NATIONAL AERQNAUTICAL ESTABLISHAENT
LLEDREA RY

C.P. No. 61

MINISTRY OF SUPPLY

AERONAUTICAL RESEARCH COUNCIL CÚRRENT PAPERS

The Supersonic. Pressure Drag of a Swept Wing with a Cranked Maximum Thickness Line

By
K. D. Thomson, B.E.

Crown Copyright Reserved

June, 1950

ROYAL AIRCRAFT ESTABLISHMENT

The Supersonic Pressure Drag of a Swept Wing with a Cranked Maxamum Thackness Line
by
K.D.Thomson, B.E.

SUMMARY

The linearised theory is applied to a particular family of sweptback wangs with cranked maxamum thickness lines, and the drag of one member is analysed and compared with several other wings whose solutions are well known.

The indications are that one can approximate to the variation of drag with Mach number by combining curves of certain delta and "chevron" wings.
IIST OF CONTENTS Page
1 Introduction 3
2 Fundamental analysis 3
3 Evaluation of drag ancrements 6
3.1 Drag due to symmetrical source distrıbutions 6
3.21 Source Distribution AGD 6
3.12 Source Distribution BHD 10
3.13 Source Distribution CFD 14
3.2 Drag due to "one-sided" source distributions 16
3.21 Source Distribution EHF 18
3.22 Source Distribution EGF 21
4 Application to a particular wing 25
4.1 Evaluation 25
4.2 Comparason with the drag of other wings 25
5 Conclusions 27
List of Symbols 28
References 29
LIST OF TABLES Table
Tabulation of Integration Functions I
LIST OF IULUSTRATIONS
Flgure
Geometry of wing with cranked maximum thickness lines 1
Zones of influence for triangular source distributzons 2
Elementary areas 3
Geometry for cons aderations of source distribution CFD 4
Geometry for consaderations of source distribution EGH 5
Variation in pressure drag with Mach number for a wing with cranked maximum thickness lines 6
Comparison of pressure drag of wings with different planforms 7

A considerable amount of theoretical data is available on the supersonic pressure drag at zero ancidence of wangs with straight maximum thickness lines but very little as known of the effect of "cranking" the maximum thickness line at a certain station along the span. In this paper the linearised theory is applied to a sweptback wing having a constant chord inboard section and a tapercd section outboard, and cranked in such a manner that the whole leading cdge is straight, and the outboard trazling edge is perpendicular to the free stream (Fig.l). The problem has been kept as simple as possable by considering a double wedge section with the maximum thickness at 50% chord, and the investigation has been restricted to the case where the Mach cones from the apex lie in front of the lcading edge (i.c. a "subsonic" leading edge). A further restriction is that the Mach cones from the disturbances set up at each crank do not cross the opposite half of the wing. The expressions obtaincd are evaluated for a particular wing wath the inboard and outboard maximum thickness lines swept back 60° and approximately 40° respectively, and for this wing the pressure drag has been estimated for the Mach number range $\mathrm{M}=1.090$ to $\mathrm{M}=2$.

2 Fundamental Analysis

The drag has been estimated by following the method used by Puckett ${ }^{1,2}$. The wing is replaced by suitable source distrabutions which satisfy the fundamental linearised perturbation potential equation

$$
\phi_{x x}\left(1-M^{2}\right)+\phi_{y y}+\phi_{z z}=0
$$

and also satisfy the boundary conditions for the wing.
The wing in Fig. 1 is considered to be replaced by the following source distributions, the strengths being chosen so that the boundary conditions are automatically satisfied (See Refs.l and 3)

Source dastrabution	Source strength
AGG'	$+\lambda \frac{U}{\pi}$
BHH^{\prime}	$-2 \lambda \frac{U}{\pi}$
CFF^{\prime}	$+\lambda \frac{U}{\pi}$
EHG and $E^{\prime} H^{\prime} G^{\prime}$	$-2 \lambda \frac{U}{\pi}$

where λ is the semi-angle of the double wedge section, which, for thin sections, is equal to the thickness/chord ratio, τ, and U is the free stream velocity. For the sako of simplicity distributions EHG and E'H'G' have been broken down anto distributions EGF, E'G'F' of strength $-2 \lambda \frac{U}{\pi}$, and $E H F, E^{\prime} H^{\prime} F^{\prime}$ of strength $+2 \lambda \frac{U}{\pi}$.

Assuming the existence of only small perturbations we can find
the pressure coefficient C_{p} an terms of u the perturbation velocity an the free stream darection; thus to a first approxamation $C_{p}=-\frac{2 u}{U}$. If ϕ is known, $u=\phi_{x}$ may be found, and $C_{p}=-\frac{2 \phi_{x}}{U}$.

Now the drag increment due to a source dastribution acting on an area A as given by

$$
\begin{align*}
\Delta C_{D} & =\frac{1}{S} \int_{A} C_{p} \sin \zeta d A=\frac{1}{S} \int_{A} C_{p} \zeta d A \\
& =\frac{1}{S} \int_{A}-\frac{2 \phi_{x}}{U} \cdot \zeta d A \tag{1}
\end{align*}
$$

where S is the wang plan area and ζ is the slope of the elementary area $d A$ in the free stream direction, and is assumed small.

Then $O_{D}=\Sigma \Delta Q_{D}$ over the whole surface of the wing.
There are two types of source distribution to be considered, namely the symmetrical triangular distributions AGG', BHH' and CFF', and triangular distributions with one side parallel to the free stream direction, such as EGF or EHF. Since 'we are considering only the case where the wing has a "subsonic" leading edge, the symmetrical distributions wall have "subsonic" leading edges, but the "one-sided" distributions may have either "supersonic" or "subsonic" leading edges depending on whether the Mach cone from E lies behind or ahead of G. These cases are considered in detall in Ref.3. If $\xi \frac{U}{\pi}$ is the source strength of the uniform distrabution considered, ϕ_{X} for different zones as given by the equations below.
(a) Symmetrical triangular distribution (Fig.2a)

$$
\begin{align*}
& \phi_{\mathrm{x} 1}=-\frac{2 \xi U}{\pi B \sqrt{n^{2}-1}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} \tag{2a}\\
& \phi_{\mathrm{x} 2}=-\frac{2 \xi U}{\pi B \sqrt{n^{2}-1}} \cosh \tag{2b}\\
&-1 \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}
\end{align*}
$$

(b) Triangular distribution with a side parallel to the free stream (Fig. 2b).
(i) "Subsonic" leading edge

$$
\begin{align*}
& \phi_{x 1}=-\frac{\xi U}{\pi B \sqrt{n^{2}-1}} \cosh ^{-1} \frac{n^{2}-\sigma}{n(1-\sigma)} \tag{3a}\\
& \phi_{x 2}=-\frac{\xi U}{\pi B \sqrt{n^{2}-1}} \cosh \tag{3b}\\
& -1 \frac{n^{2}-\sigma}{n(\sigma-1)} \tag{3c}\\
& \phi_{x 3}=-\frac{\xi U}{\pi B \sqrt{n^{2}-1}} \cosh ^{-1} \frac{n^{2}+\sigma}{n(0+1)}
\end{align*}
$$

(2i) "Supersonic" leading edge

$$
\begin{equation*}
\phi_{x l}=-\frac{\xi_{U}}{B \sqrt{1-n^{2}}}\left[1-\frac{1}{\pi} \cos ^{-1} \frac{\sigma-n^{2}}{n(1-\sigma)}\right] \tag{4a}
\end{equation*}
$$

1

$$
\begin{align*}
& \phi_{x 2}=-\frac{\xi U}{B \sqrt{1-n^{2}}} \tag{4b}\\
& \phi_{x 3}=-\frac{\xi U}{\pi B \sqrt{1-n^{2}}} \cos ^{-1} \frac{\sigma+n^{2}}{n(1+\sigma)} \tag{4c}
\end{align*}
$$

where

$$
\begin{aligned}
& B= \sqrt{M^{2}-1} \\
& n= k / B \\
& k= \text { tangent of the sweptback angle of the leading edge of the } \\
& \text { source distribution* } \\
& \sigma= \text { the ray parameter }=k|y / x| \text {, the modulus beang taken in order } \\
& \text { that } \sigma \text { shall always be a positive quantity } \\
& x, y \text { are streamwise and normal cartesian co-ordinates (respectively) } \\
& \text { in the plane of the wing, measured relative to an origan at } \\
& \text { the apex of the source distribution concerned. }
\end{aligned}
$$

The subscripts 1, 2, 3 refer to the zones defined in Fig. 2.

[^0]Since we are considering a wing symmetrical in planform about its centreline, and of symmetrical section and at zero ancidence, it is necessary to find the drag of only one surface of one half wing and multiply the answer by four to get the total drag. Equation (1) may then be replaced by

$$
\begin{equation*}
\Delta C_{D}=\frac{4}{S} \int_{A}-\frac{\not \phi_{X}}{U} \zeta \partial A \tag{5}
\end{equation*}
$$

where A is now restricted to areas on one quarter of the wing surface. Accordingly the distributions AGG', BHH', CFF' wall be referred to as $A G D, B H D, C F D$ respectively.

