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SUMMARY -- 

The linearised theory is applied to a particular family of 
sweptback wings with cranked ZIXXWIII thickness lines, and the drag 
of one member is analysed and compared with several other nnngs 
whose solutions are well known. 

The indications are that one can approximate to the variation 
of drag with Mach number by combining curves of certain delta and 
"chevron" wings. 
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1 Introduction 

A considerable amount of theoretxal data 1s avaIlable on the 
supersonxc pressure drag at eerc incidence of mngs with straight 
maxunum thickness lines but very little 1s known of the effect of 
'cranking ' the maximum thickness line at a certain statxcn along the 
span. In this paper the luearised theory is applied to a sweptbock 
wing having a constant chord inboard aectlon and a tapered section 
outboard, and cranked in such a manner that the whole leading edge is 
straight, and the outboard trailing edge is lxxperdicular to the free 
stresm (Fig.1). The problem has been kept as simple as possible by 
considering a double wedge sectlon with the maximum thickness at 5% 
chord, and the investigation has been restrlcted to the case where 
the Mach ccnes from the apex lie in front of the leading edge (i.e. a 
"subsonic" leading edge). A further restriction is that the Mach 
cones from the disturbances set up at each crank do not cross the 
opposxte half of thewing. TheexpressIons obtained are evaluated for 
a partzcular wing wxth the inboard and outboard maximum thickness 
lines swept back 60c and approximately 400 respectively, and for this 
wing the Fesswe drag has been estimated for the Mach number range 
M = 1.090 to M = 2. 

2 Fundamental Analysis 

The 
Puckett1j2 

drag has been estimated by following the method used by 
. The wing ig replaced by suitable source distrzbutions 

whxh satisfy the fundamental linearised perturbation potential 
equation 

9, (1 - M2, + p’yy + 4sz = 0 

and also satisfy the boundary conditions for the wing. 

The mng in Fig.1 IS considered to be replaced by the fcllowlng 
source distributions, the strengths being chosen so that the boundary 
condltuns are autcmatlcally satisfied (See Refs.1 and 3) 

Source dutrxbutlon 

AGG' 

Source str6n&h 

u +-A - 
7c 

BHH' 

EHG and E'H'G' 

where h is the semi-angle cf the double wedge section, which, for 
thin sections, is equal to the thickness/chord ratlo, Z, and U is 
the free stream velocity. For the sake of simplicity distributions 
J3HG and E'H'G' have been broken down into distrlbutlcns EGF, E'G'F' 
of strength -2X $ , and EHF, E'II'F' of strength +2X; . 

x 

Assurmng the existence of only small perturbations we can find 
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the 

the 

If 

pressure coeffxcient Cp in terms of u the perturbation velocity m 

fl-ee stream duection; thus to a first appromnation Cp = - $ . 
*cc $ is known, u = 6X may be found, and Cp = - - . 
u 

Now the drag mcrenmt due to a source distribution acting on . _ 

where S 1.9 the wmg plan area and r; isthe slope of the elementary 
area dA in the, free stream directlon, and 1s assumed small. l 

Then 0, = Zag over the tiole surface of the wing. 

There are two types of source distribution to be considered, ? 
namely the symmetrical triangular dxstributions AGG', BHH' and CFF', 
and trmngular distributions mth one side parallel to the free stream 
duection, such as EGF or EHF. Smce'we are consldermg only the 
case where the wing has a "subsonic" leading edge, the symmetrical 
distrlbutlons ml1 have "subsonic" lea&ng edges, but the "one-sided" 
distributions my have either "supersonic" or "subsonic" leading edges 
depending on,whether the Mach cone from E lies behind or ahead of G. 
These cases are considered in detal in Ref.3. If 5. 5 is the source 
strength of the uniform distrlbutlon cbnsidered, & for different 
zones IS gi.ven by the equations below. 

(a) Symmetrical triangular distrlbutzon (Flg.2a) 

$ 2EU 
xl = - 

cosh-l 

J 

n'-u2 

F 7c3 n-l 1 -c2 

6 x2 = - 
2 Eu cosh-1 & 
JT- c2-1 XB n-l J 

(*aI 
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b) Triangular distrlbutxon with a side parallel to the free stream 
Fig.2b). 

