








1. INTRODUCTION 

The two-dlmenslonal flow past a normal flat plate 1s perhaps the 

simplest bluff-body flow, being symmetrical and having fixed separation 

points. In itself this flow 1s of little practical Interest, since few aero- 

or hydrodynsmlcal devices have parts conslstlng of flat plates broadside to 

the stream. However It 1s useful to try and obtain a thorough understanding 
of the flat-plate flow, to throw light both on lndustrlal aerodynamic 

problems, such as wind leads on chzmney stacks, and also on cavltatlng llquld 

flcws, such as occur with fully cavltatlng hydrofoils or propellers. 

The flow past a flat plate with cavltatlon is not radically different 

from that without, because In both cases the pressure 1s roughly constant for 

some distance downstream of the plate along the mean-flow streamlines, such 
CD in Fig.1, passing through the edges of the plate. This constant pressure 
1s usually close to the vapour pressure, the lolvest pressure achieved anywhere 

1n the flow field, when cavitation occurs, though with non-cavltatlng flow the 
pressure on the centre line of the wake Just downstresm of the plats can be 

much lower than that along CD. In either case, however, along the stream- 

line through C, the pressure downstream cf the lnltial constant-pressure 

portion CD rises till It reaches the free-stream value far downstream. 

In non-cavitating flow the average pressure along CD, and corres- 

pondingly the drag coefflclent, are not known a prlorl. Therefore If they 
could be predlcted theoretxally It would advance our understanding of the 
problem, as It would also If we could fully account for the fluctuating 

features of the flow. The fluctuations, lnvolvlng unsteady force components 

on the body, are associated with the periodic shedding of vortices to form 
something like a Karman vortex street in the wake, though at the higher 
Reynolds numbers these vortices are turbulent and the shedding 1s not 

perfectly regular. These unsteady effects occur when the cncomlng stream 
itself is steady, but It would also be useful to find out what happens when 

the oncoming stream is gusty, unsteady In speed and dlrectlon, like the 

natural wind. 

In cavltatlng flow with extensive vaporous cavitation, the cavity pre- 

sure 1s known a priori, being almost equal to the vapour pressure, and hence 
the drag coefficient 1s also approximately known. The streamwlse extent of 
the cavity, however, 1s not known, and It would be useful to understand what 
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determInes its posltlon of closure. This 1s because hydrodynamlcal devices 

lnvolvmg fiotv cavltles are unlikely to operate successfully unless the 

csntles terminate well downstream of their solld surfaces. If this condltlon 
1s not met, ser'lsus buffeting will probably occur, somewhat sunllar to the 

comppressibillty buffet an alrcraft may experience at transonlc speeds. 

Cavltatlon buffet arises from the unsteady processes of entrainment 
at the downstream ends of cavltles. These processes are probably related to 
the tendency, mentIoned above, for unsteady vortex shedding to occur behlnd a 

biuff body. A detalled understsndlng of them, however, can probably cnly be 

gained with the heip of experiments. 

The present paper describes contrlbutlons towards solv;ng some of the 

above problems. The extent to whvhlch steady, lnvlscld-flaw models are appll- 
cable to the real flaws 1s discussed. A new lnvlscld model 1s developed, 
with the alIii of predlctlng features such as cavity length better than previous 

models. Experiments on air flow past a flat plate are described, and the 
results compared with those of the thecry. It 1s intended also to lnvestl- 

gate experimentally cavltatlng water flows past a plate: these experiments 

Will, it 1s hoped, form the subJect of a later paper. 

2. THE APPLICABILITY OF INVISCID-FLOW MODELS 

In the real flow past a flat plate, the mean-flow streamlines through 
the plate edges must, as shown 1.n Fig. 1, return to the axis of symmetry 
downstream. If, however, one were to calculate the lnvlscld flow past the 

bcundary ABCDEF of Fig. 1, rt would probably not be very slmllar to the 
real flow because 1n reality frlctlonal effects aFe important along and near 
DEF. Ho,wever, It may be possible to cbtaln a fair representation of the 

real flew If, in the lnvlscld-flow model, the streamlines sprlnglng from the 
plate edges are sucl-z that the pressure 1s constant along them for some 

drstance downstream of the plate, and If they meet certain other condltlons 

discussed below. These streamlines through the plate edges ape called 
"free streamlines" because their shape 1s lnltlally unknown, and part of 

the mathema;lcal problem 1s to find It. This approach 1s an extension of 

the classical Klrchoff solution, m which the pressure everywhere along the 
free streamlines 1s postulated to be constant, equal to the pressure III the 
undisturbed stream. 

As .;uas pulnted out above, the real flow 1s not steady, even when the 

oncomIng stream ls, because 1n non-cavltatlng flow there 1s something like 

a vortex street In the wake, and this 1s also probably true downstream of 
the cavity In cavltatlng flow.' Fig. 2 shows the real flow schematically. 
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The vorticity centres indicated are continually being generated behind the 
plate in air flow and behind the cavity in cavitating liquid flow. They move 

downstream relative to the plate at less than the free-stream velocitv. The 

lmes CF, C'F' represent the limits of frictional effects, Aernouilli's 

equation being satisfied outside of them, whereas inside there is a loss of 

total head. The flow between CF and C'F' is, at least over the downstream 
regions, subject to large, quasi-periodic fluctuations, and there may perhaps 

be appreciable fluctuations outside of CF and C'F'. Define coordinates x 

and y as in Fig. 2, with the origin at B, the centre of the face of the 

plate. Suppose the separation t between lines CDE, C'D'E' 1s equal to 

the wake displacement thickness 6Xw, given by re(; - .$!z-)dy. Here 

-ye e e 
suffix e denotes conditions at the edge of the region of frictional effects, 

( 1.e. along CF, C'F'), and p is the time-mean density, constant rvery- 
where in incompressible air flow, and in the liquid-phase region of liquid 
flow, but virtually zero within a vaporous cavity. Further, u is the 

time-mean x-component of velocity, and the integration is carried out at 
constant x. Then we may hope that if we could calculate the steady inviscid 

flow over the boundary ABCDE, so defined, it would resemble, roughly at any 
rate, the time mean of the actual flow outside the frictional wake region. 

The above assumption may be justified by the following considerations. 

