C.P. No. 771

ETRASA AUTAL MICRAFT 1512 - SHAMLAR BEDFORES

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Calculations of the Thermodynamic Properties of Nitrogen at High Pressures

Вy

J.L. Wilson and J.D. Regan

LONDON: HER MAJESTY'S STATIONERY OFFICE

1965

Price 4s 6d. net

Calculations of the Thermodynamic Properties of Nitrogen at High Pressures - By -J. L. Wilson and J. D. Regan

January, 1964

SUMMARY

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from 600°K to 2 000°K and at pressures of up to 1 000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

Introduction

Both the N.P.L. hotshot hypersonic wind tunnel and the N.P.L. 2 in. shock tunnel¹ operate at pressures above 100 atmospheres and temperatures above 600°K where the effects of bulk compressibility of nitrogen cannot be ignored but where no tables including real-gas effects are available.

Hilsenrath et al² have published tables for nitrogen for pressures up to 100 atmospheres within the range of temperatures of present interest, and Little and Neel³ give tables for pressures up to 1 000 atmospheres but only extending up to 600° K.

To cover the high temperature range at pressures up to 1 000 atmospheres, calculations of entropy, enthalpy, bulk compressibility and density are presented here as a function of pressure and temperature.

Thermodynamic Equations

The equation of state of a gas can be written in the form

PV = ZRT

where the bulk compressibility Z is given by:

 $Z_{TF} = \frac{1}{1} + \frac{B(T)}{V_{T}} + \frac{C(T)}{V^{2}} + \frac{D(T)}{V^{3}} + \cdots$ For/

Replaces N.P.L. Aero. Report No. 1089 - A.R.C.25 541 Published with the permission of the Director, National Physical Laboratory. For a diatomic molecule the assumption is made that the vibrational energy levels of the molecule are independent of Z, and that the virial coefficients are independent of the vibrational energy of the molecule. This assumption holds over the range of validity of the virial expansion.

The entropy and enthalpy of an undissociated gas⁴ are then given by:

$$S = S' + \int_{T}^{T} \frac{CP_{L}}{T} dT - R \ln \frac{T}{T'} + \left[\frac{\partial}{\partial T} \int \frac{RZT}{V} dV\right]_{V',T'}^{V,T}$$
$$H = E' + RT' + \int_{T}^{T} C_{PL} dT + R(Z-1) + \left[RT^{2} \int \frac{\partial Z}{\partial T} \cdot \frac{dV}{V}\right]_{V',T'}^{V,T}$$

where the primes refer to a reference state of the gas, and \mbox{CP}_L is the specific heat of the gas at low pressures.

Using the virial expansion for Z and neglecting terms higher than the fourth coefficient, we have:

$$\frac{S}{R} = \frac{S'}{R} + \int_{T'}^{T} \frac{C_{F_{L}}}{RT} dT - c_{R} \frac{P}{P'} + c_{R} Z - \left\{ \frac{B}{V} + \frac{C}{2V^{2}} + \frac{D}{3V^{3}} \right\}$$
$$- T \left\{ \frac{1}{V} \frac{dB}{dT} + \frac{1}{2V^{2}} \frac{dC}{dT} + \frac{1}{3V^{3}} \frac{dD}{dT} \right\}$$
$$\frac{H}{RT_{0}} = \frac{E'}{RT_{0}} + \frac{T'}{T_{0}} + \frac{1}{T_{0}} \int_{T'}^{T} \frac{C_{F_{L}}}{R} dT + (Z-1) \frac{T}{T_{0}}$$
$$- \frac{T^{2}}{T_{0}} \left\{ \frac{1}{V} \frac{dB}{dT} + \frac{1}{2V^{2}} \frac{dC}{dT} + \frac{1}{3V^{3}} \frac{dD}{dT} \right\}$$

where it is now assumed that the primed reference state is at a low pressure so that in this state Z = 1 and dZ/dT can be neglected. T₀ = 273.16°K.

We may put
$$\frac{S_{L}}{R} = \frac{S'}{R} + \int_{T'}^{T} \frac{C_{P_{L}}}{RT} dT$$

and
$$\frac{H_{L}}{RT_{o}} = \frac{E'}{RT_{o}} + \frac{T'}{T_{o}} + \frac{1}{T_{o}} \int_{T}^{T} \frac{CP_{L}}{R} dT$$

where/

- 2 -

_ _

where now S_L/R and H_L/RT_o are the values of entropy and enthalpy at low pressures and in these calculations have been taken from Hilsenrath et al.

