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1 INTRODUCTION 

This section begins unth a short history of work on wing-body interference 
in Aerodynamics Department. 

In 1951 K. Stewartson (now Professor of Applied ~~athemntics at Durham 
University) spent sonc weeks in the Department as a vacation consultant, during 
which he wrote a note (unpublished) on wing-body interference. ,fis method is 
applicable to wing-body combinations of which the body is approxu>Iatcly a 
circular cylirrier nrd the wings lie approximately in a plane and are symmetrically 
mounted; throughout the present report the phrase "win&-body combination" is 
used to denote a configuration of this type. The governing partial differential 
equation is taken to be tine linearised equation of supersonic flow. It is 
assumed that the velocity potential due ,to the win@ alone is known, so that the 
problem reduces to the determination of an interference potential. This can be 
determined by Laplacc transform methods, which give the pressure ccofficlent 
over the ccnnbination as a Fourier series. i'hc coefficient of the ,th term of the 
Fourier series is an integral involving a function of n, x, and r, where x and r 
are cylindrical polar coordinates. Each function is an inverse of a LaplaCe 
transform that contains Bessel functions of imaginary argument; the invcrsc has 
to be obtained numerically. Even when Ihe invcrnos have been computed, the 
numerical work involved in solving Just one problem in wing-bcdy lntcrfcrenoe iS 
formidable. But in 1951 the inverses had not been tabulated; and the 
computational effort required to do this was so forbidding in the deck-machine 
days of 1951 that the problem was temporarily abandoned. 

In 1955 the author' used Stewartson's method to determine the wnvo drag 
of bodies that do not depart far frcan circular oylindcrs. Reference 1 can hardly 
be said to have contributed to the theory of wing-body interference, since the 
problem solved is equivalent to determining the flow past a wing-body 
combination without a win;. Admittedly, some of the inverses mentioned above 
are tabulated in Reference 1; they are those for which the value of r is equal 
to the radius of the circular cylinder approximatw the body. The inverses are 
tabulated for eleven values of n and for vnlucs of x at intervals of 0.2. In 
principle, they can be used to determine the pressure on the body rf a wing- 
bcdy cmnbination; m practice, the coarse interval in x preoludes this. 

In 1957, Nielsen2 completed his work on wing-body intcrfercnoc by issuing 
an impressively bulky set of tables of inverses of certain Laplace transforms. 
Nielsen's inverses arc not identical with those of Stcwartson, although the two 
sets are olosely connected. The interference problem can be solved by using 
Nielsen's inverses in almost exactly the same way as by using Stewartson's - the 
pressure on the canbination 1s given by aFourier series whose cocfficicnts are 
integrals involviny the Inverses. Nielsen's inverses arc tabulated for eleven 
values of n, ten values of r, and for values of x at ovary 0.01. The appcnranoe 
of these tables together with the arrival in the RAE of digital clootronic 
ccanputcrs meant tnat most of the labour required to sclvc wing-body interference 
problems hsd been eliminated; nevertheless, the computational effort required 
was still so great that simplified, but less occurntc, methods were dcsirablc. 

By 1958, several members of Aero Department had prcduced appro=dnte 
theories relating to win::-body interference: 
are due to J.A. Baglcy3 and D.A. Treadgold. 

the two theorios of importance here 
Bagley argues tnat, for uings with 

-3- 



sweptback leading edges, the flow near the initul point of a wing-btiy Junction 
must be the same as that at the apex of the wing formed by ~ou~ms!+ the c~rlglnal 

wing to Its reflectlon m the plane throu& the Junction normal to the vnng. 
The procedure has been applied to wing-body interference at subsonic speeds w1t.h 
conslderable success (at least, ts fzr as the flow over the wng 1s concerned). 
Treadgold has developed a method originally suz:.ested by Stwartson. Hc 
constiers a combination with one wlm only mounte\l on the bcdy, s~.noo It can be 
shown that, 111 thrs case the uwerses contaln known functwns only (cxponentlals, 
owcular functions, etc. ; j the methcd g1ve.s correct answer.?, ahead 07 the i,ach 
cone from the mltlal point of the junction of the body and the other wu+ 
Bagley's method 1s simpler than Tread&old's; on the other hand, Tread&old's 
method is more accurate than Baglcy's. 

