TWO-DIMENSIONAL CALCC'LATIONS 

; A Cartesian co-ordinate system is used, the median plane of the wing 
being z = 0, with the x-axis along the centre line. Tho equation of the wing 
surfaoe is z = z(x,y) as in Seotion 2, and a8/ax and az/ay arc supposed smd21. 

We ohoose the method of Spenoe'. In the absenoe of a shock the equation 
for the momentum thiokness 8 in a turbulent boundary layer may be written 

In this equation the subsoripts !, 00 and m refer to values at the edge of 
the boundary layer, at infinity and at (t certain "moan" position respectively. 
R,the Reynolds number,is equal to u~o/v, . 

Depending on the ranges of Re(= uee/ve) conoerned (which overlap) n may 
I take.the values 4, 5 or higher values. We give in Table 1 the values of the 

constants for zero heat transfer when n = 4 and n = 5. 

. I 
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TABLE 1 

Values of constants in Spence's equation. Zero hoat transfer 

n=4. n=5 

C 0*0128 00 00885 
n+l 
T-C 0*0160 oao106 

B 4.125 4-o 
D I.735 -i -665 
E l-332 1 l 343 
P O-778 O-822 

H 2*5(1+0*178X2)-1 

T,/T 
Range 0: R0 

1+O*128M2 

100-5000 500-50,000 

The value n = 5 was chosen for the first calculations. Taking the 
measured pressure distribution at various values of y/s for the firstwing at 
Mach number 2 and Reynolds number 107, based on root chord, the solutions in 
Fig.1 were obtained (circles). 

If there had been no pressure gradient, so that ue = uW, Te = T&M = MW, 
as on a flat plate, equation (1) on integration would have reduced to 

assuming 0 to 
is sharp. 

vanish at the leading edge, which will be the case if this edge 

For R = 107, Itim = 2, n = 5 equation (2) becomes 

or, for n = 4 

I 
2 

0 

-- 
+R n = 

C 
1 

8 l-2 0 c 
= 0~000300 $- $ , ( iI) 

0 2 C 1 l 25 = 0: 000206 (z ic - 

(3) 

(4) 

2 0 
l-2 

0 obtained by equation (3) is plotted for the first example as a full 

line in Fig.1 for comparison with the results with pressure gradient. As can 
be seen the result is soarccly distinguishable from that obtained by a full 
solution of equation (A). Equation (4) gives results virtually coincident with 
those of equation(3). The same conclusions apply to the second example. 
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Thus we may say that the measured pressure gradient of the wing at zero 
lift is so small as to be negligible in boundary layer calculations. This may 
not always be true. The equation from which (1) is derived is 

de+8 - aue 
ax ue ax 

and the effect of the pressure gradient lies in the second term. (It must also 
affect z to some extent but this is generally ignored.) Mow from Table 1 

2+ H-M2 = 30 5-O. 555M2 

and this vanishes when M = 2*5l, which is not very far away from the value 
M = 2 used in the calculations. At any rate we have shown that the pressure 
gradient has very little effect in ourexamples and we shall ignore it from now 
onwards. 

4 THE SHAPE OFTHEEXTERNAL STREAMLINES 

The streamlines are calculated from the equation 

3 L 
ax = ue * (5) 

where ue and ve are the x and y oomponents of the external volooity. Only the 
value of ue oan be obtained from the measured pressure distribution and so ve 
was found by a slender thin wing calculation for the given wing. The solution 
of equation (5) is straightforward but involves some interpolation and 
iteration. If ve is caloulated for a few values of y/s near to the particular 
one concerned the interpolation can be done graphically. Once y is found, 4 

YY (which is required in later calculations) may also be found by interpolation. 

Some of the streamlines for the first example are shown in Fig.2. They 
diverge near to the leading edge but converge later. However, the convergence 
is very slight except near to the centre line. 
less in the second example. 

This convergence is very much 

5 THE EFFECT OF STREAMLINE COWRGENCE OR DIVERGENCE 

Aocording to the axi-symmetric analogy4 the boundary layer along any 
streamline on the wing z = 
body of radius rP 

z(x,y) bohaves like that over an axially symmetric 
where r is given by 

Ue$-kog r2UE) = 2(2 +3, 

assuming that a&x and az/ay are small. Here we have written JJ: = uE+v2 and s 
e 

represents distanoe measured along a streamline. 