The entrainment angle between the mean-flow streamlines and CF is likely to 

be quite small near C, so that since the inclination of CF to the x axis 
is large here, the streamline direction will be approximately that of CF. 
But close behind the plate, u will be very small, so that 6* s Zy 

W e’ 
and 

the directions of CD and CF will be virtually the same. (For cavitating 
flows indeed CF will probably coincide with CD for a considerable 
distance.) Thus the inviscid model will have approximately the correct 
streamline inclination near the edges of the plate. Furthermore, since the 
velocity returns to its free-stream value far downstream outside of the wake, 

continuity considerations show that here the streamlines in the inviscid 
model will be displaced outwards relative to their positions well upstream 

of the plate by the same amount as in the real flow. It is, however, 
arguable that if we are primarily interested in the flow fairly near the 

plate, the displacement condition downstream is of small importance. 

When the problem was considered initially, it was hoped that it would 
be possible to find the flow past a boundary such as ABCDE, defined by a 

number of disposable parameters. It would be specified that the pressure 

must be constant along the initial portion CD of CDE, but in non- 
cavitating flow this pressure would be initially unknown. Likewise down- 
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stream It would be speclfled that t = ew -f $cD6, \vhere CD 1s tl?e drag 

coefflclent and 6 the plate height CC': this condltlon follows from monEn- 

turn considerations since the momentum thickness and dxsplacment thickness of 

the wake become the same doWnStI'eS.IIL other parameters would be left dlsposabie, 

and It vvas hoped to be able to match the resulting pressure dlstrlbutlon along 

CDE to a boundary-layer type of solution for the wake. However the large 

fluctuations associated with the vortex-street type of formation, and the 

corresponding large pressure differences across the wake in the y-dlrectlon, 
make it Impossible to perform this match;ng procedure at all accurately. The 

sltuatlon would be better for cases where the x axis 1s a solld boundary, 

namely for flows past spo11ers, where the vortex street 1s large suppressed 233 . 

s 1nce, hoxqever, practical industrial-aerodynamx or cavltatlng-flow cases 

usually Involve free wakes, solutions for spoilers are perhaps of lxnlted use- 

fulness. 

Although the matchmg procedure discussed above cannot be carried out 

accurately, It 1s still possible to improve on existing free-streamline 

theories 1.n which the base or cavity pressw~? coefflclent is the sole dls- 

posable parameter. For a given value of this parameter, the drag coefflcrent 

1s predicted to be virtually the same by all the models, except for unrealls- 
txally hqh base suctlons which no real flow could sustain. However the 

predicted cavity shapes vary widely. Thus Fig. 3 shows three different 

models for flow past a normal flat plate, drawn roughly to the same scale for 

a pressure coefflclent (p - pO)/&u$ of about -1.25 in the cavity. In the 

first model, due to Rlabouchinsky', the flow re-attaches symmetrically to 

an artlflclal image plate introduced at the end of the cavity. The comblna- 
tlon of the two plates has zero drag and the ultimate wake thxkness 1s zero. 
The second model, that of the re-entrant Jet, has been discussed by a number 

of workers. (See Ref. 5, where a blbllography 1s given). Here It 1s 
supposed that a jet of flud passes upstream through the middle of the 

cavrty and vanishes at the plate. This of course 1s an unreal feature, though 

It has some sunllar1t.y to the spray often thrown forward uxlde real cavltles. 
As 1.n the Rlabouchlnsky model, there 1s a stagnation point behind the cavity. 

Ho-never m effect the downstream wake thickness 1s slightly negative: 
streamlux?s flnlsh up nearer to the centre line downstream than they started 

upstream, due to the flud removed in the re-entrant jet. The third case 
in Fig. 3 1s sometimes called the wake-disslpatlon model, but 1s perhaps 
better described as the parallel-streamline model. It has been developed in- 
dependently by several people, lncludlng Roshkc6 and Gerber and McNown 7 . 
Here the downstream wake thickness 1s not zero. The pressure 1s uutlally 
constant along the streamlines sprlnglng from the plate edges, until they 
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become parallel to the axis of sym;netPy: from thrs point on the dlrectlon Of 

tne free stresmlmes remains constant and the pressure ruses till It asymp- 

totes downstream to the free-stream value. This fea$ure of the model has been 

smgled o-at by Bu?khoff8 as rendering lt more applicable than the other two 

models to non-cavltatmg wakes. By lmplxatlon the zero or effectively 

negative downstream wake thickness of these other models 1s presunably Con- 

sldered to be no disadvantage 111 aypllcatlons to cavitating flops, and 

according to Ref. 9, several workers have attempted to find a model for cav1- 

tatlcg flows wvlth a cusped, closed cavity as x F1.g. 4. The purpose of the 

cusp 1s to avo1.d the stagnatlon point of the Rlabouchlnsky or re-entrant Jet 

DIOdeiS. however whilst the time-average streamlines passing through the 

edges of the plate m a real cavitating flow may perhaps, as sketched In 

Fig. 1, have a shape something like the cusped cavity of Fig. 4, the solution 
for the lnvlscid flow past such a boundary would d~?fer considerably from the 

real flow, as was ?olnted out above. Just downstream of the cavity the 

process of entrainment of vapour from the cavity probably exerts a large re- 
tardlng force on the llquld: this entrainment will be balanced by vaporlso- 

tlon from the llquld boudaries of the cavity nearer Co the plate. Thus there 
IS likely to be slow-moving llquld Just behind the cavity and a far from zero 
displacement thickness in the shaded regxon of Fig. 4. The wake contuues to 

be thick dov,nstreaVf?, as 1s required by the momentum balar,ce, which, as stated 
earlier, sho\rvs that downstream 

Woods 10 has developed a free streamline model with a finite, non--zero, 

wake thlzkness downstream, in qualitative accordance with equation (1). 
However he made no attempt to satisfy that equation quantitatrvely, merely 
using the fuxte-thickness condltlcn to narrow dolvn the choice of analytl- 

tally convenient spec:flcatlons of the pressure on the downstream portlons 
of the free streamlInes. 

