

MINISTRY OF SUPPLY
aeronautical research council CURRENT PAPERS

The Theoretical Lift and
 Pitching Moment of a Highly-Swept Delta Wing on a Body of Elliptic Cross-section.

By
T. Nonweiler, B.Sc.

Crown Copyright Reserved

The Theoretical Lift and Pitching Moment of a Fighly-Swept

 Delta Wing on a Body of Elliptic Crossmectionby
T. Nonveiler, B.Sc.

SUMMSY

Thas note invostagates the laft, patohing moment and induced drag coofficients of a highly-swept delta wing attachod to an elliptic cylindur of consiant cross-scotion. Thoso coufficients are derived by treating the changes in perturbation velocity parallol to the free-stream direction as small comparcd with the velocity changes in transverse planes.

Curves are givon which cnable these coefficients to be determinea for various values of the body width and body height.

LIST OR COINTEINTS

Page
1 Introduction 3
2 Hithomaticul analysis; 3
2.1 Lzi't 3
2.2 Pitohing Rument 7
2.3 Inducod Drag 8
List of Symbols 10
Refucunces 11

IISTR OH FICUEES

FigureNomenclaturs1Vanaution of Inft Curve Slope with Body Wadth and Body 2 Huight.
Varmution of Init Curvo Slope with licdy Frontal irco and 3Body Hezght/Bcdy Width Katic (assuming the Rody is onInfinito Ellinptic Cylındcr).
Variation ci Lift Curvo Slopo vith INdy Hrental Aroa and Body 4Height/body Viath Ratio (includang the extrm lifft due to theNowe of a Pounted Eudy).
Variation of aurodynamıc Centre Eocition witn Budy wiath and 5 Huight.

The acrodynamic properties of slender delta wing + olroular body combinatzons havo been investigatcd by Sprozterl using the "transversestrap ${ }^{\text {H }}$ method of solution. Thas thcory assumes that the term $\left(1-N^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}$ of the linearised cquation for tho potentaal is negligible, and the solutions are constructod on the basis of 2 potential flow in planes normal to the stream darection. The method is striotly applicable only if the apex angle of the delta-wans and the slope of the surface of the body are vanishingly small.

The presunt note oxtends the work of reference I for a delta wing + body combination assumang tho body to be an infinite ellaptic cylinder and the wing to bo of zoro thickness. The results are obtainod by a conformal transformation of the flow in transverse planes about the fclta wang + ciroular body ecabination.

2 Mathomatical Analysis

Consider flow in planes normal to the stream direction about 2 wing-body combination: the transformation

$$
\begin{equation*}
\xi=y+i z=\ddot{\square}+\frac{a^{2} \lambda}{\square} \tag{I}
\end{equation*}
$$

where ${ }^{-1}=Y+i Z$, transforms a cırcular body + wing combination in the y, z plano unto an ellyptic body + wing combination in the y, z planc. If the contre of the bady is at $Y=Z=0$, the radius of the body is a, and the cxtremtios of the vang arc at $Y= \pm a$ and $Y= \pm s$, thon in tho y, z planu thas boundary ds transfuncd into:

$$
\text { the ellipsc, } \frac{y^{2}}{(1+\lambda)^{2}}+\frac{z^{2}}{(1-\lambda)^{2}}=a^{2}
$$

and the straight Innc $z=0$ for $a(1+\lambda) \leqslant|y| \leqslant s+\frac{\lambda_{2}{ }^{2}}{s}$

If the ellipse is a transvorso scotion of a right elliptic cylinder with axis $y=z=0$, and tho wing-plan form is assumed triangular (sec Fig. 1), then

$$
\frac{\partial a}{\partial x}=\frac{\partial \lambda}{\partial x}=0, \operatorname{and} \frac{\partial b}{\partial x}=\tan \Gamma
$$

(whor $b=s+\frac{\lambda a^{2}}{s}$) for $0 \leqslant x \leqslant c$.