(i) "Subsonic" leadlng edge 

4 -1 
xl = - 

F;U cash II24 

/--cl XB In n(l-a) 

'6x2 = - Eu c-&,-l n2-, 

733 \n -1 12 n(u -1) 

$5x3 = - 4; lJ cash-l n2+6 

KB\n -1 P- n(o +l) 

(15.) "Supersonic" leadrng edge 

tiere 

J 

-i 

B = M2-1 

n = k/B 

(3a) 

(3b) 

(30) 

(4b) 

(4c) 

k = tangent of the sweptback angle of the leadmg edge of the 
source distr‘lbutlon* 

u = the ray parameter = k Iy/xl, the modulus being taken in order 
that d shall always be a positive quantity 

x,y are streamxxse and normal carteslan co-ordinates (respectively) 
in the plane of the wmg, measured relative to an origin at 
the apex of the source distribution concerned. 

The subscripts 1, 2, 3 refer to the zones defined in Fig.2. 

* Since the sweepback angle of the leading edges of the source distri- 
butions AGG', BHH', CFF' are all equal to the sweepback angle of the 
leading edge of the vYlng, the symbol k wllbc used also for the 
tangent of thus particular angle. 
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Since we are consldering a wing synnnetrical in planform about 
its centreline, and of symmetrical section and at zero incidence, it 
is necessary to find the drag of only one surface of one half wing and 
multiply the answer by four to get the total drag. Equation (1) may 
then be replaced by 

A& r 3 --$~dA (5) 

'A 

where A is now restricted to areas on one quarter of the wing surface. 
Accordingly the distributions AGGI, BKK', CFF' wzll be referred to as 
AGD, BHD, CF'D respectively. 

3 Evaluation of draR increments 

3.1 Drag due to synmx?trical souroe distributions 

Consider first the drag Increments due to the three symnetrlcal 
source distrlbutlons AGD, BHD and CFD (Flg.1). 

The general expressions for drag increment are gwen by substi- 
tuting equations (2) into (5), and since the wing area 

* l+a s+ - 
i 1 l-a 

where c is the root chord and a = g (Flg.l), we get 

*%I,= s 
16 c z k &d . 4 . 
7;B c Cl+4 LT.1 

cash -1 
* I-- 

&LA 
1-a* 

(&I 

A 

and 

A%2 = 
16F,zk (1-a) 1 . .-. 

XB c* @+a) Jn2_1 
(6b) 

A 

Knowmg the values of c, r: we follow the method of conical 
fields and choose our areas Ff integratxon so that they, can be ex- 
pressed in terms of a single variable, the ray parameter, g. It is 
then possible to evaluate the drag mcrements. These ml1 be obtained 
in the following sections. 

3.11 Source dlstrlbutlon AGD (5 = +A'= +7) 

The source distribution AGD affects the area of wing AGFC (Flg.l), 
in which the slope of area AGEB is +h and the slope of area BEGFC is 
-hto the free stream. These areas can be sutably divided into 

AGEB = AGE + AEB 

and. BEGFC = AGF - AGE + AFC - AEB 
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.whlch; It vi111 be seen? $311 have the= apices at A. 

Using the notation throughout that KQV(XYZ) represents the drag 
of the area XYZ due to the source distribution with apex at V, we have 

A%, (AGEB) = AC,, (AGE),+ ACD, (m) 

and 

A%, (BEGFC) = ACD, (AGF) - ACDA (AGE) + AQA (AFC) - ACQ (AEB) 

(a) Area AGEB (t; = +A = YG) 

(i) Area'AGE (z = +h = +z) 

The drag increment is g,xven by equation (6a) in which dA has 
the value 

c2 (l-$2 au 
aA = / 

2k (l-a)2 (l-c+) 

where dA 1s the elementary area dAl in Fzg.3a and b 1s defined in 
the same figure. It will be seen that when b = 0, dA refers to 
a trungular area >vlth one side lying on GF and when b=l the side 
lies on GE. Expressing the drag m its general form for the areas 
AGE and AGF we have 

Ac,= acr; 
7cB (l-2) 

the integration being performed between approprute lunits, and b 
being gxven a sutable v&.ue Sor each area. 

It will be,seen later that d more general expression can be 
obtaxned which ~111 cover the incremental drag for the area EHF 
due to the source distribution G, and. this expression is 

: j 
o=p 

A%= ssr; b- - ;I’ 1 -1 
7cB (l-*2) Jn2-1 (l-U&g 

2 cash 

6=a 

where r BD is defined. in Fig.1 as the ratio - . 
AD 

We write tks as 
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I 

a+ 
Ac, = a "' 

733 (l-a.2) 
E(r,b) 

U=CX 

where 

E(r,b) = cash-1 

J 

,2_62 dc. 
l-o-2 

Evaluating* when b = 0 and b = 1 gives 

and 
E(r,l) = 

tan-l 

2 or - 

1 

112-1 

3 (y- 1 
log 

* If in E(r,b) and all the follokng functions the substitution 
u = n sm 8 is made, the functions after a first integrataon by parts, 

all reduce to expressions of the form 
J 

ae which are dealt vnth 
A+B sz.n 9 

m Ref .5. 
-a- 



For the area AGE we integrate mth respect to d between the 

limits A?3 (u=j+uaAG (CT =l). . 

