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SULMARY

The report considers inviscid, supera;nic flow past a symmetrical wing-
body cambination at zero incidence. The body is a circular cylinder extending
indefinitely in both the upstream and the downstream directions., The winge are
two halves of a delta wing of single~wedge section with a subsonic leading edge;
they are assumed to extend indefinitely in the downstream direction. Results

are obtained for the pressure distribution on the body.
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1 INTRODUCTION

This section begins wath a short history of work on wing-bcdy interfercnce
in Aerodynamics Department.

In 1951 K. Stewartson {now Professor of Aprlied lkathematics ot Durham
University) spent some weeks in the Department as a vacation consultant, during
which he wrote a note (unpublished) on wing-body interference, .is method 1s
applicable to wing-brdy combinations of whicl the body is approximately a
circular cylinder and the wings lic approxamately in a planc and are symmetrically
mounted; throughout the present report the phrase "waing~body combination" is
used to denote a configuration of this type. The governing partial differential
equation 1s taken to be the lincarised cquation of supersanic flow. It is
assumed that the vclocity potential due -to the wings alonc is known, so that the
problem reduces to the determination of an interference potential. This can be
determinecd by Laplace transform methods, which give the pressurc cocfficient
over the cambination as a Fouricr series. rhe coefficient of the nfl term of the
Pourier scries is an integral invelving a function of n, x, and r, wiherc x and r
are cylimdrical polar coordinates. Each function 18 an inverse of a Laplace
transform that contains Bessel functions of imaginary argument; the inverse has
to be obtained numerically. Even when Lhe inverses have been computed, the
numerical work involved in solving gjust one problem in wing~body interference is
formidable. Put in 1951 the inverses had not been tabulated; and the
computational effort required te do this was so farbidding in the deskemachine
days of 1951 that the problem was temporarily abandcncd.

In 1955 the a.uthor1 used Stewartson's method to determine the wave drag
of bodies that do not depart far from circular oylinders. Referecnce 1 can hardly
be said to have contributed to the theory of wing-body interfercnce, since the
problem solved is equivalent to determining the flow past a wang-body
combination without a wing. Admittedly, some of the inverses mentioned above
arc tabulated in Reference 1; they are those far which the value of r 1s8 equal
to the radius of the circular cylinder approxinmating the body. The inverses are
tabulated for eleven values of n and for valucs of x at intervals of 0.2. In
principle, they can be uscd to determine the pressure on the body ¢f a wing-
body cambination; xn practice, the coarse interval in x precludes this.

In 1957, Nielsen2 completed his work on wing-body interference by issuing
an 1mpressively bulky set of tables of inverscs of certeain Laplace transforms.
Nielsen's inverses arc not identical with those of Stewartson, although the two
sets arc closely connected. The interference problem can Le sclved by using
Nielsen's inverses in almost exactly the samec way as by using Stewartson's - the
pressure on the cambination 18 given by a Fourier serics whosc coefficients are
integrals involving the anverscs. Niclsen's inverses arc tabulated for eleven
values of n, ten valucs of r, and for values of x at overy C.01. The appcarance
of these tables together with the arrival in the RAE of digital elecotronic
canputers meant tnat most of the labour required to selve wing-body intcrference
problems had been eliminated; nevertheless, the computational effort required
was still so great that simplifaied, but less accurate, methods were desirable.

By 1958, several monbers of Aero Department had produced approxu ate

theories relating to winn-body interference: the two theorics of importance here
are due to J.A. Baglcy3 and D.A. Treadgold. Bagley argucs taat, for wings with
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sweptback leading edges, the flow near the initial point of & wing-body Junction
must be the samec as that at the apex of the wing formed by joining the criginal
wing to 1ts reflection in the plane throurh the junction normal to the wing.

The procedure has been applied to wing~body interference at subsonic spceds with
considersble success (at least, s far as the flow over the wing is concerned) .
Treadgold has developed a method originelly suzrested by Stewartson. He
considers a combination with one wing onty mounted on the body, since 1t can be
shown that, i1n this case, the inverses contain lmown functions only {exponentaals,
circular functions, etc.i; the method gives correct answers ahead of {he Lach
cone from the initial point of the Jjunction of the body and the other wing.
Bagley's method 1s simpler than Treadgold's; on the other hand, Treadgold's
method is more accurate than Bagley's.