2.1 Lart

From Bornouilly's Equation for Iinearised flow the prossure difforonce butwoen the upger and lower surfaces of the wing or body is given by

$$
\begin{equation*}
\frac{\Delta p}{q}=\frac{4}{v} \frac{\partial \varphi}{\partial x} \tag{2}
\end{equation*}
$$

and integrating over the wing sumpace

$$
\begin{equation*}
C_{L_{W}}=\frac{4}{U S} \iint \frac{\partial \varphi}{\partial x} d x d y=\frac{8}{U S} \int_{a(1+\lambda)}^{b_{\mathrm{T}}} \varphi_{\mathrm{TE}} d y \tag{3}
\end{equation*}
$$

where $\varphi_{T E}$ is the value of the potential at the wing trailing edge, since the potential at the wing leading edge is zero, and b_{m} is the valuo of b at the wing trailing odge. From Ref. I, by a transformation of the potential due to flow past a flat plato, it is shown that

$$
\begin{equation*}
\varphi=U_{\alpha} \sqrt{\left(s+\frac{a^{2}}{s}\right)^{2}-\left(Y+\frac{a^{2}}{Y}\right)^{2}} \tag{4}
\end{equation*}
$$

On the wint surface where $z=0$ and $z=0$, wo have from (1)

$$
\begin{equation*}
d y=\left(1-\frac{a^{2} \lambda}{\mathrm{Y}^{2}}\right) d \underline{v} \tag{5}
\end{equation*}
$$

Therefore on substztuting from (4) and (5) in (3).

$$
\begin{align*}
\sigma_{I_{h}}= & \frac{8}{U S} \int_{a}^{s m} \varphi_{I E} \frac{d y}{d Y} d Y \\
= & \frac{2 \alpha}{S}\left\{(I+\lambda)\left[\left(s_{m}+\frac{a^{2}}{s_{m}}\right)^{2} \sin ^{-1}\left(\frac{s_{m}^{2}-a^{2}}{s_{m}^{2}+a^{2}}\right)-2 a\left(s_{m}-\frac{a^{2}}{s_{m}}\right)\right]\right. \\
& \left.+(1-\lambda)\left(s_{m}-\frac{a^{2}}{s_{m}}\right)^{2} \frac{\pi}{2}\right\} \tag{6}
\end{align*}
$$

whore s_{m} is the valuc of s at the wing trailing odge.

Likewise, integrating over the body surface

$$
\begin{equation*}
O_{I_{B}}=\frac{8}{U S} \int_{0}^{a(I+\lambda)}\left(\left.\varphi\right|_{x=0}-\left.\varphi\right|_{x=0}\right) d y \tag{7}
\end{equation*}
$$

Where $\left.\varphi\right|_{x=0}$ and $\left.\varphi\right|_{x=0}$ are the values of the potential on the surface of the body at the planes $x=0$ and $x=0$. (See Fig. I).

From Ref. I

$$
\begin{equation*}
\left.\varphi\right|_{Y^{2}+Z^{2}=a^{2}}=U_{\alpha} \sqrt{\left(s+\frac{a^{2}}{s}\right)^{2}-4 Y^{2}} \tag{8}
\end{equation*}
$$

On the body surface where

$$
z^{2}=a^{2}-y^{2} \text { or } \frac{z^{2}}{(1-\lambda)^{2}}=a^{2}-\frac{y^{2}}{(1+\lambda)^{2}}
$$

we have from (1)

$$
\begin{equation*}
d y=(1+\lambda) d Y \tag{9}
\end{equation*}
$$

Therefore, substituting from (8) and (9) in (7).

$$
\begin{align*}
O_{L_{B}}= & \frac{B}{U S}(1+\lambda) \int_{0}^{a}\binom{\left.\varphi\right|_{Y} Y^{2}+Z^{2}=a^{2}-\left.\varphi\right|_{Y} Y^{2}+Z^{2}=a^{2}}{=S_{B}} d Y \\
= & \frac{2 \alpha}{S}(1+\lambda)\left[2 a\left(s_{m}-\frac{a^{2}}{s_{m}}\right)\right. \\
& \left.+\left(s_{m}-\frac{a^{2}}{s_{m}}\right)^{2} \frac{\pi}{2}-\left(s_{m}+\frac{a^{2}}{s_{m}}\right)^{2} \sin ^{-1}\left(\frac{s_{m}^{2}-a^{2}}{s_{m}^{2}+a^{2}}\right)\right] \tag{10}
\end{align*}
$$

Thus from (6) ana (10), the total lift coefficient is

$$
\begin{equation*}
C_{I_{1}}=G_{L_{w}}+C_{L_{B}}=\frac{4 \alpha}{\mathbb{S}} \mathrm{~s}_{\mathrm{m}}^{2}\left(1-\frac{\mathrm{a}^{2}}{\mathrm{~s}_{\mathrm{m}}^{2}}\right)^{2} \frac{\pi}{2} \tag{1.1}
\end{equation*}
$$