Equation (1) 1s not strictly true for an inviscld vortex-street model 
0~~ a nake, wkre tne velocities are assumed not to asymptote to u. &SRIl- 
strtam. The vortex street IS shown In Fig. 5. If the circulation of each 
vortex is /C, the average x-component velocity between the rows is - ff 

relative to the fluid at >nPmlty 11 , whilst outside the rows It 1s zero. 
Hexe the average value of IS* 1s wau, , so according to equation (1) 

the <drag D should be pKh&,/:. Ix fact 



vvhere us 1s the velocity of' the vortices U-I the street relstlve to the 
flilld at infinity. But for the stable conflgwatlon of trail h = 0.281a 

and IC = 2J2aus so that 

Smce us/“o 1s typ1cs11y about ‘/4, D does not differ greatly from 

Pk-o/a. Hence the wake displacement thickness will not be seriously mls- 

calcillated by equation (I), even lf vortex-street features dre present in 

the make. 

These features can, however, give rise to consIderably reduced 
pressures near the wake centre line as compared with the edge of the sake. 

The flow m an lnvlscid tpall is steady 781th respect to axes moving nlth 

the vortices. Consider a point W, as in Fig. 5, midway between a vortex 

of one row and an adJacent one of the other row. Here, relative to the 
fluld at ltiinlty, the x and y component velocities we both of magxl- 
tuae K/a. Relative to axes moving vvlth the VOP Ices, t e component 

velocltles at W are therefore of magnitudes f$ , - & 
i P 

and K/a, 

whilst outside the street ttie velocity is K/(262a). Hence of the pressure 
at W 1s pwT Bernoullll's equatloz. requires 

Hence the pressure coefflclent 

C 
pw - PO 

pw = --;;cg- = - &(2 - &). 

But 

from tile previous paragraph, so that 

. 
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For a flat plate, therefore, ln non-cavltatlng flow with CD = 2, 

Cpn Y -1.3 P/h'. This can lead to a pressure coefflclent in the middle of 

the w&e of the order of -0.4, sxnce the trail addusts Itself so that the 

lateral spacing h of the vortex rows is nearly twice the height 6 of the 
pla<e generatug the trail. This explains the low pressures measured on the 

centre line of the wake of a two-dlmenslonal normal flat plate in the expert- 

merits of Refs. 2 and 12 and of Section LI below. 

All this means that no steady lnviscld-flow model can hope to gave an 

accurate time-average of the reai flow over the complete field, ~ncludlng the 
make. However, of free-streLunline models are used with disposable parameters 

chosen so es to match the external flow, in a necessarily crude way, to the 
wake flop, the? at least we may hope that they ~111 lndlcate correctly the 

order of magnitude of the cavity length, No clear Indication of this is 

provided by the existing models of Fig. 3, since the parallel-streamline 

model predicts a very much shorter cavity than the others, If we define the 
canty as extenfdlng over the region of constant pressure. The next section 
therefore attempts to develop a more adequate model. 

3. POSSIBLE NEW FREE-STREkL6LDYE MODELS 

We expest to obtain scme resemblance to the actual flow with a model 
;n which t, the distance apart of the free streamlines, 1s equal to the 
13 ak e dls2lrcement thickness 6*,. The value of t far downstream 57111 
thus, from equation (I), be approximately equal to the plate height 6 for 
a flat plate In non-cavitating flow with CD about 2. When there 1s an 
extensive cavity the base suction will be relatively less than in non- 
cavitatxlg flow, and CD )Vill be less than 2. Thus then the downstream 
vo1ue of t wlllbe less than 6. We therefore look for a model In which 
the free streamlines, after sprlnglng outwards from the plate edges, 
partlelly neck In, and then turn parallel to each other to form a wake of 
flnlte downstream thickness, equal to or less than the plate height 6. 

FQ. 6 shons a representation 1n the so-called hodograph plane of a 
free-streamline model whxh can meet these condltlons. The full line is 
the streamlme ABCDE of Fig. 2 plotted in terms of the velocity compon- 
ents u and v The coordinates are u and -v, or q co8 @ and 
-q ;sln 0, where q 1s the fluid speed and 9 1s the streamllne 
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incllnatlon to the x axis. Thus far upstream, at A, u = ug and B=O. 

At the stagnatIon point B, u = v = 0, or q=O, and along AB, e = 0. 

Along BC, e = 5, the streamline angle abruptly changing from 0 to 2 

at B. At C and along CD the pressure is constant at some value below 
the pressure in the free stream, so 9 = i%, where IJ 16 a constant 

greater than 1, and CD 1s part of a circle In the hodograph plane. 

FInally along DE the pressure returns to its free-stream value, 1.e. q 

returns to UO, and the flow angle 0 returns to zero. 

Other streamlInes of the flow, outside of ABCDE in Fig. 2, would map 
in the hodograph plane to lines lnslde ABCDE, as Indicated by the dotted 

line in Fig. 6. This method of representation forms the basis of the very 

old-established theory for free-streamllne problems, whose principles are 

now recapitulated briefly as follows. The shape of the free streamlmes is 

lnltially completely unknown In the physlcal plane of Fig. 2, but known 

for the portlon CD In the hodograph plane: this, of course, 1s the reason 

for using the hodograph plane. Denote by z the complex coordinate 

x c 1y In the physical plane, by v the complex coordinate u - iv or 

w 
-10 In the hodograph plane, and by IV the complex potential $ + 16, 

where $ is the potential function and Q the stream function, zero, let 
us say, on ABCDE. Then It may be shown (as in Ref. 13) that #I and Ji 
satlsf'y Laplace's equation In the hodograph plane as well as in the 

physical plane. Thus azJr/auz + dZJr/dv2 = 0, for example. This means 

that equlpotentlals and streamllnes map in the hodograph plane as a grid of 

lines (curved in general) intersecting at right angles, and lf they are 
piotted for vanlshlngly small equal xxx'ements of # and @, the elements 
of the grid are squares. Moreover # and $ satisfy Laplace's equation 
In any equatron derived from the hodograph plane by a process of conformal 
trsnsfom.atlon since, by deflnltlon, 1n such a transformation the grid 
elements remain squares except at isolated singular points. Suppose, by 
a suitable sequence of transformations, that the line ABCDE of Fig. 6 can 
be mapped to a straight line, the real axis In a plane of complex co- 
ordlnste s, say. Then w=Js, ahere J is a constant, satlsfles 
LaplaCe’s eqUatlon In this plane together with the boundary condition that 

the stresm function I$ 1s zero on ABCDE. Hence by a process of Inversion 
the flow may be found In the hodograph plane, and from this, m the 

physlcal plane, smce 

@!Y = 
az u-1-? = v 

so that z r dw 
= f -i - 
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we now apply these principles to the case of Fig. 6, makmg the 
trunsfomnstlons shown m Fig. 7. To remove the right angle at B in F'lg. 6 

we square v. In the v2 plane the coordmates of A,E are (~8, 0) and 
since all the flop at mfinlty crowds ,~,~to this point we invert about it, 

