

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Calculations of the Thermodynamic Properties of Nitrogen at High Pressures

By
J.L. Wilson and J.D. Regan

Calculations of the Thermodynamic Properties of Nitrogen at Hagh Pressures
 - By -
 J. L. Wilson and J. D. Regan

\qquad

January, 1964

SUMMARY

The thermodynamic properties of nitrogen have been calculated In the range of temperatures from $600^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$ and at pressures of up to 1000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

Introduction

Both the N.P.L. hotshot hypersonic wind tunnel and the N.P.L. 2 in. shock tunnel 1 operate at pressures above 100 atmospheres and temperatures above $600^{\circ} \mathrm{K}$ where the effects of bulk compressibilaty of natrogen cannot be ignored but where no tables including real-gas effects are available.

Hilsenrath et al ${ }^{2}$ have published tables for nitrogen for pressures up to 100 atmospheres within the range of temperatures of present interest, and Little and Neel ${ }^{3}$ give tables for pressures up to 1000 atmospheres but only extending up to $600^{\circ} \mathrm{K}$.

To cover the high temperature range at pressures up to 1000 atmospheres, calculations of entropy, enthalpy, bulk compressibility and density are presented here as a function of pressure and temperature.

Thermodynamic Equations

The equation of state of a gas can be written in the form

$$
P V=Z R T
$$

where the bulk compressibility Z is given by:

$$
Z F=-1+\frac{B(T)}{V}+\frac{C(T)}{V^{2}}+\frac{D(T)}{V^{3}}+\cdots \quad \text {. For/ }
$$

Replaces N.P.L. Aero. Report No. 1089 - A.R.C. 25541
Published with the permission of the Director, National Physical Laboratory.

For a diatomic molecule the assumption is made that the vibrational energy levels of the molecule are independent of Z, and that the virial coefficients are independent of the vibrational energy of the molecule. This assumption holds over the range of validity of the varial expansion.

The entropy and enthalpy of an undissociated gas ${ }^{4}$ are then given by:

$$
\begin{aligned}
& S=S^{\prime}+\int_{T^{\prime}}^{T} \frac{C_{P_{I}}}{\eta^{\prime}} d T-R \ln \frac{T}{T^{\prime}}+\left[\left.\frac{\partial}{\partial T}\right|_{V} ^{R Z T} d V\right]_{V^{\prime}, T^{\prime}}^{V, T} \\
& H=E^{\prime}+R T^{\prime}+\int_{T^{\prime}}^{q^{\prime}} C_{P_{I}} d T+R(Z-1)+\left[R T^{2} \int_{\partial T}^{\partial Z} \frac{d V}{V}\right]_{V^{\prime}, T^{\prime}}^{V, Y^{\prime}}
\end{aligned}
$$

where the primes refer to a reference state of the gas, and CP_{L}, is the specific heat of the gas at low pressures.

Using the virial expansion for Z and neglectang terms higher than the fourth cocfficient, we have:

$$
\begin{aligned}
& \frac{S}{R}=\frac{S^{\prime}}{R}+\int_{Y^{\prime}}^{T} \frac{C E_{I}}{R I} a T-\ln \frac{P}{P^{\prime}}+\ln Z-\left\{\frac{B}{V}+\frac{C}{2 V^{2}}+\frac{D}{3 V^{3}}\right\} \\
& -I\left\{\begin{array}{l}
1 \frac{d B}{V} \frac{1}{d T}+\frac{d C}{2 V^{2}} \frac{1}{d T}+\frac{1}{3 V^{3}} \frac{d D}{d T}
\end{array}\right\} \\
& \frac{H}{R T_{0}}=\frac{E^{\prime}}{R T_{0}}+\frac{T^{\prime}}{T_{0}}+\frac{1}{T_{0}} \int_{T^{\prime}}^{T} \frac{C_{P}}{R} d T+(z-1) \frac{T}{T_{0}} \\
& -\frac{T^{2}}{T_{o}}\left\{\frac{1 d B}{V} \frac{d T}{d T} \frac{1}{2 V^{2}} \frac{d C}{d T}+\frac{1}{3 V^{3}} \frac{d D}{d T}\right\}
\end{aligned}
$$

where it is now assumed that the primed reference state is at a low pressure so that in this state $Z=1$ and $d Z / d I$ can be neglected. $T_{0}=273 \cdot 16^{\circ} \mathrm{K}$.