Since $b_{m}=s_{m}+\frac{\lambda_{a}{ }^{2}}{s_{m}}$, frem definction

$$
\text { i.e. } \quad s_{m}=\frac{b_{m}+\sqrt{b_{m}^{2}-4 \lambda_{a}^{2}}}{2}
$$

we have

$$
\begin{align*}
C_{I} & =\frac{2 \pi \alpha}{S}\left[\frac{b_{m}^{2}}{\lambda^{2}}+\left(1-\frac{1}{\lambda^{2}}\right) \frac{b_{m}^{2}-2 \lambda a^{2}+b_{m} \sqrt{b_{m}^{2}-4 \lambda a^{2}}}{2}-2\left(1+\frac{1}{\lambda}\right) a^{2}\right] \\
& \therefore \frac{\partial G_{L}}{\partial \alpha}=\frac{\pi A}{2}\left[\left(\frac{1+\lambda^{2}}{2 \lambda^{2}}\right)-\frac{\sigma^{2}}{\lambda}-\left(\frac{1-\lambda^{2}}{2 \lambda^{2}}\right) \sqrt{1-\frac{4 \lambda}{(I+\lambda)^{2}} \sigma^{2}}\right] \quad \text { (12) } \tag{12}
\end{align*}
$$

where $\sigma=(1+\lambda) \frac{a}{b_{n 1}}$ is the ratio of body width to gross wing span, and $A=\frac{4 b_{m}^{2}}{S}$ is the gross wing aspect ratio.

For particular cases we have
(i) $\sigma=0$ (i.e. there is no body)

$$
\frac{\partial C_{\hbar}}{\partial \alpha}=\frac{\pi A}{2}
$$

(ii) $\sigma=I$ (2.e. there is no wing)

$$
\frac{\partial G_{\underline{L}}}{\partial \alpha}=0
$$

(iii) $\lambda=I$ (i.e. the body is a laminar strip)

$$
\frac{\partial G_{I}}{\partial \alpha}=\frac{\pi A}{2}\left(I-\sigma^{2}\right)
$$

(iv) $\lambda=0$ (i.e the body is circular)

$$
\frac{\partial C_{I}}{\partial \alpha}=\frac{\pi A}{2}\left(I-\sigma^{2}\right)^{2}
$$

(v) $\quad \lambda=-1$ (i.e. the bcdy is replaced by two infinite walls cerpendicular to the wang)

The value of $\frac{2}{\pi_{L}} \frac{\partial C_{I}}{\partial x}$ from equation (12) is plotted in Fig, 2 as a function of

$$
\frac{\mathrm{d}}{2 \mathrm{~b}_{\mathrm{m}}}=\sigma, \text { and } \frac{\mathrm{h}}{\mathrm{~d}}=\frac{2-\lambda}{I+\lambda}
$$

where d is the width of the body and h is its height - as show in Fig. I.

We see from F2g. 2 that $\frac{\partial C_{I}}{\partial \alpha}$ is reduoed by inoreasing, separately, either the body wadth or the body heisht. It is purtinent, thereforc, to znvestagatu whethur for a iven body frontal area, there is an optimum ratio of buay height to body width.

In Fl_{E}. $3, \frac{2}{\pi A} \cdot \frac{\partial \mathrm{C}_{1}}{\partial x}$ is plotted as a iunction of body frontal area $\frac{\text { gross wing span })^{2}}{(g)=}$ $\frac{\pi}{4} \sigma^{2}\left(\frac{1-\lambda}{1+\lambda}\right)$, and $\frac{h}{d}$.

We seo that thero is no optimum in the strict sense, since for a given ratio $\frac{b o d y \text { Irontal area }}{(g r o s s \text { wing span })^{2}}, \frac{\partial G_{I}}{\partial \alpha}$ increases progressively as the mato $\frac{b o d y ~ h e a g h t ~}{\text { body width }}$ noreases, $\frac{\partial L}{\partial \alpha}$ bojng cquil to the wing alone value of $\frac{1}{2} \pi$ in the extreme case when the body is of unfinite hoight and zero width. Even this conclusion only applies to the particular type of body conchdered in this note, namely on anfunite oylunder. A more realistic body would have a puznted nose, and Waxd ${ }^{2}$ has shown that the lift on a pointed bcdy of clliptic cross section due to the nose is $\frac{1}{4} \pi p U^{2} d^{2} \alpha$. The cxtra lift that should be added to our results to allow for the nose of a pointed body may therefore be wratiten as

