C.P. No. 704

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

A Problem of Wing-Body Interference

By
D.G. Randall

C. P. No. 704

April 1963

A PROBLEMK OF ITING-BODY INTERFEREACE

by
D. G. Randall

SUTMARY

The report considers inviscid, supersonic filow past a symmetrical wingboay combination at zero incidence. The body is a circular cylinder extending indefinitely in both the upstream and the downstream directions. The wings are two halves of a delta wing of singlewwedge section with a subsonic leading edge; they are assumed to extend indefinitely in the dowstream direction. Results are obtained for the pressure distribution on the body.

LIST OF CONTENTS

Page
1 INTRODUCTION 3
2 SUPERSONIC FLOW PAST A DELTA WING UF SINGLE-WEDGE SECTION 4
3 SUPERSONIC FLOW PAST A CERTAIN WING-BODY COMBINATION 10
4 RESULTS AND DISCUSSION 16
LIST OF SYMBOLS 18
LIST OF REFERENCES 19
ILLUSTRATIONS - Figs. 1 - 4
DETACHABLE ABSTRAUT CARDS
IISI OF IILUSTRATIONS
Fig. 1
Pressure coefficient on the body at $\theta=\pi / 6$ 2
Pressure coefficzent on the body at $\theta=\pi / 3$ 3
Pressure coefficient on the body at $\theta=\pi / 2$ 4

This section begins with a short history of work on wing-brdy unterference in Aerodynamzes Department.

In 1951 K. Stewartson (now Professor of Applied Iuathematics at Durham University) spent same weeks in the Department as a vacation consultant, durins which he wrote a note (unpublished) on wing-body interference. Ins method is applicable to wing-body combinations of whicl. the body is approximately a carcular cylander and the wings lic approxamately in a plane and are symmetrically mounted; throughout the present report the phrase "wanc-body condination" is used to denote a configuration of this type. The governing partial differential. equation is taken to be the linearised equation of supersonlc flow. It is assumed that the vclocity potential due to the wings alonc is known, so that the problcm reduces to the determination of an interference potential. This can be determincd by Laplace transform methods, which give the pressure cofficient over the combination as a Fourier series. Ihe coefficient of the n th term of the Fourier series is an integral involving a function of n, x, and r, where x and r are cylinarical polar coordinates. Each function is an inverse of a Laplace transform that contains Bessel functions of imaganary argument; the inverse has to be obtained numerically. Even when ihe inverses have been computed, the numerical work involved in solving just one problem in wing-body anterference is formidable. But in 1951 the inverses had not been tabulated; and the computational effort required to do this was so forbidding in the desk-mechine days of 1951 that the problem was temporarily abandoned.

In 1955 the author ${ }^{1}$ used Stewartson's method to determine the wave drag of bodies that do not depart far from carcular oylinders. Reference 1 can hardly be said to have contributed to the theory of wing-body interference, since the problem solved is equivalent to determining the flow past a whig-body combination wathout a wing. Adrilittedly, some of the inverses mentioned above are tabulated in Reference 1 ; they are those for which the value of r is equal to the radius of the circular cylinder approxinating the body. The inverses are tabulated for eleven values of n and for values of x at intervals of 0.2 . In princlple, they can be uscd to determine the pressure on the body of a wingbody cambination; in practice, the coarse interval in x preoludes this.

In 1957, Nielsen ${ }^{2}$ completed his work on wing-body interference by issuing an impressively bulky set of tables of anverscs of certain Laplace transforms. Nielsen's inverses arc not identical with those of Stewartson, although the two sets are closely connected. The interfcrence problen can be solved by using Nielsen's inverses in almost exactly the same way as by using Stewartson's - the pressure on the combination $1 s$ given by a Fourier serics whose cocfficients are integrals involving the 2nverses. Niclsen's inverses are tabulated for eleven values of n, ten valuos of r, and for values of x at every 0.01 . The appearanoe of these tables together with the arrival in the RAE of dieital clectronic computers meant tnat most of the labour required to solve wing-body interference problems had been eliminated; nevertheless, the computational effort required was still so great that sumplified, but less accucate, methods were desirable.

By 1958, several mombers of Aero Dopartment had produced approxa ate theories relatine to wanc-body interference: the two theorics of importance here are due to J.A. Bagley ${ }^{3}$ and D.A. Treadgold. Bagley argues tnat, for wings with
sweptback leading edges, the flow near the initial point of a wing-body junction must be the same as that at the apex of the wing formed by joining the original wing to its reflection in the plane throuch the junction normal to the wing. The procedure has been applicd to wing-body interference at subsonic speeds with considerable success (at least, as far as the flow over the wing is concerned). Treadgold has developed a method originally sugcested by wtewartson. He considers a combination wath one wing only mounted on the body, since it can be shown that, in this case, the inverses contain lnown functions only (cxponentials, carcular functions, etc.) ; the method gives correct answers ahead $0 \hat{i}$ the isach cone from the initial point of the junction of the body and the otiner winc. Bagley's method is smpler than Treadgold's; on the other hand, Treadfold's method is more accurate than Bagloy's.

It was decided that, to provide a test for the se methods, the author should solve a particular inng-body problem exactly (that is, by using the nethod of Ref.2) and that the results for the pressure on the combination should be conpared wath those obtaincd by the approximate theories. The particular wans-body combination considered here consists of two halves of a symmetrical delta wing of single-wedge section mounted symmetrically on a circular cylinder; the leading edges are subsonic, and the combination is at zero incadence. The potential due to the wang alone is determined in Section 2; the apparently long-winded method for obtaming the X and r derivatives of the potential as a Fourier series is due to Stewartson (in his unpublished note) ; it is, in fact, a vast inprovement on the obvious method. The interference potential is determincd an Scction 3; and the results are discussed in Section 4 .