It was decaded that, to provide a test for these methods, the author should
solve a particular wing-body problem cxactly {that 1s, by using the wethod of
Ref.2) and that the rcsults for the pressure on the combination should be camparcd
with those obtained by lhe approximate theories. The particular wing-body
combination considered here consists of two halves of a symmetrical delta wing
of sangle-wedge section mounted symmetrically on a circular ecylinder; the leading
edges are subsonic, and the combination i1s at zero incidence. The potential due
to the wing alone is determined in Sectaion 2; the apparcntly long~winded method
for obtaining the x and r derivatives of the potential as a Fourier serics 18
due to Stewartson (an his unpublished note); 1t 1s, in fact, a vast inprovement
on the obvious methods The interference potential is determined in Scction 3;
and the results are discussed in Section L.

2 SUPERSONIC FPLO PAST A DELTA WING OF SINGIE-W.IDGE SCOTION

Consider inviscid, supersonic flow past a symmetrical delta wing at zero
incidence. Let the apex of the wing be the origin of a system of right~handed
rectangular cartesian coordinates, x, y, and z, and let the x axis be in the
direction of the frec stream. Suppose that the equation of the wing 1s

z =5<x+%) (~kx < y < 0),

(0<y«<kx);

3]
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the wing 1s asszumed to extend indefinitely in the positive x direction, Let the
speed of the free stream be U, its Mach number be M, its pressure be p , and ts

density be Poei Write B for M2 -1,

Suppose that § 1s small compared with unaity and that iI is ncither close to
unity nor large compared with unity. It 1s then possible¥ to introduce a
disturbance velocity potential, ¢W(W standing for wing), such that the velocitics

R by

in the x, y, and z directions are given respectively by U (1 + -——), U=, and

ox 3y
d
o w

3z H ¢W satisfies the linearised cquation of supersonic flow,
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The boundary canditions are that the disturbance velocity components should
vanish on the liach cone from the apex of the wing, and that, on the wang, the
velocity component normal to the wing should vanish; these conditions may be
written approximately

Oy i i 2 22 .22

3% - Ty = 5z = O owhenx” - B%° - B2 = o, (2a)

& when 2z = 0, ly| < kx (2b)

From the symmetry of the flow, ¢w(x, ¥y 2) = ¢w(x, Yy =Z)e

Suppose that Bk < 1, so that the leadin;, edge 1s supersonic. The
potential at & point {x, y, z) can be found¥ by distributing suitable
fundamental singular solutions of Equation (1) over the wing surface and
integrating them over the part of the wing surface lying within the ilach
fore-cone from the point being considered, The equation ¢f the liach cone
from the point is

(x - x)° - 8%y - v,)% - 8%z - 2,)% = o, (3)

1

where Xqs Yys and z,, 4re running coordinates, The Mach fore-cnic iantersects
the wing in the curve

2.k
12, (%)

x, = x-Bl(y -y)%+2

since the equation of the wing may be approximated by 2y = 0. The curve given

by Equation (4) intersects the leading edge, Yy = th1, in two points whose y
coordinates are Yy and Yo

where

Yy = - z:—:ggazgg [(x + szy) - B[(Y + kX)z + (1 = szz)zz]%J ) (5a)

and



k

yp = T—=>- [(x - B2ky) ~ Bi(y ~ kx)2 + {1~ szz)zz]%] .

(1 - 3%5)

4

(5b)

It can be shown™ that the following form for ¢, satisfies Equation (1) and the

boundary conditions of Zquations (2):

218
o x-B[(y-y,)%2"T?

5 dx1 dgH
v = "% 2 2
* [(x = %)% - 2%y = 7)% - B3z - 2,)%T7
yA "y1/k
2 2%
vy *Bl(y-y,) 42
1] S —
T 2 .2 o 2 21%
X - X - B - - B(z - 3,)
o 3/ [( » (v - 5,) ( 7]
It follows that
¥,
o B
b 5 f = (e + 3,) gy, -2 i~ (ex - 5,)
B - -— Cas -— cos
7 2 2% 1 _/ =
v Bk[(y - y)© + 2°]2 : B[(y - y,)% + 2°T2
o]
Hence,
o}
o8 f =
& T - B ¢ okl + By, + KPP - B - %D
A
Ng
B
5 / a4
n [(1 ~ B3P)y7 = ak(x - D)y, + K2(x° - BoP- BHA) J2
Q
5k -1 (3+3%%y) 2 (x=B21cy)
= - o2z |oosh 2 ., o8 2 ook N
#(1-BKk")2 B{ (kxry) “+(1-B“k%) 2°]2 Bf (kz~y) “+(1-B% ) 2“ ]2
vees (6)