$$
\Delta\left(\frac{\partial C_{I}}{\partial \alpha}\right)=\frac{\pi_{+}}{2} \sigma^{2}
$$

and Fig. 4 repeats the amparison of Fig. 3, but for a body having a pointed nose. sgain thore is no optamum in tho striot sense, since for a given ratio $\frac{\text { body frontul area }}{(\text { gross wing skan })^{2}} \frac{\partial C_{L}}{\partial \alpha}$ inoreases progressively as tho ratio $\frac{b o d y \text { height }}{\text { body width }}$ decreases, $\frac{\partial I_{\text {I }}}{\partial \alpha}$ now being equal to the wing alone valuo of $\frac{1}{2} \pi i$ in the oxtreme case when the body diamoter is equal to the gross wine spon (i.e. there is no nett ving).

These concius.cas diwplay the danger of making any general deductions as to the benerit or otherwiso of using wade or tall bodics. In any case, a true appraisement should znolude a discussion of the drag of the, canbination.

2.2 Patohing Momont

If $G_{L}(x)=L(x) / q\{$, where $L(x)$ denotes the total lift on the wing + body ahead of tho plano x,
$\left(\frac{\vec{c}}{c}\right) \quad C_{M}=\int_{i}^{\prime}\left(1-\frac{x}{c}\right) d C_{L}(x)=\int^{\prime} C_{L}(x) d\left(\frac{x}{c}\right)=\frac{I}{b_{m}-\frac{d}{2}} \int_{a}^{S_{m}} C_{L}(x) \frac{d b}{d s} d s$

But

$$
b=s+\frac{\lambda a^{2}}{s}
$$

and

$$
\sigma_{L}(x)=\frac{2 \pi \alpha}{s} s^{2}\left(1-\frac{a^{2}}{s^{2}}\right)^{2}
$$

from (11).
Hence, perfoming the intogration in (13).
$\left.\begin{array}{rl} & \frac{d G_{M}}{d C_{L}}\end{array}=\frac{c}{30} \frac{\left(1 \cdots \frac{a}{s_{m}}\right)^{2}}{\left(1+\frac{a}{s_{m}}\right)^{2}}\left[1+\frac{4 a}{b_{m}}\left(\frac{1-\frac{\lambda a}{s_{m}}}{1-\frac{a}{s_{m}}}\right)\right] /\left(1-\frac{a}{2 b}\right)\right]\left(1-\frac{2 \sigma^{2}}{(1+\sigma)^{2}}\left[1+\frac{4 \lambda \sigma}{(1+\lambda)^{2}}+\left(\frac{1-\lambda}{1+\lambda}\right) \sqrt{1-\frac{4 \lambda \sigma^{2}}{(1+\lambda)^{2}}}\right]\right\}\left(1 L_{4}\right)$
For particular cases we have
(i) $\sigma=0$ (i.t. there is no body)
$\frac{\mathrm{dC}_{M}}{\mathrm{dC}_{\mathrm{L}}}=\frac{2}{3}$
(ii) $\sigma=1$ (i.t. there is no wing)
$\frac{d C_{M}}{d C_{L}}=0$
(iiii) $\lambda=1$ (1.e. the body is a 1aminar etrip)
$\frac{\mathrm{dC}_{\mathrm{MI}}}{\mathrm{dC}_{\mathrm{L}}}=\frac{2}{3}(1-\sigma)\left(\frac{1+2 \sigma}{1+\sigma}\right)$
(iv) $\lambda=0$ (i.e. the body is circular) $\frac{\mathrm{dC}_{\mathrm{M}}}{\mathrm{dC}_{\mathrm{L}}}=\frac{2}{3}(1-\sigma) \frac{1+3 \sigma}{(1+\sigma)^{2}}$
(v) $\lambda=-1$ (i.c. tho bady is replaced by two infinite walls perpendicular to the wing).

In Fig. 5 the position of the aerodynamic centre as a fraction of the distance forward of the wang truiling cage is shown as a function of $\frac{\mathrm{d}}{2 \mathrm{~b}_{\mathrm{ra}}}=\sigma$, and $\frac{\mathrm{h}}{\mathrm{d}}=\frac{1-\lambda}{1+\lambda}$.

2.3 Induced Drog

The induced drag is equal to the resolved component of the normal force in the frue stream direction, less the force due to the suotion alun the wing leading odge.
point according to the theorem of Blasjus, the suction forec at a sharp point is givon by

$$
\lim _{\gamma \rightarrow 0} \frac{1}{2} i \rho:\left(\frac{d,}{d \xi}\right)^{2} d \xi
$$

where w Is the complux potentiul of the flow in the (y, z) plane and γ is a small circle about tho sharp point.