It was decided that, to provldc a test for these methods, the author should 
solve a particular ;ilng-body problem exactly (that LS, by using the method of 
i(ef.2) a& that the results for the pressure on the combustion should be calpar& 
with those obtaucd by the approxztmatc theories. The partxular aw-body 
combination considered here consists of two halves of a symmetr~oaldclta wing 
of single-wedge section mounted symmetrically on a circular cylmdcr; the leading 
edges are subsonic, and the combination 1s at zero mcldencc. The potentul due 
to the wuxg alone is dctermuled in Section 2; the apparently lon(;-winded method 
for obtaining the x and r derlvatlves of the potential as a Fourux scrxs 1s 
due to Stewartson (m his unpublished note); It 1s) m fact, a vast tilprovemcnt 
on the obvious method. The interference potential is dctermincd in Section 3; 
and the results are discussed m Section 4. 

2 SUPERSONIC FLOJ PAST A DELTA VING OF SINGLE-VDGE SNTION 

Consider invucid, supersonic flow past a symmetrical delta mn& at zero 
mo idenoe . Let the apex of the wing be the origin of a system of ri&ht-handed 
rectangular cartcslan coordinates, x, y, and z, ard let the x axis bc in the 
duectlon of the free stream. Suppose that the cquatlon of the wing IS 

(-kx < y < 0), 

(0 6 y 6 kx); 

the wng 1s assumed to extend indefinitely ;n the posltlve x directron. Let the 
speed of the free stream be U Its Nach number be M, its pressure be pm, and Its 

densrty be pm; J-c. write B for M 

Suppose that b 13 small compared with unity and that i1 is neither close to 
unity nor large compared with unrty. It 1s then posslble4 to introduce a 
disturbance velocity potential, $,(W standmg for wing), such that the velocltlcs 

In the x, y, and e &rcctlons are gzven respcctlvely by U a %I 
U- 0 J 

aId 

"$ U- 
az ;% satisfies the linearised cquatlon of supersonIc flow, 
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The boundary cmditions are that the disturbanoe velocity components should 
vamsh on the Mach cone from the apex of the wing, and that, on the wm&, the 
velocity cmponent normal to the wmg should vanish; these condltlons m?y be 
written approximately 

a% a$ a% 
ax =ay= 

x = 0 when x2 - B2y2 - B2s2 = 0, 

2x=& 
az when s = 0, lyl < kx. 

(1) 

( 24 

Freon the symmetry of the flow, $(x, y, s) = $,(x, y, -2). 

Suppose that Bk .C 1, so that the 1eadlnL edge 1s supersonic. The 
potential at a point (x, y, s) can be found4 by dlstrlbuty suitable 
fundamental singular solutions of Equation (1) over the w-rng surface and 
integrating them over the part of the wng surface lying within theilach 
fore-cone from the point being considered. The equation rf the Nach cone 
from the point is 

- B2(y - Y,)~ - B2(s - z,)~ = 0, (3) 

where x1, Y,, 4 2,’ are runnuq coordinates. The Mach fore-cwc latersects 

the wing in the curve 

x, = x - B[(y - Y,)~ + s*]', 

since the equation of the wing may be approximated by s, = 0. The curve @ven 

by Equation (4) intersects the leading edge, y, = +kx,, in two points whose y 
coordinates are yA and yB, 

where 

k 
YA = - 

(I - B2k2) 
(x + B2ky) - B[(y + kx)2 + (1 - B2k2)s2]' 

3 
, (54 
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k 
YB = 

(1 - B2k2) i 
(x - B2kY) - aiCY - ~zC)~ + (1 - B2k2)z2]' . (5b) 

It can be shown4 that the following form for A,, 
boundary ccndltions nf Xquatlons (2): 

satlcfles Eqmtmn (1) and the 

o ~-B[(y-~,)'+z~]~ 

1 1 

dx, dY, 

-Y,/L- 
[(x - x,v 

yA 
- B2(y - y,j2 - B2(z - s,)~]~ 

yB x-B[(Y-y,)2+z21~ 

6 

1 

9 a? 