2 SUPEPSONIC FLO:I PAST A DELTA WING OP SIIVGE-WNDGE SEUTION

Consider inviscid, supersonic flow past a symmetrical delta whe at zero incidence. Let the apex of the wing be the oragin of a system of right-handed rectangular cartesian coordinates, x, y, and z, and let the x axis be in the darection of the frec stream. Suppose that the equation of the wang is

$$
\begin{array}{ll}
z=\delta\left(x+\frac{y}{k}\right) & (-k x \leqslant y \leqslant 0), \\
z=\delta\left(x-\frac{y}{k}\right) & (0 \leqslant y \leqslant k x) ;
\end{array}
$$

the wing is assumed to extend indefinitely in the positave x direction. Let the speed of the free stream be U, its Mach number be M, its pressure be p_{∞}, and its density be ρ_{∞}; write B for $\sqrt{M^{2}-1}$.

Suppose that δ is small compared with unity and that ii is neither close to unity nor large compared with unity. It is then possible 4 to introduce a disturbance velocity potential, ϕ_{W} (W standing for wing), such that the velocities in the x, y, and z directions are given respectively by $U\left(1+\frac{\partial \phi_{W}}{\partial x}\right), U \frac{\partial \phi_{W}}{\partial y}$, and $U \frac{\partial \phi_{W}}{\partial z}$; ϕ_{W} satisfies the linearised equation of supersonic flow,

$$
\begin{equation*}
B^{2} \frac{\partial^{2} \phi_{I V}}{\partial x^{2}}=\frac{\partial^{2} \phi_{Y}}{\partial y^{2}}+\frac{\partial^{2} \phi_{W}}{\partial z^{2}} . \tag{1}
\end{equation*}
$$

The boundary conditions are that the disturbance velocity components should vanish on the liach cone from the apex of the wing, and that, on the winf, the velocity component normal to the wing should vanish; these conditions may be written approximately

$$
\begin{gather*}
\frac{\partial \phi_{W N}}{\partial x}=\frac{\partial \phi_{N}}{\partial y}=\frac{\partial \phi_{W}}{\partial z}=0 \quad \text { when } x^{2}-B^{2} y^{2}-B^{2} z^{2}=0, \tag{2a}\\
\frac{\partial \phi_{W}}{\partial z}=\delta \text { when } z=0, \quad|y|<1 \mathrm{kx} \tag{2b}
\end{gather*}
$$

From the symmetry of the flow, $\phi_{T V}(x, y, z)=\phi_{T}(x, y,-z)$.
Suppose that $B k<1$, so that the leading edge is supersonic. The potential at a point (x, y, z) can be found ${ }^{4}$ by distributing suitable fundamental singular solutions of Equation (1) over the wrig surface and integrating them over the part of the wong surface lying within the ilach fore-cone from the point being considered. The equation if the liach cone from the point is

$$
\begin{equation*}
\left(x-x_{1}\right)^{2}-B^{2}\left(y-y_{1}\right)^{2}-B^{2}\left(z-z_{1}\right)^{2}=0 \tag{3}
\end{equation*}
$$

where x_{1}, y_{1}, and z_{1}, are runnint coordinates. The Mach fore-cnac intersects the wing in the curve

$$
\begin{equation*}
x_{1}=x-B\left[\left(y-y_{1}\right)^{2}+z^{2}\right]^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

since the equation of the wing may be approximated by $z_{1}=0$. The curve given by Equation (4) intersects the leading edge, $y_{1}= \pm k x_{1}$, in two points whose y
coordinates are y_{1} and y_{1}, coordinates are y_{A} and y_{B},
where

$$
\begin{equation*}
y_{A}=-\frac{k}{\left(1-B^{2} k^{2}\right)}\left\{\left(x+B^{2} k y\right)-B\left[(y+k x)^{2}+\left(1-B^{2} k^{2}\right) z^{2}\right]^{\frac{1}{2}}\right\} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{B}=\frac{k}{\left(1-B^{2} k^{2}\right)}\left\{\left(x-B^{2} k y\right)-B\left[(y-k x)^{2}+\left(1-B^{2} k^{2}\right) z^{2}\right]^{\frac{1}{2}}\right\} \tag{5b}
\end{equation*}
$$

It can be shown ${ }^{4}$ that the following form for ϕ_{V} satisfies Equation (1) and the boundary conditions of Equations (2):

$$
\begin{aligned}
\phi_{W}= & -\frac{\delta}{\pi} \int_{y_{A}}^{0} \int_{-y_{1} / k}^{x-B\left[\left(y-y_{1}\right)^{2}+z^{2}\right]^{\frac{1}{2}}} \frac{d x_{1} d y_{1}}{\left[\left(x-x_{1}\right)^{2}-B^{2}\left(y-y_{1}\right)^{2}-B^{2}\left(z-z_{1}\right)^{2}\right]^{\frac{1}{2}}} \\
& -\frac{\delta}{\pi} \int_{0}^{y_{B}} \int_{y_{1} / k}^{x-B\left[\left(y-y_{1}\right)^{2}+z^{2}\right]^{\frac{1}{2}}} \frac{d x_{1} d y_{1}}{\left[\left(x-x_{1}\right)^{2}-B^{2}\left(y-y_{1}\right)^{2}-B^{2}\left(z-z_{1}\right)^{2}\right]^{\frac{1}{2}}} .
\end{aligned}
$$

It follows that

$$
\phi_{\mathrm{W}}=-\frac{\delta}{\pi} \int_{y_{A}}^{0} \cosh ^{-1} \frac{\left(k x+y_{1}\right)}{B k\left[\left(y-y_{1}\right)^{2}+z^{2}\right]^{\frac{1}{2}}} d y_{1}-\frac{\delta}{\pi} \int_{0}^{y_{B}} \cosh ^{-1} \frac{\left(k x-y_{1}\right)}{B k\left[\left(y-y_{1}\right)^{2}+z^{2}\right]^{\frac{1}{2}}} .
$$