By by Cauchy's Thucrem,

$$
\lim _{\gamma \rightarrow 0} \frac{\frac{1}{2} i_{p} \int_{\gamma}^{\left(\frac{d w}{d \xi}\right)^{2}} d \xi=-\pi p \lim _{\xi \rightarrow \xi_{0}}\left(\xi-\xi_{0}\right)\left(\frac{d w}{d \xi}\right)^{2}, ~(\xi)}{}
$$

where $\xi=\xi_{0}$ is the posation o C the sharp point.
Honce, tho resolvod component of tho force at tho wing leading cdge ($y=b$) in the y-diroction i_{i}

$$
\begin{aligned}
-\pi \rho \operatorname{Lim}\left(\xi-\xi_{0}\right)\left(\frac{d w}{d \xi}\right)^{2} & =-\pi \rho \lim \left(\ldots-\vec{F}_{10}\right)\left(\frac{d,-1}{d \xi}\right)\left(\frac{d \xi_{j}}{d-}\right)^{2} \\
& =-\pi \varphi \lim _{Y \rightarrow \mathrm{~S}}(Y-s)\left(\frac{d Y}{d y}\right)\left(\frac{\partial \phi}{\partial Y}\right)^{2}
\end{aligned}
$$

Hunoc, from (4) and (b), the force in the y-durection per unit chordwiso length is

$$
\begin{gathered}
\pi \rho U^{2} \alpha_{s}^{2}\left(1+\frac{a^{2}}{s^{2}}\right)^{2}\left(1-\frac{a^{2}}{s^{2}}\right)^{2}\left(1-\frac{\lambda a^{2}}{s^{2}} \lim _{Y \rightarrow s}\left\{(s-Y) /\left(\left(s+\frac{a^{2}}{s}\right)^{2}-\left(Y+\frac{a^{2}}{Y}\right)^{2}\right)\right\}\right. \\
=\frac{\pi}{2} \rho U^{2} \alpha^{2} \quad s\left(1-\frac{a^{4}}{s^{4}}\right) /\left(1-\frac{\lambda a^{2}}{s^{2}}\right)
\end{gathered}
$$

To ubtain the forec porpendzoular to the loading-edge por unit
chordwise longth, this expression must be multzplicd by sec Γ. Integratine, for all x bctwoon the plane of the wing-body junction and the wing trailingedge, it follows that the componont of drag force contributed by both siules of the wing is

$$
\pi \rho U^{2} \alpha^{2} \int_{a}^{S_{m}} s \frac{\left(1-\frac{a^{4}}{s^{4}}\right)}{\left(1-\frac{\lambda^{2}}{s^{2}}\right)} \frac{d b}{d u} d s=\frac{\pi}{2} \rho U^{2} \alpha^{2} s_{m}^{2}\left(1-\frac{a^{2}}{s_{m}^{2}}\right)^{2}
$$

By comparison with equation (11), it follows that,

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}_{\mathrm{i}}}=\frac{1}{-} \alpha \mathrm{C}_{\mathrm{I}_{1}} \tag{15}
\end{equation*}
$$

This simple expression may be stated in the more usual form:

$$
\pi A \frac{C_{D_{i}}}{C_{L}^{2}}=I /\left(\frac{2}{\pi_{A}} \frac{\partial C_{L}}{\partial \alpha}\right)
$$

where the term on the right-hand side can be obtained from Fig. 2 .