Introduce cylindrical polar coordinates (x, r, 8) such that

2 2 2
r® = y© o+ 25, (7a)
tan & = z/y. (70)
Equation (6) becomes
Oy _ . 5k cosh™ (x + B% Jr cos 8)
3x T 22 |00 2 22, 2 -2 1%
{1 - Bk)Z Bl(kx + r cos 8)° + {1 - Bk)r“ sin“ 8]z
e
+ cosh™! (x —2B kr cosz% - — }
B[(kx = r cos 8)° + (1 - Bk )r° sin” 8]
It follows that
32 Y
W dkx [ (r + kx cos )
ox or Ax? - B2z L[k%% + (1 - B%Z)r? + 2k xr cos 6 + Bk°r® cos® 6]
N (r - kx cos 8) }
[x° + (1 - B2k%)r2 ~ 2kxr cos 6 + B%%r? cos? 8]
. 080 (8)
Now write
= - cosh
Bk = ©osh A, (9a)
x
S cosh . (9b)



Equation (8) becomes

62
Sy _ bocothy [ (cosh A + cosh ¥ cos 6)
9x or xBr [(cosh A cosh ¥ + cos 6)% - sinn® x sinh® A]
. (cosh A - cosh ¥ cos 8) }
[(cosh A cosh x - cos 6)° - sinh? X sinin® A]
& coth ¥ sinh (A + %) sunh (A = %)
2n Br sinh A [cosh (n + %) + cos 8] T Jcosh (A - ) + cos 8]
. sinh (A + %) . sinh (A = %)
[cosh (A + %) - cos 6] [cosh (M = %) = cos 6]
§ coth y sinh 2 (A + %) . sinh2 (A = %)
x Br sinh A [cosh2 (A + x) ~ cos 20] 7 [cosh2 (A - %) - cos 28] V'
ceaa (10)
Now, it is known that5
n
1 cos nf do _ e“nlnl
= . {oosh 1} - cos 9) sinh ""il
Therefare, Bquation (10) can be expanded as
2 [+.+]
a?c%r = ﬂlfgrcg:ghxl [';' + Z e cosh 2y cos 206 | (X < W), (11a)
n=1
2 0Q
3°¢ o L6 coth =211, .
T —-—-———x—ﬁ TR sinh 2n\ e cos 2n8 (% > A) (11b)
n=1



From Equation (9b), the liach cone from the orizin 1s given by ¥ = 0; from

¢
Eq_ua.‘;:lon (2a), f 0 on the liach cone from the origin; hence, fram Equation
(11a

o9
BQAW i &
28 . -2nA | sinh (2n + 1) X , sinh (en - 1) X ;
dr ~ x sinh A [s:mh Lo Z ® [ (en + 1) {2n - 1) cos ZnB_j
n=1
(x <M.
eeee {12)

Equation (11b) may be integrated with respect to x to give

(2n+1)x —-(2n-1)x

o¢
¥o_ 28, l_ _ 2.sinh A
dr T 0w = smh?\. Z Lsmh 2nd {(en + 9 1 (2n - 1) ~ Gne = 1) (°°% 2nd
=1
= (x> M),
[ W] (13)
A
where the constant of integration has been chosen to wmake the values of >r 28

given by Equations (12) and (13) equal when ¥ = A» From Equation (2a),

]

5% - 0 on the Mach cone from the origin, which corresponds to x = 0; hence from

Equation (11a),

3
";f-z-vtBsmhml:X"‘Z smhznx cos2n6] (x <M. (14

Equation {11b) mey be integrated with respect to r to give

a¢W 51nh2n?\. e2mc .
_a_J?':—thSlnh?\l: Z cosZne_l (x>, (15)