Hence,

$$
\begin{align*}
\frac{\partial \phi_{W}}{\partial x}= & -\frac{\delta}{\pi} \int_{y_{A}}^{0} \frac{k d y_{1}}{\left[\left(1-B^{2} k^{2}\right) y_{1}^{2}+2 k\left(x+B^{2} k y\right) y_{1}+k^{2}\left(x^{2}-B^{2} y^{2}-B^{2} z^{2}\right)\right]^{\frac{1}{2}}} \\
& -\frac{\delta}{\pi} \int_{0}^{y_{B}} \frac{k d y_{1}}{\left[\left(1-B^{2} k^{2}\right) y_{1}^{2}-2 k\left(x-B^{2} k y\right) y_{1}+k^{2}\left(x^{2}-B^{2} y^{2}-B^{2} z^{2}\right)\right]^{\frac{1}{2}}} \\
= & -\frac{\delta k}{\pi\left(1-B^{2} k^{2}\right)^{\frac{1}{2}}}\left\{\cosh ^{-1} \frac{\left(x+B^{2} k y\right)}{B\left[(k x+y)^{2}+\left(1-B^{2} k^{2}\right) z^{2}\right]^{\frac{1}{2}}}+\cosh ^{-1} \frac{\left(x-B^{2} k y\right)}{B\left[(k x-y)^{2}+\left(1-B^{2} k^{2}\right) z^{2}\right]^{\frac{1}{2}}}\right] \tag{6}
\end{align*}
$$

Introduce cylindrical polar coordinates (x, r, θ) such that

$$
\begin{align*}
& r^{2}=y^{2}+z^{2} \tag{7a}\\
& \tan \theta=z / y \tag{7b}
\end{align*}
$$

Equation (6) becames

$$
\begin{aligned}
& \frac{\partial \phi_{W}}{\partial x}=-\frac{\delta k}{\pi\left(1-B^{2} k^{2}\right)^{\frac{1}{2}}}\left\{\cosh ^{-1} \frac{\left(x+B^{2} k r \cos \theta\right)}{B\left[(k x+r \cos \theta)^{2}+\left(1-B^{2} k^{2}\right) r^{2} \sin ^{2} \theta\right]^{\frac{1}{2}}}\right. \\
&\left.+\cosh ^{-1} \frac{\left(x-B^{2} k r \cos \theta\right)}{B\left[(k x-r \cos \theta)^{2}+\left(1-B^{2} k^{2}\right) r^{2} \sin ^{2} \theta\right]^{\frac{1}{2}}}\right\}
\end{aligned}
$$

It follows that
$\frac{\partial^{2} \dot{\varphi}_{W}}{\partial x \partial r}=\frac{\delta k x}{\pi\left(x^{2}-B^{2} r^{2}\right)^{\frac{1}{2}}}\left[\frac{(r+k x \cos \theta)}{\left[k^{2} x^{2}+\left(1-B^{2} k^{2}\right) r^{2}+2 k x r \cos \theta+B^{2} k^{2} r^{2} \cos ^{2} \theta\right]}\right.$

$$
\begin{equation*}
\left.+\frac{(r-k x \cos \theta)}{\left[x^{2}+\left(1-B^{2} k^{2}\right) r^{2}-2 k x r \cos \theta+B^{2} k^{2} r^{2} \cos ^{2} \theta\right]}\right] \tag{8}
\end{equation*}
$$

Now write

$$
\begin{align*}
& \frac{1}{\mathrm{BK}}=\cosh \lambda \tag{9a}\\
& \frac{x}{\mathrm{Br}}=\cosh \chi \tag{9b}
\end{align*}
$$

Equation (8) becomes
$\frac{\partial^{2} \phi_{W}}{\partial x \partial r}=\frac{\delta \operatorname{coth} \chi}{\pi B r}\left[\frac{(\cosh \lambda+\cosh x \cos \theta)}{\left[(\cosh \lambda \cosh \chi+\cos \theta)^{2}-\sinh ^{2} \chi \sinh ^{2} \lambda\right]}\right.$

$=\frac{\delta \operatorname{coth} \chi}{2 \pi \operatorname{Br} \sinh \lambda}\left[\frac{\sinh (\lambda+\chi)}{[\cosh (\lambda+\chi)+\cos \theta]}+\frac{\sinh (\lambda-x)}{[\cosh (\lambda-x)+\cos \theta]}\right.$

$$
\left.+\frac{\sinh (\lambda+\alpha)}{[\cosh (\lambda+\chi)-\cos \theta]}+\frac{\sinh (\lambda-x)}{[\cosh (\lambda-\chi)-\cos \theta]}\right]
$$

$$
\begin{equation*}
=\frac{\delta \operatorname{coth} \chi}{\pi \operatorname{Br} \sinh \lambda}\left[\frac{\sinh 2(\lambda+x)}{[\cosh 2(\lambda+\chi)-\cos 2 \theta]}+\frac{\sinh 2(\lambda-\chi)}{[\cosh 2(\lambda-\chi)-\cos 2 \theta]}\right\} \tag{10}
\end{equation*}
$$

Now, it is known that ${ }^{5}$

$$
\frac{1}{\pi} \int_{0}^{\pi} \frac{\cos n \theta d \theta}{(\cosh \eta-\cos \theta)}=\frac{e^{-n|\eta|}}{\sinh |\eta|}
$$

Therefore, Equation (10) can be expanded as

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial x \partial r}=\frac{4 \delta \operatorname{coth} x}{\pi \operatorname{Br} \sinh \lambda}\left[\frac{1}{2}+\sum_{n=1}^{\infty} e^{-2 n \lambda} \cosh 2 n x \cos 2 n \theta\right](x<\lambda), \tag{11a}\\
& \frac{\partial^{2} \phi}{\partial x \partial r}=-\frac{4 \delta \operatorname{coth} x}{\pi B r \sinh \lambda} \sum_{n=1}^{\infty} \sinh 2 n \lambda e^{-2 n \chi} \cos 2 n \theta \quad(x>\lambda) . \tag{11b}
\end{align*}
$$