3 Evaluation of drag increments

3.1 Drag due to symmetrical source distrabutions

Consider first the drag increments due to the three symmetrical source distributions $A G D, B H D$ and CFD (Fig.1).

The general expressions f'or drag ancrement are gaven by substituting equations (2) into (5), and since the wing area

$$
S=\frac{c^{2}}{k}\left(\frac{1+a}{1-a}\right)
$$

where c is the root chord and $a=\frac{C D}{A D}(F I g .1)$, we get

$$
\begin{equation*}
\Delta C_{D 1}=\int_{A} \frac{16 \xi \zeta k}{\pi B c^{2}} \frac{(1-a)}{(1+a)} \cdot \frac{1}{\sqrt{n^{2}-1}} \cdot \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} \cdot d A \tag{6a}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta C_{D 2}=\int_{A} \frac{16 \xi_{c} \zeta_{0} k}{\pi B c^{2}} \cdot \frac{(1-a)}{(1+a)} \cdot \frac{1}{\sqrt{n^{2}-1}} \cdot \cosh ^{-1} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}} \cdot d A \tag{6b}
\end{equation*}
$$

Knowang the values of ξ, ζ we follow the method of conical fields and choose our areas of integration so that they, can be expressed in terms of a single variable, the ray parameter, σ. It is then possible to evaluate the drag ancrements. These wall be obtained in the following sections.

3.11 Source distribution $A G D(\xi=+\lambda=+\tau)$

The source distribution AGD affects the area of wing AGFC (F2g.1), in which the slope of area AGEB is $+\lambda$ and the slope of area BEGFC is $-\lambda$ to the free stream. These areas can be suatably divided into

$$
A G E B=\hbar G E+A E B
$$

and

$$
B E G F C=A G F-H G P+A F C-A E B
$$

.whach; it wall be seen, all have thear apices at A.
Using the notation throughout that $\triangle C_{D V}(X Y Z)$ represents the drag of the area XYZ due to the source distribution wath apex at V, we have

$$
\Delta C_{A}(A G E B)=\Delta C_{D_{A}}(A G E)+\Delta C_{A}(A E B)
$$

and

$$
\Delta G_{D_{A}}(\mathrm{BEGFC})=\Delta G_{D_{A}}(A G F)-\Delta C_{A}(A G E)+\Delta C_{D_{A}}(A F C)-\Delta O_{D_{A}}(A E B)
$$

(a) Area AGEB $(\zeta=+\lambda=+\tau)$
(i) Area'AGE $(\zeta=+\lambda=+\tau)$

The drag increment is gaven by equation (6a) in which dA has the value

$$
\partial A=\frac{c^{2}\left(1-\frac{b}{2}\right)^{2} d \sigma}{2 k(1-a)^{2}\left(1-\sigma \frac{b}{2}\right)}
$$

where $d A$ is the elementary area $d A_{1}$ in Fig. $3 a$ and b is defined in the same figure. It will be seen that when $b=0$, $d A$ refers to a triangular area with one side lying on GF and when $b=1$ the side lies on GE. Expressing the drag in its general form for the areas AGE and AGF we have

$$
\Delta C_{D}=\frac{8 \xi \zeta}{\pi B\left(1-a_{i}^{2}\right)} \int_{\sigma=\alpha}^{\sigma=\beta} \frac{\left(1-\frac{b}{2}\right)^{2}}{\sqrt{n^{2}-1}} \frac{1}{\left(1-\sigma \frac{b}{2}\right)^{2}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} d \sigma,
$$

the integration beang performed between appropriate lamits, and b being given a surtable value for each area.

It will be, seen later thut a more general expression can be obtained which wall cover the incremental drag for the area BHF due to the source distribution B, and thas expression is

$$
\Delta C_{D}=\frac{8 \xi \xi_{b}}{\pi B\left(1-a^{2}\right)} \int_{\sigma=\alpha}^{\sigma=\beta} \frac{\left(r-\frac{b}{2}\right)^{2}}{\sqrt{n^{2}-1}} \frac{1}{\left(1-\sigma \frac{b}{2}\right)^{2}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} d \sigma
$$

where r is defined in Fig. 1 as the ratio $\frac{B D}{A D}$.
We wrate this as

$$
\begin{equation*}
\Delta G_{B}=\left.\frac{8 \xi, \zeta}{\pi B\left(1-\mathrm{a}^{2}\right)} E(r, b)\right|_{\sigma=\alpha} ^{\sigma=\beta} \tag{7}
\end{equation*}
$$

where

$$
E(r, b)=\int \frac{\left(r-\frac{b}{2}\right)^{2}}{\sqrt{n^{2}-1}} \frac{1}{\left(1-\sigma \frac{b}{2}\right)^{2}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} d \sigma
$$

Evaluating* when $b=0$ and $b=1$ gives

$$
\begin{aligned}
\mathrm{E}(r, 0) & =\frac{\mathrm{r}^{2}}{\sqrt{\mathrm{n}^{2}-1}}\left\{\sigma \cosh ^{-1} \sqrt{\frac{\mathrm{n}^{2}-\sigma^{2}}{1-\sigma^{2}}}+\sqrt{\mathrm{n}^{2}-1} \sin ^{-1} \frac{\sigma}{\mathrm{n}}\right. \\
& \left.-\frac{1}{2} \log \left|\frac{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|-\frac{1}{2} \log \left|\frac{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{\mathrm{r}^{2}-1}}{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right\}
\end{aligned}
$$

ミ

$$
\begin{align*}
E(r, 1) & \left.=\frac{2\left(r-\frac{1}{2}\right)^{2}}{\sqrt{n^{2}-1}}\left|\frac{\cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}}}{\left(1-\frac{\sigma}{2}\right)}-\log \right| \frac{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}} \right\rvert\, \tag{8a}\\
& +\frac{1}{3} \log \left|\frac{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}-\sigma \sqrt{n^{2}-1}}}{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}+\sigma \sqrt{n^{2}-1}}}\right| \\
& + \text { either } \frac{4}{3} \sqrt{\frac{n^{2}-1}{1-\left(\frac{n}{2}\right)^{2}}} \tan ^{-1} \frac{n\left(1-\frac{\sigma}{2}\right)-\sqrt{n^{2}-\sigma^{2}}}{\sigma \sqrt{1-\left(\frac{n}{2}\right)^{2}}} \text { for } 1<n=2 \\
& \text { or } \left.\frac{2}{3} \sqrt{\frac{n^{2}-1}{\left(\frac{n}{2}\right)^{2}-1}} \log \left|\frac{n\left(1-\frac{\sigma}{2}\right)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}}{n\left(1-\frac{\sigma}{2}\right)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}}\right| \text { for } n>2\right\}
\end{align*}
$$

* If in $E(r, b)$ and all the following functions the substitution $\sigma=n \sin \theta$ is made, the functions after a first integration by parts, all reduce to expressions of the form $\int \frac{d \theta}{A+B \sin \theta}$ which are dealt with in Ref.5.

For the area AGE we integrate with respect to σ between the limits $A E\left(\sigma=\frac{2 a}{1+a}\right)$ and $A G(\sigma=1)$.

Hence (7) will gave

$$
\begin{equation*}
\Delta C_{A}(A G E)=\left.\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)} E(1,1)\right|_{\frac{2 a}{1+a}} ^{1} \tag{9}
\end{equation*}
$$

Where $\left.E(1,1)\right|_{\frac{1}{1+a}} ^{\frac{2 a}{1}}$ can be evaluated from $G(b)$.
(ii) Area AEB $(\zeta=+\lambda=+\tau)$

Again we use -equation (6a) but d_{d} is given by

$$
\partial A=\frac{c^{2} d \sigma}{8 k(1-\sigma)^{2}} \quad\left(d A \text { is the elementary area } d A_{2} \text { in Fig. } 3 a\right)
$$

Substituting we get

$$
\begin{align*}
\Delta D_{D_{A}}(A E B) & =\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{0}^{\frac{2 a}{1+a}} \frac{1}{\sqrt{n^{2}-1}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} \frac{d \sigma}{(1-\sigma)^{2}} \\
& =\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} I(n)\right|_{0} ^{\frac{2 a}{1+a}} \tag{10}
\end{align*}
$$

where

$$
I(n)=\int \frac{1}{\sqrt{n^{2}-1}} \cosh ^{-1} \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}} \frac{d \sigma}{(1-\sigma)^{2}}
$$

and is evaluated to be

$$
I(n)=\frac{1}{\sqrt{n^{2}-1}}\left\{\frac{\cosh ^{1}-1 \sqrt{\frac{n^{2}-\sigma^{2}}{1-\sigma^{2}}}}{(1-\sigma)}-\frac{\sqrt{n^{2}-\sigma^{2}}}{2(1-\sigma) \sqrt{n^{2}-1}}\right.
$$

$$
\begin{equation*}
\left.+\frac{n^{2}+1}{4\left(n^{2}-1\right)} \log \left|\frac{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|+\frac{1}{4} \log \left|\frac{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(1+\sigma)-\sqrt{n^{2}-\sigma^{2}+\sigma \sqrt{n^{2}-1}}}\right|\right\} \tag{11}
\end{equation*}
$$

