

MINISTRY OF AVIATION

aERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Two-Dimensional Separated or Cavitating Flow Past a Flat Plate Normal to the Stream

By
G.E. Gadd, Ph.D., Ship Division, N.P.L.

TWO-DIMENSIONAL SEPARATED OR CAVITATING FLOW
 PAST A FLAT PLATE NORMAL TO THE STREAM
 by
 C.P. No. 697
 November, 1962
 G. E. Gadd
 Ship Divis1on, National Physical Laboratory

SUMMARY

The applicability of inviscid-flow models to non-cavitating or cavitating flow past a normal plate is discussed. A new inviscid model is developed, with the aim of predicting features such as cavity leagth better than previous models. Experiments on air flow past a plate are described and the results compared with those of the theory. Finally the few experimental results available for cavitating flow are discussed.

1. INTRODUCT ION

The two-dimensional flow past a normal flat plate is perhaps the simplest bluff-body flow, being symmetrical and having fixed separation polnts. In $u t s e l f$ thls flow $1 s$ of lıttle practical interest, since few aeroor hydrodynamical devices have parts consisting of flat plates broadside to the stream. However $1 t$ is useful to try and obtain a thorough understanding of the flat-plate flow, to throw light both on 1 naustrial aerodynamic problems, such as wind lcads on chamney stacks, and also on cavitating liquid flcws, such as occur with fully cavitating hydrofozls or propellers.

The flow past a flat plate with cavitation is not radically different from that without, because in both cases the pressure is roughly constant for some distance downstream of the plate along the mean-flow streamlines, such CD in Fig.1, passing through the edges of the plate. This constant pressure as usually close to the rapour pressure, the lovest pressure achaeved anywhere in the flow field, when cavitation occurs, though with non-cavitating flow the pressure on the centre lane of the wake just downstream of the plate can be much lower than that along $C D$. In either case, however, along the streamline through C, the pressure downstream cf the initial constant-pressure portion $C D$ rises tıll $1 t$ reaches the free-stream value far downstream.

In non-cavitating flow the average pressure along $C D$, and correspondingly the drag coefficient, are not known a priori. Therefore $1 f$ they could be predicted theoretically $1 t$ would advance our understanding of the problem, as it would also if we could fully account for the fluctuating features of the flow. The fluctuations, involving unsteady force components on the body, are associated with the periodic shedding of vortices to form something lake a Karman vortex street in the wake, though at the higher Reynolds numbers these vortices are turbulent and the shedding is not perfectly regular. These unsteady effects occur when the cncoming stream itself is steady, but it would also be useful to find out what happens when the oncoming stream is gusty, unsteady in speed and direction, like the natural wind.

In cavitating flow with extensive vaporous cavitation, the cavity presure $1 s$ known a priori, belng almost equal to the vapour pressure, and hence the drag coefficient is also approximately known. The streamwise extent of the cavity, however, is not known, and it would be useful to understand what
determanes its positzon of closure. This ls because hydrodynamical devices Involving fiow cavities are unlıkely to operate successfully unless the cevities terminate well downstream of their solid surfaces. If this condition is not met, serious buffeting will probably occur, somewhat samılar to the compressibilıty buffet an alrcraft may experience at transonic speeds. Cavitation buffet arises from the unsteady processes of entrainment at the downstream ends of cavities. These processes are probably related to the tendency, mentioned above, for unsteady vortex shedding to occur behind a bluff body. A detalled understanding of them, however, can probably cnly be gained with the help of experiments.

The present paper describes contributions towards solving some of the above problems. The extent to which steady, inviscid-flow models are applıcable to the real flows is discussed. A new anviscid model is developed, with the alm of predicting features such as cavity length better than previous models. Experiments on aur flow past a flat plate are described, and the results compared with those of the theory. It is intended also to investıgate experamentally cavitating water flows past a plate: these experiments wlll, it is hoped, form the subject of a later paper.

2. THE APPLICABILITY OF INVISCID-FLOW MODELS

In the real flow past a flat plate, the mean-flow streamlines through the plate edges must, as shown in Fig. 1, return to the axis of symmetry downstream. If, however, one were to calculate the inviscid flow past the boundary ABCDEF of Fig. 1, at would probably not be very similar to the real flow because in reality frictional effects are important along and near DEF. However, it may be possible to cbtain a fair representation of the real fliw if, in the inviscid-flow model, the streamlines springing from the plate edges are such that the pressure is constant along them for some distance downstream of the plate, and af they meet certain other conditions discussed below. These streamlines through the plate edges are called "free streamlines" because thear shape is initially unknown, and part of the mathemaiucal problem is to find it. This approach is an extension of the classical Kırchoff solution, in which the pressure everywhere along the free streamlines is postulated to be constant, equal to the pressure in the undisturbed stream.

As was puinted out above, the real flow is not steady, even when the oncomang stream is, because in non-cavitating flow there is something like a vortex street in the wake, and this is also probably true downstream of the cavity in cavitating flow. ${ }^{\hat{1}}$ Fig. 2 shows the real flow schematically.

The vorticity centres indicated are continually beang generated behind the plate in alr flow and behind the cavity in cavitating liquid flow. They move downstrean relative to the plate at less than the free-stream velocitv. The lines $C F, C^{\prime} F^{\prime}$ represent the limits of frictional effects, Rernoullil's equation being satisfied outside of them, whereas inside there is a loss of total head. The flow between $C F$ and $C^{\prime} F^{\prime}$ is, at least over the downstream regions, subject to large, quasi-periodic fluctuations, and there may perhaps be appreciable fluctuations outside of $C F$ and $C^{\prime} F^{\prime}$. Define coordinates x and y as in Fig. 2, with the origin at B, the centre of the face of the plate. Suppose the separation t between lines CDE, C'D'E' is equal to the wake displacement thickness δ_{w}^{*}, given by $\int_{-y e}^{y e}\left(1-\underset{\rho_{e}}{\rho_{e}^{u}}\right) d y$. Here suffix e denotes conditions at the edge of the region of frictional effects, (i.e. along CF, $C^{\prime} F^{\prime}$), and ρ is the time-mean density, constant everywhere in incompressible alr llow, and in the liquid-phase region of liquid flow, but virtually zero wathin a vaporous cavity. Further, u is the
 constant x. Then we may hope that if we could calculate the steady inviscid flow over the boundary ABCDE, so defined, it would resemble, roughly at any rate, the time mean of the actual flow outside the frictional wake region.

The above assumption may be justified by the following considerations. The entrainment angle between the mean-flow streamlines and $C F$ is likely to be quite small near C, so that since the inclination of $C F$ to the x axis is large here, the streamline direction will be approximately that of CF. But close behind the plate, u will be very small, so that $\delta *{ }_{w} \approx 2 y_{e}$, and the directions of $C D$ and $C F$ will be virtually the same. (For cavitating flows indeed CF will probably colncide with CD for a considerable distance.) Thus the inviscid model will have approximately the correct streamline inclination near the edges of the plate. Furthermore, since the velocity returns to ats free-stream value far downstream outside of the wake, continuaty consaderations show that here the streamlines in the anviscid model wall be displaced outwards relative to their positions well upstream of the plate by the same amount as in the real flow. It is, however, arguable that if we are primarily interested in the flow falrly near the plate, the displacement condition downstream ls of small importance.

When the problem was considered inıtially, it was hoped that it would be possible to find the flow past a boundary such as $A B C D E$, defined by a number of disposable parameters. It would be specified that the pressure must be constant along the inltial portion $C D$ of $C D E$, but in noncavitating flow this pressure would be initially unknown. Likewise down-
stream it would be specified that $t=\delta{ }_{W} \rightarrow \frac{1}{2} C_{D} \delta$, where C_{D} is the drag coefficient and δ the plate helght $C C^{\prime}: ~ t h i s s ~ c o n d i t i o n ~ f o l l o w s ~ f r o m ~ m o m e n-~$ tum considerations since the momentum thickness and displacment thickness of the wake become the same downstream. Other parameters would be left disposable, and it was hoped to be able to match the resulting pressure distribution along $C D E$ to a boundary-layer type of solution for the wake. However the large fluctuations associated with the vortex-street type of formation, and the corresponaing large pressure differences across the wake in the y-direction, make it impossible to perform this matching procedure at all accurately. The situation would be better for cases where the x axis is a solid boundary, namely for flows past spoilers, where the vortex street is large suppressed ${ }^{2}, 3$. Since, however, practical industrial-aerodynamic or cavatating-flow cases usually involve free wakes, solutions for spollers are perhaps of limited usefulness.