-- 1 
* ?T 

[(x - 
0 

x,J2 
- 

B2(y 
- 

q/k 

Y,)~ 
- 

B2(z 
- 

z,)~]' 1 

It follows that 

0 

$ ci -$ 

1 

-1 

cl= + 

yB 

cash Y,) 
2' 

Bk[b - y,j2 t e 1' *1 -; 6 1 -1 
oosh 

(b - Y,) 

B~(Y Y,)~ 
r. 

yA - + z2]' 
0 

Hence, 

a% 

0 

6 
- = w- 

mc * 
1 

‘“ly1 

YA [( 
I- B2k2)y; + 2k(x t B2ky)y, + k2(x2 - B2y2 _ B2z2)J& 

yB 
6 -- 
7c 1 

tiyl 

0 
[(I - B2k2)y; - 2k(x - B2ky)y, + k2(x2 - B2y2, B202)fi 

6k 

c 

-1 =- 
+..B2k2)$ Oosh 

(xtB2ky) 

B[(k~ry)~t(l-B~k~).~]~ 
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Introduce cylidrical polar coordinates (x, r, 6) such that 

r2 = y2+z2, 

tan 0 = z/y. 

( 74 

(3) 

Equation (6) becomes 

a% Sk 
ax = - 7c(, -B2k2)$ 

c oosh-' 
(x + B2 kr COB 0) 

B[(kx + r toe ~3)~ + (1 - B2k2)r2 sin2 & 

-1 + oosh (X - B2 kr CO9 8) 

r ~08 e)2 + (I - B2k2)r2 sin2 el.2 3 
. 

B[(b - 

It follows that 

a2 * ei 
ax= 

(r + l-d ~09 e) 

B2k2)r2 + 2kxr COS 0 + B2k2r2 ~0~3~ e] 

+[ 

(r - kx 00s e) 

x2 + (I - B2k2)r2 - 2kxr co9 e + B2k2r2 cof? e] 
. 

. . . . (0) 

Now write 

1 
Bk = cash h, 

r= 
Br cash x. 

(94 

(Yb) 
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Equatmn (8) becomes 

(cash A + cash x co8 0) 
ax= [(ah A oosh x + cos 0)' - sinh' x sinh2 A] 

+ [( 

(cash A - oosh x 00s a) 

ccsh A cash x - cos 0)' - sinh' x sinh2 A] 3 

6cothX b 
sinh (A + x) smh (A - y) 

= 271 Br smh A cash (A + x) + 00s 01 
+ 

cash (A - x) + cos e] 

sinh A+x sinh A-X) 

'[ cash (A + x) - 00s 01 + cash (A - X) - Cos 

sinh2(X + smh2 (A - 
= x Dr smh A [cosh2 (A + X) -x)c~~ 381 ' [CoSh2 (A - X) -?-OS 281 

3 
’ 

. . ..(lO) 

Now, it is !mow-n that5 

VC 
1 OHS ne de ,-“id 

= 7( I( oosh q - cos e 
0 sinh Iv1 ' 

Therefore, Equation (10) can be expanded as cc 
c ,-2nA oosh 211x cos 2nO 1 (x < A), (114 

n=l 

smh 2nA eeznx 00s 2nB (X > A). (Ilb) 

n=l 
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From Equation (gb), the i;ach cone from the orl;m 1s @"en by x 

a$ 
Equation (Za), ar = 0 on the Liach cone frcm the origin; hence, 
(114, 

= 0; from 

frm Equation 

a$ 28 ar = ?rslnhh lsinh x + r e-2nh[w + yQ+p-Yj co9 2&$ 
II=1 

(x t A). 
. . . . (12) 

Equation (lib) may be mtegrated with respect to x to give 

a#, 26 2s 
ar = T+7cslnhA 

where the constant of a$ mtegratlon has been chosen to lIlaIce the values of - as 
ar 

given by Equations (12) and (13) equal when x = A. FromEquatlon (Za), 

a$ - = 0 on the Mach cone from the orlgm, which corresponds to x = 0; hence from ax 

c 3 sinh ~~[~~+$!$J$]-~~)~os 2ne 

n=l 
(x ' A), 

. . . . (13) 

Equation (Ila), 

a$ e-2nh 

ax = - 
sinh 2ny 

2n 00s 2nB 
1 

(x < ?J. 