We may put

$$
\frac{S_{L}}{R}=\frac{S^{\prime}}{R}+\int_{T^{\prime}}^{T} \frac{C_{P_{L}}}{R T} d T
$$

and

$$
\frac{H_{L}}{R T_{0}}=\frac{T^{\prime}}{R T_{0}}+\frac{T^{\prime \prime}}{T_{0}}+\frac{1}{T_{0}^{\prime}} \int_{T^{\prime}}^{T} \frac{C P_{I}}{R} d T
$$

where now S_{L} / R and $H_{T} / R T_{0}$ are the values of entropy and enthalpy at low pressures and in these calculations have been taken from Halsenrath et al.

Virial Coefficients

The virial coefficients chosen are those of Amdur and Mason ${ }^{5}$. These are calculated from an antermolecular potential function ${ }^{6}$ found by Mason and Ricc 7 from a fit to expermental data.

This potential function is basically an exponential-six function which at large radil is fitted to the crystal lattice spacing, PVT data and transport properties, all at low and moderate temperatures, and at small radil is fintted to molecular scattering experiments.

For a monatomic gas it is found that a spherically symmetric potential function in this form is an extremely good fit to the experimental data. Nitrogen, a diatomic gas, is not spherically symmetric and this exhibits itself by requaring two potential functions to fit the experımental data: one for the transport properties, and one for the crystalline and PVI data?

In addition, the varial coefficzents derived from this potential function by Amdur and Mason are calculated for a spherically symmetric molecule. The lick of spherical symmetry has little effect on the second virial coefficient B, but has an increasing effect on higher coefficients, since the angle of scattering of multiple collisions depends on the shape of the molecule ${ }^{8}$.

Hence the higher virial coofficients which are used here, although fitting the available PVT data, are not necessarily correct at high temperatures, but since Z approaches unity in this region it is presumed that this will not introducc appreciable errors.

Below $1000^{\circ} \mathrm{K}$ the second varial coefficient is tabulated by Mason and Rice 7 , while the third and fourth were found by extrapolation of the data of Amdur and Mason ${ }^{5}$.

Calculations

The calculations were carried out using V as independent parameter rather than P, in which the results are presented, since the convergence of the virial expansion in V is much better. $Z=1.5$ was selected as the limit to which calculations should proceed since at greater values of Z the term containing D, which for reasons given in the previous section may be inaccurate, becomes appreciable. Also the higher terms in the virial expansion may not necessarily be neglected.

The values of S_{I} / R and $H_{L} / R T_{0}$ were taken from Hilsenrath et al ${ }^{2}$.

The calculated values are presented in Table 1 non-dimensionalised with respect to STP conditions and the appropriate constants to convert them to dimensional form are in Table 2.

Appended to this report is a Mollier diagram drawn from this data, the data of Hilsenrath at pressures below 100 atmospheres, and Little and Neel below $600^{\circ} \mathrm{K}$. This chart shows the agreement of the three tables and as useful for approximate flow calculations.

Accuracy

No attempt has been made to search for experimental information which might be available in the $600^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$ range and which would be relevant to these calculations.

However, the recent work of Saurel ${ }^{9}$ shows excellent agreement with Hilsenrath et al in the range of temperatures up to $1000^{\circ} \mathrm{K}$ and confirms the values of the virial coefficients chosen.

The agreement with Hilsenrath et al at 100 atmospheres is necessarily good since their data was used in the calculations. The fit to Little and Neel at high pressures is close.

Since these calculations were commenced a report by C. E. Smith ${ }^{10}$ has been recelved, which calculates the properties of nitrogen from $1000^{\circ} \mathrm{K}$ upwards in the range of pressures considered here. He takes the internal energy to be that of a set of hermonic oscillators and his agreement with Hilsenrath et al is to wathin 1,0 at low pressures. These calculations also agree with those presented here to within about $1,0$.