Although the matching procedure discussed above cannot be carried out accurately, it is still possible to improve on existing free-streamline theories in which the base or cavity pressure coefficient is the sole disposable parameter. For a given value of this parameter, the drag coefficient Is predicted to be virtually the same by all the models, except for unrealistically high base suctions which no real flow could sustain. However the predicted cavity shapes vary wadely. Thus Fig. 3 shows three dafferent models for flow past a normal flat plate, drawn roughly to the same scale for a pressure coefficient ($p-p_{0}$)/ $\frac{1}{2} \rho u_{0}^{2}$ of about -1.25 in the cavity. In the first model, due to Riabouchinsky ${ }^{4}$, the flow re-attaches symmetrically to an artificial mage plate introduced at the end of the cavity. The combination of the two plates has zero drag and the ultimate wake thickness $1 s$ zero. The second model, that of the re-entrant jet, has been discussed by a number of workers. (See Ref. 5, where a bibliography is given). Here it is supposed that a jet of fluld passes upstream through the middle of the cavity and vanishes at the plate. This of course is an unreal feature, though It has some similarity to the spray often thrown forward inside real cavities. As in the Riabouchinsky model, there is a stagnation point behind the cavity. However in effect the downstream wake thickness is slightly negatıve: streamlines finish up nearer to the centre line downstream than they started upstream, due to the fluld removed in the re-entrant jet. The third case in Fig. 3 is sometimes called the wake-dissipation model, but is perhaps better described as the parallel-streamline model. It has been developed independently by several people, including Roshkc ${ }^{6}$ and Gerber and McNown ${ }^{7}$. Here the downstream waike thickness is not zero. The pressure is initially constant along the streamlines springing from the plate edges, until they
become parallel to the axis of symmetry: from this point on the direction of the free streamlines remanns constant and the pressure rises till it asymptotes downstream to the free-stream value. This feature of the model has been sangled out by Burkhoff ${ }^{8}$ as renderıng it more applicable than the other two models to non-cavitating wakes. By implacation the zero or effectuvely negative downstream wake thickness of these other models is presumably considered to be ro disadvantage in afplıcations to cavitating flows, and according to Ref. 9, several workers have attempted to find a model for cavitating flows with a cusped, closed cavaty as ir Fig. 4. The purpose of the cusp is to avold the stagnation point of the Rlabouchinsky or re-entrant jet models. However whilst the time-average streamlines passing through the edges of the plate in a real cavitating flow may perhaps, as sketched in Fig. 1, have a shape something lake the cusped cavity of Fig. 4, the solution for the inviscid flow past such a boundary would differ considerably from the real flow, as was pointed out above, Just downstream of the cavity the process of entranment of vapour from the cavity probably exerts a large retarding force on the liquid: this entrainment will be balanced by vaporisation from the liquid boundaries of the cavity nearer to the plate. Thus there is likely to be slow-movang liquid just behind the cavity and a far from zero displacement thickness in the shaded region of Fig. 4. The wake contanues to be thick downstrean, as is requared by the momentum balance, which, as stated earlier, shows that downstream

$$
\begin{equation*}
\delta{ }_{W}^{*} \rightarrow \frac{1}{2} C_{D} \delta \tag{1}
\end{equation*}
$$

Woods ${ }^{10}$ has developed a free streamline model with a finlte, non-zero, wake thiekness downstrean, in qualitative accordance with equation (1). However he made no attempt to satisfy that equation quantitatively, merely using the funte-thickness condition to narrow down the choice of analytically convenient specifications of the pressure on the downstream portions of the free streamlines.

Equation (1) is not strictiy true for an inviscid vortex-street model of a wake, where the velocities are assumed not to asymptote to u_{0} downstream. The vortex street is shown in Fig. 5. If the circulation of each vortex is κ, the average x-component velocity between the rows is $-\frac{\kappa}{a}$ relative to the fluld at infunity ${ }^{11}$, whalst outside the rows it is zero. Hence the average value of $\delta{ }^{*}$ w is $\mathrm{Kh} / \mathrm{au}_{0}$, so according to equation (1) the drag D should be $\rho k h u o / a$. In fact

$$
D=\frac{Q k h u_{0}}{a}\left(1-\frac{2 u^{s}}{u_{0}}+\frac{\kappa}{2 \pi h u_{0}}\right)
$$

where u_{s} is the velocity of the vortices in the street relative to the fluid at infinity. But for the stable configuration of trail $h=0.281 a$ and $\kappa=2 \sqrt{2 a u}$ s so that

$$
D=\frac{\rho K h u_{0}}{a}\left(1-0.396 \frac{u_{s}}{u_{0}}\right)
$$

Since u_{s} / u_{0} is typically about $1 / 4$, D does not differ greatly from pkhuo/a. Hence the wake displacement thickness will not be seriously mascalculated by equation (1), even af $^{\prime}$ vortex-street features are present in the wake.

These features can, however, give rise to considerably reduced pressures near the wake centre line as compared with the edge of the wake. The flow in an inviscid trail is steady with respect to axes moving with the vortices. Consider a point W, as in Fig. 5, midway between a vortex of one row and an adjacent one of the other row. Here, relative to the fluid at infinity, the x and y component velocities are both of magnitude k / a. Relative to axes moving with the vortices, the component velocities at W are therefore of magnitudes $\frac{\kappa}{a}\left(1-\frac{1}{2} \sqrt{2}\right)$ and κ / a, whilst outside the street tine velocity is $K /(2 \sqrt{2 a})$. Hence if the pressure at W is p_{w}, Bernoulli's equation requires

$$
\mathrm{p}_{\mathrm{w}}+\frac{1}{2} p \frac{\kappa^{2}}{\mathrm{a}^{2}}\left[\left(1-\frac{1}{2 \sqrt{2}}\right)^{2}+1\right]=p_{0}+\frac{1}{2} p \frac{\kappa^{2}}{8} \frac{a^{2}}{2}
$$

Hence the pressure coefficient

But

$$
C_{D}=\frac{T^{-}-D}{\frac{p}{2} \bar{\delta} \bar{\delta}} \approx \frac{-\frac{2}{} K h}{2 u_{0} \bar{\delta}}
$$

from the previous paragraph, so that

$$
C_{p W} \approx-\frac{1}{4}\left(2-\frac{1}{\sqrt{2}}\right) C_{D} 2 \frac{\delta^{2}}{h^{2}}
$$

For a flat plate, therefore, in non-cavitating flow with $C_{D} \approx 2$, $C_{p W} \approx-1.3 \delta^{2} / h^{2}$. This can lead to a pressure coefficient in the middle of the wale of the order of -0.4 , since the trail adjusts itself so that the lateral spacing h of the vortex rows is nearly twice the height δ of the plate senerating the trail. This explains the low pressures measured on the centre Inne of the wake of a two-dimensional normal fiat plate an the experiments of Refs. 2 and 12 and of Section 4 below.

All this means that no steady anviscid-flow model can hope to give an accurate time-average of the real flow over the complete field, uncludang the wake, However, $1 f$ free-streamlıne models are used with dasposable parameters chosen so εs to match the external flow, in a necessarily crude way, to the wake flow, ther at least we may hope that they wall indicate correctly the order of magnitude of the cavity length. No clear indication of this is provided by the existing models of Fig. 3, since the parallel-streamline model predicts a very much shorter cavity than the others, if we define the cavity as extenaing over the region of constant pressure. The next section therefore attempts to develop a more adequate model.