Hence (7) will. gue 

A’&, (Aa) 7 a ” m (l-a2) E&l) (9) 

1 
where E(l.,L) 2e can be evaluated from 6(b). 

‘is-, 

(ii) Area AEB (?Z= +x=+2) 

Again we we -equation (6a) but dJ. ie given by 

dA= c* do- 

Sk (l-c)* 
(dA is the elementary area dA2inFig.3a) 

Substituting we get 

2a - 

Aa, (AEB) = s 
+ 

i 0 

= 2.?Lfkd I(,n) 
m @+a) 

where 

2a 
‘i;;;. 

0 ’ 

and 1s evaluated to be 

J --- 1 co$h-x n s,m 
-._ 

(1-d 2(1- 6) Jn*-1 

2 n +l. log dl-a)- \ n-- --- , - ' 

+ 4( n2-1) I 

/-cl2 u I;;;-;1 _ \ln22, up-; 
n(l-~)-Jn2-&~ ,/Zir 

+ $og. n(l+fl -z.. :- 
n(ltu)- Jn2-&+uJ2-1 

-Y- 
(11) 



(b) Area BEGFC (2 = -1 = -T) 

(1) A reas kGF - hGE - XB ($, = -h = -7) 

Applymg equations (7) and (lo), and substitutmg the appropriate 
limits for cr, we have r . 

1 1 

AsA (AGF - AGE - AEB) = - 82 
E&O) + 

62 
XB (l-a2) a x73 (l-a?) 

E(Ll) 
23 
iE 

+ 2%’ (l-a) I(n) e 
m (lta) O- 

02) 

(ii) Area AFC (Z = -h = -T) ' 

Equation (6a) is once again used but dA is given by P 

.- 
. . ,Jq,A (AF,!) = - - 

T.B (l+a) 

the elementary area dAj in Fig.3n) i, 

3 
I(4 (13) 

0 

Smming up, the dra 
by the sum of (Y), 

increment duo to source Bistlrbution AGD is given 
lo), (12) ki (13) 

(14) 
3.12 Source distribution BHD (< = -21 = -2~) - 

There are two cases to be mnsid&ed-here,‘tiz. when the Mach 
wave from B lies ahead of E aid when it cuts EG. 

case (a): Mach wave from B not cutting EG 

The area ,to be considered, BJGFC, can be divided into BHFC and. 
BJGH. . 
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(1) Area BHFC (g = -h = 4) 

This area can be divided into BFC and BHF. 

For BFC the drag increment is the same as that for AEB due to 
the source distribution AGD except for a factor of 2 arising from the 
increase 1x1 the magnitude of E. 

2a 
2 l-a iz 

1-e. A%, (BFc) = 42 - 
7cB l+a 

1b-d (154 

IO 

For the area BHF the equation (6a) is used with dA given by 

c2 (r - y au 
(aA is the elementaryareadAq in Fig.3a). 

2k (1-a)2 (1 -o h)2 
? 

This leads to the general expression for tie drag increment 
given by equation (7), and substituting we obtain 

_ ' I1 
, I ,  Aob, (BHF) ,= 16~~ Eb-,O) 

KS (l-a?) - 2a 
l+a 

(15”) 

. 
for the area BHFC we find the drag increment by adding (15~1) and 

ilb) 

42, - 2a 1 

ACDB (BHFC) =z e I(n) l+a + 16~~ 
c 7tB (ld) 

E(r,O) 2a 06) 

0 iz 

(ii) Area BJGH (c = +h= +'t over,BJGE,and< = -h = -z over EGH) 

Since the area BJGH is outside the boundary of the source distri- 
bution, equation (6b) must be used and. dA is given by 

dA= 
02(r -t)2dU 

2k (1-a)2 (1 -c b)2 
2 

(dA is the elementary area dA4 in Fig.3a). 

(17) 

Substituting equation (17) into (6b) gives for 0~ the general 
form 

A%= aEr, 
u=p (&)2 

KB (l-a2) s 
o=a 

- 11 - 



or if we let 

then 
u<fi 

Ac,= a<i: 
KB (l-a') 

F(r,b) 
uz=a 

where r and b have appropriate ~1~s. F(r,h) has been evaluated 
for h = 0, 1 and 2 and has the fol1ovm.g values 

- either 



- log n(u+l)- 
n(d) - E:g]j 

For the area BJ$E, r, = +h = +z 

Aob, (BJGE) = AsB (BJG + BGE) 

For the area EGH, t; = -h = -cc 

A% (EGH) = AS (BGH - BGE) 

(18~) 

(1%) 

Sding UP, nab, ~a given by the sun of equatmns (16), (lpa) and (lpb) 

1 n 1 
E(rP) 2a -Fb”J) 1 

+ F(r,O) F 

iz r 1 

(20) 
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Case (b): Mach pnve from B cutting EG 

In this case A@ (BJG) = 0. Otherwise the value of Aca, is 
given by the same expressions as for case (a), except that $ is replaced 

cc 

by n. 