1.e. map on to the plane of (v" - ug) . In the process of inversion a 
cxrcle remaus a circle, so that CD is still cucular. Shifting the 
orlgm to the centre of the circular arc CD We obtain the h plane, de- 
flned by 

h = . . . (2) 

Applglng the Joukowskl transformation to this we transform to the plane of 

h + N4/ [ ( N4-I ) 'u&j , in whhlch the circular arc CD becomes a straight 
line. The point H oz1 CD at which the flow angle e is zero is 
slllgular pomt, so we shift the origin to H and multiply by -1 to 
the x plane, defined by 

now a 
obtain 

--i?E.-~ (I?* + lf(NW - vq2 
X 

= (N4 - l)u$ 
I 1 _ ~~~x&.~~ = - --_-,____-______"_-_________, 

(N4 - 1) U$L (N4 - l)u:(V’ - ui$)(N+ug - V’) 

. . . (3) 

Taking the square root removes the singularity at H, making ABCHD 
straight in the plane of 3 x . The remaining, hitherto undefined, porCion 
DE of the boundary streamline may take varxous forms, dictated by 
annlytrcal convenience. 

Cne felrly simple assumption for DE 1s that in the x4 plane it is 
a straight line perpe?dlcJlar to AD,. Suppose (h, 0) are the coordin- 
ates of D m the x' plane. Then shlftlng the origin to D, and 
sc@arUlg, makes ABCDE a straight line In the plane of s = (x- - h)'. : 

Thus 

J(x' - h) 
2 

w = . . . (4) 

1s the solution we requre, and 

7, = 

i 

G.? = 
V 

J 

1 aw dX _dh_ dV 
Y dx dh dv . . . (5) 

Nom froul equations (2) to (4) 
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0. av = _ ---2L-- 
(v” - u;) 

2 9 

2 
- 

!2X 
ah = 

-, + ----- EL5 ---- = -, + N4(v2 ----------- u;) ~ * 

(N4 - 1) I&* (N”uo” - v’) 

lhu,(N4 - I)$" - u&N%: - ,*)+ 
= + --------------------------------T-- , 

(N2 + l)(N'uo' - v’) I 

so that (5) becomes 

~K(v* - u&N%; - 
z , + -------~js;;s-I-,5-------- N4 zz ----------a - --1--z dv 

0 (N%; - v’) (v' - ug) 1 . . . (6) 

where 
hu,(i+ - .i)$ 

K = -_ ---------- 
N2 + 1 . . . (7) 

In the above discussion we :,ve assumed that the point D at which 

the right angle occurs in the X" plane of Fig. 7 corresponds to a point 

on the circular-arc sectlon of the holograph. However if h or K is 

large enough, the rqht angle UI the x & plane may correspond in the 

hodograph plane to a >olnt between F and G in Fig. 8, where e = .-;, 

or even to a point between G and E, where e = 0. In these latter 

oases, therefore, F rather than D represents the downstream end of 
the mltlal constant-pressure portlon of the free streamline. As K -+ m, 
D approaches E, and we obtain the Riabouchmsky case of Fig. 3. On the 
other hsnd If K = 0, D coincides with the point H at which CI = 0, 
~"l'd the case reduces to the parallel-stresmllne model of Fig. 3. Since 
x" = 11 at the point D by defmltion, 

N2u$ - v2 
---------I-----------T , 
(VP - 

I 
u~)'(N+@ - v*)~ 

D 

where suffix D denotes condltlons at D. If D is between H and F, 
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V D = Nu, cos BD - i sin eD , so that 

K = 
2N sin eD 

- ---------------------r 
(N4 + 1 - 2N2cos 20D)y 

and K lies between 0 for $ = 0 and 2N/(N2 + 1) for BD = -$. 

If D is between F and 5, VD = nu,,~ so that 

K = N2TL~"-- _-_-_-_- 
(n2 + 1)"(N4 + 19)~ 

and K lies between 2N/(N2 + 1) for no = N at F, and 1 for 

5 = 0 at G. If D is between G and E, vD = nu,, so that 

N2 - nz --------T---------T 
' = (, _ n2)"(+ _ n2)p 

and K lies between 1 for % = 0 at G, and infinity for no -+ 1 
at E. 

Along BC, e=; and q=nu,, where O<n<N, g being zero 

at B and Nu, at c. Hence v = -inI?&, and from (6) 

n 
25 x=o,y=-- 

JC 
, N4 

3 
- -------~ 

I 
w . . . (8) 

0 (N4+n2) 

Simlar relations are also valid along FG if the hodograph contains 
any portlon of this line, i.e. if K> 2N/(N*+l). Then v = inu, along 
FG and 

N 
2J X= xp, Y = YF + Gg 

J[ 
---I--, N4 - 
(S+l) 

-------5 
( N4+n2) I 

dn . . . (9) 

n 

Equations (8) and (9) can easily be integrated numerically and if we put 

the plate height 6 of Fig. 2 equal to unity, so that at C y = yc = 4, 
(8) defuxs J/U: in terms of N and K by an expression of the form 

J -- = 
u8 

- - ----- 
a7NT : Kblfijr . . . (IO) 
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We assume the pressure of the rear face of the plate to be uniform, 
equal to that on CD or CF, so from Bernoullli's equation the drag 
coefflclent 

I y , 
CD = 7, i 

(N2 - n2)dy 

0 

and may readily be evaluated. Smilarly by putting v = nu,, O<n< 
m (6) we may find x as a function of n, or ln other words the 
pressure drstrlbutlon, along the streamline AI? approaching the plate 
and also along the part GD of the free stresmllne if K > 1 so that 
lies between G and E. Along CD, or along 
v = Nu,e-ie. Hence 