Equation (lib) may be mtegrated with respect to r to give 

aa, 
ax=- 46. xBsmhh 

(14) 

(15) 
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“67 where the constant of integrat3cn 1-s been chosen to make the Values of x 
given by Equatims (14) ad (15) equal when x = k. 

Equations (12) to (15) inclusive may be wlfton as 

00 
a$ ar= * L 

ak (x, r) ~0s ?nB, 

a$ 
al 

26 
ax = - 7CBSillhh 

c 

bti (x, r) ccs 2n8; 

(164 

(I@ 

here, 

a 
0 

z sinhx, a2n = e l !b*y$ a 
-2nh 

b e 
c, = x, b2n = 

sinh 2ny 
n (* > 01, (m) 

when x < h; am3 

* = 
0 

sinh A, 
a2n 

= sinh 2nA [- + ~~ - TlT ;j (n > 0) , 

. . . . (i&3) 

bO 
= A, b2n = 

sinh 2n A emhX 

n 
(n > 01, 

when x > h. 

3 SJFFRsONIC FIAW PAST A (X?TAIN WINGKDY COI~IXATION 

Consider inviscid, supersmio flow past s. wing-body combination consisting 
of two halves of e. synmetrmal delta wjng of smgle-wedge section mounted 
symnstrically on a oircular cylinder ; suppose the configuration is at zero inmdence. 
It is convenient to imagine the two halves of the ug to be continued through the 
wall of the circular cylinder until they meet inside: the wing thus formed is 
assumed to be the s&x as the one considered in Section 2. Let xI y, z, r, end 0 
be defined as before; and suppose that the free stream direction and the flow 
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quantities in the free stream are the same as in Section 2. Let the radius of the 
circular cylinder be rO. The wing is assumed to extend indefinitely in the 

positive x direction, ard the cx~~lar cylinder to extend indefinitely m tile 
negative and positive x directions. 

A disturbance veiocity potential, $, is introduced; it is witten as the 
sum of two terms, 

$ is the potential due to the wing alone, and has been deternuncd in Section 2; 
$I is the interference potential. $ must satisfy the linearised equation of 

supersonic flow, and tk frost derivatives of 4 (the velocity components) must 
vanish on t!le Xach cow from the apex of the wing (.~n fact, they must vanish in 
a region behind this cone. since. 1~1 reality. the flow is undisturbed up to the 
pomt where the wing appears thr&gh the 
ments, and so $I must also satisfy them. 

Hence, 

B2”a$I+Qi 
ax2 aY2 az2 

and 

cyikier). a, satisfies these-require- 

a2 $I 1 a% 1 a2 $1 
-+- ar+-zj --g = 

ai-* 
0; (20) 

r 

when x 2 - B2y2 - B2z2 = 0. (21) 

The boundary condition on the wing is satisficil by & on its own; hence, 

w 
I 

( ) xi- 
= 0. 

e=O 

The boundary condition on the circular cylinder is that the velocity component 
normal to the cylu7der shoulii vanish; this means that 

( > 
.$$ co; 

x-2 0 
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hence, from Equations (19) and (16a), 

= - a2n,o (x) =os tie, (23) 
r=ro l-=l? 0 2x0 

where 

azn,O (4 = ati (x, role ( 24) 

Equation (20), with the boundary conditions given by Equations (21), (22), 
and (231, can be solvcdl by Laplace transform methods. The Laplace transform of 
f(x) is f(p), where 

P(P) = e-px f(x) dx. 

0 

Equation (20) tramfarms to 

B2p2J = 
a2 qI , a& , a2 SI 
-+- -+--i 

ar2 ' ar r2 ae2 

Equation (22) transform to 

Equation (23) tremforms to 

? 
0 26 ar = -xsinh?. c ‘: 2n,O 00s 2ntJ; 

r=r 0 n=O 

from Equation (21), 

( 25) 

(264 

(26b) 
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By the method of Separation of varimlcs It can bc mom that the 
solution of Eqmtl0n (25) is 

?1 = c [[An Kn(Bpr) + Cn In(Bpr)] co8 n0 + [Bn Kn(Bpr) + Dn In(B_or)]sm nej, 

r&O 

where A 
n' Bn, C n, and Dn are arbitrary functmns of p, 

functions of im~mary argument'. 
and IC, and I, are Bessel 

From Equations (26) and the fact that In(Bpr)+= 

as r +m, It follows that ?I can be written as Do ?1 = c A2n(p) K2n(3pr) cos 2n6. 