. 42* (1-a) . . A%, = - 
XB (lta) 

-n 
-. 2F(r,l) 1 (21) 

3.13 Source dxstrlbutlon CFD (c = +h = +7) 

Agazn there are two cases to be consdered, namely when the Mach 
cone form C lies ahead of E and ahzn it lies bzhmnd E (see Fig.4). 

Case (a) Nach cone from C lying behznd E 

The drag contribution is g:lvan by equation (6b) and the value 
of dA by (17), mth r replaced by a. 

We thus have the general formula 

I 

0=p 

ac,= BEi: 

7U3 (l-a*) 
F(r,b) 

C=U. 

(i) The Mach cone from C cuts EG . 

For the area CNGF (c = -h = -T) 

ND, (CNGF) = - "* 
XB (l-a*) f'(%y f +F(aJ) I] (22) 

For the area W (Z = ch = +%) ' 

A'$ (MG) = A@, (CE - mG) 

(23) 
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Hence for this case ACI,C = the sum of equations (22) and (23) 

n n 1 
.'.A%, = 82.2 

7TB (l-a*) 
F(a,4 1 - z?(apl) E 1 - F(&) 

a a 
I 

(24) 
1. 

(1~) The Mach cone from C cuts 3% 

For this case 

n 
AcDc = ” 

aa2 

7e (l-a21 
F(a,O) 1 

Case (b) The Mach cone from C lies ahead of E 

The relevant area CLGF may be divided into two areas CKGF and. 
CLK. 

(i) Area CKGF 

AC, 
n is rep ?a 

(CKGF) 1s theme as that given in equation (24) except that 
ted by the value of d for EC, i.e. 2a/(3a-1). 

(ii) Area CLK 
I 

4 
Now CLK=CQE +QLKE. 

(iia) Area CQE (g = -3. = -T) 

It may be noticed that the areas CQE and CLK are similar and have 
2a the same boundary values for CT (via. d = nalong CQL and c = - 3a-1 

along 

CEK), and that the area Cw 1s one quarter of the area CLK. 

n 
. 

. . A%, (QCE) = - 2'2 
"XB (1-a2)' 

F(G) 2a 

5a-1 

(ub) Area QLKE (t; = +h =: +T) 

n n 

ACI&@=) = i3'2 F(a,2) >a - 
2c2 

78 (1-a2) XB (l-a2) 
3’(G) za 

3a-1 ja-l 

n 
6c2 = 

m (l-z?) 
F(%2) 2a 

ja-l 

(26) 

(27) 
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Hence in the case when the Mach cone from C lies ahead of E, 
given by the equvalent of equation (24) plus equations (26) 

2a 2a 

q), = 4%* 
7ca (l-82) 

i - 

2F(a,2) 3-l - &F(a,1) 3a-1 

1: 1 
a a 

- 2J?(a,O) 2 + F(a,2) n 1 2a ja-l 1 
n n 2a 

. 
. . A%,= 472 

7m (l-a2) 
ZE’(a,2) - F(a,Z) 

1 2a 
- &F(a,l) y-1 

a ja-l z 

‘9 
1 

- 2F(a,O) a 
J 

(28) t 
1 , 

Sunmung up, If the Mach cone from C lies ahead of E, ACDC 
is given by (28); if the Mach cone cuts EG, DCDC is given by (24); 
and if the Mach cone cuts FG CDC 1s given by (25). 

3.2 Drag due to "one-sided" source distrlbutlons 

The source distribution EGH can be n&e up of tvm source 
dmtributmns, XX3 of strength < = -2X = -2~ and MF of strength 
< = +2x = QT. 

Two cases have to be consu%arod, namely when the Mach mne from 
E lies ahead of EG and when. the Mach cone 1x0s behind EG (see Flg.5). 
The calculations will be restricted m that the Mach cone from E 1s 
assumed not to cross the surface of tie other half wmg. A further 
lmitatlon already mentioned is that the Mach cone from A 1s always 
ahead of the wug leading edge, Thus the source dmtributlon MF 
is always of the "subsonic" leadmg edge type, ;tiile EGF may bo either 
"subsonic" or "supersonic". 