3. POSSIBLE NEW FREE-STREAMLINE MODELS

We expect to obtain scme resemblance to the actual flow with a model an which t, the distance apart of the free streamlines, is equal to the wake displacement thickness $\delta *{ }_{w}$. The value of t far downstream will thus, from equation (1), be approximately equal to the plate height δ for a flat plate in non-cavitating flow with C_{D} about 2 . When there is an extensuve cavity the base suction will be relatuvely less than in noncavitating flow, and C_{D} will be less than 2. Thus then the downstream value of t wall be less than δ. We therefore look for a model in which the free streamlines, after springang outwards from the plate edges, partially neck in, and then turn parallel to each other to form a wake of finite downstream thickness, equal to or less than the plate helght δ.

Fig. 6 shows a representation in the so-called hodograph plane of a Iree-streamline model which can meet these conditions. The full line is the streamline ABCDE of Fig. 2 plotted an terms of the velocity components u and v the coordinates are u and $-v$, or $q \cos \theta$ and - $q \sin 0$, where q is the fluid speed and θ is the streamline
inclination to the x axis. Thus far upstream, at $A, u=u_{0}$ and $\theta=0$. At the stagnation point $B, u=v=0$, or $q=0$, and along $A B, \theta=0$. Along $\mathrm{BC}, \quad \theta=\frac{\pi}{2}$, the streamine angle abruptly changing from 0 to $\frac{\pi}{2}$ at B. At C and along $C D$ the pressure is constant at some value below the pressure in the free stream, so $q=N_{0}$, where N is a constant greater than 1, and $C D$ is part of a circle in the hodograph plane. Finally along $D E$ the pressure returns to its free-stream value, l.e. q returns to u_{0}, and the flow angle θ returns to zero.

Other streamlines of the flow, outside of ABCDE in Fig. 2, would map in the hodograph plane to lines unside ABCDE, as indicated by the dotted line in Fig. 6. This method of representation forms the basis of the very old-established theory for free-streamline problems, whose principles are now recapitulated briefly as follows. The shape of the free streamlines is initially completely unknown in the physical plane of Fig. 2, but known for the portion $C D$ in the hodograph plane: this, of course, 15 the reason for using the hodograph plane. Denote by z the complex coordinate $x+1 y$ in the physical plane, by v the complex coordinate u - iv or $q e^{-1 \theta}$ in the hodograph plane, and by w the complex potential $\phi+1 \psi$, where ϕ is the potential function and ψ the stream function, zero, let us say, on ABCDE. Then it may be shown (as in Rer. 13) that ϕ and ψ satisfy laplace's equation in the hodograph plane as well as in the physical plane. Thus $\partial^{2} \psi / \partial u^{2}+\partial^{2} \psi / \partial v^{2}=0$, for example. This means that equipotentials and streanlines map in the hodograph plane as a grid of lines (curved in general) intersecting at right ongles, and if they are plotted for vanishingly small equal increments of ϕ and ψ, the elements of the grid are squares. Moreover ϕ and ψ satisfy Laplace's equation in any equation derlved from the hodograph plane by a process of conformal transformation since, by definition, in such a transformation the grid elements remain squares except at isolated singular points. Suppose, by a suitable sequence of transformations, that the line ABCDE of Fig. 6 can be mapped to a straight line, the real axis in a plane of complex coordinate ε, say. Then $w=J \varepsilon$, where J is a constant, satisfies Laplace's equation in this plane together with the boundary condition that the stream function ψ is zero on ABCDE. Hence by a process of inversion the flow may be cound in the hodograph plane, and from this, in the physical plane, since

$$
\text { so that } \quad \begin{aligned}
\frac{d}{d z} & =u-I v=v \\
& z
\end{aligned}
$$

We now apply these principles to the case of Fig. 6, making the transformetions shown in Fig. 7. To remove the right angle at B in Fig. 6 we square v. In the ν^{2} plane the coordinates of A, E are ($u_{0}^{2}, 0$) and since all the flow at infinity crowds into this point we invert about it, 1.e. map on to the plane of $\left(v^{2}-u_{0}^{2}\right)^{-1}$. In the process of inversion a circle remains a circle, so that $C D$ is still carcular. Shifting the oragan to the centre of the carcular arc $C D$ we obtain the λ plane, defined by

$$
\begin{equation*}
\lambda=\bar{v}^{2}-\frac{1}{-}-\bar{u}_{0}^{\bar{z}}-\left(\bar{N}^{4}-\frac{1}{1}\right) \bar{u} \bar{z}=\left(\bar{v}^{N^{4}}-u_{0}^{2}-v_{0}^{2}\right)\left(\bar{N}^{4}=-\overline{1}\right) \overline{u_{0}^{2}} \tag{2}
\end{equation*}
$$

Apply ing the Joukowski transformation to this we transform to the plane of $\lambda+N^{4} /\left[\left(N^{4}-1\right)^{2} u_{0}^{4} \lambda\right]$, in whach the circular arc $C D$ becomes a stralght line. The point H on $C D$ at which the flow angle θ is zero is now a smigular polnt, so we shift the origin to H and multiply by -1 to obtain the x plane, defined by
$\chi=\frac{-2 N^{2}}{\left(N^{4}-1\right) u_{0}^{2}}-\lambda-\frac{\left(N^{2}+1\right)^{2}\left(N^{2} u_{0}^{2}-v^{2}\right)^{2}}{\left(N^{4}-1\right)^{2} u_{0}^{4} \lambda}=-\frac{\left(N^{4}-1\right) u_{0}^{2}\left(v^{2}-u_{0}^{2}\right)\left(N^{4} u_{0}^{2}-v^{2}\right)}{\left(N_{0}^{2}\right.}$

Taking the square root removes the singularity at H, making $A B C H D$ stralght in the plane of $\chi^{\frac{1}{2}}$. The remaining, hitherto undefined, portion DE of the boundary streamline may take various forms, dictated by analytical convenience.

Cne farrly sample ascumption for $D E$ is that in the $\chi^{\frac{1}{2}}$ plane it is a straight line perpendicalar to $A D$. Suppose ($h, 0$) are the coordinates of D an the $\chi^{\frac{1}{2}}$ plane. Then shifting the origin to D, and. squaring, makes ABCDE a straight line in the plane of $\varepsilon=\left(x^{\frac{1}{2}}-h\right)^{2}$. Thus

$$
\begin{equation*}
w=J\left(x^{\frac{1}{2}}-h\right)^{2} \tag{4}
\end{equation*}
$$

is the solution we require, and

$$
\begin{equation*}
z=\int \frac{d w}{\nu}=\int \frac{1}{\nu} \frac{d}{d} \frac{d}{d} \frac{d}{d \lambda} \frac{d \lambda}{d v} d \nu \tag{5}
\end{equation*}
$$

Now from equations (2) to (4)

$$
\begin{aligned}
\frac{d \lambda}{d \nu} & =-\frac{-2 \nu}{\left(\nu^{2}-u_{0}^{2}\right)^{2}}, \\
\frac{d \chi}{d \lambda} & =-1+\frac{N^{4}}{\left(N^{4}-1\right)^{2} u_{0}^{4} \lambda^{2}}=-1+\frac{N^{4}\left(\nu^{2}-u_{0}^{2}\right)^{2}}{\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{2}}, \\
\text { and } \quad \frac{d W}{d \chi} & =J\left(1-\frac{h^{\frac{T}{2}}}{\chi^{2}}\right) \\
& =J\left[1+\frac{2 h u_{0}\left(N^{4}-1\right)^{\frac{1}{2}}\left(\nu^{2}-u_{0}^{2}\right)^{\frac{1}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{1}{2}}}{\left(N^{2}+1\right)\left(N^{2} u_{0}^{2}-\nu^{2}\right)}\right],
\end{aligned}
$$

so that (5) becomes
$z=-2 J \int\left[1+\frac{2 K\left(\nu^{2}-u_{0}^{2}\right)^{\frac{1}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{1}{2}}}{N^{2} u_{0}^{2}-\frac{\nu^{2}}{\nu^{2}}}\right]\left[\begin{array}{l}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{2} \\ \left(\nu^{2}-u_{0}^{2}\right)^{\frac{1}{2}}\end{array}\right] d \nu$

$$
\begin{equation*}
\text { where } \quad K=\frac{h u_{0}\left(N^{4}-1\right)^{\frac{1}{2}}}{--\frac{N^{2}}{}+1} \tag{7}
\end{equation*}
$$