0

where the constant of integration Las been chosen to make the values of 5%
given by Equatiaons (14) anmd (15) equal when ¥ = A. x
Equetions (12) to (15) inclusive may be wiltten as
%y % %
e ey 8y (x, r) cos 2n8, (16a)
3 =
28
3% = " 7B sinnn Z b?Jl (x, r) cos 2nb; (16b)
n=0
here,
_ ~2nh [ ginh {2n + 1 ginh (Pn -~ 1
a, = sinh ¥, ey = € —-rzh)—)-x-o-—rz—x(l—:—ﬂ—h] (n> 0),
covs (172)
-2nkh _.
nh 2
b= X b, = S——L= (n > 0), (17p)
when y < A; and
-(2n+)y  _~(2n-1) :
- . _ . e e _ 2 8inh A
a = sinh )}, &, = sinh 2nk TR A CIE) (L,.n2-1) (n > 0),
LE R N | (183)
. -2n%
sinh 2n A e
b, = A, by = - {(n> 0), (18b)
when ¥ > A
3 SUFERSONIC FLOW PAST A CERTAIN WING-BODY COMBINATION

Consider inviscid, supersmic flow past a wing-body combination consisting
of two halves of a symmetrical delta wing of single-wedge section mounted
symmetrically on & circular cylinder; suppose the configuration is at zero incidence.
It is convenient to imagine the two halwves of the wang to be continued through the
wall of the circular cylinder until they meet inside; the wing thus formed is
assumed to be the sa.e as the one considered in Section 2, Let x, y, z, r, and 6
be defined as before; and suppose that the free stream direction and the flow
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quantities 1n the free stream are the same as in Section 2. Let the radiuas of the
circular cylinder be e The wing 1s assumed to extend indefinitely in the

positive x direction, ard the circular cylinder to extend andefinitely in the
negative and positive x directions,

A disturbance veloclity potentaal, ¢, 1s wntroduced; 21 1s written as the
sum of two terms,

b= By + Py (19)

¢W is the potential due to the wing alone, and has teen determined in Section 2;
¢ 18 the interference potential. ¢ must satisfy the linearased equation of

supersonic flow, and tle first deravatives of ¢ (the velocity components) must
vanish on the Mach cone from the apex of the wang (in fact, they must vanish in
e region behind this cone, since, an reality, the flow 1s undisturbed up to the
point where the wing appears through the cylinder). ¢.w satisfics these require-
ments, and so 1 must also satisfy them.

Hence,
2 2 2 2 2
p 0 %y OT¢p S 4 I g 4y %p 4 9 4 ,
B 5 = 5t = 5ty et TS 5= = 0 (20)
ox oy Jz ar r ad
and
o o¢ o¢
I I 1 i 22 22
= = = - - = O,
" ¥ > 0 when x By Bz (21)
The boundary condition on the wang 1s satisficd by ¢W on its own; hence,
o
1 -
(‘a'z';" = O (22)
z=

The boundary condition on the circular cylinder is that the velocity camponent
normal to the cylinder should vanish; this means that

g .
(—ﬁ‘-) = 03

r:ro



hence, fram Equations (19) and (16a),

oo
A 0 —/
('EI-;'> = - (’3% = X ?ﬁm X Z' Bon,0 (%) cos 0,  (23)
rarg r=ry, 70
where
aZn,O (x) = By (x, ro). (24)

Equation (20), with the boundary conditions given by Equations (21), (22),
and (23), can be solved! by Laplace transform methods. The Laplace transform of
£(x) is f(p), where

Fp) = [ e"PX p(x) ax.

Equation (20) transforms to

2 - - 2 -

sz'?a = ::251 +-:|£ 35;]; +f§ aanI 3 (25)

Equation (22) transforms to
(f-;;-l—\ = 0; (26a)

z=0

Equation {23) transforms to

Gf%) = ~ Tﬁf’m_i Z E’Zn,O cos 2n6; (26b)
I=r'y n=0
from Equation (21),

aI-*O as r + g (260)
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By the method of separation of variaoles 1t can be shown that the
solution of Equation {(25) is