(b) Area BEGFC $(\zeta=-\lambda=-\tau)$
(i) Areas $A C F-h G E-A E B\left(\zeta_{i}=-\lambda=-\tau\right)$

Applyang equations (7) and (10), and substituting the appropriate limits for σ, we have

$$
\begin{align*}
\Delta C_{D_{A}}(A G F-A G E-A E B) & =-\left.\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)} E(1,0)\right|_{a} ^{1}+\left.\frac{8 \tau^{2}}{\pi B\left(1-a_{1}^{2}\right)} E(1,1)\right|_{\frac{2 a}{1+a}} ^{1} \\
& +\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} I(n)\right|_{0} ^{\frac{2 a}{1+a}} \tag{12}
\end{align*}
$$

(ii) Area AFC $(\zeta=-\lambda=-\tau)$

Equation (6a) is once again used but $d A$ is gaven by

$$
\begin{align*}
& \quad d A=\frac{c^{2}}{2 k} \frac{d \sigma}{(1-\sigma)^{2}}\left(d A \text { is the elementary area } d A_{3} \text { in Fig. } 3 a\right) \\
& \therefore \quad \Delta C_{D_{A}}(A F C)=-\left.\frac{8 \tau^{2}(1-a)}{\pi B(1+a)} I(n)\right|_{0} ^{a} \tag{13}
\end{align*}
$$

Summing up, the drag increment due to source distribution AGD is given by the sum of (9), (10), (12) and (13)

$$
\begin{equation*}
\therefore \Delta C_{A}=\frac{4 \tau^{2}}{\pi B} \frac{(1-a)}{(1+a)}\left\{\left.I(n)\right|_{0} ^{\frac{2 a}{1+a}}-\left.2 I(n)\right|_{0} ^{a}-\frac{2}{(1-a)^{2}}\left[\left.E(1,0)\right|_{a} ^{1}+\left.2 E(1,1)\right|_{\frac{2 a}{1+a}} ^{1}\right]\right\} \tag{14}
\end{equation*}
$$

3.12 Source distribution BHD $(\xi=-2 \lambda=-2 \tau)$

There are two cases to be considered here, viz. when the Mach wave from B lies ahead of E and when it cuts EG.

Case (a): Mach wave from B not cutting EG
The area to be considered, BJGFC, can be divided into BHFC and BJGH .
(1) Area $\operatorname{BHFC}\left(\zeta_{0}=-\lambda=-\tau\right)$

This area can be divided into BFC and BHF .
For BFC the drag increment is the same as that for AEB due to the source distribution AGD except for a factor of 2 arising from the increase in the magnitude of ξ.

$$
\begin{equation*}
\text { i.e. } \quad \Delta G_{B}(B F C)=\left.\frac{4 \tau^{2}}{\pi B} \frac{1-a}{1+a} I(n)\right|_{0} ^{\frac{2 a}{1+a}} \tag{15a}
\end{equation*}
$$

For the area BHF the equation (6a) is used wath αA given by

$$
\frac{c^{2}\left(r-\frac{b}{2}\right)^{2} a \sigma}{2 k(1-a)^{2}\left(1-\sigma \frac{b}{2}\right)^{2}} \text { (dA is the elementary area } d A_{4} \text { in FIg. } 3 a \text {). }
$$

This leads to the general expression for the drag increment given by equation (7), and substatuting we obtain

$$
\begin{equation*}
\Delta O_{B}(B H F)=\left.\frac{16 \tau^{2}}{\pi B\left(1-a^{2},\right)} E(r, 0)\right|_{\frac{2 a}{1+a}} ^{1} \tag{15b}
\end{equation*}
$$

.. for the area BHFC we find the drag increment by adding (15a) and (15b)
$\Delta C_{B}(\mathrm{BHFC})=\left.\frac{4 \tau^{2}}{\pi B} \frac{1-a}{1+a} I(n)\right|_{0} ^{\frac{2 a}{1+a}}+\left.\frac{16 \tau^{2}}{\pi B\left(1-a^{2}\right)} E(r, 0)\right|_{\frac{2 a}{1+a}} ^{1}$
(ii) Area BJGH ($\zeta=+\lambda=+\tau$ over, BJGE and $\zeta=-\lambda=-\tau$ over EGH)

Since the area BJGH is outside the boundary of the source distribution, equation (6b) must bé used and $d A$ is gaven by

$$
\begin{equation*}
d A=\frac{c^{2}\left(r-\frac{b}{2}\right)^{2} d \sigma}{2 k(1-a)^{2}\left(1-\sigma \frac{b}{2}\right)^{2}} \tag{17}
\end{equation*}
$$

($d A$ is the elementary area $d A_{4}$ in Fig. 3 a).
Substituting equation (17) into (6b) gives for ΔC_{D} the general
form

$$
\Delta O_{D}=\frac{8 \xi \zeta}{\pi B\left(1-a^{2}\right)} \int_{\sigma=\alpha}^{\sigma=\beta} \frac{\left(r-\frac{b}{2}\right)^{2}}{\sqrt{n^{2}-1}}, \frac{\cosh ^{-1} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}}{\left(1-\sigma \frac{b}{2}\right)^{2}} d \sigma
$$

or if we let

$$
F(r, b)=\int \frac{\left(r-\frac{d}{2}\right)^{2}}{\sqrt{n^{2}-1}} \frac{\cosh ^{-i} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}}{\left(1-\sigma \frac{b}{2}\right)^{2}} d \sigma
$$

then

$$
\Delta C_{D}=\left.\frac{8 \xi \zeta}{\pi B\left(1-a^{2}\right)} F(r, b)\right|_{\sigma_{=\alpha}} ^{\sigma=\beta}
$$

where r and b have appropriate values, $F(r, b)$ has been evaluated for $b=0,1$ and 2 and has the followang values

$$
\begin{align*}
F(r, 0) & =\frac{r^{2}}{\sqrt{n^{2}-1}}\left\{\sigma \cosh ^{-1} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}+\sqrt{r_{2}^{2}-1} \sin ^{-1} \frac{\sigma}{n}\right. \\
& \left.+\frac{1}{2} \log \left|\frac{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}-\sigma \sqrt{n^{2}-1}}}{\ln (\sigma-1)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{r^{2}-1}}\right|-\frac{1}{2} \log \left|\frac{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right\} \tag{18a}
\end{align*}
$$

$F(r, 1)=\frac{\left(r-\frac{1}{2}\right)^{2}}{\sqrt{n^{2}-1}}\left\{\frac{2 \cosh ^{-1} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}}{\left(1-\frac{\sigma}{2}\right)}+\frac{2}{3}\left\{\log \left|\frac{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{\operatorname{n}(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right.\right.$
$-3 \log \left|\frac{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|$

- either $2 \sqrt{\frac{n^{2}-1}{\left(\frac{n}{2}\right)^{2}-1}} \log \left|\frac{n\left(\frac{\sigma}{2}-1\right)+\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n\left(\frac{\sigma}{2}-1\right)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|$ for $n \geqslant 2$
or

$$
\left.4 \sqrt{\frac{n^{2}-1}{1-\left(\frac{n}{2}\right)^{2}}} \tan ^{-1}\left(\frac{n\left(\frac{\sigma}{2}-1\right)+\sqrt{n^{2}-\sigma^{2}}}{\sigma \sqrt{1-\left(\frac{n}{2}\right)^{2}}}\right) \text { for } 1<n \leqslant 2\right]
$$

$$
\begin{align*}
F(r, 2) & =\frac{(r-1)^{2}}{\sqrt{n^{2}-1}}\left\{-\frac{\cosh ^{-1} \sqrt{\frac{n^{2}-1}{\sigma^{2}-1}}-\frac{1}{4}\left[-\frac{2 \sqrt{n^{2}-\sigma^{2}}}{(\sigma-1)}\right.}{(\sigma-1) \sqrt{n^{2}-1}}\right. \\
& +\frac{\left(n^{2}+1\right)}{\left(n^{2}-1\right)} \log \left|\frac{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right| \\
& \left.\left.-\log \left|\frac{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}-\sigma} \sqrt{n^{2}-1}}{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right]\right\} \tag{18c}
\end{align*}
$$

For the area BJGE, $\zeta_{2}=+\lambda=+\tau$

$$
\Delta \mathrm{C}_{\mathrm{D}}(\mathrm{BJGE})=\Delta \mathrm{C}_{\mathrm{D}_{\mathrm{B}}}(\mathrm{BJG}+\mathrm{BGE})
$$

$$
\therefore \Delta C_{D_{B}}(B J G E)=-\frac{16 \tau^{2}}{\pi B\left(1-Q^{2}\right)}\left[\left.F(r, 2)\right|_{\frac{1}{r}} ^{n}+F(r, 1) \left\lvert\, \begin{array}{l}
\frac{1}{r} \tag{19a}\\
1
\end{array}\right.\right]
$$