n=O 

A2n(p) 1s to be determined from Equatlcm (26b), which gives 

cc 

BP 
c 

A2n(p) K!2n(.Bpro) cos 2nO = - 26 
n Slnh h 

c 
a 2n,o cos 2ne. 

n-0 II=0 

It follcms that 

Ah(p) = - 
2s ;2n.o 

nBp smh X $(BprO) ' 

From Equation (27), 

31 = 
26 

-zgslnhh 
2n,o K2n(Bpr) 
i$n(Bpro) DOS 2n0, 

Hence, 

q 

00 

2s 

c 

a 
ax = - 

2n.o K2n(Bpr) 
XBSi.tlhh K;n(BPrO) 

cos 2ne. (28) 

n=O 
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Now define a function W,(C, !J) by the equation 

K (PV) 
m 

eP(v-1) 2n 
qm-+$; = i 

e-& w2n(c, u) %; 
0 

(29) 

W2n 
is tabuleted in Ref.2. 

It follaws that 

Now Equetxm (28) may be written 

v, 
m 

26 K (BPr) 
ax = - TEknhA 

CC 

eBp(r-r0) 2n 
qJ-sJ 

+p] -p] e-Bp(r-rO) Zi2n,0 cos 2nB. 

II70 

The inverse of e-BP(r-r~)82n o is H(x- Bxo) ak o (x - BGo), where H is 

the unit function (zero for Negative values of its &went, unity for positive 
values); hence, frcxd Equation (30) and the convolution theoreml, 

m x 
a@1 26 
-E= - xBsi.nhX 

cc J 
B(r-ro) 

%!!l,O b, - - dr - ro) &- 0 
l-DO 

- dEH(x-Bq) a2n,O (x- Br-'o)]C" 2d 
r 

_ L 
J-f 

x-.fL+ 1 
ro **o r. ) ( 

C&--f+ 1 
0 I‘0 )I 

008 2ne, 

. . . . (31) 
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:; 
1 where 5 has been written for - . 

arO 
From Equation (24), C2n 1s defined by 

C2,(@) = a2n,0(Bro 6) = a2nb-0 fi, ro); 

hence, frm Equations (17a) and (Isa), 

C,(4) = sinh x0, C2n(L9) = .-2nh 
sinh (2n-I)% 

+ (Zn-1) ] b > 01, 

. . ..(32a) 

when x, < h, ad 

e-(2n+1)xo e-(2n-1)xo. 
co(e) = sinh h, Ck(9) = sit-h ah 

[ Zn+l + (2n-1) ] -m) (4 

when x0 > X,. 
. . . . (32b) 

h is given by Equation (Va); from Equation (yb), x0 is defined by cash x0 = 6. 

The linearised approximation for C 
P' 

the pressure coefficient (equal to 
P - Pm 

1 
2 , where p is the local pressure), 1s gxven by 

~PceV 

C = - 
P 

2 $$ . 

From Equations (is), (31), and (16b), it follnvrs that 

C 46 P = x B smh h 

n=O 
($ -1) 

+ b2n(::, r) cos 2ne; (33) 
3 

The b2n are given by Equations (lib) and (18b). 
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Cp 1s requmed on both the wing and the body. On the wing 0 = 0 (or x), ard 

Equatmn (33) becomes 

(%'ing = 7[ B :%nh A 

ndl 
'$ -1) 

-&+~+1)C2n(+$+l)+b&,r)] . 

. . . . (34) 

On the body r = ro, and Equation (33) becmes 

- +&&J ] + bti(x3 ro) cos .X3. 

l . . . (35) 

The pressure due to the wing alone has been wrltten m the form 

46 
xB smhh 

b2n(x, r) cos 2nB rather than UI the closed farm derived m 

Se&Ion 2, since experience shows that convergence of the Fourier series for the 
lnterferenoe ~essure alone 1s less satisfactory than converSenoe for the 
combmed pressure. 