Virial Coefficients

The virial coefficients chosen are those of Amdur and Mason⁵. These are calculated from an intermolecular potential function⁶ found by Mason and Rice⁷ from a fit to experimental data.

This potential function is basically an exponential-six function which at large radii is fitted to the crystal lattice spacing, PVT data and transport properties, all at low and moderate temperatures, and at small radii is fitted to molecular scattering experiments.

For a monatomic gas it is found that a spherically symmetric potential function in this form is an extremely good fit to the experimental data. Nitrogen, a diatomic gas, is not spherically symmetric and this exhibits itself by requiring two potential functions to fit the experimental data: one for the transport properties, and one for the crystalline and PVT data⁷.

In addition, the virial coefficients derived from this potential function by Amdur and Mason are calculated for a spherically symmetric molecule. The lack of spherical symmetry has little effect on the second virial coefficient B, but has an increasing effect on higher coefficients, since the angle of scattering of multiple collisions depends on the shape of the molecule⁸.

Hence the higher virial coefficients which are used here, although fitting the available PVT data, are not necessarily correct at high temperatures, but since Z approaches unity in this region it is presumed that this will not introduce appreciable errors.

Below 1 000°K the second virial coefficient is tabulated by Mason and Rice⁷, while the third and fourth were found by extrapolation of the data of Amdur and Mason⁵.

Calculations

The calculations were carried out using V as independent parameter rather than P, in which the results are presented, since the convergence of the virial expansion in V is much better. Z = 1.5was selected as the limit to which calculations should proceed since at greater values of Z the term containing D, which for reasons given in the previous section may be inaccurate, becomes appreciable. Also the higher terms in the virial expansion may not necessarily be neglected.

The values of S_L/R and H_L/RT_o were taken from Hilsenrath et al².

The calculated values are presented in Table 1 non-dimensionalised with respect to STP conditions and the appropriate constants to convert them to dimensional form are in Table 2.

Appended/

Appended to this report is a Mollier diagram drawn from this data, the data of Hilsenrath at pressures below 100 atmospheres, and Little and Neel below 600° K. This chart shows the agreement of the three tables and is useful for approximate flow calculations.

Accuracy

No attempt has been made to search for experimental information which might be available in the 600°K to 2 000°K range and which would be relevant to these calculations.

However, the recent work of Saurel⁹ shows excellent agreement with Hilsenrath et al in the range of temperatures up to 1 000°K and confirms the values of the virial coefficients chosen.

The agreement with Hilsenrath et al at 100 atmospheres is necessarily good since their data was used in the calculations. The fit to Little and Neel at high pressures is close.

Since these calculations were commenced a report by C. E. Smith¹⁰ has been received, which calculates the properties of nitrogen from $1 000^{\circ}$ K upwards in the range of pressures considered here. He takes the internal energy to be that of a set of harmonic oscillators and his agreement with Hilsenrath et al is to within $1_{/^3}$ at low pressures. These calculations also agree with those presented here to within about $1_{/^3}$.

The range of temperatures and pressures considered here are well outside those at which dissociation occurs.

At values of Z greater than 1.3, the percentage accuracy of Table 1 is in doubt because of the truncation of the virial expansion at the fourth term, due to a lack of theoretical and experimental values of higher coefficients. As a rough estimate, from an examination of the terms in the virial expansion, an accuracy of 5% is claimed where Z = 1.5, reducing to 1/2 where Z = 1.3.

For Z less than 1.3, an accuracy of better than $1\frac{1}{2}$ is not claimed because of the uncertainty in the value of even the second and third coefficients.

Acknowledgements

The authors acknowledge with thanks the assistance of Miss B. Redstone who performed most of the calculations presented here, and Mr. K. H. Wilson and Miss F. Worsley for the remainder.