Henoe we have 

U e ar ave 
ras=ay (7) 

ignoring the velocity gradient due/as and ignoring also aue/dx compared with 
i+v,/ay in accordance with the usual slender body theory. In any case &,/8x 
is approximately equal to due/as which we have already decided to ignore. 

If the external perturbation potential is U~!I and we write Ue = uoot 
equation (7) becomes 

Now Spenoe' gives the form of his e ua ' 
y? 

on for an axi-symmetric body. It 
is the same as equation (1) except that r +I n is to be inserted in the left 
hand side anJ also inside the integral. on the right hand side. In using the 
sxi-symmetric analogy we must follow a streamline and hence d(x/c) should be 
replaced by d(s/c). Ve must also replace ue by UC. As we are ignoring the 
pressure gradient we shall write U =u,, Te = Too) II = 19 . It is more oon- 

e 00 
venient to differentiate the equation. 
writing 0 = (e/c)l'* we find 

Using the version n = 5 in Table 1 and 
. 

‘&J -I- l-2 f -q-$q = 0*0106 R-O'* (1 + O*,28~&"*822 , 

or, for !.lM = 2, R = 107, using equation (8) 

,x& + l-2 c qb ~ 0 = 0*000300 , (9) 

where we have replaced s/c by x/c, since the streamlines are nearly parallel to 
the x-axis. 

If #n = 0 this equation has equation (3) as its solution, as was to be 
expeoted. Thus the effect of convergence or divergence of the streamlines is 
expressed by the term 1.20 +n, 0 in equation (9). 

The solutions of equation (9) for the first example are shown in Fig.3 
for various streamlines, numbered I to 5 in Fig.2, together with values from 
equation (3). 

The main feature of the curves in Fig.3 is that the solutions by equation 
(9) and the flat plate solution run very near to each other, except near to the 
centre line, where the error in 0 rises to about 5%. This is, however, 
confined to an area very near to the centre line. At other locations the 
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initial divergence reduces the value of 0 slightly and the convergence which 
occurs downstream has little effect on 0. Consequently in calculating the 
effect of displacement on pressure drag we may assume flat plate values and 
expect that the error near to the centre line will only have a small effect on 
the total drag. In the second example the values are closer together, the 
extra thickness only rising to about 5% near the centre line. 

6 SOME ACTUAL MAGNITUDES IN A TYPICAL CASE 

It may be of interest to give some idea of the actual magnitudes of the 
various boundary layer thicknesses near the trailing edge of a full-scale wing. 
Vie consider a delta wing with a root chord of 200 feet, flying at a Mach number 
of 2-2 at a height of 55,000 feet. 0 is obtained from the first example whilst 
6" and 6 are found on the assumption that the velocity in the boundary layer 
follows c1 1/7th power law. It has been assumed of course that the boundary 
layer is turbulent sJ.1 over the wing, and that there is zero heat transfer. 

TABLE 2 ' 

Boundary layer thicknesses at the trailing edge 

Y/S 0 6* 6 

0.05 4-l" 14.5" 55*7" 
0.2 2.31~ 8.2" 31.2" 
0.5 1*6" 5-5" 21*1" 
0.8 0.7" 2.6" 9.8” 

7 THE EFFECT ON THE PRESSURE DISTRIBUTION 

Putting c = 
given by 

1 for convenience we may take the momentum thickness 0 to be 

no allowance being made for convergence or divergence of streamlines. C and p 
are given in Table 1 for values n = 4 or n = 5. We sh‘all choose n = 4 as being 
slightly simpler numerically, with no loss in aocuracy. 

Sinoe @ = H0 

where H is given in Table 1, we have 

6* = 0-0370 2-5 c ( i + 0.178~~ ->- I] (x - jf~)0~8R~o~2(~+o~,2~~~o~622~ 

. . ..(lO) 
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We shall write 

(11) 

and note that for 4 = O-8 (corresponding to n = 4) Moo = 2, X = IO 7 we have 
L = 0*00374. 