The general expressions for the drag mcrement due to this form 
of triangular sowce dlstrlbutlon arz 
(3) ad (4) intO (5). 

found by substituting equations 
The substitution leads to the followmg set 

of equations, the suffices 1, 2 and 3 representing the eoncs of 
mfluence which are defuwd in P'lg.2. 

- 16 - 



(a) “Subsonic” leadmg edge. 

2 
A%2 = 8 r; r, (l-a) kl cash-1 3-5 dA 

m (l+a) 2 y(q-1) 

2. 
Ac, = 8 E; 5 (l-a) -1 "1 '5 ,$+ 

3 7-B (l+a) nl(ul+l) 

(b) “Supersonic . ” leadmg edge. 

\ 

AcOl = 

A@,;i%&d k$ 
+ ‘C 

X- cos -1 cl-q2 

"lo-"i) I dA 

(*Ya) 

(*Vb) 

(LVc) 

. 

(304 

(3Ob) 

In the above equations, kl and nl refer to the SOUrcc? dmtri- 
butlon ~onsx3.ercd and not the wing leadug edge, and 61 1s fJlmYs a 
posltlve quantity. 

The elementary area3 (see dA6 and dA7 in Fxg.jb) arc given by 
the followmg. 1 .I 

In zones 1 and 2 (Flg.2) 

(LA = aA6 = g 2 (l-b)* aq 
sic-(g -@I $)" 

and in zone 3 (Fig.2) 

aA = aA7 = g c2 dU 
8k (g + cl)2 1 

- 17 - 
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where g = kl/k and kl 1s the tangent of the sweepback angle of the 
leadung edge of the source distribution considered and k is the 
tangent of the sweepback angle of the leading edge of the wmg. 

Let El refer to the source dlstrlbution MF, and E2 refer to 
EGF . 

3.21 Source distribution MF (< = +2h = +2z) 

(a) Area EHF (c = -A = -T) 

Putting b = 0, g = 1 m (jla) and substituting in (2%) we get 
for this ares the general expression 

= - * H1(nl) ' 
0 

l?’ 

For E-IF n1 = n and the value of AI&~ (EHF) is the same as the general .A 

value; i.e. 

AoDE (ml = - -01(n) 
m (l+a) 

where 

H1(n) = kl cash-l .;;I; da 
s 

u cdsh-1 n2-u + 61 smml 5 

41-9 
n 

-- 

- log n(l-U)- Jn2-02" U,/Z 

n(l-c)- I G~+u,pY , 

1 

0 
(32) 

(b) Area ERGS 

This area may b dinded into EGH,and ERG, the value of dA for 
each being as 1~1 (aa), mth b = 0 for EG3 and b = 2 for ERG. The 
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drag is found from equation (2%). 

(i) Area EGIT (c = -A = +) 

Acb,, (EBI) = - -& - cosh-1 n2-u du \ n( u-1) 
= - k2z-Qd H2($ 2 

70.3 (l+a) 1 

where 

H2(n) = - 

:' Jk 

co&-l n2-u cj.U 
n(c-1) 

=j& 
! , 

u cash-l n2-c 
"(o-1) 

+ ,jZT einml 5 

(34) 

+ log n(u-Ii)+, n2-c2-c,n2-1 

v n(u-1)+,/x2+u& 

(il) Area ERG (t; = +h = +%) 

(35) 

where g = 1. 

Let. 

J(n,g) = 
J 

a2 ' -1 

JizT (g-u)2 
cash n2-u & 

(a-1)n 

- 19 - 



Then 

J(n,l)=- c+g + &Jzsl) 

:. Ag,l(ERG) = % J(n,l) 
t 

(36) 

(37) 

It wlllbe notux?d that when EG is "suprsonic" the drag increment 
given by equations (34) and (37) ~~11 not hold, since equation (37) 
will not exut, and equation (34) vu11 become 

Ac+~ (EM) = - ??-kfd 112(n) 

n 

7ii (l+a) 1 
(se) 

(c) Area EFS (or EFU) (z = -h= 4). 

The drag increment is @ven by equation (27~) m which dA IS 
given by (jib). 

The general expression is 

@,,, (E’FS) = - &&ii 
nB (l+a) 

For the case cbnstiered, g‘=, 1. 