IIT'T OF SMMBCLS

A $\quad=4 \mathrm{~b}_{\mathrm{m}}{ }^{2} / \mathrm{S}$ (gross wing aspect ratio)
$C_{D_{i}}=$ drag coeflicient of wing + body combination $\left(=C_{L^{a}}+\Delta C_{D_{i}}\right)$
$\left.\begin{array}{l}C_{L_{B}}=\text { İitt coefficient of body } \\ C_{L_{W}}=\| \quad " \quad " \text { wang }\end{array}\right\}=\frac{\text { Iift }}{\text { qS }}$
$C_{L}=\sigma_{L_{B}}+\sigma_{I_{W}}=\frac{I(c)}{q S}$
$\mathrm{G}_{\mathrm{M}} \quad=\mathrm{pitching}$ moment of wing + boay combination about wing trailing edge $\left(=\frac{\text { moment }}{q, S}\right)$
$L\left(x_{0}\right)=$ lift on wing + body ahedd of plane $x=x_{0}$.
$S \quad=$ gross wing area $\left(=\frac{b_{m} c}{1-\sigma}\right)$
$\mathrm{U}=$ speed of froe-stream
Y Y = axes about circular body + wing combination ($Y=Z=0$ is body
2 axis, $Z=0$ is plane of wing
$a \quad=$ radius of body in (Y, Z) plane $\left(=\frac{a+h}{4}\right)$
b $\quad=$ local wing gross semi-span in (y, z) plane
$b_{m} \quad=$ value of b at wing trailing edge (i.e. at $x=0$)
o $\quad=$ root chord of wing (i.e. value of x at wing trailingmedge)
$\overline{\mathrm{c}} \quad=$ gross wing standard mean chord $=\frac{1}{2} \mathrm{o} /(1-\sigma)$

\begin{tabular}{|c|c|}
\hline d \& \(=\) width of elliptic bcãy \\
\hline h \& \(=\) height of elliptic boay \\
\hline i \& \[
=\sqrt{-I}
\] \\
\hline \(\Delta \mathrm{p}\) \& \(=\) pressure difference between upper and lower suxfaces of wing or body. \\
\hline q \& \(=\frac{1}{2} \rho u^{2}\) \\
\hline s \& \[
=\text { local wing gross sem-span in }(Y, Z) \text { plane }\left(=\frac{b+\sqrt{b}^{2}-4 \lambda a^{2}}{2}\right)
\] \\
\hline \(s_{m}\) \& \(=\) value of s at wng tranling-edge \\
\hline w \& \(=\) complex potential \((=\phi+i \psi)\) \\
\hline \(\left.\begin{array}{l}x \\ y \\ z\end{array}\right\}\) \& \(=\) axes about elliptic wing + body combination (\(y=z=0\) 2s body axis, \(z=0\) us plane of the wing) \\
\hline \(\Gamma\) \& \(=\) semi-apex anble of delta whig \(\left(=\tan ^{-1} \frac{d b}{d x}\right)\) \\
\hline \(\triangle\) \& \(=Y+2 Z\) \\
\hline \(a\) \& \(=\) incidence of whing to iree-stream \\
\hline \(\lambda\) \& \[
=\frac{d-h}{d+h} \text { (a variable parameter of the conformal transformation) }
\] \\
\hline \(\xi\) \& \[
=y+i z=\vec{z}+\frac{\lambda a^{2}}{\vec{\exists}}
\] \\
\hline \(p\) \& = air density \\
\hline \(\sigma\) \& \[
=\frac{\mathrm{d}}{2 \mathrm{~b}_{\mathrm{m}}}
\] \\
\hline \(\varphi\) \& = potential function \\
\hline \(\psi\) \& = stream function. \\
\hline \& REFHRCNCES \\
\hline No. \& Author TTitie etc. \\
\hline 1 \& \begin{tabular}{l}
Sprozter, J. \\
Aerodynamic Propertzes of Slender Wing-Boay Combinations at Subsonic, Transonzc and Supurscnic Speeds, NAGA TN 1662, 1.948
\end{tabular} \\
\hline 2 \& Ward, G.W. Supersonic Flow past slender Pointed Bodies

Guart. Journ. Moch. and Applied Math, Vol. II,
Pt. 1949$).$

\hline
\end{tabular}

FIG.I NOMENCLATURE

FIG. 2

fig. 2 VARIATION OF LIFT CURVE SLOPE WITH BODY WIDTH AND BODY HEIGHT.

FIG 3 VARIATION OF LIFT CURVE SLOPE WITH BODY FRONTAL AREA \& BODY HEIGHT/BODY WIDTH RATIO.
(ASSUMING THE BODY IS AN INFINITE ELLIPTIC CYLINDER.)

FIG. 4 VARIATION OF LIFT CURVE SLOPE WITH BODY FRONTAL AREA \& BODY HEIGHT / BODY WIDTH RATIO.
(INCLUDING THE EXTRA LIFT dUE TO THE NOSE OF A POINTED BODY.)

published by his majesty's stationery office
To be purchased from
York House, Kıngsway, london, w c 2, 429 Oxford Street, LONDON, w 1,
P.O. Box 569, london, SE1,

13a Castle Street, edinburgh, 2 | 1 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Street, belfast,
or from any Bookseller
1951
Price 3s. 6d. net
printed in great britain