The effect of the boundary layer on the flow is the seme as though the 
fluid were inviscid, but that the wing z = z(x,y) were replaced by 

2 = z(x,y) + 6”. 

We shall use slender thin wing theory, which is a linear theory. )Ience 
if u 2 is the velocity potenti‘d due to z(x,y) and u-4+ is that due to 6* the 
two values may be added to obtain the overall velocity potentid. At$ is 
oalculated in Appendix I by methods explained in Ref.5. We aim to determine 
cap ¶ the change in pressure coefficient due to displacement thickness. 

The result for 4 = 0.8, corresponding to n = 4, is, if 

ho = -Oe2 
P c 

K(]T# - 2 log $/3s] , W) 

assuming a8 before that C = 1. The value of K is given in Table 3. 

TABLE 3 

Value of K(n) for 4 = 0*8 

d) 00 o* 00 000 o* 0*004 10 00 o* 023 20 0.30 omo63 0.40 0*130 0*50 o* 233 0.60 0.388 

d 
o-70 o* 75 0980 0985 0.90 0.35 I*00 
0.627 o- 798 1.027 1,349 I-852 2*a41 00 

In the first example, for which s = l/3, M = 2, R = 107, L 00 = 0*00374 
ps = 00 577, hp is always positive. Isobars of Aop are shown in Fig.& These 
are likely to be reasonably accurate except in the rear part of the wing near 
to the centre line, where the inoreasing displacement thickness should cause 
an increase in Ao 

P* 
It may be noted that we may not suppose that Ao can be obtained from 

P 
simple wave theory. We show in Fig.5 the value of Ao 

P 
compared with that 

- 11 - 



obtninea by simple wave theory, along the line y/s = O*225. Similar divergences 
occur everywhere on the wing. 

Aop has a singularity at 1~1 = 1. In fact when q = I-E it can be shown 
that 

K(M) = 4a324ckB0’2 - Se0606 + 0-583~ + O(e2) , OS) 

and so the singule,rity is integrable. 

8 THE BOUNDARYLAYERPRESSUREDRAG 

Once hop is known the boundary layer pressure drag coefficient is 
calculated from the formula 

9 1 

AC, = f ay 
s s 

-s IY/Sl 

; taking into acoount both surfaces of the wing. Hence 

1 1 
. 

AcD =4 dlc Aop+c, 
J I 

0 k 

04) 

or writing k = y/s , 

In our first example we evaluate the integral numerically using equation 
(l3) near the singularity. We find for R = 107 that 

AcD = 0*00008 . 

. 

This is only 1% of the invisoid wave drag, which is O*OC821. The wing 
considered is rather thick (maximum thickness/chord ratio of ll*Z? ) and the 
invisoid wave drag varies as the square of the thickness, whilst ACD varies 3s 

the thickness. Henoe if the maximum thickness of the wing were halved the 
inviscid drag would be reduced to one warter the above value whereas ACD would 

be halved. Henoe ACD would rise to ?$L of the inviscid value. On the other hand 
AC, varies -o*-2 as.R _, so that an increase in Reynolds number from IO7 to full scale 
(say 4 x 108) has the effect of halving AC,. 

In the- seo"o@g-e&ample the ppe-ssure drag was diroot;ly calculated by the 
supers&&z are~$$ije~'~ Thi-s drag<was found to be negative and the reduction in 
&rag thereby j&&%&amounted to as mtich as 4*3$ for n Reynolds number of 
2 x 106. The r&d&s &e-given iri Table :4. With a machine programme avnilable 
it ~3s possible tij take into account the increased thickenin, of the boundary 
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layer near to the Dentrc line. It was found, however, to make no appreciable 
difference to the overall drag. These calculations were performed by 
J.A. Beasley, who devised the machine programme. 

TABLE 4 
Pressure drag coefficients for the wing tested by Firmin. M = 2*2 

9 

R cD Decrease due to 
boundary layer 

co 0*00562 

IO7 o-00544 302% 

6 x ,06 0*00543 3*4% 

2 x ,06 0*00538 4*3% 

THE SKIN FRICTION DRAG 

total 
plate 

For a thin wing with a boundary layer development as described above the 
skin friction drag will be approximately the same as that over a flat 
with the same planform. A fair approximation to this may be found by 

assuming the plate to be rectangular with a chord equal to the mean chord of 
the wing. We may then find the drag in the manner recommended by Monaghan6. 
This gives an overall drag coefficient, taking both sides of the plate into 
consideration, of 

cF = 0992F T; pog10 R ($."i -2*6 , 05) 

where R is the Reynolds number based on mean chord and on free stream conditions 
and, in the case of zero heat transfer, 

TW 
T 

= I + 0478~: . 