From Equation (gb), the liach cone from the origin is given by $\chi=0$; from Equation (aa), $\frac{\partial \phi_{W}}{\partial r}=0$ on the Mach cone from the origin; hence, fran Equation
(11a), $\frac{\partial \phi_{W}}{\partial r}=\frac{2 \delta}{\pi \sinh \lambda}\left[\sinh \chi+\sum_{n=1}^{\infty} e^{-2 n \lambda}\left[\frac{\sinh (2 n+1) \chi}{(2 n+1)}+\frac{\sinh (2 n-1) \chi}{(2 n-1)}\right] \cos 2 n \theta \overline{ }\right.$
$(x<\lambda)$.
$\ldots(12)$

Equation (11b) may be integrated with respect to x to gave

$$
\begin{array}{r}
\frac{\partial \phi_{W}}{\partial r}=\frac{2 \delta}{\pi}+\frac{2 \delta}{\pi \sinh \lambda} \sum_{n=1}^{\infty}\left\{\sinh 2 n \lambda\left[\frac{e^{-(2 n+1) x}}{(2 n+1)}+\frac{e^{-(2 n-1) x}}{(2 n-1)}\right]-\frac{2 \sinh \lambda}{\left(4 n^{2}-1\right)}\right\} \cos 2 n \theta \tag{13}\\
(x>\lambda)
\end{array}
$$

where the constant of integration has been chosen to make the values of $\frac{\partial \phi_{W W}}{\partial r}$ as given by Equations (12) and (13) equal when $\chi=\lambda$. From Equation (aa), $\frac{\partial \phi_{W}}{\partial x}=0$ on the Mach cone from the origin, which corresponds to $\chi=0$; hence from Equation (11a),

$$
\begin{equation*}
\frac{\partial \phi_{W}}{\partial x}=-\frac{4 \delta}{\pi B \sinh \lambda}\left[\frac{1}{2} x+\sum_{n=1}^{\infty} \frac{e^{-2 n \lambda} \sinh 2 n x}{2 n} \cos 2 n \theta\right] \quad(x<\lambda) \tag{14}
\end{equation*}
$$

Equation (11b) may be integrated with respect to r to give

$$
\begin{equation*}
\frac{\partial \phi_{W}}{\partial x}=-\frac{4 \delta}{\pi B \sinh \lambda}\left[\frac{1}{2} \lambda+\sum_{n=1}^{\infty} \frac{\sinh 2 n \lambda e^{-2 n x}}{2 n} \cos 2 n \theta\right] \quad(x>\lambda), \tag{15}
\end{equation*}
$$

where the constant of integration lias been chosen to make the values of $\frac{\partial \phi_{V}}{\partial x}$ given by Equations (14) and (15) equal when $\chi=\lambda$.

Equations (12) to (15) inclusive may be written as

$$
\begin{equation*}
\frac{\partial \phi_{\pi}}{\partial r}=\frac{2 \delta}{\pi \sinh \lambda} \sum_{n=0}^{\infty} a_{2 n}(x, r) \cos 2 n \theta, \tag{16a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \phi_{W}}{\partial x}=-\frac{2 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty} b_{2 n}(x, r) \cos 2 n \theta ; \tag{16b}
\end{equation*}
$$

here,

$$
\begin{gather*}
a_{0}=\sinh \chi, \quad a_{2 n}=e^{-2 n \lambda}\left[\frac{\sinh (2 n+1) x}{(2 n+1)}+\frac{\sinh (2 n-1) x}{(2 n-1)}\right] \quad(n>0), \\
b_{n}=x, \quad b_{2 n}=\frac{e^{-2 n \lambda} \sinh 2 n x}{n} \quad(17 a) \\
\ldots>0), \tag{17~b}
\end{gather*}
$$

when $\chi<\lambda$; and

$$
\begin{gather*}
a_{0}=\sinh \lambda, \quad a_{2 n}=\sinh 2 n \lambda\left[\frac{e^{-(2 n+1) x}}{(2 n+1)}+\frac{e^{-(2 n-1) x}}{(2 n-1)}\right]-\frac{2 \sinh \lambda}{\left(4 n^{2}-1\right)} \quad(n>0), \\
b_{0}=\lambda, \quad b_{2 n}=\frac{\sinh 2 n \lambda e^{-2 n x}}{n} \quad(18 a) \tag{18~b}
\end{gather*}
$$

when $\chi>\lambda$.

3 SUPFRSONIC FIOT PAST A CERTAIN WING-BODY COIABINATION

Conslder inviscid, supersonic flow past a wing-body combination consisting of two halves of a symmetrical delta wing of sangle-wedge section mounted symmetrically on a circular cylinder; suppose the configuration is at zero incidence. It is convenient to imagine the two halves of the wang to be continued through the wall of the carcular cylinder untul they meet inside; the winf thus formed is assumed to be the sacue as the one considered in Section 2. Let x, y, z, r, and θ be defined as before; and suppose that the free stream direction and the flow
quantities in the free stream are the same as in Section 2. Let the radius of the carcular cylinder be r_{0}. The wang is assumed to extend indefinitely in the positive x direction, and the circular cylinder to extend andefinitely in the negative and positive x directions.

A disturbance veiocity potential, ϕ, is antroduced; it is wirtten as the sum of two terms,

$$
\begin{equation*}
\phi=\phi_{W}+\phi_{I} . \tag{19}
\end{equation*}
$$

$\phi_{W N}$ is the potential due to the wing alone, and has been determincd in Section 2; ϕ_{I} is the interference potential. ϕ must satisfy the linearised equation of supersonic flow, and the first derivatives of ϕ (the velocity components) must vanish on the mach conc from the apex of the wing (in fact, they must vanish in a region behand this cone, since, in reality, the flow is undisturbcd up to the point where the wing appears through the cylunder). ϕ_{W} satisfics these requirements, and so ϕ_{I} must also satisfy them.