For the area EGH, $\zeta=-\lambda=-\tau$

$$
\begin{gather*}
\Delta C_{D_{B}}(E G H)=\Delta C_{D_{B}}(B G H-B G E) \\
\therefore \Delta C_{D_{B}}(E G H)=\frac{16 \tau^{2}}{\pi B\left(1-a^{2}\right)}\left[\left.F(r, 0)\right|_{I} ^{\frac{I}{r}}-F(r, I) \left\lvert\, \begin{array}{l}
\frac{1}{r} \\
I
\end{array}\right.\right] \tag{19b}
\end{gather*}
$$

Summing up, $\Delta O_{D_{B}}$ is given by the sum of equations (16), (19a) and (19b)
$\therefore \Delta C_{D_{B}}=\frac{4 \tau^{2}}{\pi B} \frac{(1-a)}{(1+a)}\left\{\left.I(n)\right|_{0} ^{\frac{2 a}{1+a}}+\frac{4}{(1-a)^{2}}\left[\left.E(r, 0)\right|_{\frac{2 a}{1+a}} ^{1}-\left.F(r, 2)\right|_{\frac{1}{r}} ^{n}+\left.F(r, 0)\right|_{1} ^{\frac{1}{r}}\right.\right.$
$\left.\left.-\left.2 F(r, 1)\right|_{1} ^{\frac{1}{r}}\right]\right\}$

Case (b): Mach wave from B cutting $E G$
In this case $\Delta C_{D_{B}}(B J G)=0$. Otherwise the value of ΔG_{B} is given by the same expressions as for case (a), except that $\frac{1}{r}$ is replaced by n.
$\therefore \Delta G_{B}=\frac{4 \tau^{2}}{\pi B} \frac{(1-a)}{(1+a)}\left\{\left.I(n)\right|_{0} ^{\frac{2 a}{1+a}+\frac{4}{(1-a)^{2}}\left[\left.E(r, 0)\right|_{\frac{2 a}{1+a}} ^{1}+\left.F(r, 0)\right|_{1} ^{n} ~\right.}\right.$

$$
\left.\left.-2 F(r, 1) \left\lvert\, \begin{array}{l}
n \tag{21}\\
1
\end{array}\right.\right]\right\}
$$

3.13 Source distribution CFD $(\xi=+\lambda=+\tau)$

Again there are two cases to be considered, namely when the Mach cone form C lies ahead of E and when it lies behind E (see Fig.4).

Case (a) Mach cone from C lying behand E
The drag contribution is given by equation (6b) and the value of $d A$ by (17), with r replaced by a.

We thus have the general formula

$$
\Delta C_{D}=\left.\frac{8 \xi \zeta}{\pi B\left(1-a^{2}\right)} F(r, b)\right|_{\sigma=a} ^{\sigma=\beta}
$$

(i) The Mach cone from C cuts EG

For the area CNGF ($\zeta=-\lambda=-\tau$)

$$
\begin{equation*}
\Delta C_{D_{C}}(C N G F)=-\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)}\left[\left.F(a, 0)\right|_{\frac{1}{a}} ^{\frac{1}{a}}+\left.F(a, 1)\right|_{\frac{1}{a}} ^{n}\right] \tag{22}
\end{equation*}
$$

For the area NMG $(\zeta=+\lambda=+\tau)$

$$
\begin{align*}
\Delta C_{D_{C}}(N M G) & =\Delta C_{D_{C}}(C N G-C N G) \\
& =\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)}\left[\left.F(a, 2)\right|_{\frac{1}{2}} ^{n}-\left.F(a, 1)\right|_{\frac{1}{2}} ^{n}\right] \tag{23}
\end{align*}
$$

Hence for this case $\Delta C_{D_{C}}=$ the sum of equations (22) and (23)
$\therefore \Delta G_{D_{C}}=\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)}\left[\left.F(a, 2)\right|_{\frac{1}{a}} ^{n}-\left.2 F(a, 1)\right|_{\frac{1}{a}} ^{n}-\left.F(a, 0)\right|_{1} ^{\frac{1}{a}}\right]$
(11) The Mach cone from C cuts $F G$

For this case

$$
\begin{equation*}
\Delta C_{D C}=-\left.\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)} \quad F(a, 0)\right|_{1} ^{n} \tag{25}
\end{equation*}
$$

Case (b) The Mach cone from C lies ahead of E
The relevant area CLGF may be divided into two areas CKGF and CLK.
(i) Area CKGF
$\Delta 0_{D_{C}}$ (CKGF) is the same as that given in equation (24) except that n is replaced by the value of σ for EC, i.e. $2 a /(3 a-1)$.
(ii) Area CLK

Now CLK $=$ CQE + QLKE .
(iia) Area CQE $(\zeta=-\lambda=-\tau)$
It may be noticed that the areas CQE and CLK are similar and have the same boundary values for σ (viz. $\sigma=$ nalong CQL and $\sigma=\frac{2 a}{3 a-1}$ along $C E K$), and that the area CQE is one quarter of the area CLK.

$$
\begin{align*}
& \cdot \Delta C_{D_{C}}(Q C E)==\frac{2 \tau^{2}}{\pi B\left(1-a^{2}\right)},\left.F(a, 2)\right|_{\frac{2 a}{3 a-1}} ^{n} \\
& \text { (1ıb) Area QLKE }(\zeta=+\lambda=+\tau) \\
& \Delta C_{D_{C}}(Q L K E)=\left.\frac{8 \tau^{2}}{\pi B\left(1-a^{2}\right)} F(a, 2)\right|_{\frac{2 a}{3 a-1}-\left.\frac{2 \tau^{2}}{\pi B\left(1-a^{2}\right)} \cdot F(a, 2)\right|_{\frac{2 a}{3 a-1}} ^{n}, ~} ^{n} \\
& =\left.\frac{6 \pi^{2}}{\pi B\left(1-a^{2}\right)} F(a, 2)\right|_{\frac{2 a}{3 a-1}} ^{n} \tag{27}
\end{align*}
$$

Hence in the case when the Mach cone from C lies ahead of E, $\Delta 0_{D C}$ is given by the equavalent of equation (24) plus equations (26) and (27)

$$
\begin{align*}
& \Delta C_{C}=\frac{4 \tau^{2}}{\pi B\left(I-a^{2}\right)}\left[2 F(a, 2) \left\lvert\, \begin{array}{l}
\frac{2 a}{3 a-1} \\
\frac{1}{a}
\end{array} \frac{\left.4 F(a, 1) \left\lvert\, \begin{array}{l}
\frac{2 a}{3 a-1} \\
\frac{1}{a}
\end{array}\right.\right]}{\frac{1}{a}}\right.\right. \tag{B}\\
& \left.-2 F(a, 0) \left\lvert\, \begin{array}{l}
\left.\left.\left.\frac{1}{a}+F(a, 2) \left\lvert\, \begin{array}{l}
n \\
\frac{2 a}{3 a-1}
\end{array}\right.\right] .\right] .\right] .
\end{array}\right.\right] \\
& \therefore \Delta C_{D_{C}}=\frac{4 \tau^{2}}{\pi B\left(1-a^{2}\right)}\left[\left.2 F(a, 2)\right|_{\frac{1}{a}} ^{n}-\left.F(a, 2)\right|_{\frac{2 a}{3 a-1}} ^{n}-\left.4 F(a, 1)\right|_{\frac{1}{a}} ^{\frac{2 a}{3 a-1}}\right. \\
& -2 F(a, 0)\left[\begin{array}{l}
\frac{1}{a} \\
1
\end{array}\right] \text {. } \tag{28}
\end{align*}
$$

(i)

Summing up, if the Mach cone from C lies ahead of $E, \Delta C_{D}$ is given by (28); if the Mach cone cuts $E G, \Delta C_{D_{C}}$ is gaven by (24); and if the Mach cone cuts $F G \quad C_{D_{C}}$ is given by (25).

3.2 Drag due to "one-sided" source distributions

The source distrabution EGF can be made up of two source dastributions, EGF of strength $\xi=-2 \lambda=-2 \tau$ and $E H F$ of strength $\xi=+2 \lambda=+2 \tau$.

Two cases have to be considered, namely when the Mach one from E lies ahead of EG and when the Mach cone lies behind EG (see Fig.5). The calculations will be restricted in that the Mach cone from E is assumed not to cross the surface of the other half wing. A further lamitation already mentioned is that the Mach cone from A is always ahead of the warg leading edge. Thus the source distribution EHF is always of the "subsonic" leading edge type, while EGF may be either "subsonic" or "supersonic".