References/

References

Author(s) Title, etc. No. The effects of high pressure on the 1 L. Davies, flow in the reflected shock tunnel. L. Pennelegion, A.R.C. C.P.730. P. Gough September, 1963. and K. Dolman Tables of Thermodynamic and Transport 2 J. Hilsenrath, Properties. H. J. Hoge, Pergamon Press. C. W. Beckett, J. F. Ması, 1960. W. S. Benedict, Also in: Tables of Thermal Properties R. L. Nuttall, L. Fano, of Gases. N.B.S. Circular 564, 1960. Y. S. Touloukian and H. W. Woolley and: Thermodynamic properties of gaseous H. W. Woolley nitrogen. N.A.C.A. IN 3271, March, 1956 W. J. Little Tables of the thermodynamic properties 3 of nitrogen from 100 to 1 500°K. and AEDC-TDR-62-170, September, 1962. C. A. Neel Thermodynamics and properties of 4 F. D. Rossini (Editor) matter. Princeton University Press, 1955. Properties of gases at very high 5 I. Amdur and temperatures. Phys. of Fluids, Vol.1, No.5, E. A. Mason September, 1958, p. 370. 6 Second virial coefficients of gases W. E. Rico obeying a modified Buckingham (Exp-Six) and J. O. Hırschfelder potential. J. of Chem. Phys., Vol. 22, No. 2, February, 1954, p.187. The intermolecular potentials of some 7 E. A. Mason and simple nonpolar molecules. J. of Chem. Phys., Vol.22, No.5, W. E. Rice May, 1954, p.843. 8 J. O. Hirschfelder, Molecular theory of gases and liquids. C. F. Curtiss Wiley, 1954. Chapter 3. and R. B. Bird

9/

<u>No.</u>	<u>Author(s)</u>	<u>Title, etc.</u>
9	J. Saurel	Appareillage pour la Détermination des Équations d'État des Gaz Comprimés aux Températures Élevées. Application a l'Étude de l'Azote Jusqu'a 1 000 Kg/cm ² et 1 000°C. J. des Researches du CNRS, No.42, 1958.
10	C. Edward Smith, Jr.	Thermodynamic properties of nitrogen. Lockheed Missiles and Space Corp. 6-90-62-111, 1962.

Table 1/

- 7 -

Table 1

Properties of Nitrogen

$T = 600^{\circ} K$					
p p o	$\left \frac{\rho}{\rho_{0}} \right $	Z	H RT _o	S R	
1 00 200 300 400 500 600 700 800 900 1 000	43.505 82.930 118.44 150.43 179.31 205.51 229.49 251.58 271.89 290.92	1 • 046 1 • 098 1 • 1 53 1 • 211 1 • 270 1 • 329 1 • 389 1 • 448 1 • 507 1 • 565	7 • 737 7 • 764 7 • 810 7 • 871 7 • 943 8 • 024 8 • 111 8 • 203 8 • 299 8 • 395	20.851 20.119 19.682 19.368 19.122 18.921 18.751 18.604 18.473 18.356	
		$T = 700^{\circ}K$			
100 200 300 400 500 600 700 800 900 1000	37.365 71.529 102.61 131.27 157.47 181.53 203.63 224.40 243.60 261.47	1 • 044 1 • 091 1 • 141 1 • 189 1 • 239 1 • 290 1 • 341 1 • 391 1 • 442 1 • 492	9.111 9.164 9.232 9.305 9.388 9.478 9.575 9.672 9.773 9.877	21 • 430 20 • 713 20 • 289 19 • 984 19 • 748 19 • 552 19 • 383 19 • 242 19 • 114 19 • 000	
		T = 800°K			
100 200 300 400 500 600 700 800 900 1000	32 • 782 62 • 973 90 • 795 116 • 49 140 • 24 162 • 31 182 • 95 202 • 14 220 • 16 237 • 07	1 • 042 1 • 084 1 • 1 28 1 • 1 72 1 • 217 1 • 262 1 • 306 1 • 351 1 • 396 1 • 440	10.502 10.573 10.652 10.740 10.833 10.931 11.032 11.137 11.244 11.353	21 • 939 21 • 228 20 • 808 20 • 508 20 • 272 20 • 080 19 • 918 19 • 776 19 • 650 19 • 537	
$T = 900^{\circ}K$					
100 200 300 400 500 600 700 800 900 1000	29.218 56.299 81.436 104.83 126.64 147.04 166.19 184.12 201.09 217.15	1 •039 1 •078 1 •148 1 •158 1 •198 1 •238 1 •278 1 •278 1 •319 1 •358 1 •398	11 •917 12 •001 12 •092 12 •187 12 •288 12 •392 12 •499 12 •609 12 •720 12 •832	22 • 394 21 • 688 21 • 271 20 • 973 20 • 741 20 • 521 20 • 390 20 • 248 20 • 1 24 20 • 014	