Hence,

$$
\begin{equation*}
\mathrm{B}^{2} \frac{\partial^{2} \phi_{I}}{\partial \mathrm{x}^{2}}=\frac{\partial^{2} \phi_{I}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \phi_{I}}{\partial z^{2}}=\frac{\partial^{2} \phi_{I}}{\partial \mathrm{r}^{2}}+\frac{1}{r} \frac{\partial \phi_{I}}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \phi_{I}}{\partial \theta^{2}}=0 ; \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \phi_{I}}{\partial x}=\frac{\partial \phi_{I}}{\partial y}=\frac{\partial \phi_{I}}{\partial z}=0 \text { when } x^{2}-B^{2} y^{2}-B^{2} z^{2}=0 . \tag{21}
\end{equation*}
$$

The boundary condition on the wing is satisficd by ϕ_{F} on its own; hence,

$$
\begin{equation*}
\left(\frac{\partial \phi}{\partial z}\right)_{z=0}=0 \tag{22}
\end{equation*}
$$

The boundary condition on the circular cylinder is that the velocity component normal to the cylinder should vanish; this means that

$$
\left(\frac{\partial \phi}{\partial r}\right)_{r=r_{0}}=0 ;
$$

hence, from Equations (19) and (16a),

$$
\begin{equation*}
\left(\frac{\partial \phi_{I}}{\partial r}\right)_{r=r_{0}}=-\left(\frac{\partial \phi_{H}}{\partial r}\right)_{r=r_{0}}=-\frac{2 \delta}{\pi \sinh \lambda} \sum_{n=0}^{\infty} a_{2 n, 0}(x) \cos 2 n \theta, \tag{23}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2 n, 0}(x)=a_{2 n}\left(x, r_{0}\right) \tag{24}
\end{equation*}
$$

Equation (20), with the boundary conditions given by Equations (21), (22), and (23) 2 can be solved ${ }^{1}$ by Laplace transform methods. The Laplace transform of $f(x)$ is $f(p)$, where

$$
\bar{f}(p)=\int_{0}^{\infty} e^{-p x} f(x) d x
$$

Equation (20) transforms to

$$
\begin{equation*}
\mathrm{B}^{2} \mathrm{p}^{2} \bar{\phi}=\frac{\partial^{2} \bar{\phi}_{I}}{\partial r^{2}}+\frac{1}{\mathrm{r}} \frac{\partial \bar{\phi}_{I}}{\partial \mathrm{r}}+\frac{1}{\mathrm{r}^{2}} \frac{\partial^{2} \bar{\phi}_{I}}{\partial \theta^{2}} ; \tag{25}
\end{equation*}
$$

Equation (22) transforms to

$$
\begin{equation*}
\left(\frac{\partial \ddot{\phi}_{I}^{\prime}}{\partial z}\right)_{z=0}=0 \tag{26a}
\end{equation*}
$$

Equation (23) transforms to

$$
\begin{equation*}
\left(\frac{\partial \bar{\phi}_{I}}{\partial r}\right)_{r=r_{0}}=-\frac{2 \delta}{\pi \sinh \lambda} \sum_{n=0} \bar{a}_{2 n, 0} \cos 2 n \theta \tag{26b}
\end{equation*}
$$

from Equation (21),

$$
\begin{equation*}
\bar{\phi}_{I} \rightarrow 0 \text { as } r \rightarrow \infty \tag{26c}
\end{equation*}
$$

By the method of separation of variasles it can be shown that the solution of Equation (25) is

$$
\bar{\phi}_{I}=\sum_{n=0}^{\infty}\left\{\left[A_{n} K_{n}(\operatorname{Brr})+C_{n} I_{n}(B \operatorname{Br} r)\right] \cos n \theta+\left[B_{n} K_{n}(\operatorname{Bpr})+D_{n} I_{n}(\operatorname{Brr})\right] \sin n \theta\right\},
$$

where A_{n}, B_{n}, C_{n}, and D_{n} are arbitrary functions of p, and K_{n} and I_{n} are Bessel functions of imaginary argument 1 . From Equations (26) and the fact that $I_{n}(B p r) \rightarrow \infty$ as $r \rightarrow \infty$, it follows that $\bar{\phi}_{I}$ can be written as

$$
\begin{equation*}
\bar{\phi}_{I}=\sum_{n=0}^{\infty} A_{2 n}(p) K_{2 n}(B p r) \cos 2 n \theta \tag{27}
\end{equation*}
$$

$A_{2 n}(p)$ is to be determined from Equation (26b), which gives

$$
B p \sum_{n=0}^{\infty} A_{2 n}(p) K_{2 n}^{\prime}\left(B p r_{0}\right) \cos 2 n \theta=-\frac{2 \delta}{\pi \sinh \lambda} \sum_{n=0}^{\infty} \bar{a}_{2 n, 0} \cos 2 n \theta
$$

It follows that

$$
A_{2 n}(p)=-\frac{2 \delta \vec{a}_{2 n, 0}}{\pi B p \sinh \lambda K_{n}^{\prime}\left(B r_{0}\right)}
$$

From Equation (27),

$$
\bar{\phi}_{I}=-\frac{2 \delta}{\pi \operatorname{Bp}} \frac{2}{\sinh \lambda} \sum_{n=0}^{\infty} \frac{\overline{\mathrm{a}}_{2 n, 0} K_{2 n}(\mathrm{Bpr})}{\overline{\mathrm{L}}_{2 n}^{1}\left(\mathrm{Bpr}_{0}\right)} \cos 2 n \theta
$$