4 F5'SULTS AiTJ DIS3X3SION 

Equations (34) and (35) apply to inviscti supersonIc flow past a wng-body 
combulatlon consisting of two halves of a sjrmmetrmal delta mng of single-wedge 
sectam mounted symetrlcal.ly on a circular cylinder; the leading edges are 
subsonm, am3 the combmatlon 1s at zero incidence. 6 and r. appear as scalmg 

factors only; 26 1s the angle of the wedge sectlon, and r. 1s the radius of the 

circular cylinder. The remaining parameters are k and B; k 1s the tangent of the 

angle between the lcadmg edge and the wmg Junction, and B = fi, where ii is 
the free stream Hach number. Results have been obtamed for B equal to \r2 and k 
eqwl to 0.5. 
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In Flgs.1 to I+ inclusive B(Cp)b&& is plotted against x&r0 for four 

values of e - 0, &, Ir/3, and d2. The flow is undisturbed ahead of tbs Mach 
cones frcra the tips of the two wing-body Junctlons~ These oones lnterseot the 
circular cylmder in helioes, and it is easily shown that the flow should be 
undisturbed ahead of a value of x&r, equal to 2 when 9 = 0, equal to 2 t ?s/6 

when f3 = d/6, equal to 2 + x/3 when 8 : ?r/3, and equal to 2 t ?r/2 when 0 = d/2; 
the effect of the other half wing (0 = K) 1s first felt at a value of x/‘Bro 

equal to 2 + x when e = 0, equal to 2 t 5?r/6 when 0 = d6, equal to 2 + h/3 
when 8 = 7t/3, and equal to 2 t 7J2 when 0 = r/2. 

Only the first six terms of the Fourier series in Equation (35) have been 
used to obtain the curves of Figs.1 to 4. This is why, in the figures, (Cp)boay 

does not vanish ahead of the Uach cone from the junction tip, For example, for 
e = 7d2, (Cp)body should be zero ahead of a value of z&r0 equal to roughly 3.57; 

instead, it oscillates about zero; fortunately, the amplitude of oscillation is 
small, which suggests that truncation of the Fourier series at the sixth term 
produces small errors only. Equation (35) apparently gives values for (Cp)body 

ahead of the section given byX = 2; this is because the wing is assumed to be 
&O 

continued inside the oylinder. In reality, no disturbances can exist ahead of 
this section; 4, in fact, Equation (35) with the Fourier series truncated at 
the sixth term does give values extremely close to zero for values of x/Bra less 
than 2. 

At the wing-body junction itself the value of (CP)body is known, since the 

flow locally is the same as that at the a&ox of a symmetrical delta wing of wedge 
section; from Equation (66) it is fcund that B(C ) pbcd/'= 

0.960 there. Bagley's 

approximate theory, therefore, g' ives the straight line B(Cp)bod/G = 0.968, it is 

shown in Fig.1 as a dashed line. On the lint f3 = 0, r = ro, ahcad of the point 

given by Bro 
x = 2, (Cp)boay vanishes, so that Lhere is a discontinuity in 

(Cp)body at this point. From tne figure it is seen that Equation (35) with the 

Fourier series truncated at thexsixth term does try to reprcducc the 
For values of Br other than zero there is no discontinuity in mmn~uity. 

0 

These results do not call for discussion, and it seems appropriate to 
close with a few remarks on future work in the field of wing-brxiy Interference. 
The main difficulty in solving lnterfcrence problems of this kind is still the 
large amount of computation required. The arrival of large digital electronic 
computers has made the solution of particular problems feasible; but it is 
unlikely that the effort could be spared to determine pressure distributions on 
a whole range of combinations. Indeed, the reason why pressure distributions on 
only the body have been calculated in this report is a reluctance to spend any 
more computational effart on the problem at the moment;,to have used Equation (34) 
to find (Cp)wing would have put the publication of this report back by a 

considerable length of time. 
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The most promising way of reducing the amount of ccrmputational work 1s 
probably to develop Luke's technique6. He shows how to replace the functions by 
very simple approximations that contain exponcntzJ and circular inverses only. 
It seems possible that use of these approxirnatlons might lead to constierable 
simplificatxms m the fcamulas for tho pressure, Equations (34) and (35). 

AC'KliOVfLED~ 

Acknowledgment 1.9 due to Mx.s D. Larsen, who programmed Equation (35) for 
the Mercury computer and did all the numerxal work. 