This gives for the wing discussed earlier, with a mean chord of 100 feet, 
flying at Mach 2*2 at 55,000 feet 

cF = 0*00257 . 

This will apply even if the wing varies in shape and thickness, so long 
as the Reynolds number, based on mean chord, is unchanged and the wing is thin 
and has a low lift coefficient with attached flow. 

. 

If the wing is a delta with rhombic oross-sections and Lord V area 
distribution and maximum thickness chord ratio II*% the wave drag coefficient 
is 0*00821, whilst for 506';~ thickness the coefficient is O*OO2O5. In the 
latter case the skin friction drag and wave drag are roughly of the same order 
of magnitude, whilst the boundary layer pressure drag is 0*5$ of the total 
wave drag plus skin friction drag. 

”  13 -  



The streamline convergence towards the rear near to the centre line, 
ignored in the above estimates, will cause an increased pressure coefficient, 
and this, being on backwards facing surfaces, will reduce the pressure drag 
slightly in the first example. In the second example the chnn.:*c is negligible, 

10 CONCLUSIONS 

The main results are that at moderate Mach numbcrs:- 

(1) The boundary layer over a thin delta wing at zero lift develops in 
much the semo way as though the wing were a flat plate of the same planform 
placed edge on to the stream, and the skin friction is the scamo as that of a . 
flat plate. 

(2) At test and full scale Reynolds numbers the boundary layer normal 
pressure drag is in general small enough to be neglected compared with the 
inviscid wave drag rtna skin friction drag, though this mcy not be true for a 
wing with large slopes at the rear, as in our seoond example. 

There seems to be no reason why these conclusions should not apply to 
other planforms besides deltas so long as the wings are slender and thin. 

Little experimental evidence for these results is available; however it 
was found for the first example that the sum of the calculated inviscid wave 
drag of the wing and the skin friction of a flat plate of the same planf'orm was 
in fair agreement with the measured overall drag the mnximun error being about 
2$. Agreement was not quite so good in the second example, tho error being 
about 5%. 

It is likely that the cause of the disagreement lies mainly in errors in 
the boundary layer part of the calculations. These ultimately depend on the 
assumption of some skin friction law for flow over a flat plate. In view of the 
small effect of pressure gradient which the calculations show, the use of flat 
plate laws may possibly be justified, but one must remember that Monaghan did 
not claim better than lC@ accuracy even for flat plate flows. 

There are nevertheless other sources of error which should not be 
forgotten. One of these is the use of linear theo 

"5 
to determine the inviscid 

flow. In the first ex‘arnple considered here (Lord V' slender theory leads to 
quite accurate pressure distributions, but it does not do so for the seoond 
exnmple (Firmin's Wing 3). Calculations by linear thin-wing theory give 
improved results for this case, but even so the measured pressure near to the 
trailing edge does not agree too well with calculations. Finally, one must 
bear in mind that in the experiments the bands of roughness put on near the 
leading edges to induoe transition may provide yet another source of error, in 
spite of efforts made to allow for this. 

If boundary layer profiles near to the trailing edges of slender wings 
were measured at a number of spanwise stations it might be possible to obtain 
further verifioation of the suggestions here presented. 
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LIST OF SYMBOLS 

' - Id, -I + Id 

see equation (1) and Table I 

see equation (1) and Table 1 

root chord of wing 

pressure coefficient 

drag coefficient 

increment in drag coefficient 

skin friction drag coefficient 

see equation (1) and Table 1 

see equation (1) and Table 1 

defined in equations (16) and (17) 

s*/e 

defined in equation (19) 

Y/S 

see equation (20) and Table 3 

index in equation (11) 

coefficient in equation (11) for SXs 

Mach number 

index in skin friction law Ref.2 

see equation (I) Land Table 1 

defined by equation (6) 

Reynolds number = u,c/u 00 

uee/ve 

semi-span at trailing edge 

area of section of wing by plane x = constant 

S distance measured along streamlines in Section 5 
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temperature 

LIST OF SYMBOLS (Cont'd) 

velocity: comljonents in x rind y directions 

resultant velooity 

total volume of wing 

Cartesian co-ordinates,x along the centre Sine, the median plane 
beirig 2; = 0. 