Table 1 cc	ontd.
------------	-------

$T = 1000^{\circ} K$						
P P o	$\frac{\rho}{\rho_0}$	Z	H RT _o	S R		
1 00 200 300 400 500 600 700 800 900 1000	26 • 363 50 • 935 73 • 887 95 • 369 115 • 52 134 • 47 152 • 37 169 • 24 185 • 24 200 • 44	1 •036 1 •073 1 •109 1 •146 1 •182 1 •219 1 •255 1 •291 1 •327 1 •363	13•357 13•451 13•551 13•654 13•761 13•871 13•982 14•088 14•211 14•327	22 •809 22 •106 21 • 691 21 • 395 21 • 165 20 • 976 20 • 81 7 20 • 675 20 • 554 20 • 444		
		T = 1100°K				
100 200 300 400 500 600 700 800 900 1000	24.012 46.517 67.633 87.499 106.23 123.93 140.70 156.61 171.72 186.14	1 • 034 1 • 068 1 • 102 1 • 135 1 • 169 1 • 202 1 • 235 1 • 269 1 • 302 1 • 334	14.820 14.924 15.032 15.142 15.255 15.370 15.486 15.604 15.724 15.843	23.190 22.489 22.076 21.782 21.553 21.365 21.207 21.069 20.946 20.837		
$T = 1200^{\circ}K$						
1 00 200 300 400 500 600 700 800 900 1 000	22•066 42•822 62•394 80•887 98•390 114•99 130•81 145•86 160•21 173•93	1 • 032 1 • 063 1 • 095 1 • 126 1 • 157 1 • 188 1 • 218 1 • 249 1 • 279 1 • 309	16.304 16.416 16.530 16.646 16.765 16.884 17.004 17.125 17.240 17.371	23 • 542 22 • 843 22 • 432 22 • 140 21 • 91 2 21 • 725 21 • 568 21 • 431 21 • 308 21 • 201		
$T = 1300^{\circ} K$						
100 200 300 400 500 600 700 800 900 1000	20.408 39.681 57.922 75.223 91.662 107.32 122.24 136.50 150.16 163.25	1.030 1.059 1.088 1.117 1.146 1.175 1.203 1.231 1.259 1.287	17.806 17.924 18.044 18.165 18.287 18.411 18.535 18.660 18.785 18.9.0	23.871 23.173 22.763 22.472 22.245 22.059 21.902 21.765 21.645 21.538		

-9-

Table	1	contd.

$T = 1400^{\circ}K$						
P P P	$\frac{\rho}{\rho_0}$	Z	H RT _o	S R		
1 00 200 300 400 500 600 700 800 900 1000	18.986 36.976 54.058 70.319 85.815 100.61 114.77 128.34 141.36 153.86	1.028 1.055 1.083 1.110 1.137 1.164 1.190 1.216 1.242 1.268	19•323 19•447 19•571 19•697 19•823 19•950 20•077 20•204 20•332 20•459	24 •1 78 23 • 482 23 • 072 22 • 782 22 • 556 22 • 371 22 • 214 22 • 078 21 • 959 21 • 851		
]	C = 1500°K				
100 200 300 400 500 600 700 800 900 1000	17•746 34•616 50•689 66•023 80•685 94•720 108•18 121•11 133•55 145•52	$1 \cdot 026$ $1 \cdot 052$ $1 \cdot 078$ $1 \cdot 103$ $1 \cdot 129$ $1 \cdot 154$ $1 \cdot 178$ $1 \cdot 203$ $1 \cdot 227$ $1 \cdot 251$	20.856 20.984 21.112 21.243 21.370 21.500 21.630 21.759 21.889 22.019	24 • 467 23 • 771 23 • 363 23 • 073 22 • 847 22 • 663 22 • 507 22 • 371 22 • 252 22 • 145		
	$T = 1600^{\circ}K$					
100 200 300 400 500 600 700 800 900 1000	16.661 32.545 47.715 62.230 76.144 89.495 102.32 114.68 126.58 138.06	1.025 1.049 1.073 1.097 1.121 1.145 1.168 1.191 1.214 1.237	22.401 22.532 22.664 22.796 22.928 23.060 23.192 23.324 23.455 23.587	24.739 24.044 23.636 23.347 23.122 22.938 22.782 22.647 22.528 22.421		
$T = 1700^{\circ} K$						
100 200 300 400 500 600 700 800 900 1000	15.701 30.708 45.076 58.858 72.090 84.820 97.072 108.90 120.31 131.35	1.023 1.047 1.069 1.092 1.114 1.137 1.159 1.180 1.202 1.223	23.957 24.091 24.226 24.360 24.495 24.629 24.764 24.897 25.031 25.162	24.997 24.302 23.895 23.606 23.381 23.197 23.041 22.907 22.788 22.682		