Let 

K(n,g) = , cosh-1 n2+u do. 
n(u+l) 

- 20 - 



. G 

5 

I 

ash-1 n2+, 
- n(u+l) + 

@+l) (U+l) ,/z 

1 + log n(u+1)-Sn2-&i-o,iZ --- 
11 

(39) 
(n2-1) n(o-+l)- ,ln2-c?+c,1 

:. AgEl (EFS) = - $8 K(n,l)i; (40) 

3.22 SOWce dlstrlbutxon EG2 (< = -2h = -27) 

For source dlstrlbutlon NF, 
equations (29) and (30) equals &I. 

g has the value 3, and nl XI 

Case (a) EG "subsonic" i.e. n > 2 

When EG is "subsonic" equations (29) are used for the drag 
increment, xn conjunction with the elementary areas given by (31) 

1 

Ac% 2 
(EGF) i ziil(:) 

0 

ACDE (ERG) = - $+=$ J(? , 3) 
2 1 

and 

I - a%E2 (EFS) = *I$ , i) +! 
0 

(41) 

(42) 

(43) 

. 
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where 

(q* - u 
cash-l ' . 

and 

J(;, b) =' 
F (u- 1) 

4 cc- 4) 

+ 4 

r 

($1 
2-l 

1% 
r- 

-_ 
I 
- n (a-&) + ($ - 2 - CT \ $41 \I L 

r 
-- .__ 

n (ui) + (;)*- u2+ u J-- n*-1 

Q2- 1 
-4 r lOi3 

n*-1 

(44) 

.i 

--- --. 
2 

n&T++)- (i' -u* - u n*-1 
J I 

Case (b) EG "euperson~c" i.e. n <, 2 

Equatxone (30) are used in this case for the drag increment in 
conjunction with the elementary areas given by (31) 
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A%2 @FT) 

’ 

where 

I 

1 

l-1 

J 

2 -1 20- m-+ l-(E) s3.n T;- 
-1 IT- (Y = u ccs 

1 - (p2 ; (1-c) 

_ 2 tan-l ; (l-4 -IF 

1 

(47) 

'T- 
u 1 - ($ 

(46) 

3 

and. area EGT = 

. 
. . A%,, (EGT) = ' 

= 272 . &) 
B (l+a) 

\ 

(48) 
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where 

n 

QcDE2(EFI,) = “2 
7 

l cos -1 
KB (l+a) 

o 

since g = $. 

I 

n 

. . n%E2 (EFU) =x% ~(5, $) 
F 

0 

where 

- 

N(n,g) = .d- ms-1 O+n2 

J 
I--- 

au 

l-n 2 n(1to) (u+g)2 

(49) 

(50) 

Evaluating for g = 4 gi,ives 

N(;, 4)=- 
$ (1+u) 

+2 tan-l 
4@+$), u,p 

&cn, 
Summzng up for the source distrlbutlon EGH (or EHF end EGF), 

is given by the fcllowug:- 

If EG is "subsonic", Ac, 
(37), (401, (WI, (42) and (437. 

1s mede up of the sum of (32), (34), 

If EG is "eupereonlc", A@, is ~XVV~II by the cum of (32), (38), 
(4(J), (46), (48) and (50). 
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n 

The total drag coeff~c~ant 1s found by addlng the drag x,orements, 
*thus . 

CD pressure = QLQ +AN+Aq,,+A%. 

4 Applicat2on to a particular bing 

4.1 Evaluation 

The formulae derived 111 para. were applied to a particular 
wmg ln order to deterrmns numerically the varlatlon of pressure 
drag coeffxlent wthMnch number. For the calculations a vnn 
was chosen In which the swcepljirck of the Inboard section was'60 8 and 
the parameter a = 0.4. Thus gave k = fl3, r = 0.7 and the sxepback 
angle of tic outboard maxrmumthxkness lina equal to 40.9O. 

The varxous functions appear,ng in para. are shown tabulated 
In Table I for a range of Mach numbers between M = 1.090 and M = 2, 
the lower luut bexng that Mdch number at which the Mach cones from 
X and E' passed through the pqlnts F' and F respectively (Flg.1). 
Itso happens that.at M = 1.090, for the selected value of a, the 
Mach cone from C passes behux3 E and E', and hence for the range of' 
Mach number considered it was not necessary to calculate any of the 

fun'ctlons ui whvhlch one lirmt IS TV = -..% In section 3.13 case (b). 
Ta-1 

At M = 2 the Mach cones from the apex lie Along the laadlng edge. 
Heferrsng to Table 1, It ~11 be seen that the functions are tabulated 
for n having the value 1.429,. This corresponds to the nlach number 
at which the Mach cow from B 
M = 1.572). 

passes through G arid G' (viz;. at 
The corresponding value of n for the Mach con6 from 

C to pass 'through G and G' is n = 2.5 (ivl = 1.217). 