In the above discussion we have assumed that the point D at which the right angle occurs in the $\chi^{\frac{1}{2}}$ plane of Fig. 7 corresponds to a point on the carcular-arc section of the hodograph. However if h or K is large enough, the right angle in the $\chi^{\frac{1}{2}}$ plane may correspond in the hodograph plane to a point between F and G in Fig. 8, where $\theta=-\frac{\pi}{2}$, or even to a poant between G and E, where $\theta=0$. In these latter cases, therefore, F rather than D represents the downstream end of the aritial constant-pressure portion of the free streamline. As $K \rightarrow \infty$, D approaches \mathbb{E}, and we obtain the Riabouchansky case of Fig. 3. On the other hand if $K=O$, D coincides with the point H at which $\theta=0$, and the case reduces to the parallel-streamline model of Fig. 3. Since $x^{\frac{1}{2}}=h$ at the point D by definition,

$$
K=i\left[\frac{N^{2} u_{0}^{2}-\nu^{2}}{\left(\nu^{2}-u_{0}^{2}\right)^{\frac{T}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{T}{2}}}\right]_{D},
$$

where suffix D denotes conditions at D. If D is between H and F,
$\nu_{D}=N u_{0}\left(\cos \theta_{D}-i \sin \theta_{D}\right)$, so that

$$
K=-\frac{2 N \sin \theta_{D}}{\left(N^{4}+1-2 N^{2} \cos 2 \theta_{D}\right)^{\frac{T}{2}}}
$$

and K lies between 0 for $\theta_{D}=0$ and $2 N /\left(N^{2}+1\right)$ for $\theta_{D}=-\frac{\pi}{2}$. If D is between F and $G, \nu_{D}=n u_{0} I$ so that

$$
K=\frac{-N^{2}}{\left(n^{2}+1\right)^{\frac{T}{2}}\left(n^{2}+n^{2}\right)^{\frac{T}{2}}}
$$

and K lies between $2 N /\left(N^{2}+1\right)$ for $n_{D}=N$ at F, and 1 for $n_{D}=0$ at G. If D is between G and $E, \nu_{D}=n u_{0}$, so that

$$
K=\frac{N^{2}}{\left(1-n^{2}\right)^{\frac{T}{2}}\left(N^{2}-n^{2}\right)^{\frac{T}{2}}}
$$

and K Iles between 1 for $n_{D}=0$ at G, and infinity for $n_{D} \rightarrow 1$ at E.

Along $B C, \theta=\frac{\pi}{2}$ and $q=n u_{0}$, where $0 \leqslant n \leqslant N, q$ being zero at B and $N u_{0}$ at C. Hence $\nu=-i n u_{0}$ and from (6)

Similar relations are also valid along $F G$ if the hodograph contains any portion of this line, i.e. if $K>2 N /\left(\mathbb{N}^{2}+1\right)$. Then $\nu=i n u_{0}$ along FG and

Equations (8) and (9) can easily be integrated numerically and if we put the plate height δ of Fig. 2 equal to unity, so that at $C \quad y=y_{c}=\frac{1}{2}$, (8) defines J / u_{0}^{3} in terms of N and K by an expression of the form

$$
\begin{equation*}
-\frac{J_{\overline{3}}}{\overline{u_{0}}}=\bar{a}(\bar{N})^{-\frac{1}{+}} \overline{\mathrm{K}} \overline{\bar{b}}(\overline{\mathrm{~N}}) \tag{10}
\end{equation*}
$$

We assume the pressure of the rear face of the plate to be uniform, equal to that on $C D$ or $C F$, so from Bernoulli's equation the drag coeffircient

$$
C_{D}=\frac{1}{y_{c}} \int_{0}^{y_{c}}\left(N^{2}-n^{2}\right) d y
$$

and may readaly be evaluated. Sumilarly by putting $v=n u_{0}, 0 \leqslant n \leqslant 1$, in (6) we may find x as a function of n, or in other words the pressure distribution, along the streamline $A B$ approaching the plate and also along the part $G D$ of the free streamline if $K>1$ so that D lies between G and E. Along $C D$, or along $C F$ if $K>2 N /\left(N^{2}+1\right)$, $\nu=N u_{0} e^{-i \theta}$. Hence
$\frac{1 K\left(\nu^{2}-u_{0}^{2}\right)^{\frac{1}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{1}{2}}}{\bar{N}^{2} \bar{u}_{0}^{\bar{z}}-\nu^{2}}=\frac{1 K\left[\left(N^{4}+1\right) e^{-2 i \theta}-N^{2}\left(1+e^{-41 \theta}\right)\right]^{\frac{1}{2}}}{N\left(1-e^{-21 \theta}\right)}$

But $\quad 1+e^{-4 I \theta}=2 e^{-21 \theta} \cos 2 \theta$
and $\quad 1-e^{-21 \theta}=2 i \sin \theta e^{-i \theta}$
so that
$\frac{i K\left(\nu^{2}-u z\right)^{\frac{1}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{1}{2}}}{-\bar{N}^{2} u_{0}^{2}=-\nu^{2}}=\frac{K\left(N^{4}+1-2 N^{2} \cos 2 \theta\right)^{\frac{1}{2}}}{2 \bar{N}^{2} \sin \theta^{-}}$
along $C D$ or $C F$. Likewise
$\frac{N^{4}}{\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{2}}-\frac{1}{\left(\nu^{2}-u_{0}^{2}\right)^{2}}=\frac{1}{u_{0}^{4}}\left[\frac{1}{\left(N^{2}-e^{-2 \overline{2} \theta^{-}}\right)^{2}}--\frac{1}{\left(N^{2} e^{-2} \frac{1}{1} \theta^{-}-1\right)^{2}}\right]$

$$
=-\frac{2 I \leq N^{4}-12 \sin 2 \theta e^{2 I \theta}}{u_{0}^{4}\left(N^{4}+1-2 N^{2} \cos 2 \theta\right)^{2}}
$$

sance $e^{-4 i \theta}-1=-2 i \sin 2 \theta e^{-21 \theta}$. Hence (6) becomes

along $C D$ or $C F$. These expressions can again be integrated numerically and from (10) It follows that they are of the form

Finally consider the portion $D E$ of the boundary streamline. Here q and θ are both variable, and we have to use the relation $\psi=0$ to define q or $n=q / u_{0}$ in terms of θ. From equations (3), (4), and (7), since ψ is the imaginary part of w, we require

$$
f\left[\frac{i\left(N^{2} u_{0}^{2}-\nu^{2}\right)}{\left(\nu^{2}-u_{0}^{2}\right)^{\frac{T}{2}}\left(N^{4} u_{0}^{2}-\nu^{2}\right)^{\frac{T}{2}}-K}\right]^{2}=0
$$

along ABCDE. Thus if

$$
\begin{equation*}
\frac{N^{2} u_{0}^{2}-v^{2}}{\left(v^{2}-u_{0}^{2}\right)^{\frac{T}{2}}\left(N^{4} u_{0}^{2}-v^{2}\right)^{\frac{T}{2}}}=c+d i \tag{12}
\end{equation*}
$$

where c and d are real,

$$
c(d+K)=0
$$

Along $A B C D, c=0$, and along $D E$

$$
\begin{equation*}
\mathrm{d}=-\mathrm{K} \tag{13}
\end{equation*}
$$

If $\left(n^{2} \cos 2 \theta-1+1 n^{2} \sin 2 \theta\right)^{\frac{1}{2}}\left(N^{4}-n^{2} \cos 2 \theta-1 n^{2} \sin 2 \theta\right)^{\frac{1}{2}}=e+f i$ it follows from (12) that

$$
\begin{align*}
c & =\left[e\left(N^{2}-n^{2} \cos 2 \theta\right)-f n^{2} \sin 2 \theta\right] /(k \ell) \\
\text { and } \quad d & =\left[f\left(N^{2}-n^{2} \cos 2 \theta\right)+e n^{2} \sin 2 \theta\right] /(k \ell) \tag{15}\\
\text { where } k & =\left(n^{4}+1-2 n^{2} \cos 2 \theta\right)^{\frac{1}{2}}, \quad l=\left(N^{\theta}+n^{4}-2 N^{4} n^{2} \cos 2 \theta\right)^{\frac{1}{2}} \tag{16}
\end{align*}
$$