Azn(p) 

a2n(X, r) 

a*n,O(r) 

B 

b2n(x, r) 

C 
P 

'2n 

H 

k 

'n 

M 

P 

Pm 

r 

rO 

U 

LISP OF SXBOLS 

arbitrary function of p 

defined by Equations (ITa) and (18a) 

ati(x, ro) 

(].%I)+ 
defined by Equations (Ifi) and (18%) 

pressure coefficient 

Ch(o) = a2n(B r. 8) 

unit function; H(C) = 0 if C < 0, H(E) = 1 if 5 > 0 

tangent of half the apex angle of the wing 

Bessel functxm of imaginary argument 

Mach number of free stream 

local pressure 

pressure m free stream 

cylindrical polar coordinate, (y' + z2)- : 

radius of body 

speed of free stream 

- 18 - 



LIST OF SYlBOLS (CONTD) 

XJ YJ z cartssian coordinates def'inxl in Section 2 

Y*A' Y B 
deflncd by Equatwns (5) 

No. - 

1 

2 

3 

4 

5 

6 

26 is the angle of the wedge section of the wing 

cylindrical polar coordinate, tan -' (Z/Y) 

cash-' (l/Sk) 

density in free stream 

disturbance velocity potential of wing-body combination 

interference velocity potential 

disturbance velocity potential of wing alone 

cash-' (x/Dr) 

Author(s)- 

Rardall, D.G. 

Nxlscn, J.N. 

Bagley, J.A. 

Sears, M.R. 
Rditor 

Xangler, K.R. 

Luke, Y.L. 
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FIG. I. PRESSURE COEFFICIENT ON THE BODY AT 8=0 
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FIG. 2. PRESSURE COEFFICIENT ON THE BODY AT 8= 46. 
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FIG. 3. PRESSURE COEFFICIENT ON THE BODY AT e=,r/s 
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FIG. 4. PRESSURE COEFFICIENT ON THE BODY AT &n/2 



A.R.C. C.P. NC. ld4 533.695.12 : 
533.693.3 : 
533.6.011.5 : 

A FR’,BLE” OF WING-BODY INTERFERENCE. Randall, D.C. 
April 1963. 

me r-sport cc”s*clers i”YISCld, super.5c”iC flow past a symetrfcal 
wing-body ccnb,~tic” at zero incidence. The body is a circular Cyl0,d.x 
extend,ng indefinitely in both the upstream and the dc~“~tream dIreCtions. 
me Al”&3 are tvrc halves Cl a delta wing Cl sl”gle-we~e section wlul a 
subsonic leading edge, they are assuszzd tC exterd 1”defi”iLely I” The 
dowstream dlrectlcn. Results are Obtained Icr the pressure distribution 
on the btiy. 

A.&C. C.P. NC. 704 5X.695.12 : 
533.693.3 : 
5:3.6.011.5 : 

A PROELM OF WING-B(DY INTERFERENCE. Rardallr D.G. 
April 1963. 

me i-epcrt Considers invlscld. SuperSoniC flow past a symnetrlcal 
wing-body combinatlo” at zem Incidence. ‘Ibe body is a circular cylitier 
exterding indefinitely in both the “~stream and the dcmLStream dIrections. 
IAe winps are two halves of a delta wing cl si”&nedge sectlo” alth a 
su1sc”Ic leadlng edge; they a-e assu~d to extend indefinitely 1” the 
downstream dlrectio”. Results are Obtained for the pressure dlstrlbutlcn 
On the bcJy. 

A.&C. C.P. NC. 704 

A PROELM OF WING-BODY INTKSRZENCE. Randall, D.G. 
Apr11,1963 

533.695.12 : 
533.693.3 . 
533.6.011.5 : 

The report Cc”S,ders tnvlscld, s”~ersc”iC IICR past a syometrical 
wing-body ccrbi”atlc” at eerC incidence. The bcdy is a circular cylinder 
extending iniefinltely in bcth the upstream a,, the dormstream dlrectlons. 
Tbe wings are two halves of a delta wing of sl”Elewedge section with a 
s”bsc”lC leadlng edge; Vley are ass”m?d tc extend indeflnltely 1” the 
drmnstream d,reCtic”. Results are cbtalned for tk pressure distriblltlc” 
0” the body. 
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