9_51 = Z {[An Kn(Bpr) + G In(Bpr)] cos nf + [Bn Kn(Bpr) + D In(Bpr)]sm néi,

n=0

where A 5, C,, and Dn are arbitrary functions of p, and K and In are Bessel
functions of imaginary argument’. From Equations (26) end the fact that In(Bpr)-m

as r » oo, 1t follows that EI can be written as

;51 = ZAQn(p) Kzn(Bpr) cos 2n8. (27)

n=0

Azn(p) 15 to be determined from Equation (26b), which gives

oQ oo
26 -
' | — — ————— .
Bp z A2n(P) Kzn(jpro) cos 2n0 = P Z 8,0 908 2nd
n=0 n=0 )

It follows that

-

o (o) = 26 a2n,0
zn P - - 1 []
%Bp sih A I{n(Bpx‘O)

From Equation (27),

oC

a - . 25 Z a2n,O K2n(Bpr) cos 2nd
—— - l L)
I =« Bp sinh A 1\2n(BprO)
n=0
Hence,
. = & K, (B
-—-..a I _ . 28 “2n,0 on o) cos 2nd (28)
dx x B sinh A Kén(Bpro) ‘
n=0
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Now define a function W2n(z;, v) by the equation

K. (pv) °°
GP(v-1) én.(_i)_ it - [ o w, (5, v) a&; (29)

Q

Wzn is tabulated in Ref.2Z2.

It follows that

Bp(r-ry) Kon(PPT) o4 X I\ gPX 4.
T By e T [ o () e 0

Now Equation (28) may be written

n,O coa 2nb.

o Q!
3. &
4]
1
/8
E'O"
o
o
G
o
g
St
o
mgﬁ
"d =]
‘1 ]
L
L_....__J
|
e
re]
——
T
L2 ]
Q
p -
p

The inverse of e-BP(r-rO)- is H(x - Br - r ) 8 (x-Br - r ), where H is

2n,0 2n,0
the unit function (zero for negative velues of its argument, um.ty for positive
values); hence, from Equation (30) end the convolution theorem?,

oc

3¢ % X = X
L 2O - AFTT) = —
35X - T % B sinh xz [ _[ 8on,0 (xy - 87 =7) Br w2n<Bro ’ r0>‘1"’
mo | B(ETg
@H( Brer,) a (x = Br = r.) | cos 2nd
',J r WX = Br=To) 85500 0
o0 X Br

il

all 0 .
25 r x_ T _
~ %D sinh N 2 [ f Con (E"ro"‘)Wzn (Bro & ro)d’;

n=0 (i;- 1)

eeee (31)



-~r
o

where E has becn written for E:-I— . Prom Equation (24), CZn 1s defined by
0

Czn(t?) = azn,O(BrO ) = t:\2n(Br0 #, ro);

hence, from Equations (17a) and (18a),

e—2nl[ sinh (2n+1)xo sinh (2n-1)xo:| (n>0),

co(a) = sinh Xo* Czn(ﬁ) = (2n+1) + {2n-1)
evee{328)
when Xo < A, and
(axy (et
Co(#) = simn, C, (9 = sinh 2nd T o) -?:’zﬂj?) (n>0)
sees (32b)

when Xp > 2\1.
N\ is given by Equation (92); from Equation (9b), 1, is defined by cosh x, = o

The linearised approximation for Cp, the pressure coefficient (equal to
P~B,

bl
T Poo V

, where p is the local pressure), 18 given by

C = -2,
e dx

From Equations (19), (31), and (16b), it follows that

o0 x/Br

U S 0 X ' x r
Cp"vtBsmh)\ Z{ / %n g”ro’“.')wan(BrO"E”%)dg

n=0 I
goq)

0 X r - X r
- "}— H(:-B-%- - ;; + ‘l) b2n-}-3-f"5 - ;—5 + 1) + bZn(::, r)} cos 2n9; (33)

The b, are given by Equations (17b) and (18b).
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CP 1s requircd on both the wing and the body. On the wing 8 = 0 (or x), and
Equation (33) becomes

1

o
N T x r
(Cp)wing = ®B s:mh A L [ f czn(g - -IG + 1) wZn(ﬁ = & ;C-)) a5
n=0

r
('% -1)
‘ L = _ X "
H( - + 1> on (Bro T + 1) + b2n (=, r)} .
eoae (34)
On the body r = ry, and Equation (33) becomes
-] x/BrO
(CP)bOdyzﬂBsinhlZ [/ C(E)N(O E,1>d§
d
n=0

A X
- H(B—:fo-) 02n<ﬁ-6> + b2n(x, ro)] cos 2nb.

eoss (35)

The pressure due to the wing alone has been wratten in the form

7« B sinh A

Section 2, since experience shows that convergence of the Fourler series for the
interference pressure alone 18 less satisfactory than convergence for the
combained pressure.