CF If K > ZN/(N2+l), 

~K(v* - ~2) 2 (N4ug - v+ IK (N4 + 1)e 
-2iB - N2(, + ,-4iq 

-------~ja,a-~-,~-------- = ------------------=~;B-------------- 

N(l-e ) 

But , + .-41e = pe-=3 CO6 28 

and , - e-21@ = 2i sin 0 emia 

so that 

iK(v2 - ~8) + (N%$ - v*) & 1 
K(N4 + 1 - 2N2cos 20)2 

-------Ns,~-=-,I-------- = -___---__-___---_-____ 
23 sm e 

along CD or CF. LIkewise 

N4 
-----------5 
(N-h: - v2) 

------------- - -------------a 
(N2 -‘e-21e)2 

I 

(N2e 
-218 

- 1) I 

= 21fN4 - 1 Lain2Qnf’“-- - --- -_-_-- 
u:(N-' t 1 - 2N2cos 20)' 

smce e 
-4ie - 1 = -2i sin 20em21e. Hence (6) becomes 

1, 

D 

4axL.11g , - 4 x = - ua + KfN4 - -.--2N-sin-G--d- + 1 2N2cos 28) I sin 28 ~06 e de --------------------~ 
(N-' t 1 - 2N2cos 2@) 
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and 

Y = Yc , KlN4 + 1 - 2N2cos 201$ + - ------~~-s;n-8---- 
I 

__ain_28-ain_8-ae_-_- 
(N4 + 1 - 2N*cos 28)' 

e 

. . . (11) 

along CD or CF. These expressions can agam be integrated nUmerlcally 
snd from (10) It follows that they are of the form 

Fmally consider the portmn DE of the boundary streamline. Here 

cl and 0 are both variable, and we have to use the relation $ = 0 to 

define 9 or n = 4/u, m terms of 8. From equations (3), (4), and (7), 

sunce $ 1s the mag~nary part of w, we requre 

j[;;;I~~t~~N41XZi-~;j~ _ Kj' = (, 

0 

along ABCDE. Thus ~7 

N%$ - v2 
--------- f-----------T = 0 + di 
(V' - u$)"(N%&$ - Vz)' 

. . . (12) 

where c and d are real, 

c(d + K) = 0. 

Along ABCD, 0 = 0, and along DE 

d = -K . . . (13) 

1. 
II (+cos 2%l+m"sm 28)&(N4-n2cos 2%1n"si.n 28)2 = e + fi it follows 
from (12) that 
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c = [e(N* - n*cos 20) - f n2s1n 28]/(k8) . . (14) 

and d = [f(N* - n2cos 28) + e n*sm 20]/(k4) . . . 115) 

where k = (n4 + 1 - 2n*cos 20)&, 4 = (NB + n4 - 2N4n2cos 20) + 

. . . (16) 

Also, since (r ?is)' = $[(drz + s2 + r)& f i(Jr2 + a2 - r)'], 

e = * (k + n*cos 20 - A)'(4 + N4 - n*cos 28)' + 

+ (k - n*cos 28 + A)&(, - N4 + n2cos 28) s 1 . . . (37) 

2nd f = & (k - Scos 28 + I)'(4 + N4 - n2cos 20)' - 

- (k + n2cos 28 - I)'(4 - N4 + n2cos 28) 4 1 . . . (18) 

A supple programme has been xt?ltten for the ACE computer of Mathematics 
Dlvlslon, IPL, to determine e, f, c, and d for any assumed values of n 

and 8. Thus for a given value of X, e(n) can be found by cross-plottmg 

the results for each value of n. The general form of the relatlonship 1s 

as shown In Fig. 9. For R < 2N/(N2+1) the path DE will be as (a), and 

along it n wvlll in many cases decrease monotonically as e increases 

from -eD to zero. For 2N/(N2+l) < K < 1, the path DE wlllbe as (b), 

and n w111 lnltiaily decrease as 
-5 

e increases above -eD (which 1s 

2)7 and may become less than 1. Thus the pressure may rise above that 

m the frae stream. Further Increase of e ml1 cause n to Increase 
agan till it reaches a masimum, greater than 1. Then flnally n ~111 

decreese a&alr_ to 1 as 0 tends to zero. For K> 1 the path DE ~111 

be still more complicated, as (c). Here n will lnltially be less than 1 
and eD zero. As 0 becomes negative along DE n ~111 increase. The 
naxumxn negative anfile vi~llbe reached at the point D', which 1s on the 
envelope of the IntersectIons of the dotted lines for O<n<l. Along 
DD' the approprlatr values for n will be those for the dotted curves of 

least slope. Then the path will return along D'E, the appropriate values 
for n now being initially those for the dotted curves of greatest slope, 
and subsec_uently those for the solid curves. Thus n mcreases to a 
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m~xumxn greater than I and fmally decreases again to approach 1 as 8 + 0. 

The corresponding streamline shapes In the physxal plane are sketched on 

the right of the diagram. 

?or the dv>vnstream part of DE, where 8 increases towards zero and 

n decreases to 1, 0 ~111 become small, much less than II*-1, and it 

follows then from (13) to (18) that 

e -) Kin? - l13/21N4 - 11~1-:!2 - - ------ --- -_____- 2 ‘.. (19) 
n2(n2 + N2)(N2 - I) 

The computer resalto however g1.ve 13 a11 along DE and also give the 

corresponding values of c. x0,"/ z = 
!’ 

d-w/v and from (3), (41, (7), (12) 

rind c13:, T = -J(N'+l)/c"/[(N*-l)u$]. Hence along DE 

c besng zero at D. These equstlons can be integrated nwnerically once 
e and n have been found as functlol?s of c*. Far downstream where 
n -t 1 and 8 << n*-I It follJms from (14) to (19) that 

Hence 

. . . (20) 

where E IS Emall arid YE 1s haif the ultimate wake thickness. From 
ecLuLtlon (1) , suxe we have put 6 = 1, the ultunate wake thu%ness 
si-auld be &CD. In general this will. not be equal to 2yE as calculated 
from the above enalysls, but for any given value of N there wlllbe 
equality for one Value of K, wlxch may therefore be taken to be the 
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correct one. 