F1g.6 shows the thooretlcal drag curve for the nxnc plotted 
against Mach number. As the Mach number dccreascs to M = 1.090 
the crag coefficient bcgms to lnrrease f'alrly rapxlly. ThlS 
lncreabc is probably due to the dtlta-like planform of thi. outboard 
portion of the vnny,, the drag of a delta tcndug Lo ufuuty as M 
tends 'to 1, according to the l~ncar theory, Botwan M = 1 and 
1vI ='l.OYO there ~111 bv intcrf~rince lxztw<,en the two halves of' the 
wing, the cl'fcct of which has not been calc~&ted. , At M = 1.323 
when the Mach llncs arc paralIc1 to EG and E'G' a kink occurs. A 
further kxnk occurs when the Mach luxs from B pass through G and G' 
at Iv1 = 1.572, although there are no strazeht llncs of d1scontquit.y 
In slope between B and the vrug tips. One aould imaglnc thercf'orc 
that there would bc a tsndcncy for a kink to occur when the Mach 
lines from C pass through G and G' (i.e. JtM = 1.217). Ilowcver 
F1g.6 shows t&t for the partxular mung selected the tendency has 
been cntlrely rupprtissed. Smce the analysts has been made only 
for the case of a subsonik liddIn&< edge, no calculations wore 
posslblc above a Mcch number of 2. As, however, zt thx Mach 
nunbcr the X2ch lanes are ~rrll<l to th c gcncral sxepbnck cxlstlng 
over tht inboard. section of.th~ wing, the drag cocfficlent is 
cxpcctid to dccrcztiu rather more rnpldly ..t h&her Mach nombcrs, 
causmg o slight kink at N = 2. 

4.2 Comparison with the drag of other wuuzs 

In Fign.TA and 7B are plotted the drag curves of several w-n&s 
of double sedge aerofoll se&on but du'ferent planforms, for comparison . . 
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vnth that of the partxular ivlng considered above. The drag of 
wz~ngs No.2 and 4 were derived from graphs given by H.Multhopp and 
M.Wmter in an unpublished paper, using a method essentially 
equivalent to that of Puckett and Stevartl,*, and the drag of w.ngs 
No. 3 and 5 were obtalned from Refs.4 and 2 respectively. The 
derivation of curve No.6 vnll be discussed later. 

Flg.i'A 1s mtende3 to show the difference vrhlch exists between 
the drag of the partxular cranked wmg evaluated ato& (wing No.1) 
and two other well known types of w.ng. Wing No.2 1s an arrowhead 
formed by replaclng the cranked tralllng edge bnd max1mu111 thxkness 
llnss by straight lines from the root to $he tips. The a~~xz.mum 
thxlmoss nveepback angle 1s 50.50, corresponding to the lines BG and 
ix&' m Fy.1. The "chevron" planform (wug No.3) has the same plan 
arca OS rmg No.1, and the same chord and sveepback angle as Its 
mnbo2.rd section * From Flg.7A it 1s seen that compared vnth curves 
2 CI@ 3 the drag coefflclent of wing 1 varxs very little between 
M = 1.090 and M = 2, the mean value being roughly 2.8~2. Wings No.2 
and 3 both have lower drag than wng No.1 at low supersonic lJach 
numbers andthls IS attrlbutrd to the fact that wrngs No.2 and 3 
have no lines of discontlnuty XI slope perpendicular to the free 
@ream. For M > 1.5 the arrowhead lvlng has baluss of CD whxh are 
conszderably higher than those for tho cranked wing, u%txating 
that the regions dowstream of CG and CG' on wmg'l have a benefzclal 
effect in reducing drag at thsse Mach numbers. It mllbe seen that 
replaclng the "ring by a chevron of roughly suhllar shape and 600 
sweepback angle does not gave very gocd agreement vylth wlnb No.1 
for the case selected, which sho%s that the tip effect on wing No.1 
1s fairly large. 

It may be concluded that ti a cranked wmg of the type examxned 
1s replaced by a roughly slmllar chevron or arrowhead wmg m order 
to find a suiple approxlmatlon to the pressure drag, very poor 
accuracy will in general be obtamed, sxnce lnsut'ficient allowance 
is made for tip effect. 