The general expressions for the drag increment due to this form of triangular source distribution are found by substituting equations (3) and (4) into (5). The substitution leads to the followang set of equations, the suffices 1,2 ard 3 representing the zones of influence which are deffined in Fig. 2.
(a) "Subsonıc" leading edge.
$\Delta C_{D_{1}}=\frac{8 \xi \xi_{1}(1-a)}{\pi B(1+a)} \frac{k_{1}}{c^{2}} \int \frac{1}{\sqrt{n_{1}^{2}-1}} \cosh ^{-1} \frac{n_{1}^{2}-\sigma_{1}}{n_{1}\left(1-\sigma_{1}\right)} d A$

(b) "Supersonıc".leading edge.
$\Delta C_{D_{1}}=\frac{8 \xi_{j} \zeta_{1}(1-a)}{\pi B(1+a)} \frac{k_{1}}{c^{2}} \int \frac{1}{\sqrt{1-n_{1}^{2}}}\left\{\pi-\cos ^{-1} \frac{\sigma_{1}-n_{1}^{2}}{n_{1}\left(1-\sigma_{1}\right)}\right\} d A$
$\Delta G_{D_{2}}=\frac{8 \xi \zeta_{0}(1-a)}{B(1+a)} \frac{k_{1}}{c^{2}} \frac{A}{\sqrt{1-n_{1}^{2}}}$
$\Delta G_{3}=\frac{8 \xi \zeta(1-a)}{\pi B(1+a)} \frac{k_{1}}{c^{2}} \int \frac{1}{\sqrt{1-n_{1}^{2}}} \cos ^{-1} \frac{\sigma_{1}+n_{1}^{2}}{n_{1}\left(1+\sigma_{1}\right)} d A$

In the above equations, k_{1} and n_{1} refer to the source dastribution considered and not the wing leading edge, and σ_{1} is always a positıve quantity.

The elementary areas (see $d A_{6}$ and $d A_{7}$ in Fig. $3 b$) arc gaven by the following.

In zones 1 and 2 (Fig.2)

$$
\begin{equation*}
d A=d A_{6}=g \frac{c^{2}(1-b)^{2}}{8 k \cdot\left(g-\sigma_{1} \frac{b}{2}\right)^{2}} \bar{d} \sigma_{1} \tag{3la}
\end{equation*}
$$

and in zone 3 (Fig. 2)

$$
\begin{align*}
d A=d A_{7}= & g \frac{c^{2}}{8 k\left(g+\sigma_{1}\right)^{2}} d \sigma_{1} \\
& -17-
\end{align*}
$$

where $g=k_{1} / k$ and k_{1} is the tangent of the sweepback angle of the leading edge of the source distribution considered and k is the tangent of the sweepback angle of the leading edge of the wang.

Let E_{1} refer to the source distribution BHF , and E_{2} refer to EGF.
3.21 Source distribution EHF $(\xi=+2 \lambda=+2 \tau)$
(a) Area $\mathrm{EHF}(\zeta=-\lambda=-\tau)$

Putting $\mathrm{b}=0, \mathrm{~g}=1$ in (31a) and substituting in (29a) we get for thas area the general expression

$$
\begin{aligned}
\Delta C_{D_{E_{1}}} & =-\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{0}^{1} \frac{1}{\sqrt{n_{1}^{2}-1}} \cosh ^{-1} \frac{n_{1}^{2}-\sigma_{1}}{n_{1}\left(1-\sigma_{1}\right)} d \sigma_{1} \\
& =-\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} H_{1}\left(n_{1}\right)\right|_{0} ^{1}
\end{aligned}
$$

For $E H F \quad n_{1}=n$ and the value of $\Delta D_{D_{1}}$ ($E H F$) is the same as the general value; i.e.

$$
\begin{equation*}
\Delta O_{\mathrm{E}_{1}}(E H F)=-\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} H_{1}(n)\right|_{0} ^{1} \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
H_{1}(n) & =\int \frac{1}{\sqrt{n^{2}-1}} \cosh ^{-1} \frac{n^{2}-\sigma}{n(1-\sigma)} d \sigma \\
& =\frac{1}{\sqrt{n^{2}-1}}\left\{\sigma \cosh ^{-1} \frac{n^{2}-\sigma}{n(1-\sigma)}+\sqrt{n^{2}-1} \sin ^{-1} \frac{\sigma}{n}\right. \\
& \left.-\log \left|\frac{n(1-\sigma)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{\ln (1-\sigma)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right\} \tag{33}
\end{align*}
$$

(b) Area ERGH

This area may be divaded into EGH and ERG, the value of $d A$ for each being as in (3la), with $b=0$ for EGH and $b=2$ for ERG. The
drag is found from equation (29b).
(i) Area EGH $(\zeta=-\lambda=-\tau)$

$$
\begin{align*}
\Delta D_{E 1}(E C H) & =-\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{1}^{2} \frac{1}{\sqrt{n^{2}-1}} \cosh ^{-1} \frac{n^{2}-\sigma}{n(\sigma-1)} d \sigma \\
& =-\left.\frac{2 \tau^{2}(1-a)}{\pi 13(1+a)} H_{2}(n)\right|_{1} ^{2} \tag{34}
\end{align*}
$$

where

$$
\left.\begin{array}{c}
H_{2}(n)=\int \frac{1}{\sqrt{n^{2}-1}} \cosh ^{-1} \frac{n^{2}-\sigma}{n(\sigma-1)} d \sigma \\
=\frac{1}{\sqrt{n^{2}-1}}\left\{\sigma \cosh ^{-1} \frac{n^{2}-\sigma}{n(\sigma-1)}+\sqrt{n^{2}-1} \sin ^{-1} \frac{\sigma}{n}\right. \\
+\log \left|\frac{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right| \tag{35}
\end{array}\right\}
$$

(ii) Area ERG $(\zeta=+\lambda=+\tau)$

$$
\Delta C_{D_{E_{1}}}(E R G)=\frac{2 \tau^{2}}{\pi B} \frac{(1-a)}{(1+a)} \int_{2}^{n} \frac{g^{2}}{\sqrt{n^{2}-1}(g-\sigma)^{2}}-\cosh ^{-1} \frac{n^{2}-\sigma}{(\sigma-1) n} d \sigma
$$

where $\mathrm{g}=1$.
Let

$$
J(n, g)=\int \frac{g^{2}}{\sqrt{n^{2}-1}} \frac{1}{(g-\sigma)^{2}} \cosh ^{-1} \frac{n^{2}-\sigma}{(\sigma-1) n} d \sigma
$$

Then

$$
\begin{align*}
J(n, 1)= & -\frac{\cosh ^{-1} \frac{n^{2}-\sigma}{n(\sigma-1)}}{(\sigma-1) \sqrt{n^{2}-1}}+\frac{\sqrt{n^{2}-\sigma^{2}}}{\left(n^{2}-1\right)(\sigma-1)} \\
- & \frac{1}{\left(n^{2}-1\right)^{3 / 2}} \log \left|\frac{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma-1)+\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right| \tag{36}\\
& \therefore \Delta{D_{\mathbb{E}_{1}}}(E R G)=\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} J(n, 1)\right|_{2} ^{n} \tag{37}
\end{align*}
$$

It will be notaced that when EG is "supersonic" the drag ancrement given by equations (34) and (37) will not hold, since equation (37) will not exast, and equation (34) wall become

$$
\begin{equation*}
\Delta \operatorname{D}_{\mathrm{E}_{1}}(\mathrm{ETH})=-\left.\frac{2 \tau^{2}(1-\mathrm{a})}{\pi \mathrm{H}(1+a)} \mathrm{H}_{2}(\mathrm{n})\right|_{1} ^{n} \tag{38}
\end{equation*}
$$

(c) Area EIFS (or EFU) $(\zeta=-\lambda=-\tau)$.

The drag increment is gaven by equation (29c) in which ∂A is given by (3lb).

The general expression is
$\Delta \Phi_{\mathrm{E}_{1}}(\mathrm{EFS})=-\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{0}^{n} \frac{g^{2}}{\sqrt{\mathrm{n}^{2}-1}} \frac{1}{(\mathrm{~g}+\sigma)^{2}} \cosh ^{-1} \frac{\mathrm{n}^{2}+\sigma}{\mathrm{n}(\sigma+1)} d \sigma$

For the case consadered, $g=1$.
Let

$$
K(n, g)=\int \frac{g^{2}}{\sqrt{n^{2}-1}} \frac{1}{(g+\sigma)^{2}} \cosh ^{-1} \frac{n^{2}+\sigma}{n(\sigma+1)} d \sigma .
$$

Then

$$
\begin{align*}
& K(n, 1)=\frac{1}{\sqrt{n^{2}-1}}\left\{-\frac{\cosh ^{-1} \frac{n^{2}+\sigma}{n(\sigma+1)}}{(\sigma+1) \cdot}+\frac{\sqrt{n^{2}-\sigma^{2}}}{(\sigma+1) \sqrt{n^{2}-1}}\right. \\
&\left.+\frac{1}{\left(n^{2}-1\right)} \log \left|\frac{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n(\sigma+1)-\sqrt{n^{2}-\sigma^{2}}+\sigma \sqrt{n^{2}-1}}\right|\right\} \tag{39}\\
& \therefore \Delta \Phi_{E_{1}}(E F S)=-\left.\frac{2 \tau^{2}}{\pi B} \frac{(1-a)}{(1+a)} K(n, 1)\right|_{0} ^{n} \tag{40}
\end{align*}
$$

3.22 Source distrabution EGF ($\overline{5}=-2 \lambda=-2 \tau$)

For source distribution EGF, g has the value $\frac{1}{2}$, and n_{1} in equations (29) and (30) equals $\frac{1}{2} n$.