Also, since $(r \pm i s)^{\frac{1}{2}}=\frac{1}{2^{\frac{T}{2}}}\left[\left(\sqrt{r^{2}+s^{2}}+r\right)^{\frac{1}{2}} \pm i\left(\sqrt{r^{2}+s^{2}}-r\right)^{\frac{1}{2}}\right]$,

$$
\begin{align*}
e= & \frac{1}{2}\left[\left(k+n^{2} \cos 2 \theta-1\right)^{\frac{1}{2}}\left(\ell+N^{4}-n^{2} \cos 2 \theta\right)^{\frac{1}{2}}+\right. \\
& \left.+\left(k-n^{2} \cos 2 \theta+1\right)^{\frac{1}{2}}\left(\ell-N^{4}+n^{2} \cos 2 \theta\right)^{\frac{1}{2}}\right] \tag{17}
\end{align*}
$$

$$
\text { End } \begin{align*}
f= & \frac{1}{2}\left[\left(k-n^{2} \cos 2 \theta+1\right)^{\frac{1}{2}}\left(\ell+N^{4}-n^{2} \cos 2 \theta\right)^{\frac{1}{2}}-\right. \\
& \left.-\left(k+n^{2} \cos 2 \theta-1\right)^{\frac{1}{2}}\left(\ell-N^{4}+n^{2} \cos 2 \theta\right)^{\frac{1}{2}}\right] \tag{18}
\end{align*}
$$

A simple programme has been written for the ACE computer of Mathematics Division, NPL, to determine e, f, c, and d for any assumed values of n and θ. Thus for a glven value of $K, \theta(n)$ can be found by cross-plotting the results for each value of n. The general form of the relationship is as shown in Fig. 9. For $K<2 N /\left(N^{2}+1\right)$ the path $D E$ will be as (a), and along it n will in many cases decrease monotonically as θ increases from $-\theta_{D}$ to zero. For $2 N /\left(N^{2}+1\right)<K<1$, the path $D E$ will be as (b), and n will inftially decrease as θ increases above $-\theta_{D}$ (which is $-\frac{\pi}{2}$), and may become less than 1 . Thus the pressure may rise above that in the free stream. Further increase of θ will cause n to increase agaz n tall it reaches a maximum, greater than 1. Then fanally n wall decrease asair to 1 as θ tends to zero. For $K>1$ the path $D E$ wall be still more complicated, as (c). Here n will inıtially be less than 1 and θ_{D} zero. As θ becomes negative along $D E n$ will increase. The maxımum negatave angle will be reached at the point D^{\prime}, which is on the envelope of the intersections of the dotted lines for $0<n<1$. Along DD' the appropriate values for n will be those for the dotted curves of least slope. Then the path will return along $D^{\prime} E$, the appropriate values for n now being initially those for the dotted curves of greatest slope, and subsecuently those for the solld curves. Thus n increases to a
meximum greater than 1 and finally decreases again to approach 1 as $\theta \rightarrow 0$. The corresponaing streamline shapes in the physical plane are sketched on the right of tie aiagram.

For the downstream part of DE, where θ increases towards zero and n decreases to 1 , θ will become small, much less than $n^{2}-1$, and it follows then from (13) to (18) that

$$
\begin{equation*}
\theta \rightarrow-\frac{K\left(n^{2}-1\right)^{3 / 2}\left(N^{4}=n^{2}\right)^{3 / 2}}{n^{2}\left(n^{2}+N^{2}\right)\left(N^{2}-1\right)^{2}} \tag{19}
\end{equation*}
$$

The computer results however give θ all along $D E$ and also give the corresponding values of c. frow $z=\int d w / v$ and from (3), (4), (7), (12) and (13), $w=-J\left(N^{2}+1\right) / c^{2} /\left[\left(N^{2}-1\right) u_{0}^{2}\right]$. Hence along $D E$

$$
\begin{aligned}
& x\left.=x_{D}-\frac{J\left(N^{2}\right.}{\left(N^{2}- \pm\right.}-1\right) \frac{1}{1} u_{0}^{3} \\
& \int_{0}^{c^{2}} \frac{\cos }{n}-\theta_{d}\left(c^{2}\right) \\
& \text { and } \quad y=J_{D}-\frac{J\left(N^{2}- \pm 1\right)}{\left(N^{2}-\frac{1}{1}\right)} u_{o}^{3} \int_{0}^{c^{2}} \frac{\sin }{n_{1}}-\frac{\theta}{d}\left(c^{2}\right),
\end{aligned}
$$

c beang zero at D. These equations can be integrated numerically once θ ond n have been found as functions of c^{2}. Bar downstream where $n \rightarrow 1$ and $\theta \ll n^{2}-1$ it follows from (14) to (19) that

Hence

$$
\begin{equation*}
\left.\langle y\rangle_{n=1+\varepsilon^{-y_{E}}}=-\frac{2 J K}{u \frac{3}{3}}\left\{\frac{2\left(\mathbb{N}^{2}\right.}{\mathbb{N}^{2}}- \pm-\frac{1}{1}\right)\right\}^{\frac{1}{2}} \varepsilon^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

where ε is small and y_{E} is half the ultimate wake thackness. From equation (1), since we have put $\delta=1$, the ultimate wake thickness srould be $\frac{1}{2} C_{D}$. In general this will not be equal to $2 y_{\mathrm{E}}$ as calculated from the above analysis, but for any gaven value of N there wall be equality for one value of K , which may therefore be taken to be the
correct one.
The above solution may be termed the converging-streamline model to distinguish it from the models of Fig. 3, though as poanted out above both the parallel-streamline model and the Riabouchinsky model may be obtained from it as special cases by putting $K=0$ and ∞ respectively and abandoning condition (1) for the downstream wake thickness. It is however not the only possible model with a partially necking-in wake. We assumed above that in the $x^{\frac{1}{2}}$ plane in Fig. 7 the line DE is straight and perpendicular to $A D$. Another analytically manageable possibility would be to assume that the streamline pattern in the $\chi^{\frac{1}{2}}$ plane $1 s$ that corresponding to a uniform stream parallel to $A D$ combined with, on $A D$ produced, a source whose strength and position are such as to make D a stagnation point, as in Fig. 10. Such a flow would then be characterised by three parameters, (1) the velocity ratio N on $C D$, (ii) the maximum negative flow angle defining the position of D, and (iii) the source strength. The equation corresponding to (4) for the complex velocity potential would be

$$
\begin{equation*}
w=I\left\{\left(x^{\frac{1}{2}}-h\right)+M \log \left[1-x_{-\frac{1}{2}}^{M}-\frac{h}{1}\right]\right\} \tag{21}
\end{equation*}
$$

For an infinitely strong source, which would have to be situated at an infinite distance to the right on Fig. 10 to make D a stagnation point, the line $D E$ in the $x^{\frac{1}{2}}$ plane would be straight, perpendicular to $A D$, and the case would reduce to the converging-streamline model. For a source of zero strength situated at D, the line $A D E$ would already be straight in the $\chi^{\frac{1}{2}}$ plane, and the case would reduce to the Riabouchinsky model. The forms taken by $D E$ in the hodograph plane would resemble those sketched in Fig. 11, where a, b, c, and d show respectively the converging-streamline model, a strong source case, a moderate source case, and the Riabouchirisky model. As with the converging-streamline model it would not be very difficult to determine the shape of the constant-pressure portion $C D$ of the free streamline for this source model. However the determanation of the downstream shape $D E$ would be dıfficult, since the condition $\psi=0$ obtained from (21) would be very complicated. Unless, therefore, comparison with experiment shows that a three-parameter method is essential to give an adequate representation of real flows, it would not seem to be worthwhile pursuing this source model further.