The above solution may be termed the converging-streamline model t0 

distinguish it from the models of Fig. 3, though es pointed out above both 

the parallel-streamline model and the Riabouchinsky model may be obtained 

from it as special cases by putting K = 0 and m respectively and 
abandoning condition (I) for the downstream wake thickness. It is however 

not the only possibl; model alth a partially necking-in wake. We assumed 

above that in the x2 plane in Fig. 7 the line DE is straight and per- 

pendicular to AD. Another analytically man:geable possibility would be to 

assume that the streamline pattern in the x2 plane is that corresponding 

to a uniform stream parallel to AD combined with, on AD produced, a 

source whose strength and position are such as to make D a stagnation 

point, as in Fig. 10. Such a flow would then be characterised by three 
parameters, (1) the velocity ratio N on CD, (ii) the maximum nega- 

tive flow angle defining the position of D, and (iii) the source 

strength. The equation corresponding to (4) for the complex velocity po- 

tentlal would be 

w = I,&" - h) + M log[, - +$$ 

For an infinitely strong source, which would have to be situated at an 

infinite distance to thy right on Fig. 10 to make D a stagnation point, 
the line DE in the x2 plane would be straight, perpendicular to AD, 
and the case would reduce to the converging-streamline model. For a 
sowce of zero str:ngth situated at D, the line ADE would already be 
straight in the x2 plane , and the case would reduce to the Riabouchinsky 
model. The forms taken by DE in the hodograph plane would resemble 

those sketched in Fig. 11, where a, b, c, and d show respectively the 

converging-streamline model, a strong source case, a moderate source case, 
and the Riabouchlnsky model. As with the converging-streamline model it 

would not be very difficult to determine the shape of the constant-Fressure 
portion CD of the free streamline for this source model. However the 
determination of the downstream shape DE would be difficult, since the 
condition p = 0 obtained from (21) would be very complicated. Unless, 
therefore, comparison with experiment shows that a three-parameter method 

is essential to give an adequate representation of real flows, it would 

not seem to be worthwhile pursuing this source model further. 

The converging-streamline model satisfying the downstream wake- 

thickness conditicn has been evaluated for two cases, N = 1.5 and 1.2. 



Results are shown in Figs 12 and 13 in comparison with those for the 

Rlabouchlnsky and parallel-streamline models. For N = 1.5, CD = 2.00, 

lrrespectlve of R, so that the downstream wake-thickness condition is 

Y E = 0.50. This was found to be satisfied with D between H and F in 

Fig. 8. the flow being of the form (a) of Fig. 9 with K = 0.596 and 
en = 48". For N=1.2, CD = 1.27, agaIn irrespective of K, so that 

Y E = 0.32, a condition requiring D to be between F and G in Fig. 8, 

the flow being of the form (b) of Fig. 9, with K = 0.998. For N = q.5 

the angle eD represents the maximum convergence towards the centre line, 
and persxts only over a very short region. Well downstream of 1) the 

streamlines converge only very slowly towards the axis, as 1s implied by 
equation (20). It is worth noting that the results in Figs 12 and 13 for 
the parallel-streamline model show a considerably shorter region of constant 

6 pressure than the calculations of Roshko , though they agree with the 
7 results of Gerber and McNown . Apparently Roshko made an error in his 

analysis. The comparison of the converging-streamline results of Figs 12 

and 13 with experiment is discussed below. 

4. EXPEXCMERTAL RESULTS FOR FLOW IN AIR 

There are few experimental results for flow past a nO~a1 flat plate 
either in cavitating or non-cavitating flow. In the air-flow experiments 
of Fage and Johansen14 detailed measurements were made close to the plate, 

but they did not extend far downstream. Likewise Fail, Lawford, and Eyre 42 

were prlmarlly concerned with flnlte aspect-ratlo plates, and made no 

detalled measurements for the two-dimensional case. Accordingly it was 
decided to make some new measurements in the 7 ft wind tunnel of Aero- 
dynamics Dlvlslon, NPL. This tunnel has a working sectlon approximately 
7 ft square m cross section, with fillets in the corners. A steel bar, 
7 ft long, 2.5 inches In width, and 0.73 in thick was mounted centrally in 
the tunnel broadslde to the flow wxth its length horizontal. The air- 
speed was 80 ft/sec giving a Reynolds number based on the 2.5 In dimension 

of about 1.1 x 105. At such Reynolds numbers the flow In the wake is 
turbulent, and the drag coefflclent 1s about 2. We hoped to find, there- 
fore, some correspondence with the models of Fig. 12, where 

CD 18 also 2. 

The main series of experiments consisted of traversing a static- 
pressure tube behInd the bar or plate by means of a traverse mechanism 

mounted on t:?e tunnel floor. The static tube used was of the spade-shaped 
type due to Olrerd and Guienne 15 , as shown ln Fig. 14. It was made from 
hypodermic tube flattened and honed at the end. Its advantages are that 



18 

the measured holes are near the tip and also that the pressure it records 

1s lnsensltive to cross flows in the plane of the tip edge and the tube axis. 

For the present exper~~nts It was used with Its axis parallel to the un- 
dlsturbed stream and its tip edge vertical. This permitted the statlc- 

pressure field behind the plate to be mapped without first making detailed 

flow-direct 13n mea summen'~s, as would heve been necessary with a conventional 

ststlc tfbe vhlch needs to be alIgned with the local flow. Despite the 

divergence of the streamlines from the ax1.s in the close vlcinlty of the 
plate and their convergence further downstream, the flxed-dlrection static 

tube used should give only small errors. Moreover It should perhaps give a 

more correct mean value of the pressure in the fluctuating flow than a 

conventional tube, since the fluctuations in the flow direction are primarily 

in a vertical plane an3 should have relatively little effect on the readings. 

By contrast, a conventional tube 1s affected by direction fluctuations as 

well as by pressure fluctuations. 