Case (a) EG "subsonic" i.e. $n>2$
When EG is "subsonic" equations (29) are used for the drag increment, in conjunction with the ciementary areas given by (31)

$$
\begin{align*}
\Delta \mathrm{C}_{\mathrm{E}_{2}}(\mathrm{EGF}) & =\left.\frac{2 \tau^{2}(1-\mathrm{a})}{\pi \mathrm{B}(1+\mathrm{a})} \mathrm{H}_{1}\left(\frac{\mathrm{n}}{2}\right)\right|_{0} ^{1} \tag{41}\\
\Delta \mathrm{C}_{\mathrm{E}_{2}}(\mathrm{ERG}) & =-\left.\frac{2 \tau^{2}(1-\mathrm{a})}{\pi \mathrm{B}(1+\mathrm{a})} J\left(\frac{n}{2}, \frac{1}{2}\right)\right|_{1} ^{\frac{n}{2}} \tag{42}
\end{align*}
$$

and

$$
\begin{equation*}
\cdot \Delta \mathrm{C}_{\mathrm{E}_{2}}(\mathrm{EFS})=\left.\frac{2 \pi^{2}(1-a)}{\pi \mathrm{B}(1+a)} K\left(\frac{\mathrm{n}}{2}, \frac{1}{2}\right)\right|_{0} ^{\frac{n}{2}} \tag{43}
\end{equation*}
$$

where

$$
\begin{aligned}
& J\left(\frac{n}{2}, \frac{1}{2}\right)=\frac{1}{4 \sqrt{\left(\frac{n}{2}\right)^{2}-1}}\left\{\begin{array}{l}
\cosh ^{-1} \frac{\left(\frac{n}{2}\right)^{2}-\sigma}{\frac{n}{2}(\sigma-1)} \\
\left(\sigma-\frac{1}{2}\right)
\end{array}\right. \\
& -2 \log \left|\frac{\frac{n}{2}(\sigma-1)+\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}-\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}}{\frac{n}{2}(\sigma-1)+\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}+\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}}\right| \\
& \left.+4 \sqrt{\frac{\left(\frac{n}{2}\right)^{2}-1}{n^{2}-1}} \log \left|\frac{n\left(\sigma-\frac{1}{2}\right)+\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}-\sigma \sqrt{n^{2}-1}}}{n\left(\sigma-\frac{1}{2}\right)+\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}+\sigma \sqrt{n^{2}-1}}}\right|\right\} \quad(44)
\end{aligned}
$$

and

$$
\left.\begin{array}{rl}
K\left(\frac{n}{2}, \frac{1}{2}\right) & =\frac{1}{4 \sqrt{\left(\frac{n}{2}\right)^{2}-1}}\left\{\begin{array}{l}
-\frac{\cosh ^{-1} \frac{\left(\frac{n}{2}\right)^{2}+\sigma}{\frac{n}{2}(\sigma+1)}}{\sigma+\frac{1}{2}} \\
\\
\end{array} \begin{array}{l}
4 \sqrt{\frac{\left(\frac{n}{2}\right)^{2}-1}{n^{2}-1}} \log \left|\frac{n\left(\sigma+\frac{1}{2}\right)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}-\sigma \sqrt{n^{2}-1}}{n\left(\sigma+\frac{1}{2}\right)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}+\sigma \sqrt{n^{2}-1}}}\right| \\
\end{array}+2 \log \left|\frac{\frac{n}{2}(\sigma+1): \left.-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}-\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}} \right\rvert\,}{\frac{n}{2}(\sigma+1)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}+\sigma \sqrt{\left(\frac{n}{2}\right)^{2}-1}}\right|\right.
\end{array}\right\}
$$

Case (b) EG "supersonıc" i.e. $n<2$
Equations (30) are used in this case for the drag increment in conjunction with the elementary areas given by (31)

$$
\begin{align*}
\Delta C_{D_{E_{2}}}(E F T) & =\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{0}^{\frac{n}{2}} \frac{1}{\sqrt{1-\left(\frac{n}{2}\right)^{2}}}\left\{\pi-\infty s^{-1} \frac{\sigma-\left(\frac{n}{2}\right)^{2}}{\frac{n}{2}(1-\sigma)}\right\} d \sigma \\
& =\left.\frac{2 \tau^{2}(1-a)}{\pi_{B}(1+a)} L\left(\frac{n}{2}, \frac{1}{2}\right)\right|_{0} ^{\frac{n}{2}} \tag{46}
\end{align*}
$$

where

$$
\begin{align*}
& L\left(\frac{n}{2}, \frac{1}{2}\right)=\int \frac{1}{\sqrt{1-\left(\frac{n}{2}\right)^{2}}}\left\{\pi-\cos ^{-1} \frac{\sigma-\left(\frac{n}{2}\right)^{2}}{\frac{n}{2}(1-\sigma)}\right\} d \sigma \\
&=\frac{1}{\sqrt{1-\left(\frac{n}{2}\right)^{2}}}\left\{\pi \sigma+\sqrt{1-\left(\frac{n}{2}\right)^{2}} \sin ^{-1} \frac{2 \sigma}{n}-\sigma \cos ^{-1} \frac{\sigma-\left(\frac{n}{2}\right)^{2}}{\frac{n}{2}(1-\sigma)}\right. \\
&\left.-2 \tan ^{-1} \frac{\frac{n}{2}(1-\sigma)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}}{1}\right\} \tag{47}\\
& \Delta C_{D_{E_{2}}} \text { (EGT) }=\frac{8 \tau^{2}\left(1-\left(\frac{n}{2}\right)^{2}\right.}{B(1+a) c^{2}} \cdot \frac{\operatorname{area~EGT}}{\sqrt{1-\left(\frac{n}{2}\right)^{2}}} \\
& \quad \text { area EGT }=\frac{c^{2}}{4 k}\left(1-\frac{n}{2}\right)
\end{align*}
$$

and

$$
\begin{align*}
\therefore \Delta C_{D_{E_{2}}}(E G T) & =\frac{2 \tau^{2}(1-a)}{B(1+a)} \sqrt{\frac{1-\frac{n}{2}}{1+\frac{n}{2}}} \\
& =\frac{2 \tau^{2}(1-a)}{B(1+a)} \cdot M\left(\frac{n}{2}\right) \tag{48}
\end{align*}
$$

where

$$
\begin{gather*}
M\left(\frac{n}{2}\right)=\sqrt{\frac{1-\frac{n}{2}}{1+\frac{n}{2}}} \cdot \tag{49}\\
\Delta C_{D_{2}}(E F U)=\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} \int_{0}^{\frac{n}{2}} \frac{1}{4 \sqrt{1-\left(\frac{n}{2}\right)^{2}}} \cos ^{-1} \frac{\sigma+\left(\frac{n}{2}\right)^{2}}{\frac{n}{2}(\sigma+1)} \frac{d \sigma}{\left(\sigma+\frac{1}{2}\right)^{2}}
\end{gather*}
$$

since $g=\frac{1}{2}$.

$$
\begin{equation*}
\cdot \Delta C_{D_{E_{2}}}(E F U)=\left.\frac{2 \tau^{2}(1-a)}{\pi B(1+a)} N\left(\frac{n}{2}, \frac{1}{2}\right)\right|_{0} ^{\frac{n}{2}} \tag{50}
\end{equation*}
$$

where

$$
N(n, g)=\int \frac{g^{2}}{\sqrt{1-n^{2}}} \cos ^{-1} \frac{\sigma+n^{2}}{n(1+\sigma)} \frac{d \sigma}{(\sigma+g)^{2}}
$$

Evaluatang for $g=\frac{1}{2}$ gives
$N\left(\frac{n}{2}, \frac{1}{2}\right)=-\frac{1}{\sqrt{1-\left(\frac{n}{2}\right)^{2}}}\left\{\frac{\cos ^{-1} \frac{\sigma+\left(\frac{n}{2}\right)^{2}}{\frac{n}{2}(1+\sigma)}}{4\left(\sigma+\frac{1}{2}\right)_{1}}+2 \sqrt{\frac{1-\left(\frac{n}{2}\right)^{2}}{1-n^{2}}} \tan ^{-1} \frac{n\left(\sigma+\frac{1}{2}\right)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}}{\sigma \sqrt{1-n^{2}}}\right.$
$\left.-\tan ^{-1} \frac{\frac{n}{2}(\sigma+1)-\sqrt{\left(\frac{n}{2}\right)^{2}-\sigma^{2}}}{\sigma \sqrt{1-\left(\frac{n}{2}\right)^{2}}}\right\}$
Summing up for the source distribution EGH (or EHF and EGF), $\Delta C_{D_{E}}$ is gaven by the following:-

If $E G$ is "subsonic", $\Delta G_{D_{E}}$ 2s made up of the sum of (32), (34), (37), (40), (47), (42) and (43).