Hence,

$$
\begin{equation*}
\frac{\overline{\partial \phi_{I}}}{\partial x}=-\frac{2 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty} \frac{\bar{a}_{2 n, 0} K_{2 n}(\mathrm{Bpr})}{K_{2 n}^{1}\left(B p r_{0}\right)} \cos 2 n \theta \tag{28}
\end{equation*}
$$

Now define a function $W_{2 n}(\xi, v)$ by the equation

$$
\begin{equation*}
c^{p(\nu-1)} \frac{K_{2 n}(p \nu)}{K_{2 n}^{1}(p)}+\frac{1}{\sqrt{\nu}}=\int_{0}^{\infty} e^{-p \xi} W_{2 n}(\xi, \nu) d \xi \tag{29}
\end{equation*}
$$

$\mathrm{W}_{2 \mathrm{n}}$ is tabulated in Ref.2.
It follows that

$$
\begin{equation*}
e^{B p\left(r-r_{0}\right)} \frac{K_{2 n}(B p r)}{K_{2 n}^{\prime}\left(B p r_{0}\right)}+\sqrt{\frac{r_{0}}{r}}=\int_{0}^{\infty} \frac{1}{B r_{0}} W_{2 n}\left(\frac{x}{B r_{0}}, \frac{r}{r_{0}}\right) e^{-p x} d x . \tag{30}
\end{equation*}
$$

Now Equation (28) raay be written
$\frac{\overline{\partial \phi_{I}}}{\partial x}=-\frac{2 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left\{\left[e^{B p\left(r-r_{0}\right)} \frac{K_{2 n}(B p r)}{K_{2 n}^{\prime}\left(B r_{0}\right)}+\sqrt{\frac{r_{0}}{r}}\right]-\sqrt{\frac{r_{0}}{r}}\right\} e^{-B p\left(r-r_{0}\right)} \bar{a}_{2 n, 0} \cos 2 n \theta$.

The inverse of $e^{-B p\left(r-r_{0}\right)} \bar{a}_{2 n, 0}$ is $H\left(x-\overline{B r-r_{0}}\right) a_{2 n, 0}\left(x-B \overline{r-r_{0}}\right)$, where H is the unit function (zero for negative values of its argument, unity for positive values) ; hence, from Equation (30) and the convolution theorem ${ }^{1}$,

$$
\begin{aligned}
& \frac{\partial \phi_{I}}{\partial x}=-\frac{2 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left[\int_{B\left(r-r_{0}\right)}^{x} a_{2 n, 0}\left(x_{1}-B \overline{B-r_{0}}\right) \frac{1}{B r_{0}} \#_{2 n}\left(\frac{x-x_{1}}{B r_{0}}, \frac{r}{r_{0}}\right) d x,\right. \\
& \left.-\sqrt{\frac{r_{0}}{r}} H\left(x-B r-r_{0}\right) a_{2 n, 0}\left(x-B r-r_{0}\right)\right\} \cos 2 n \theta \\
& =-\frac{2 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left[\int_{\left(\frac{r}{r_{0}}-1\right)}^{x B r_{0}} c_{2 n}\left(\xi-\frac{r}{r_{0}}+1\right) W_{2 n}\left(\frac{x}{B r_{0}}-\xi, \frac{r}{r_{0}}\right) d \xi\right. \\
& \left.-\sqrt{\frac{r}{r_{0}}} H\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right) C_{2 n}\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right)\right\} \cos 2 n \theta,
\end{aligned}
$$

where ξ has been wratten for $\frac{\ddot{x}_{1}}{\mathrm{Br}_{0}}$. From Equation (24), $\mathrm{C}_{2 \mathrm{n}}$ 1s defined by

$$
c_{2 n}(\vartheta)=a_{2 n, 0}\left(B r_{0} \vartheta\right)=a_{2 n}\left(B r_{0} \vartheta, r_{0}\right) ;
$$

hence, from Equations (17a) and (18a),
$c_{0}(v)=\sinh x_{0}, \quad C_{2 n}(v)=e^{-2 n \lambda}\left[\frac{\sinh (2 n+1) x_{0}}{(2 n+1)}+\frac{\sinh (2 n-1) x_{0}}{(2 n-1)}\right] \quad(n>0)$,(32a)
when $x_{0}<\lambda$, and
$c_{0}(v)=\sinh \lambda, \quad c_{2 n}(\vartheta)=\sinh 2 n \lambda\left[\frac{e^{-(2 n+1) x_{0}}}{2 n+1}+\frac{e^{-(2 n-1) x_{0}}}{(2 n-1)}\right]-\frac{2 \sinh \lambda}{\left(4 n^{2}-1\right)}(n>0)$
when $\chi_{0}>\lambda_{1}$.
λ is given by Equation (9a); from Equation (9b), χ_{0} is def ined by $\cosh \chi_{0}=\vartheta_{\text {. }}$ The linearised approximation for C_{p}, the pressure coefficient (equal to $\frac{p-P_{\infty}}{\frac{1}{2} \rho_{\infty} V^{2}}$, where p is the local pressure), is given by

$$
c_{p}=-2 \frac{\partial \phi}{\partial x} .
$$

From Equations (19), (31), and (16b), it follows that

$$
\begin{align*}
c_{p}= & \frac{4 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left\{\int_{\left(\frac{r}{r_{0}}-1\right)}^{x / B r_{0}} c_{2 n}\left(\xi-\frac{r}{r_{0}}+1\right) W_{2 n}\left(\frac{x}{B r_{0}}-\xi, \frac{r}{r_{0}}\right) d \xi\right. \\
& \left.-\sqrt{\frac{r_{0}}{r}} H\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right) c_{2 n}\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right)+b_{2 n}(x, r)\right\} \cos 2 n \theta ; \tag{33}
\end{align*}
$$