The converging-streamine model satzsfying the downstream wakethackness condation has been evaluated for two cases, $N=1.5$ and 1.2 .

Results are shown in Figs 12 and 13 in comparison with those for the Riabouchinsky and parallel-streamline models. For $N=1.5, C_{D}=2.00$, irrespective of K, so that the downstream wake-thickness condition is $y_{E}=0.50$. This was found to be satisfied with D between H and F in Fig. 8. the flow being of the form (a) of Fig. 9 with $K=0.596$ and $e_{D}=-18^{\circ}$. For $N=1.2, C_{D}=1.27$, again irrespective of K, so that $\mathrm{y}_{\mathrm{E}}=0.32$, a condition requiring D to be between F and G in Fig. 8, the flow being of the form (b) of Fig. 9, with $K=0.998$. For $N=1.5$ the angle θ_{D} represents the maximum convergence towards the centre line, and persists only over a very short region. Well downstream of $]$ the streamlines converge only very slowly towards the axis, as $1 s$ implied by equation (20). It is worth noting that the results in Figs 12 and 13 for the parallel-streamline model show a considerably shorter region of constant pressure than the calculations of Roshko ${ }^{6}$, though they agree with the results of Gerber and McNown. Apparently Roshko made an error in his analysis. The comparison of the converging-streamline results of Figs 12 and 13 wath experiment is discussed below.

4. EXPERIMENTAL RESULITS FOR FLOW IN AIR

There are few experimental results for flow past a normal flat plate either in cavitating or non-cavatating flow. In the alr-flow experiments of Fage and Johansen ${ }^{14}$ detailed measurements were made close to the plate, but they aid not extend far downstream. Likewise Fail, Lawford, and Eyre ${ }^{12}$ were primarily concerned with finite aspect-ratio plates, and made no detailed measurements for the two-dinensional case. Accordingly it was decided to make some new measurements in the 7 ft wind tunnel of Aerodynamics Division, NPJ. This tunnel has a working section approximately 7 ft square in cross section, with fillets in the corners. A steel bar, 7 ft long, 2.5 inches in widtr, and 0.73 in thick was mounted centrally in the tunnel broadside to the flow wath its length horizontal. The airspeed was $80 \mathrm{ft} / \mathrm{sec}$ gaving a Reynolds number based on the 2.5 in dimension of about 1.1×10^{5}. At such Reynolds numbers the flow in the wake is turbulent, and the drag coefficient is about 2. We hoped to find, therefore, some correspondence with the models of Fig. 12, where C_{D} is also 2.

The main series of experiments consisted of traversing a staticpressure tube behind the bar or plate by means of a traverse mechanism mounted on the tunnel flyor. The static tube used was of the spade-shaped type due to Garerd and Guienne ${ }^{15}$, as shown in Fig. 14. It was made from hypodermic tube flattened and honed at the end. Its advantages are that
the measured holes are near the tip and also that the pressure it records is insensitive to cross flows in the plane of the tip edge and the tube axis. For the present experzments it was used with $1 t s$ axis parallel to the undisturbed stream and its tip edge vertical. This perritted the staticpressure field behind the plate to be mapped without first making detalled flow-direction measuremenis, as would have been necessary with a conventional static tabe which nceds to be gligned with the local flow. Despite the djvergence of the streamlines from the axis in the close vicinity of the plate and their convergence further downstream, the fixed-dırection static tube used should give only small errors. Moreover it should perhaps give a more correct mean value of the pressure in the fluctuating flow than a conventional tube, since the fluctuations in the flow direction are primarily In a vertical plane an should have relatively little effect on the readings. By contrast, a conventional tube is affected by durection fluctuations as well as by pressure fluctuations.

Results of the measurements are shown in Fig. 15 in the form of plottings of the lines of constent pressure. The unit of length is the 2.5 in dimension of the plate. In the corresponding theoretical case of $\mathrm{Fig}_{\mathrm{I}}$. $12, \mathrm{C}_{\mathrm{p}}$ is initially equal to -1.25 along the free streamlines through the plate edges, and it can be seen that the predicted free-streamline shapes near to the plate are indeed broadly similar to the -1.25 isobar in Fig. 15. If however one were to plot the free streamlines of Fig. 12 on to Fig. 15, and thus determine the pressure distributions in the real flow along lines whose coordinates are the same as those of the theoretical free streamlines, the resulting pressure distributions would not resemble very closely the theoretical distributions of Fig. 12, though the discrepancy would be smallest for the converging-streamline model. In the real flow low pressures persist a long way downstream near the axis. This is due to the vortex-street effect discussed in Section 2, where it was pointed out that agreement between theory and experiment can only be expected outside the region of frictional effects. The limits of this region were found experimentally by traversing a pitot tube across the wake. Far from the axis the pitot pressuce is the same as in the undisturbed stream but within the wake there is a loss of pitot pressure. The dotted boundary in Fig. 15 is where appreciable pitot losses were first detected when traversing the probe towards the axis. Ideally, therefore, only the pressure field outside this boundary should be compared with the predictions of the theories. However it would be very laborious to evaluate the theoretical pressure field in these outer regions.

A few spot measurements were made with a yawmeter to determine mean flow angles. The maxımum recorded angle of convergence towards the axis was at $\mathrm{x}=1.6, \mathrm{y}=0.70$, and was 19°. This, as it happens, 1 s close to the maximum convergence angle of 18° in the converging-streamline model of Fig. 12, though again, at such a posation within the region of frictional effects, agreement between theory and experiment is not necessarily to be expected.

Thus we can only say that the converging-stream ine model is probably a rather better representation of the real flow than the other two models. It seems pointless investigating any more complicated models in the hope of getting still better agreement since it is impossible to make any very precise comparisons with experiment unless one is prepared to go to the great labour of computing the pressure distribution over the outer regions of the flow field.

If we provisionally accept the conclusion that the converging-streamline model is an adequate representation of real non-cavitating turbulent-wake flow past a plate, we still cannot clam to have provided a complete theoretıcal solution of the problem, since we do not know theoretically what the base pressure ought to be. Thus N, the velocity ratio on the upstream part of the free streamline in Fig. 12, is a parameter assumed in the calculations. For smaller assumed values of N, the constant-pressure region of the free streamlines is predicted to be longer, as can be seen from Fig. 13. Physically this length at constant pressure must correspond to the length required before occasional violent incursions of lumps of fluid to the central regions of the wake can take place. If, therefore, one could consider theoretically the amplification of the instabilıties in the separated shear layers, it might be possible, using the converging-streamline model, to predict the drag coefficient. However such an instability theory is beyond the powers of the author.