Results of the measurements are shown m Fig. 15 in the form of plottings 

of the lines of constant pressure. The unit of length is the 2.5 in dimension 

of the plate. In the corresponding theoretical case of Fig. 12, Cp is 

lnltlally equal to -1.25 along the free streamlines through the plate edges, 

and It canbe seen that the predlcted free-streamline shapes near to the 
plate are indeed broadly slml1s.r to the -1.25 isobar in Fig. 15. If how- 

ever one were to plot the free streamlines of Fig. 12 on to Fig. 15, and thus 
determine the pressure dlstributlons 1n the real flow along lines whose 

coordinates are the same as those of the theoretical free streamlmes, the 

resulting pressure dlstrlbutions would not resemble very closely the theore- 
tlcal dlstrlbutlons of Fig. 12, though the discrepancy would be smallest 
for the convergmg-streamline model. In the real flow low pressures persist 
a long way doVnstresm near the axis. This 1s due to the vortex-street 
effect discussed In SectIon 2, where lt was pointed out that agreement be- 
tween theory and experiment can only be expected outside the region of 

frlctlonal effects. The limits of this region were found experimentally 
by traversing a pltot tube across the wake. Far from the axis the pitot 
pressure 1s the same as In the undisturbed stream but within the wake there 

1s a loss of pitot pressure. The dotted boundary 111 Fig. 15 is where 
appreciable pltot losses were f'lrst detected when traversing the probe to- 

wards the axis. Ideally, therefore, only the pressure field outslde this 
boundary should be compared with the predlctlons of the theories. However 
rt would be very laborious to evaluate the theoretical pressure field in 

these outer regions. 



A few spot measurements were made with a yawmeter to determlne mean 

flow angles. The maxltrmm recorded angle of convergence t0WEzd.s the axis WaS 

at x = 1.6, Y = 0.70, and was 19". This, as it happens, 1s close to the 

maximum convergence angle of 18" m the converglng-streamline model of 

Fig. 12, though again, at such a posltlon within the region of frlctlonal 

effects, agreement between theory and experiment 1s not necessarily to be 

expected. 

Thus we can only say that the converglng-streamline model is probably 
a rather better representation of the real flow than the other two models. 

It seems polntless investigatmg any more complicated models In the hope of 
getting St111 better agreement Since it 1s impossible to make any very 
precxse comparxons wrth experiment unless one 1s prepared to go to the 

great labour of computing the pressure distribution over the outer regions 

of the flow field. 

If we provislonally accept the conclusion that the converging-streamline 
model 1s an adequate representation of real non-cavltatlng turbulent-wake 

flow past a plate, we St111 cannot claim to have provided a complete theore- 
tlcs.1 solution of the problem, since we do not know theoretically what the 
base pressure ought to be. Thus N, the Velocxty ratlo on the upstream 

part of the free streamline in Fig. 12, 1s a parameter assumed In the calcu- 

latlons. For smaller assumed vaiues of N, the constant-pressure region of 
the free streamlines 1s predicted to be longer, as can be seen from Fig. 13. 

Physically this length at constant pressure must correspond to the length 

required before occasional Violent incursions of lumps of fluld to the 
central regions of the wake can take place. If, therefore, one could con- 
slder theoretically the amplification of the instabilities x? the separated 

shear layers, 1t might be possible, using the converging-streamline model, 
to predict the drag coefflclent. However such an lnstablllty theory 1s 
beyond the powers of the author. 

It 1s simpler to consider a case with a long splitter plate along the 
centre line of the wake behind the plate, as In Fig. 16. Here the large- 
scale eddying motions should be mostly suppressed. The flow m the shear 
layers sprlnglng from the plate ~111 be turbulent at sufficiently high 

Reynolds numbers and then, if there are no large-scale eddies, the shear- 
layer thickness s should Increase approximately linearly with distance 
downstream as shown. SuPPOse that the velocity Just outside the shear layer 
1s u1, and that It 1s u2 between the layer and the splitter plate. The 
latter velocity ~111 be negative since there wlllbe reversed flow, but 

probably Iu21 ~111 be much less than u,. If the boundarles of the shear 
layer are taken as the points where (u-u, )/(u, -u*) 1s equal to 0.05 and 
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3.95, the thickness s of the layer should be approximately equal to 0.18x 

according to results of Relchardt presented III Fig. 23.3 of Ref. 17. We 
may plausibly ass-ume that the centre line CD of the shear layer should co- 

lnclde with the constant-preSSUre part of the free streamline as calculated 

according to the converging-streamline model for the experunentally observed 

base pressure. Further It 1s reasonable to suppose that in the real flow 

the pressure ml11 remain constant until the Inner boundary of the shear layer 

strtkes the plate,slnce upstream of this point the au? between the shear 

layer and the splitter plate wlllbe fairly slow-moving. Hence we should 

have yD = 0.09% for the corresponding converglng-streamline model. This 

~111 only be true for one velocity ratlo N. Thus for the case N = 1.5 of 

Fig. 12,where CD = 2.00, yD = 0.71x,, whilst for the case N = 1.2 of 

Fig. 13, where CD = 1.27, yD = 0.14x,. It appears, then, that N should 

be a little less than 1.2, so that the theoretically predlcted drag coefflcl- 
ent for a normal flat plate with a long splitter plate would be about 1.2. 

The expcrlmental result of Ref. 18 1s CD = 1.38. The discrepancy between 

th1.s and the predicted value 1s probably not excessive In view of the crude 
way In which the turbulent shear-layer analysis has been combined with the 

lnvlscld converging-streamline model. In partuzular the analysis seems 
dubious where, as In Fig. 13, the free streamline 1s predicted to have a 
portion normal to the axes. However the experimental measurements show that 
the maximum rate of decrease of displacement thickness occurs at about 8 

plate heights downstream of the plate, and It I.S precisely here that the 

vertxal part of the free streamline occurs ln Fig. 13. Thus the expert- 
mental flow pattern 1s 1n reasonable harmony with a convergIng-streamline 
model lvhose drag coeffxlent 1s not far from t:Te correct value. 