The $b_{2 n}$ are given by Equations (17b) and (18b).
C_{p} is requircd on both the wing and the body. On the wing $\theta=0$ (or π), and Equation (33) becomes

$$
\begin{align*}
& \left(C_{p}\right)_{\text {wing }}=\frac{4 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left\{\int_{\left(\frac{r}{r_{0}}-1\right)}^{r / B r_{0}} c_{2 n}\left(\xi-\frac{r}{r_{0}}+1\right) W_{2 n}\left(\frac{x}{B r}-E, \frac{r}{r_{0}}\right) d \xi\right. \\
& \left.-\sqrt{\frac{r_{0}}{r}} H\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right) c_{2 n}\left(\frac{x}{B r_{0}}-\frac{r}{r_{0}}+1\right)+b_{2 n}(x, r)\right\} \quad . \tag{34}
\end{align*}
$$

On the body $r=r_{0}$, and Equation (33) becones

$$
\begin{array}{r}
\left(C_{p}\right)_{b o d y}=\frac{4 \delta}{\pi B \sinh \lambda} \sum_{n=0}^{\infty}\left[\int_{0}^{x / B r_{0}} C_{2 n}(\xi) \pi_{2 n}\left(\frac{x}{B r_{0}}-\xi, 1\right) d \xi\right. \\
 \tag{35}\\
\left.-H\left(\frac{x}{B r_{0}}\right) C_{2 n}\left(\frac{x}{B r_{0}}\right)+b_{2 n}\left(x, r_{0}\right)\right\} \cos 2 n \theta .
\end{array}
$$

The pressure due to the wing alone has been written in the form
$\frac{4 \delta}{\pi B \sinh \lambda} \sum_{2 n}(x, r) \cos 2 n \theta$ rather than $1 n$ the closed form derived in Section 2, since experience shows that convergence of the Fourier series for the interference pressure alone is less satisfactory than convergence for the combaned pressure.

4 RESUTTS AND DISCUSSION

Equations (34) and (35) apply to inviscid supersonic flow pest a wang-body combination consisting of two halves of a symmetrical delta wing of single-wedge section mounted symmetrically on a curcular cylinder; the leading edges are subsonic, and the combination is at zero incidence. δ and r_{0} appear as scaling factors only; 2δ is the angle of the wodge section, and r_{0} is the radius of the curcular cylinder. The rmaining parameters are k and $B ; k$ is the tangent of the angle betweon the lcading edge and the wang junction, and $B=\sqrt{11^{2}-1}$, where ii is the free stream lifach number. Results have been obtained for B equal to $\sqrt{2}$ and k equal to 0.5.

In F2gs. 1 to 4 inclusive $B\left(C_{p}\right)_{b o d y} / \delta$ is plotted against x / Br_{0} for four values of $\theta-0, \pi / 6, \pi / 3$, and $\pi / 2$. The flow is undisturbed ahead of the Hach cones from the tips of the two wing-body junctions. These cones intersect the circular cylinder in helices, and it is casily shown that the flow should be undisturbed ahead of a value of x / Br_{0} equal to 2 when $\theta=0$, equal to $2+\pi / 6$ when $\theta=\pi / 6$, equal to $2+\pi / 3$ when $\theta=\pi / 3$, and equal to $2+\pi / 2$ when $\theta=\pi / 2$; the effect of the other half wing $(\theta=\pi)$ is furst felt at a value of $x / B r_{0}$ equal to $2+\pi$ when $\theta=0$, equal to $2+5 \pi / 6$ when $\theta=\pi / 6$, equal to $2+2 \pi / 3$ when $\theta=\pi / 3$, and equal to $2+\pi / 2$ when $\theta=\pi / 2$.

Only the first six terms of the Fourier series in Equation (35) have been used to obtain the curves of Figs. 1 to 4 . This is why, in the figures, $\left(C_{p}\right)$ body does not vanish ahead of the jlach cone from the junction tip. For example, for $\theta=\pi / 2$, (C_{p}) body should be zero ahead of a value of x / Br_{0} equal to roughly 3.57 ; instead, it oscillates about zero; fortunately, the amplitude of oscillation is small, which suggests that truncation of the Fourier series at the sixth term produces small errors only. Equation (35) apparently gives values for (c_{p}) body ahead of the section given by $\frac{x}{B r_{0}}=2$; this is because the wing is assumed to be continued inside the cylinder. In reality, no disturbances can exist ahead of this section; and, in fact, Equation (35) with the Fourier series truncated at the sixth term does gave values extremely close to zero for values of x / Br_{0} less than 2.

At the wing-body junction itself the value of $\left(C_{p}\right)_{\text {body }}$ is know, since the flow locally is the same as that at the apex of a symmetrical dolta wing of wedge section; from Equation (66) it is found that $B\left(C_{p}\right)_{\text {body }} / \delta=0.968$ there. Bagley's approximate theory, thercfore, gives the straight line $B\left(C_{p}\right)_{b o a y} / \delta=0.968$, it is shown in Fig. 1 as a dashed line. On the line $\theta=0, r=r_{0}$, ahead of the point given by $\frac{x}{B r_{0}}=2,\left(C_{p}\right)_{\text {body }}$ vanishes, so that lhere is a discontinuity in $\left(C_{p}\right)_{\text {body }}$ at this point. From the figure it is seen that Equation (35) with the Fourcer series truncated at the sixth term does try to reproduce the discontinuity. For values of $\frac{X}{B r_{0}}$ other than zero there is no discontinuity in $\left(C_{p}\right)_{\text {body }}$.

These results do not call for discussion, and it seems appropriate to close wath a few remarks on future work in the field of wing-body interference. The main difficulty in solving interference problems of this kind is still the large amount of computation requared. The arrival of large digital electronic computers has made the solution of particular problems fcasible; but it is unlikely that the effort could be spared to determine pressure distributions on a whole range of combinations. Indeed, the reason why pressure distributions on only the body have been calculated in this report is a reluctance to spend any more computational effort on the problem at the moment; to have used Equation (34) to find $\left(C_{p}\right)$ wing would have put the publication of this report back by a considerable length of time.