- 10 -

Table 1 contd.

T = 1800°K					
P P P o	$\frac{\rho}{\rho_0}$	Z	H RT _o	S R	
100 200 300 400 500 600 700 800 900 1000	14 · 846 29 · 070 42 · 720 55 · 836 68 · 456 80 · 621 92 · 293 103 · 69 114 · 66 125 · 26	1 • 022 1 • 044 1 • 066 1 • 087 1 • 1 08 1 • 1 29 1 • 1 51 1 • 1 51 1 • 1 91 1 • 21 2	25 • 523 25 • 660 25 • 797 25 • 933 26 • 070 26 • 206 26 • 347 26 • 477 26 • 612 26 • 747	25•241 24•547 24•140 23•851 23•627 23•444 23•283 23•154 23•036 22•930	
		T = 1900°K			
100 200 300 400 500 600 700 800 900 1000	14•080 27•598 40•597 53•113 65•177 76•824 88•079 98•971 109•52 119•74	1 • 021 1 • 042 1 • 062 1 • 083 1 • 1 03 1 • 1 23 1 • 1 43 1 • 1 62 1 • 1 81 1 • 201	27.097 27.237 27.376 27.514 27.652 27.790 27.927 28.064 28.200 28.336	25•474 24•780 24•373 24•085 23•861 23•678 23•523 23•389 23•270 23•164	
$T = 2000^{\circ}K$					
100 200 300 400 500 600 700 800 900 1000	13.390 26.269 38.647 50.641 62.201 73.374 84.192 94.666 104.83 114.70	1.020 1.040 1.060 1.079 1.098 1.117 1.136 1.154 1.154 1.173 1.191	28.679 28.821 28.968 29.103 29.242 29.381 29.519 29.657 29.794 29.931	25.696 25.002 24.595 24.307 24.084 23.901 23.746 23.612 23.494 23.388	

Table 2/

- 11 -

Table 2

Values of the Dimensional Constants

 $P_{o} = 1.01371 \times 10^{5} \text{ Newt.m}^{-2} (= 1 \text{ atmosphere})$ $P_{o} = 1.25046 \text{ Kg.m}^{-3} (= 1 \text{ amagat})$ $T_{o} = 273.16 \text{ °K}$ $R = 296.774 \text{ joules Kg}^{-1} \text{ °K}^{-1}$ $RT_{o} = 81.0669 \times 10^{3} \text{ joules Kg}^{-1}$

ES DS.

3(

A.R.C. C.P. No. 771 January, 1964 Wilson, J. L. and Regan, J. D.

CALCULATIONS OF THE THERMODYNAMIC PROPERTIES OF NITROGEN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from 600°K to 2 000°K and at pressures of up to 1 000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al. A.R.C. C.P. No. 771 January, 1964 Wilson, J. L. and Regan, J. D.

CALCULATIONS OF THE THERMODYNAMIC PROPERTIES OF NITROGEN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from 600°K to 2 000°K and at pressures of up to 1 000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

A.R.C. C.P. No. 771 January, 1964 Wilson, J. L. and Regan, J. D.

CALCULATIONS OF THE THERMODYNAMIC PROPERTIES OF NITROGEN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from 600°K to 2 000°K and at pressures of up to 1 000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

C.P. No. 771

© Crown copyright 1965 Printed and published by HER MAJESTY'S STATIONERY OFFICE To be purchased from York House, Kingsway, London w c 2 423 Oxford Street, London w 1 13A Castle Street, London w 1 13A Castle Street, Edinburgh 2 109 St Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