4 Z b2n(x, r) cos 2n® rather than in the closed form derived in

4 RESULTS AND DISCUSSION

Equations (34) and (35) apply to inviscid supersonic flow past a wing-body
combination consisting of two halves of a symmetrical delta wing of single-wedge
section mounted symmetrically on a circular cylinder; the leading edges are
subsonic, and the combanation 1s at zero incidence. & and r, appear as scaling

factors only; 20 1s the angle of the wecdge section, and Ty 18 the radius of the
circular cylinder. The rcemaining parameters are k and B; k 1s the tangent of the

angle between the lecading edge and the wing junction, and B = JIi:-‘i, where 1l is
the free stream lach number. Results have been obtained for B equal to V2 and k
equ&l to 0050

- 16 -



In Fags.t to 4 inclusive B(Cp)b 3 /5 is plotted against x/Bro for four

values of & - 0, %/6, ®/3, and ®/2. The flow is undisturbed ahead of the Mach
cones fram the tips of the two wing~body junctions. These cones intersect the
circular cylinder in helices, and it is easily shown that the flow should be
undisturbed ahead of e value of x/Bry equal to 2 when 6 = 0, equal to 2 + /6

when 6 = x/6, equal to 2 + /3 when & = n/3, and equal to 2 + %/2 when © = #/2;
the effect of the other half wing (0 = n) 18 first felt at a value of x/BrO

equal to 2 + % when 8 = 0, equal to 2 + 5%/6 when & = #/6, equal to 2 + 2%/3
when 6 = n/3, and equal to 2 + %/2 when 0 = =/2.

Only the farst six terms of the Fourier series in Equation (35) have been
used to obtain the curves of Figs.1 to 4. This is why, in the figures, (Cp)body

does not vanish ahead of the llach cone from the junction tip., For example, for
8 = w/2, (cp)body should be zero ahead of a value of x/BrO equal to roughly 3.57;

instead, 1t oscillates about zero; fortunately, the amplitude of oscillation is
small, which suggests that truncation of the Fourier series at the sixth term
produces small errors only. Equatien (35) apperently gives values for (Up)body

ahead of the section given by-gf— = 2; this is because the wing is assumed to be
0

continued inside the cylinder. In reality, no disturbances can exist ahead of

this section; and, in fact, Equation (35) with the Fourier series truncated at

the sixth term does give values extremely close to zero for values of x/BrO less

than 2.

At the wing-body Jjunction atself the value of (Gp)body is known, since the

flow locally is the same as that at the apex of a symmetrical dclta wing of wedge
section; from Equation (66) it is found that B(cp)body/a = 0,968 therec. Bagley's

approximate theory, thercfore, gives the straight line B(Gp)body/5 = 0,968, it is
shown in Fig.1 as a dashed line, On the line 6 = 0, r = r,, ahead of the point

. p s . : . . N
given by Bro = 2, (Cp)body vanishes, so that lhere is a discontinuity an
(cp)body at this point. Prom tne figure it is seen that Equation (35) with the

Fouraier series truncated at the sixth term does try to reproduce the
discontinuity. For values of E%' other than zero there is no discontinuity in
0

(cp)body.

These results do not call for discussion, and it seems appropriate to
close with a few remerks on future work in the field of wing-body interference.
The main difficulty in solving interference problems of this kind 1s still the
large amount of computation required. The arraival of large digital clectronic
computers has madc the solution of particular problems feasible; but it is
unlikely thet the effort could be spared to determine pressure distributions on
a whole range of combinations. Indeed, the rcason why pressure distributions on
only the body have been calculated in this report is a reluctance to spend any
more computational effart on the problem at the moment; to have used Equation (34)
to find (Cp)wing would have put the publication of this report back by a

considerable length of time.
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The most promising way of roducing the amount of computational work is
probably to develop Luke's techniqueé. He shows how to replace the functions by
very simple approximations that contain exponential and circular inverses only,
It seems possible that use of these approximations might lcad to considerable
simplifications in the formulas for tho pressure, Equations (34) and (35).
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