The most promising way of reducing the amount of computational work is probably to develop Luke's technique ${ }^{6}$. He shows how to replace the functions by very sumple approximations that contain exponential and circular inverses only. It seems possible that use of these approximations might lead to considerable simplifications in the formulas for the pressure, Equations (34) and (35).

ACKNOWLEDGTOENT

Acknowledgment is due to Wiss D. Larsen, who programmed Equation (35) for the Mercury computer and did all the numerical work.

IIST OF SY_BOLS

$A_{2 n}(p) \quad$ arbitrary function of p
$a_{2 n}(x, r)$ defined by Equations (17a) and (18a)
$a_{2 n, 0}(r) \quad a_{2 n}\left(x, r_{0}\right)$
B $\left(I^{-2}-1\right)^{\frac{1}{2}}$
$b_{2 n}(x, r)$ defined by Equations (17b) and (18b)
$C_{p} \quad$ pressure coefficient
$\mathrm{C}_{2 n}$
$C_{2 n}(\vartheta)=a_{2 n}\left(B r_{0} \vartheta\right)$
H unit function; $H(\xi)=0$ if $\xi<0, H(\xi)=1$ if $\xi>0$
$k \quad$ tangent of half the apex angle of the wing
$K_{n} \quad$ Bessel function of imaginary argument
M Wach number of free stream
p local pressure
$p_{\infty} \quad$ pressure in free stream
r
cylindrıcal polar coordinate, $\left(y^{2}+z^{2}\right)^{\frac{1}{2}}$
$r_{0} \quad$ radius of body

U speed of frec stream

LIST OF SYBOLS (CONID)

x, y, z cartesian coordinates defincd in Scction 2
y_{A}, y_{B} defincd by Equations (5)
δ
θ
λ
2δ is the angle of the wadge section of the wing
cylindrical polar coordinate, $\tan ^{-1}(z / y)$
$\cosh ^{-1}(1 / B k)$
P_{∞} density in free stream
$\phi \quad$ disturbance velocity potental of wing-body combination
$\phi_{I} \quad$ interference velocity potential
ϕ_{W} disturbancc velocity potential of wing alone
χ
$\cosh ^{-1}(x / B r)$

LIST OF REPHRTHVCES

No. Author(s) Tıtle, etc.
1 Randall, D.G. Supersonic flow past quasi-cylindrical bodics of almost carcular cross-scction.
A.R.C. R. \& M. 3067. November, 1955

2 Nielscn, J.N. Tables of characteristic functions for solving boundaryvalue problems of the wave equation wath application to supersonic interference. IUAUA Tech Note 3873, February 1957.

3 Bagley, J.A. Sonc aerodynanic principles for the design of swept wangs. Progress in Acronautical Éciences 3, 1, 1962, Pergamon Press.

4 Sears, W.R. Gencral theory of high specd acrodynamics.
Editor O.U.P. 1955.
5 Vangler, K.F. Valculation of the load distribution over a wang wath arbitrary canber and twast at sonic specd.
A.R.C. R. \& M. 3102. January, 1955.

6 Luke, Y. L. Approximate unversion of a class of Laplace transforms with application to supersonic flow problems. (Provisional titlc. To appear in QJiAii).

D 31155/1 Nt. 60 K 4 2/65 TPD

FIG. I. PRESSURE COEFFICIENT ON THE BODY AT $\theta=0$

FIG. 2. PRESSURE COEFFICIENT ON THE BODY AT $\theta=\pi / 6$.

FIG. 3. PRESSURE COEFFICIENT ON THE BODY AT $\theta=\pi / 3$

FIG. 4. PRESSURE COEFFICIENT ON THE BODY AT $\theta=\pi / 2$
A.R.C. C.P. NO. 704
533.695.12: 533.693 .3 : 533.6.011.5 :

A PR',BLEM OF WING-BODY INTERFERENCE. Randall, D.G. April 1963.

The report considers inviscid, supersonic flow past a symmetrical wing-body combination at zero incidence. The body is a circular cyinder extending indefinitely in both the upstream and the downstream directions The wings are two halves of a delta wing of single-wedge section with subsonic leading edge, they are assumed to extend indefinitely in the downstream direction. Results are obtained for the pressure distribution on the body.

A.R.C. C.P. NO. 704	$533.695 .12:$
	$533.693 .3:$
	$533.6 .011 .5:$

A PROBLEM OF WING-BCDY INTERFERENCE. Randall, DoG. April 1963.

The report considers inviscid, supersonic flow past a symmetrical wing-body combination at zero incidence. The body is a circular cylinder wing-body combination at zero incidence. The body is a circular cylinde extending indefinitely in both the upstream and the downstream directions The wings are two halves of a delta wing of single-wedge section with subsonic leading edge; they are assumed to extend indefinitely in the
downstream direction. Results are obtained for the pressure distribution downstream direction. Results are obtained for the pressure distribution on the bo.jy.
A.R.C. C.P. NO. 704
533.695 .12 :
533.693 .3
533.6.011.5 :

A PROELEM OF WING-BODY INTERFERENCE. Randall, D.G. April,1963

The report considers inviscid, supersonic flow past a symmetrical wing-body combination at zero incidence. The body is a circular cylinder extending indefinitely in both the upstream and the downstream directions. The wings are two halves of a delta wing of single-wedge section with a subsonic leading edge; they are assumed to extend indefinitely in the downstream direction. Results are obtalned for the pressure distribution on the body.
(C) Crown copyrıght 1965

Prınted and published by Her Masesty's Stationery Office

To be purchased from York House, Kıngsway, London w c 2

423 Oxford Street, London w 1
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
50 Farrfax Street, Bristol 1
35 Smallbrook, Ringway, Bırmingham 5
80 Chichester Street, Belfast 1
or through any bookseller

Printed in England

C.P. No. 704

S.O. Code No. 23-9015-4