J-- M2-1 

Euler's gonstant = O* 577216 

boundary layer thickness 

displacement thickness 

given by TJ = l-c in equation (13) 

Y/3X 

momentum thickness 

kinematio &$cosity 

velocity potential 

Eulep's JI: fun&iqn 

Subscripts:- 

00 refers to values at infinity 

e .z&?%s to ~2~3 &Qst ou%d.do the boundary layer 

W m&rs to values- on the surf~roo of the wing 

In Ee&s3 3% ua%ue73 :8$ n %W~d!p0sit~on 
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APPENDIX 1 

DETERJ¶INATION OF A$ AND Ac- 

The equation of the displacement surface is 

By Reference 5 WC have 

where 
9x 

F, = 
J 

* log Iy-y' 1 ay' , (16) 

-9X 
. 

X 

F2 = As'(x) log &3 - 
J 

As"(x) log (x-x') dx' , 
0 

sx Hx> = 4 s A&Y) ay , 
0 

p2 p. =M 

From equation (18) we have 

4Lsxh’ 
Aed = &, ) w4 = 4&sxe ) As”(X) = usexe , 

and SO 
X 

F2 = 4.Lsxc log $p - 4Lse 
I 

x@' log (x-x') ax' 
0 

07) 

(18) 

= 4Lsx4' log *p-i: Jog x + y + $(&I) 
c 3 

) 
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Appendix 1 

on putting xt = tx in the integral and noting that, if y is Euler's constant 
and $(&I) is Nor!s $ function7, 

1 

e 
s 

8-l log(W) at = -y -&!5+1) . 
0 

This may be verified by term-by-term integration and the use of the 
series for $(&1)7, namely 

since 

n=l 

Hence 

aF2 
ax = &I&x e' 

c 
log $p - log x + y + $(e$ 

Y 

tow = ++w l 
. 

: Now F, may be written, putting y' = sxt' 

1 

Fl 
= 4L sxe (I-#-' 

I 
log ly-sxtl + log (y+sxV) at' 

I 0 c 

I = eLsxe s c 8-l 2 log sx + log It-al + log (b-t)? dt , 
0 J 

on putting 

t’ = j-t , a = ~-frl( , b = I + 191 , q = y/sx , 

Henae 

aF1 I 
ax= 4?Lsxe-' 

c 
2 log sx + e L-c 

s c 
8-l log It-al + log (b-t) 

3 
dt 

0 

-l 

+ Id I ( 
p4 1 1 ‘t-a-yJzpt . 

0 ) 3 

t. 



Appendix ? 

On evaluating by parts of the first integral we may reduce this to 

aFl 
dx= eLsxe-' - 

[ 
I& + J, + 2 1% lrll 1 9 

where ' e-1 
14 = 

' te-l 

J 
t-a at 3 Je = 

s 
& at . 

0 0 

(19) 

Cauchy prinoipal values are to be taken where necessary. 

Henoe we have 

AC = -” = + .g& 
P 00 60 ax 

24LsxG' = 
7c c 

K(q)- 2 log &s 
I 

, 

where 

K(q) = I4 - Ja - 2 log 171 - 2 &d'(@l l 

If 4 = 4/5 we find from the tables8 that 

Jr(O*8) = -0965009 , y = 0*577216 

and henoe 

'O-8 
and Joe8 may be evaluated numericall;r for a series of values of q and 

henoe K determined. Table 3 gives values of K for a series of values of q* 

If q = I-E, where E is small, K(q) behaves like e -0*2 

shown that for 4 = I+/5 
; in faot it can be 

K( 1-d = 4*324() =“‘2 - 5*0606 + 0'583~ + O(e2) , 
and so K(q) has-an integrablo sirqularity at q = I. 
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