Several other wings and comblnatzons of wings have been 
exarmned in an attempt to find a moderately good sunple approxmtion 
to the pressure drag of'the cranked wng, and the best results obtained 
are shown III Flg.7l3. Wing No.4 1s an arrowhead with a maxlmum thick- 
ness sweepback angle of 50.50, and the same span and area (1.e. the 
same aspect ratlo) as Wmg No.1. Comparing ?Vlng No.4 with Wing No.2, 
both of which have the same sweepback of the ma~lmum thickness line, 
we see that the lowor sweepback of the trazllng edge of wrng No.4 
res$ts in better agreement'wlth-wng No.1 at low supersonx Mach 
numbers, than was obtained with viing No:Z. 'However poor- agreement 
1s still obtalncd around M = 1.572, presumably dus to the fact that 
not sufficient alLzwance has been made for the benefxlal effect of 
the region belund CG and CG' on Wing No.1. In an attempt to,allow 
for thu beneficial effe'ct, a delta wing (wing No.5) Tdth the 
maxi&m thickness 1~~s wept back 50.50, vas examlned,~a& the drag 
show faxly good agreement with that of rnng No.1. The agreement 
should ~prove As the parameter a (see Fig.1) decreases, exact 
agreement being obtained when a = 0, since then the two mngs are 
idehtical. It 1s to be antlclpated, however, that a delta wing 
such'as wing No.5 ~~11 give progressively wore= agreement wrth a 
cranked wing as the value of the parameter a for the latter increases 
towards unity. It will over-estimate tip effects at low supersonic 
Mach numbers, and make too much allowance for the beneficial-effects 
of the regions behlnd CG and CG' at high Mach numbers. 

It was decided, therefore, in seek a method of cstxnating, for 
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all a, the drag of cranked x%ngs m terms c&the abundant data vvhlch 
cast on the drag of "chevron" and arrowhead wings. A mthod' 
suggested 1s to separate the w~nng into the chevron formed by the 
inboard sections (i.e. AWi?CF'W in Flg.l),and the delta formed by 
the outboard sections (i.e. WFG and V'F'G' in Fig.1). The drag 
coefflclents of the chevron and the delta are then evaluated assurmng 
them to be Isolated wmgs, and the drag coefflclent of the cranked 
wmg 1s assumed to be given by a mean, weighted m the ratlo of 
their areas, such that 

0 cranked mlng = 2a CDchovron + 2 %elta l+* 

Tlus msthod IS obviously EX~CG for o = 0 and a = 1, and D'lg.7U curve 
No.6 shows that the agreement for a = 0.4 IS moderately good. 

5 Conclusions 

The theoretical supersonx pressure drag coefflcxnt of a 
particular wzng vuth a cranked line of maxunum thxkness and a 
symmetrical double wedge derofod section var‘lcs very lltzle between 
Mach numbers 1.090 and 2, the moan value being roughly 2.822. 

Since the computations were long and tedlous, an attempt :ws 
made to find combumtlons of ~lngs of known characterlstlcs whxch 
would give fairly close approxunatlons to the drag, and the follovvlng 
method appears satisfactory. The cranked wing 1s separated into .a 
"chevron" wug formed by the inboard sections, and a delta wing 
formed by the outboard sections. The drag coefficient of the chevron 
and delta are then evaluated on the assumption that they are isolated 
Mrlngs, and the drag coefflclent of the cranked wing 1s obtamed by 
taking a mean of those for the chevron and. delta wings, welghted in 
the ratlo of their plan areas to the plan ares. of the cranked mng. 

If the parameter a defued in Fly.1 1s less than 0.4, a 
rapid approxlmatlon to the drag coefflclent may be msde by replaclng 
the cranked nnng by n delta mth a double wedge aerofoll section, the 
sweepback of the mxlmum thxkness lines belng equal to that of the 
lines BG and BG' in Flg.1. 

Acknowledgement 

The author is much indebted to Miss P.M.Solway~for the help she 
h*s given in evaluating the lntegratlon functions. 

.I I ,i , / 

,  I  

* For this suggestion the author is indebted to Mr.C.H.E.Warren. 

- 27 - 



List of Symbols 

; = Eter defined in Flg.1 

b parameter defined xn Fig.3 

c root chord 

%I drag coefficient 

wDxp) increment of drag coefficient due to the mfluence of the 
source dlstrlbutxon mth apex at V on the area XYZ 

% 

& = 

k ) 

kl 
I 

M 

n = 

"i' = 

r 

S 

U 

u 

%Y 

r; 

A 

E, 

Is = 

7 

pressure coefficient 

kl/k 

tangent of the sweepbeck angle of the leadzng edge, k referring 
to the main x~nng, and kl being used for those triangular source 
dlstrlbutlons for which it 1s different from the value for the 
mam wing 

Mach number 

k 
B 

kl/B 

parameter defined in Fig.1 

wing plan area 

free stream velocity 

perturbation velocity in free stream directlon 

st;eatise and normal cartesIan co-ordinates in the plane of 
the Wang, measured relative to an orx@n at the apex of a 
triangular source distribution 

angle between free stream and wing surface at any point 

semi-angle of the double wedge section 

strength of source distrlbutlon 

thickness/chord ratlo of wug 

# perturbation velocity potential 
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