If $E G$ is "supersonac", ΔC_{E} is gaven by the sum of (32), (38), (40), (46), (48) and (50).

- The total drag coefficient is found by adding the drag ancrements, - thus

$$
C_{\text {pressure }}=\Delta C_{D_{A}}+\Delta C_{D_{B}}+\Delta C_{D_{C}}+\Delta C_{D_{E}} .
$$

4 Applicatzon to a partacular'wing

4.1 Evaluation

The formulae derived in para. 3 were applied to a particular wing in order to determane numerically the variation of pressure drag coefficient with Mach number. For the calculations a wing was chosen in which the sweepleck of the inboard section was 60° and the parameter $a=0.4$. Thus gave $k=\sqrt{3}, r=0.7$ and the sweppack angle of the outboard maxamum thackness line equal to 40.9°.

The varıous functions appearang in para. 3 are shown tabula ted in Table I for a range of Mach numbers between $M=1.090$ and $M=2$, the lower limit being that Mach number at which the liach cones from E^{\prime} and E^{\prime} passed through the points $F^{\prime \prime}$ and F respectavely (F ig. I). Itso happens that at $M=1.090^{\circ}$, for the selected value of a, the Mach cone from C passes behind E and E^{\prime}, and hence for the range of Mach number considered it was not necessary to calculate any of the functions in whach one limat is $\sigma=\frac{2 a}{3 a-1}$ in section 3.13 case (b). At $M=2$ the Mach cones from the apex lie along the leading edge. Referring to Table $[$, at wall be seen that the functions are tabulated for n having the value 1.429. This corresponds to the Hifach number at which the Mach cone from B passes through G and G (viz, at $M=1.572$). The corresponding value of n for the Mach cone from C to pass through G and G^{\prime} is $n=2.5(M=1.217)$.

Fig. 6 shows the theoretical drag curve for the wing plotted against Mach number. As the Mach number decreascs to $\mathrm{M}=1.090$ the drag coefficient begans to increase faurly rapidly. Thas ancrease is probably duc to tho delta-like planform of the outboard portion of the varig, the drag of a delta tending to infanaty as M tends to 1 , according to the lincar theory. Butwon $M=1$ and $M=1.090$ there wall be interfurunce botwien tho two kalvos of the wing, the offect of which has not been calculated. . At $M=1.323$ when the Mach lines are parallel to EG and E'G' a kink occurs. A further kink occurs wen the Mach linos from B pass through G and G^{\prime} at $M=1.572$, although there are no stralght lines of discontinuity in slope between B and the wang tips. One would imaganc thercfore that there would bc a tendency for a kink to occur when the Mach lines from C pass through G and G^{\prime} (i.c. at $M=1.217$). Howcver Fig. 6 shows that for tho particular wang selected the tendency has been entarely suppressed. Since the analysus has been made only for the case of a subsonic lcading edge, no calculations wero possiblo above a Mech number of 2. As, however, at this Mach number the joch lines are parallol to the gencral sweepback exastang over the anbourd section of the wang, the drag cocfficient is expected to decrease rathor more rapadly at hagher Mach numbers, causing a slight kink at $M=2$.

4.2 Comparison wath the drag of other wings

In Figs. 7 A and $7 B$ are plotted the drag curves of several wangs of double wedge aerofoll section but dit'ferent planforms, for comparison
with that of the particular wing considered above. The drag of wangs No. 2 and 4 were derived from graphs gaven by H.Multhopp and M.Winter in an unpublished paper, using a me thod essentially equivalent to that of Puckett and Stewarti, 2 , and the drag of wangs No. 3 and 5 were obtained from Refs. 4 and 2 respectively. The derıvation of curve No. 6 wall be discussed later.

Fig.7A is intended to show the difference which exists between the drag of the particular cranked wang evaluated above (wing No.l) and two other well known types of wang. Wing No. 2 is an arrowhead formed by replacing the cranked trailing edge and maxamum thickness lunes by straight lines from the root to the tips. The maximum thicknoss sveepback angle is 50.5°, corresponding to the lines $B G$ and BG' in FIg.1. The "chevron" planform (wing No.3) has the same plan aroa as rang No.l, and the same chord and sweepback angle as its inboard section. From Fig.7A it is seen that comparcd wath curves 2 and 3 the drag coefficient of wing l varies very little be tween $M=1.090$ and $M=2$, the mean value being roughly $2.8 \tau^{2}$. Wings No. 2 and 3 both have lower drag than wang No. 1 at low supersonic Mach numbers and thas as attrubuted to the fact that wings No. 2 and 3 have no lines of discontinuity in slope perpendicular to the free stream. For $M>1.5$ the arrowhead wing has values of C_{D} which are considerably higher than those for the cranked wing, andicating that the regions downstream of $C G$ and $C G^{\prime}$ on wing'I have a beneficial effect in roducing drag at these Mach numbers. It wall be seen that replacing the ving by a chevron of roughly simllar shape and 600 sweepback angle does not gave very good agreement with wan No.l for the case sclected, which shovs that the tap effect on wing No.l is faurly large.

It may be concluded that if a cranked wing of the type examined is replaced by a roughly simalar chevron or arrowhead wing in order to find a sample approxamation to the pressure drag, very poor accuracy will in general be obtained, since insufficient allowance is made for tip effect.

Several other wings and combinations of wings have been examined in an attempt to find a moderately good simple approximation to the pressure drag of 'the cranked wang, and the best results obtained are shown in Fig. 7 B . Wing $N 0.4$ is an arrowhead with a maxamum thickness sweepback angle of 50.5°, and the same span and area (1.c. the same aspect ratio) as Wing No.l. Comparing Wing No. 4 with King No.2, both of which have the same sweepback of the maxamum thickness line, we see that the lowor sweepback of the trailing edge of wang No. 4 results in better agreement'wath-wang No. 1 at low supersonic Mach numbers, than was obtained with wing No:2. However poor-agreement is still obtanned around $M=1.572$, presumably due to the fact that not sufficient allowance has been made for the beneficial effect of the region behind CG and CG' on Wing No.l. In an attempt to. allow for this beneficial effect, a delta wang (wing No.5) with the maximum thickness lines s"ept back 50.5°, was examuned, 'and the drag shows farrly good agreement wath that of wang No.l. The agreement should amprove as the parameter a (see Fig.l) decreases, exact agreement being obtained when $a=0$, since then the two wings are identical. It is to be anticipated, however, that a delta wing such 'as wing No. 5 will give progressively poorer agreement wath a cranked wing as the value of the parameter a for the latter increases towards unity. It will over-estimate tip effects at low supersonic Mach numbers, and make too much allowance for the beneficial effects of the regions behind $C G$ and $C G^{\prime}$ at high Mach numbers.

It was decided, thereforo, to seek a method of ostimating, for
all a, the drag of cranked wangs in terms of the abundant data which exast on the drag of "chevron" and arrowhead wings. A method" suggested as to separate the wang into the chevron formed by the inboard sections (i.e. AFFCF'W in Fag.1), and the delta formed by the outboard sections (i.e. WFG and $F^{\prime} F^{\prime} G^{\prime}$ in Fig. 1). The drag coefficlents of the chevron and the delta are then evaluated assuming them to be isolated wangs, and the drag coefficient of the cranked wing $1 s$ assumed to be given by a mean, weaghted in the ratio of their areas, such that

$$
C_{D_{\text {cranked wing }}}=\frac{2 a}{1+a} C_{\text {chevron }}+\frac{1-a}{1+a} C_{D_{\text {delta }}}
$$

This method 15 obviously exace for $a=0$ and $a=1$, and IIg. 713 curve No. 6 shows that the agrecment for $a=0.4$ is moderately good.

5 Conclusions

The theoretzcal supersonic pressure drag coefficient of a particular wing wath a cranked line of maximum thickness and a symmetrical double wedge aerofoul section varies very little between Mach numbers 1.090 and 2 , the mean value beang roughly $2.8 \tau^{2}$.

Since the computations were long and tedious, an attempt was made to find combinations of wings or known characteristics which would gave fayrly close approximations to the drag, and the following method appears satisfactory. The cranked wing is separated into a "chevron" wing formed by the inboard sections, and a delta wing formed by the outboard sections. The drag coefficient of the chevron and delta are then evaluated on the assumption that they are isolated wings, and the drag coefficient of the cranked wing is obtained by taking a mean of those for the chevron and delta wings, weighted in the ratio of thear plan areas to the plan area of the cranked wang.

If the parameter a defined in F1g.I is less than 0.4, a rapid approximation to the drag coefficient may be made by replacing the cranked wang by a delta with a double wedge aeroforl section, the sweepback of the maxamum thickness lines being equal to that of the lines $B G$ and $B G^{\prime}$ in Fig.I.