5. CAVITATING FLOWS 

Strange though It may seem, hardly any experiments have been done on 
cavltatlng llquld fion past a normal tVvo-dlmenslonal plate. The only results 
known to the Lutnor are thost preseilted ui the excellent paper of Relchardt 19 

20 
, 

and 1~1 the mere recent paper of Wnld . Relchardt shows measurements of the 
ratlo of the maxmum cavity width to the plate height, plotted as a fwctlon 
of cavltatlon nxxnber o, which I.S equal to minus the pressure coer'flclent 
11, the cavity. In our notation 0 = N2-1. If N 1s very close to 1, 
equal to I + a, u = 2a. Equation (8) then shovrs that for a plate height 
of unity (y, = +) 
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= - ----- fop K 3 cc 

i6~m 

The &It-hand side here 1s (4+x)/16. Further, s~.nce N4+l-2N2cos 28 = 

4(sm*e+&), where tine term in 012 1s retalma since sin 0 may be zero, 

eqwtior_ (11) shows that at the pOlnt of maxmum canty thickness, where 

e = 0, 
T. 
7 

Hence the ratro of the plate height to the maxmmm cavity thickness 2y is 

r = IL-0 = fLk+h . . . (22) 

for the parallel-streamlu~ case K = 0. Slmllarly for the Rxabouchlnsky 

case X-+00, it follovos Prom (11) that at the point of maximum cavity 

thickness 
7c 

‘6Jm 
-5 

Y=Yc ug - --9-- 
i 

____ -c.cs=m ____ ----- 
16(sm2e + LX*)~/~ 

e=o 

Hence he-e the ratlo of the plate helghht to the maximum cavity tnlckness 1s 

r = r. = fitplo 
. . . (23) 

Fig. 12 of Relchardt's paper show that for 0 m the range 0.035 to 0.10, 
the &raph of r as a fmetlon of 0 1s approximately a straight line of 
siope ?iqhtiy less thpn 1. flrom equations (22) and (23) It w0uld there- 
tore beem t-hat tlzc. R1abouchlnsky no&e1 represents the maxunum cavity thick- 



ness more accurstely than the parallel-streamline model. For low values of 

0, the maximum cavity thickness according to the converging-streamline model 

wlllbe practxally the same as 1n the Rlabouchlnsky model. Hence 

Re~chardt's experiments are at leest not inconsistent with the converglng- 

streamline model. However Waid's experunents appear at first sight to con- 

tradict It. 

Reichardt's results were obtalned in a free-Jet tunnel in which the 
upper and lower boundarlrs were free, and the lateral boundarles were formed 

by parallel walls. The Jet cross sectlon was 15 x 20 ems, and the heights 

of the plates used were 0.5 and 1.5 mm. Thus '/h, where h is the tunnel 

height, d?d not exceed 0.01. Wsld's experiments were done in a solid-Wall 

tunnel of cross section 14 x 2.9 ins, with a plate height of 0.375 ln, SO 

that '/h = 0.027. For a given cavitation number Waid's configuration 

would have been sTx.bject to much greater blockage effects than Relchardt's, 
both because of the greater relative model size and because a solid-wall 
tunnel 1s worse in Its effects on cavity sloe than an open-jet one, as can 

be seen from Fig. 4 of Ref. 21. Wald found that at high cavitation numbers, 

m the region of' 1, the cavity width agreed with the predlctlons of the 

Rlabouchinsky model for unrestricted flow, but at lower cavltatlon numbers, 
m the region of 0.5, the cavity was wider than predicted by the 

Rlabouchinsky model. O:? the face of it, the results at high cavrtation 

numbers seem to show that the Riabouchlnsky model 1s to be preferred to 
the converging-streamline model, which at such cavrtatlon numbers predicts 

a rather t&Inner cavity. However It 1s not clear how much Wald's results, 
even at the high cavltatlon numbers, were affected by tunnel blockage, which 
was certainly very Important for 0 = 0.5. It would therefore be useful to 
do further experiments nlth very small models, perhaps III a slotted-wall 
tunnel. These should cxtend to high cavltatlon numbers to discrxnlnate 
between the Riabouchlnsky and zonverglng-streamline models. We hope to be 
able to do such experiments In the fairly near future. 

6. CONCLUDING REMARKS 

One of the purposes of the present paper has been to stress the llmi- 
tatlons Inherent In free-streamlme models as representations of real 

flows. A fully accurate representation 1s too much to hope for, but it 
would seem that the way towards an improvement lies in taklng more adequate 

account of the phys~al processes operatxg In the wake. The converging- 
stresmline model proposed only does this In the most elementary way, 
insofar as It represents corrsctly the displacement thickness far down- 
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stresm. NLvertheless it seems to give a rather better representation of 
non-cavltatmg flow than 1s given by the parallel-streamline mociel or the 

Rlabouchlnsky model. For cavitating flows there 1s some llmlted evidence 

that at very low cavitation nuuioers both the Riabouchinsky model and the 
converging-streamline model are satisfactory. To ducrlmlnate between the 

two models experiments at hlgher cavitation numbers are needed. It may then 

possibly tilrn out that neither model represents the real flow very closely 
over the whole range of cavitation numbers. The physical arguments presented 

in Section 2 above, that the wake should be treated as having a downstream 

tjl1ckness related to the drag, ~~111, however, remain valid, and to obtain 

an Lmproved model It will be necessary to try and satisfy some of the other 

condltrons imposed by the physical processes occurrIng in the wake. This 

will requue more complicated models with converging wake streamllnes. 
However the effort required lo develop such models does not seem to be 
worthwhile until and ur,less experiment proves It to be desirable. 
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7. LIST OF SYMBOLS 

defined by equation (12) 

drag coefflclent D/(&%$6) 

pressure coefflclent (P-Po)/(&PG) 

defined by equation (12) 

drag per unit span 

cleflned by equations (16) and 

defined by equations (16) and 

constant of dimensions length 
of free-streanlllne model 

(47) 

(18) 

x (veloclty)3 defining scale 

constant related to amount of necking-in of free stream- 

lines for convergent-streamline model 

ho 

n on upstream part of free streamline 

pressure 

undisturbed free-stream pressure 

flliid speed 

ratlo of plate height to maximum cavity thickness 

separation of free streamlines as m Fig. 2 
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x-component velocity 

undisturbed free-strem velocity 

y-component ve1oc1ty 

complex potentlal 6 + 1e 

axls.1 distance downstream of centre of plate 

transverse distance from x-axis 

x + 1y 

N-l 

plate height as HI Fig. 2: taken to be unity In much of 
the analys1.s 

wake-displacement thickness 

flow lncllnation to x axis 

strength of vortices In vortex street 

complex quantity defined by equation (2) 

u - 17 

density 

cavitation number, ii2 - 1 

velocity potential 

complex quantity defined by equation (3) 

stresm function 
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