It is simpler to consider a case with a long splitter plate along the centre line of the wake behind the plate, as in Fig. 16. Here the largescale eddying motions should be mostly suppressed. The flow in the shear layers springing from the plate will be turbulent at sufficiently high Reynolds numbers and then, if there are no large-scale eddies, the shearlayer thickness s should increase approximately linearly with distance downstream as shown. Suppose that the velocity Just outside the shear layer is u_{1}, and that it is u_{2} between the layer and the splitter plate. The latter velocity will be negative since there will be reversed flow, but probably $\left|u_{2}\right|$ will be much less than u_{1}. If the boundaries of the shear layer are taken as the points where $\left(u-u_{2}\right) /\left(u_{1}-u_{2}\right)$ is equal to 0.05 and
0.95 , the thickness s of the layer should be approximately equal to $0.18 x$ according to results of Reichardt presented in Fig. 23.3 of Ref. 17. We may plausibly assume that the centre line $C D$ of the shear layer should coinclde with the constant-pressure part of the free streamline as calculated according to the converging-streamline model for the experimentally observed base pressure. Further it is reasonable to suppose that in the real flow the pressure will remain constant until the inner boundary of the shear layer strakes the plate, since upstream of this point the alr between the shear layer and the splitter plate will be fairly slow-moving. Hence we should have $\mathrm{y}_{\mathrm{D}}=0.09 \mathrm{x}_{\mathrm{D}}$ for the corresponding converging-streamline model. This will only be true for one velocity ratio N. Thus for the case $N=1.5$ of Fig. 12, where $C_{D}=2.00, y_{D}=0.71 x_{D}$, whilst for the case $N=1.2$ of Fig. 13, where $C_{D}=1.27, \mathrm{y}_{\mathrm{D}}=0.14 \mathrm{X}_{\mathrm{D}}$. It appears, then, that N should be a little less than 1.2, so that the theoretically predicted drag coefficient for a normal flat plate with a long splitter plate would be about 1.2. The expcrmental result of Ref. $18 \mathrm{is} C_{D}=1.38$. The dascrepancy between this and the predicted value is probably not excessive in view of the crude way in which the turbulent shear-layer analysis has been combined with the inviscid converging-streamline model. In particular the analysis seems dubious where, as in Fig. 13, the free streamline is predicted to have a portion normal to the axis. However the experimental measurcments show that the maximum rate of decrease of displacement thickness occurs at about 8 plate helghts downstream of the plate, and it is precisely here that the vertical part of the free streamline occurs in Fig. 13. Thus the experimental flow pattern 2 s in reasonable harmony with a converging-streamline model whose drag coefficient is not far from the correct value.

5. CAV ITAT ING FLOWS

Strange though it may seem, hardly any experments have been done on cavatating liquid fiow past a normal two-dimensional plate. The only results known to the suthor are those preserted in the excellent paper of Relchardt ${ }^{19}$, and in the more recent paper of Wald ${ }^{20}$. Rezcherdt shows measurements of the ratio of the max mum cavaty width to the plate height, plotted as a function of cavatation number σ, which is equal to manus the pressure coefficient Ir the cavity. In our notation $\sigma=N^{2}-1$. If N is very close to 1 , equal to $1+\alpha, \sigma=2 \alpha$. Equation (8) then shows that for a plate helght of unity $\left(y_{c}=\frac{1}{2}\right)$

$$
\begin{aligned}
\int_{0}^{1} \frac{\left(1-n^{2}\right) d n}{\left(1+n^{2}\right)} & =-\frac{u_{0}^{3}}{16 J \alpha} \text { for } K=0 \\
& =-\frac{u_{0}^{3}}{16 J K \alpha} \text { for } K \rightarrow \infty
\end{aligned}
$$

The left-hand side here 1 s $(4+\pi) / 16$. Furtiner, since $N^{4}+1-2 N^{2} \cos 2 \theta \approx$ 4($\left.\sin ^{2} \theta+\alpha^{2}\right)$, where the temn in α^{2} is retained sance $\sin \theta$ may be zero, equetion (11) shows that a.t the point of maximum cavity thickness, where $\theta=0$,

$$
\begin{aligned}
y & =y_{c}-\frac{16 J \alpha}{u_{0}^{3}} \int_{\theta=0}^{\frac{\pi}{2}} \frac{2-\sin ^{2} \theta \alpha(\sin -\theta)}{16\left(\sin ^{2} \theta+\alpha^{2}\right)} \text { for } K=0 \\
& \rightarrow \frac{\pi}{2}\left(4-\frac{\pi}{+}-\pi\right) \bar{\alpha} \text { as } \alpha \rightarrow 0 .
\end{aligned}
$$

Hence the ratio of the plate height to the maximum cavity thickness $2 y$ is

$$
\begin{equation*}
r=r_{0}=\left(4-\frac{ \pm}{2 \pi} \frac{\pi}{}\right) \underline{0} \tag{22}
\end{equation*}
$$

for the parallel-streamline case $K=0$. Samılarly for the Rıabouchansky case $K \rightarrow \infty$, it follows from (11) that at the point of maximum cavaty thickness

$$
\begin{gathered}
y=y_{c}-\frac{16 J K \alpha}{u} \int_{\theta=0}^{\pi} \frac{a}{2}-\frac{\alpha\left(\sin ^{2} \theta\right)}{16\left(\sin ^{2} \theta+\alpha^{2}\right)^{3 / 2}} \\
\text { so that } y \rightarrow\left(4+\frac{2}{\pi}\right) \bar{\alpha} \text { as } \alpha \rightarrow 0 .
\end{gathered}
$$

Hence hene the ratio of the plave helght to the maximum cavaty tnackness is

$$
\begin{equation*}
r=r_{0}=\left(4-\frac{ \pm}{8}-\frac{\pi}{2} \underline{0}\right. \tag{23}
\end{equation*}
$$

Fig. 12 of Reachardt's paper shows that for σ in the range 0.035 to 0.10 , the graph of r as a function of σ is approximately a straight line of slope slightly less then 1. from equations (22) and (23) at would therefore seem that the Riabouchinsky moael represents the maximum cavity thick-
ness more accurately than the parallel-streamline model. For low values of σ, the moximum cavity thickness according to the converging-streamline model Will be practically the same as in the Riabouchinsky model. Hence Reichardt's experiments are at least not inconsistent with the convergingstreamline model. However Waid's experiments appear at rirst sight to contradict $1 t$.

Reichardt's results were obtaned in a free-jet tunnel in which the upper and lower boundaries were free, and the lateral boundarles were formed by parallej walls. The jet cross section was $15 \times 20 \mathrm{cms}$, and the heights of the plates used were 0.5 and 1.5 mm . Thus δ / h, where h is the tunnel height, did not exceed 0.01. Wald's experments were done in a solid-wall tunnel of cross section $14 \times 2.9 \mathrm{ins}$, with a plate height of 0.375 ln , so that $\delta / h=0.027$. For a given cavitation number Waid's configuration vould have been subject to much greater blockage effects than Reichardt's, both because of the greater relative model size and because a solld-wall turnel is worse in its effects on cavity size than an open-jet one, as can be seen from Fig. 4 of Ref. 21. Wald found that at high cavitation numbers, in the region of 1 , the cavity width agreed with the predictions of the Riabouchinsky nodel for unrestricted ilow, but at lower cavitation numbers, In the region of 0.5 , the cavity was wider than predicted by the Riabouchinsky model. On the face of it, the results at high cavitation numbers seem to show that the Riabouchinsky model is to be preferred to the converging-streamline model, which at such cavitation numbers predicts a rather thinner cavity. However it is not clear how much Naid's results, even at the high cavitation numbers, were affected by tunnel blockage, which was certainiy very important for $\sigma=0.5$. It would therefore be useful to do further experiments with very small models, perhaps in a slotted-wall tunnel. These should extend to hlgh cavitation numbers to discramanate between the Riabouchinsky and sonvergang-streamilne model.s. We hope to be able to do such experiments in the farrly near future.

6. CONCLUDING REMARKS

One of the purposes of the present paper has been to stress the lamitations inherent in free-streamine models as representations of real flows. A fully accurate representation 1 s too much to hope for, but it would seem that the way towards an improvement lies in taking more adequate account of the physical processes operating in the wake. The convergingstreamline model proposed only does this in the most elementary way, insofar as it represents correctiy the displacement thickness far down-
stream. Nvertheless it seems to give a rather better representation of non-cavitating flow than is given by the parallel-streamline model or the Rıabouchınsky model. For cavıtating flows there is some limıted evidence thet at very low cavitation numbers both the Riabouchinsky model and the converging-streamline model are satisfactory. To discriminate between the two models experaments at hagher cavatation numbers are needed. It may then possibly turn out that nelther model represents the real flow very closely over the whole range of cavitation numbers. The physical arguments presented in Section 2 above, that the wake should be treated as having a downstream thlckness related to the drag, will, however, remain valid, and to obtain an zmproved model $1 t$ will be necessary to try and satisfy some of the other conditions imposed by the physical processes occurring in the wake. This wall require more complicated models with converging wake streamlines. However the effort required to develop such models does not seem to be worthwhile until and uriless experiment proves $1 t$ to be desirable.