Acknowledgement

The author is much indebted to Mass P.M.Solway for the help she hás given in evaluating the integration functions.

[^1]a parameter defined in Fig. 1
$B=\sqrt{M^{2}-1}$
b parameter defined in Fig. 3
c root chord
G drag coefficient
$\Delta C_{D}(X Y Z)$ increment of drag coefficient due to the influence of the source dastribution with apex at V on the area XYZ
C_{p} pressure coefficient
$\mathrm{g}=\mathrm{k}_{1} / \mathrm{k}$
k) tangent of the sweepback angle of the leading edge, k referring

$k_{1}\left\{\begin{array}{l}\text { to the main wing, and } k_{1} \text { being used for those traangular source } \\ \text { distributions for }\end{array}\right.$
$k_{1}\{$ dastributions for which it is different from the value for the main wing

M Mach number
$n=\frac{k}{B}$
$n_{1}^{\prime \prime}=k_{1} / B$
r parameter defined in Fig.l.
$S \quad$ wing plan area
$U \quad$ free stream velocity
u perturbation velocaty in free stream direction
x, y streamwise and normal cartesian co-ordunates in the plane of the wing, measured relative to an origin at the apex of a triangular source distribution
ζ angle between free stream and wing surface at any point
λ semi-angle of the double wedge section
$\xi \quad$ strength of source distrabution
$\sigma=k\left|\frac{y}{x}\right|$
τ thackness/chord ratio of wang
$\phi \quad$ perturbation velocaty potential

No.	Author	Tutle, etc
1	Puckett, A.E.	Supersonze Wave Drag of Thin Airfoils. Journal of the heronautical Sciences, Vol.13, No.9, pp.475-484. September, 1946.
2	Puckett, h.E. and Stewart, H.J.	Aerodynamic Performance of Delta Wings at Supersonic Speeds. Journal of the heronautical Sciences, Vol. 14, No. 10, pp.567-578. October, 1947
3	Ferri, A.	Elements of Aerodynamics of Supersonic Flows. Chapter 14. Macmillan, New York, 1949.
4	Margolis, K.	Supersonic Wave Drag of Non-lifting Sweptback Tapered Wings with Mach lines behind the Line of Maximum Thickness. NACA Technical Note No. 1672. August, 1948.
5	Dwight, H. B.	Tables of Integrals and Other Mathematical data. Macmillan, New York, 1947.

TABLE 1 TABULATION OF INTEGRATION FUNCTIONS

n	101	105	120	1429	150	180	200	210	250	290	330	370	400
B	1715	1650	1443	1213	1155	0962	0866	0825	0693	0597	0525	0468	0433
M	1985	1929	1756	1572	1528	1388	1323	1296	1217	1165	1129	i 104	1090
$E(r, 0)$ $r^{2}$${ }^{1}$	10977	10092	08750	07673	07405	06565	06147	05950	05332	04854	04469	04153	03945
$\left.\frac{E(c, 0}{r^{2}}\right\|_{\text {a }}{ }^{\text {a }}$	09010	08169	06937	06001	05771	05066	04705	04565	04068	03687	03387	03136	02948
$\begin{array}{\|c\|c\|c} E\left(c_{1}\right) \\ \left(r-\frac{1}{2}\right)^{2} & \begin{array}{c} 2 a \\ \frac{2}{1+a} \end{array} \\ \hline \end{array}$	27641	24872	20734	17758	17028	14854	13712	13172	11825	10741	09818	09079	08642
$\left.I(n)\right\|_{0} ^{a}$	06926	06857	06454	06010	05897	0.5445	05176	05068	04651	04318	04025	03776	03608
$\left.I(n)\right\|_{\substack{\frac{2 a}{1+a} \\ 0}}$	14381	14310	13546	I 2547	12294	11300	10740	10486	09597	08868	08223	07738	07380
Fras) ${ }^{\text {ra }}$	01343	03097	05857	07954	08411	09818	10491	10745	11592	12188	12629	12972	13181
$\left.\frac{F\left(r_{0} 0\right.}{r^{2}}\right\|_{1} ^{1}$				07954	08229	08397	08296	08212	07786	07387	07007	06669	06417
$\left.\frac{F\left(r_{0} 0\right.}{r^{2}}\right\|_{1} ^{\frac{1}{2}}$									11592	11616	11286	10884	10568
	02896	06487	14463	25461									
($\frac{F(r, 1)}{\left(r-\frac{t}{2}\right)^{2}} /{ }^{\frac{1}{r}}$				25461	27726	28287	27317	27068	24703	22672	21142	19779	18797
$\left.\frac{F(r)}{\left(r-\frac{1}{2}\right)^{2}}\right\|_{\frac{1}{a}} ^{n}$										05690	1.0037	12317	13503
$\left.\frac{(r, 2)}{(r-1)^{2}}\right\|_{\frac{1}{r}} ^{n}$	-			0	00847	04703	06196	06615	07676	08046	08103	08016	07894
$\begin{aligned} & F\left(r_{i} 2\right) \\ & (r-1)^{2} / \begin{array}{l} n \\ t \end{array} \\ & \hline \end{aligned}$									0	00212	00423	00584	00672
$H_{1}\left(\left.\underline{n}\right\|_{0} ^{1}\right.$	24267	22446	19235	16628	16050	13861	1.2811	12396	10953	09864	09004	08302	07855
$\mathrm{H}\left(\frac{\mathrm{m}}{2}\right) \mathrm{O}_{0}^{1}$							25708	22446	18514	1.6387	14786	13585	12839
$\left.\mathrm{H}_{2}(n)\right\|_{i} ^{n}$	01407	03099	05857	07938	08410	09816	10483						
$\left.H_{2}(n)\right\|_{1} ^{2}$							10483	10554	10059	09344	08670	08079	07679
$\left.J(n, 1)\right\|_{2} ^{n}$							0	00177	01111	01712	02056	02247	02352
$J\left(\frac{n}{2}, \frac{1}{2}\right) / \frac{n}{2}$							0	05166	05872	05054	03953	02784	01918
$\left.K(n, 1)\right\|_{0} ^{n}$	03310	03357	03435	O 3488	03494	03493	03471	03456	03379	03286	03187	03089	03024
K $\left.\left(\frac{n}{2}, \frac{1}{2}\right)\right\|_{0} ^{\frac{n}{2}}$							- 2397	- 2402	02404	02383	02350	02309	02267
L ($\left.\frac{1}{2}, \frac{1}{2}\right) / \frac{n}{2}$	09756	10137	11592	13954	14758	18844	25708						
$M\left(\frac{\pi}{2}\right)$	05735	05581	05000	04082	03780	02294	0			-			
$N\left(\frac{1}{2}, \frac{1}{2}\right) / \frac{n}{2}$	02059	02127	02208	02238	02319	02375	02397						

FIG. I.

FIG I. GEOMETRY OF WING WITH CRANKED MAXIMUM THICKNESS LINES.

FIG. 2.

(a) SYMMETRICAL TO FREE STREAM "SUBSONIC" LEADING EDGE
(b) ONE SIDE PARALLEL TO FREE STREAM

(i)"subsonic" LEADing edge

(ii)'SUPERSONIC" LEADING EDGE

FIG. 2. ZONES OF INFLUENCE FOR TRIANGULAR SOURCE DISTRIBUTIONS.

FIG. 3.

FIG. 3. ELEMENTARY AREAS.

FIG. $4 \& 5$.

FIG. 4 GEOMETRY FOR CONSIDERATIONS OF SOURCE DISTRIBUTION CFD.

3
(8)
g
FIG. 5. GEOMETRY FOR CONSIDERATIONS OF SOURCE DISTRIBUTION EGH.

FIG. 6.

FIG.6. VARIATION OF PRESSURE DRAG WITH MACH NUMBER FOR A WING WITH CRANKED MAXIMUM THICKNESS LINES.

FIG. 7a

WINGS WITH DIFFERENT PLANFORMS.

FIG. 7f.

WING No(1)

WING No (5)

$\theta=505^{\circ}$

WING № (4)

$\theta=505^{\circ}$

WING № (6)
BUILT UP FROM DELTA AND CHEVRON WINGS (SEE PARA 42)

FIG.7\&. COMPARISON OF PRESSURE DRAGS OF WINGS WITH DIFFERENT PLANFORMS.

PUBLISHED BY HIS MAJESTY'S STATIONERY OFFICE
To be purchased from
York House, Kingsway, london, w.c 2, 429 Oxford Street, london, w 1, PO. Box 569, london, se1,
13a Castle Street, edinburgh, 2 1 St Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 3 Chichester Streef, belfast,
or from any Bookseller
1951
Price 8s. Od. net
printed in great britain

[^0]: * Since the sweepback anglc of the leadang edges of the source distributions AGG', BHH', CFF' are all equal to the sweepback angle of the leading edge of the wang, the symbol k wall bo used also for the tangent of thas particular angle.

[^1]: * For this suggestion the author is indebted to Mr.C.H.E.Warren.