7. LIST OF SYMBOLS

c defined by equation (12)
$C_{D} \quad$ drag coefficient $D /\left(\frac{1}{2} \rho u_{0}^{2} \delta\right)$
$C_{p} \quad$ pressure coefficient $\left(p-p_{0}\right) /\left(\frac{1}{2} p u_{0}^{2}\right)$
d defined by equation (12)
D drag per unıt span
e defined by equations (16) and (17)
f defined by equations (16) and (18)
J
constant of dimensions length $\times\left(\right.$ velocity) ${ }^{3}$ defining scale of free-streamilne model

K constant related to amount of neciking-in of free streamlines for convergent-streamine model
q / u_{0}
$N \quad n$ on upstream part of free streamline
p pressure
po undisturbed free-stream pressure
q fluid speed.
r ratio of plate helght to maximum cavity thickness
t separation of free streamlines as in Fig. 2
$u_{0} \quad$ undisturbed free-stream velocaty
x-component velocity
y-component velocity
complex potential $\phi+ı \dot{\psi}$
axial distance downstream of centre of plate
transverse dustance from x-axis
$x+1 y$
$\mathrm{N}-1$ the analysis
wake-displacement thackness
flow inclanation to x axis
strength of vortices in vortex street
complex quantity defined by equation (2)
u - IV
densュもy
cavitation number, $N^{2}-1$
velocity potential
complex quentity defined by equation (3)
stream runction
plate herght as in Fig. 2: taken to be unity in much of

REFERENCES

1. PARKIN, B. R. - Experiments on circular arc and flat plate hydrofolls. J. Ship Res., Vol. 1, No. 4, p. 34, March 1958.
2. ROSHKO, A. - On the drag and shedding frequency of two-dimensional bluff bodies. N.A.C.A. TN 3169, July 1954.
3. NASH, J. F. - A review of research on two-dimensional base flow. A.R.C. R.\& M. 3323, March 1962.
4. RTABOUCHINSKY, D. - On steady fluid motion with free surfaces. Proc. Lond. Math. Soc., Vol. 19, p. 206, 1920.
5. BIRKHOFF, G. and ZARANTONETLO, E. H. - Jets, wakes, and cavities. Academıc Press, New York, 1957.
6. ROSHKO, A. - A new hodograph for free streamline theory. N.A.C.A. TN 3168 , July 1954.
7. GERBER, R. ana McNOWN, J. S. - Transition curves of constant pressure. I. Streamlined struts. State University of Iowa, Studies in Engineering Bulletan, Vol. 35, p. 15, 1953.
8. BIRKHOFF, G. - Jets, wakes, and cavities. p. 261 of Proceedings of Second Symposium on Naval Hydrodynamics, Office of Naval Research, Department of the Navy, ACR-38, 1958.
9. THWAITES, B. - Incompressible aerodynamics. Clarendon Press, (editor) Oxford, 1960.
10. WOODS, L. C. - Two dimensional flow of a compressible fluid past given curved obstacles with infinite wakes. Proc. Roy. Soc. A., Vol. 227, p. 367, 1955.
11. GOIDSTEIN, S. - Modern developments in fluid dynamics. Clarendon (editor) Press, Oxford, 1938.
12. FA, R., LAWFORD, J. A., and EYRE, R. C. W. - Low-speed experiments on the wake characteristics of flat plates normal to an air stream. A.R.C. R.\& M. 3120, June 1957.
13. RUTHERFORD, D. E. - Fluld dynamics. Oliver and Boyd, 1959.
14. FAGE, A. and JOHANSEN, F. C. - On the flow of air behind an inclined flat plate of infinite span. R.\& M. No. 1104, 1927.
15. GIRERD, H. and GUIENNE, P. - Nouvelles sondes de pression statique pour mesures aerodynamiques. C.R. Acad Sci., Paris, Vol. 228, p. 651, 1949.
16. HOERNER, S. F. - Fluid-dynamic drag. Published by the Author, 1958.
17. SCHLICHTING, H. - Boundary layer theory. Pergamon Press, London, 1955.
18. ARIE, M. and ROUSE, H. - Experiments on two-dimensional flow over a normal wall. J. Fluld Mech., Vol. 1, p. 129, 1956.
19. REICHARDT, H. - The physical laws governing the cavitation bubbles produced behind solids of revolution in a fluid flow. Paper of the Kaiser Wilhelm Institute for Hydrodynamical Research, Gbttingen, October 1945: TPA3/TIB Translation Acsil/49/1499.
20. WAID, R. L. - Water tunnel investigation of two-dimensional cavities. Hydrodynamics Laboratory Report No. E-73.6, Cal. Inst. of Tech., September 1957.
21. COHEN, H. and DI PRIMA, R. C. - Wall effects in cavitating filows. p. 367 of Proceedings of Second Symposium on Naval Hydrodynamics, Office of Naval Research, Department of the Navy, ACR-38, 1958.

FIG I MEAN-FLOW STREAMLINES IN FLOW
PAST A PLATE

FIG 2 THE WAKE FLOW
(a)

(b)

(c)

FIG 3 EARLIER FREE-STREAMLINE MODELS:
(a) RIABOUCHINSKY
(b) RE-ENTRANT JET (c)PARALLEL STREAMLINE

FIG 4 CUSPED CAVITY

FIG 5 VORTEX STREET

FIG 6 HOLOGRAPH OF POSSIBLE MODEL

FIG 7 TRANSFORMATIONS OF HOLOGRAPH PLANE

FIG. 8 POSSIBLE POSITIONS OF D

FIG. 9 RELATION BETWEEN π, θ AND K

FIG 10 SOURCE in $X^{1 / 2}$ PLANE

fig.il hodograph plane for various SOURCE STRENGTHS

FIG. 12 SHAPES OF, AND PRESSURE DISTRIBUTIONS ALONG, FREE STREAMLINES FOR $N=1.5$

FIG. 13 SHAPES OF, AND PRESSURE DISTRIBUTIONS ALONG, FREE STREAMLINES FOR $N=1.2$

FIG. 14 STATIC TUBE USED

FIG. 15 ISOBARS IN AIR FLOW PAST A PLATE

FIG 16
FLOW WITH LONG SPLITTER PLATE

A.R.C. C.P. No. 697

November, 1962
Gadd, G. E. Ship Division, Nat. Phys. Lab.

TWO-DIMENSIONAL SEPARATED OR CAVITATING FLOW

 PAST A FLAT PLATE NORMAL TO THE STREAMThe applicability of inviscld-flow models to non-cavitating or cavitating flow past a normal plate is discussed. A new inviscid model is developed, with the aim of predicting features such as cavity length better than previous models. Experments on air flow past a plate are described and the results compared with those of the theory. Finally the few experimental results available for cavitating flow are discussed.
A.R.C. C.P. No. 697

November, 1962
Gadd, G. E. Ship Division, Nat. Phys. Lab.

TWO-DIMENSIONAL SEPARATED OR CAVITATING FLOW PAST A FLAT PLATE NORMAL TO THE STREAM

The applıcability of inviscid-flow models to non-cavitating or cavitating flow past a normal plate is discussed. A new inviscid model is developed, with the aim of predicting features such as cavity length better than previous models. Experiments on air flow past a plate are described and the results compared with those of the theory. Finally the few experimental results available for cavitating flow are discussed.

A.R.C. C.P. No. 697

November, 1962
Gadd, G. E. Ship Division, Nat. Phys. Lab.
TWO-DIMENSIONAL SEPARATED OR CAVITATING FLOW past a flat flate normal to the stream

The applicability of inviscid-flow models to non-cavitating or cavitating flow past a normal plate is discussed. A new inviscid model is developed, with the alm of predicting features such as cavity length better than previous models. Experiments on air flow past a plate are described and the results compared whth those of the theory. Finally the few expermmental results available for cavitating flow are discussed.
(C) Crown copyright 1963

Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kıngsway, London w c 2
423 Oxford Street, London w. 1
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardıff
39 King Street, Manchester 2
50 Farrfax Street, Bristol 1
35 Smallbrook, Ringway, Birmıngham 5
80 Chichester Street, Belfast 1
or through any bookseller

Pronted in England