The range of temperatures and pressures considered here are well outside those at which dissociation occurs.

At valucs of Z greater than $1 \cdot 3$, the percentage accuracy of Table 1 is in doubt because of the truncation of the virial expansion at the fourth term, due to a lack of theoretical and experamental values of higher coefficients. As a rough estimate, from an examination of the terms in the varial expansion, an accuracy of 5% is claimed where $Z=1.5$, reducing to $1 ;$ where $\mathrm{Z}=1 \cdot 3$.

For Z less than 1.3, an accuracy of better than 1% is not clamed because of the uncertainty in the value of even the second and third coefficients.

Acknowledgements
The authors acknowledge with thanks the assistance of Miss B. Redstone who performed most of the calculations presented here, and Mr. K. H. Wilson and Miss F. Worsley for the remander.

No. Author(s)
1 L. Davies,
L. Pennelegzon, P. Gough and
K. Dolman

2 J. Hzlsenrath,
H. J. Hoge,
C. W. Beckett,
J. F. Masi,
W. S. Benedict,
R. L. Nuttall,
L. Fano,
Y. S. Touloukian and
H. W. Woolley
H. W. Woolley

3 W. J. Lattle and
C. A. Neel

4 F. D. Rossini
(Edıtor)

5 I. Amdur
and
E. A. Mason

6 W. E. Rico
and
J. O. Hirschfelder

7 E. A. Mason
and
W. E. Rice

8 J. O. Hırschfelder,
C. F. Curtiss
and
R. B. Bird

Title, etc.
The effects of high pressure on the flow in the reflected shock tunnel. A.R.C. C.P. 730. September, 1963.

Tables of Thermodynamic and Transport Properties. Fergamon Press. 1960.

Also in: Tables of Thermal Properties of Gases. N. B. S. Carcular 564, 1960.
and:
Thermodynamac properties of gaseous natrogen. N.A.C.A. IN 3271, March, 1956

Tables of the thermodynamic properties of nitrogen from 100 to $1500^{\circ} \mathrm{K}$. AEDC-TDR-62-170, September, 1962.

Thermodynamics and properties of matter. Princeton University Press, 1955.

Properties of gases at very high temperatures.
Phys. of Fluids, Vol.1, No.5, September, 1558, p. 370.

Second virial coefficients of gases obeyıng a modificd Buckingham (Exp-Six) potential.
J. of Chem. Phys., Vol. 22, No.2, February, 1954, p. 187.

The intermolecular potentials of some simple nonpolar molecules.
J. of Chem. Phys., Vol. 22, No.5, May, 1954, p. 843.

Molecular theory of gases and liquids. WIley, 1954. Chapter 3.

No. Author(s)
9 J. Saurel

10 C. Edward Smith, Jr.

Title, etc.

Appareillage pour la Détermination des Equations d'Etat des Gaz Comprimés aux Températures Élevées. Application a 1'Etude de l'Azote Jusqu'a $1000 \mathrm{Kg} / \mathrm{cm}^{2}$ et $1000^{\circ} \mathrm{C}$. J. des Researches du CNRS, No. 42, 1958.

Thermodynamic properties of nitrogen. Lockheed Missiles and Space Corp. 6-90-62-111, 1962.

Table 1/

Table 1
Properties of Nitrogen

Table 1 contd.

$T=1000^{\circ} \mathrm{K}$				
$\stackrel{P}{P}^{0}$	$\frac{\rho}{\rho_{0}}$	2	$\frac{\mathrm{H}}{\mathrm{RT}}$	$\frac{S}{\text { R }}$
100	26.363	1.036	13.357	22.809
200	50.935	1.073	13.451	22.106
300	73.887	$1 \cdot 109$	13.551	21.691
400	$95 \cdot 369$	$1 \cdot 146$	13.654	21.395
500	115.52	$1 \cdot 182$	13.761	21.165
600	$134 \cdot 47$	1.219	13.871	20.976
700	$152 \cdot 37$	$1 \cdot 255$	13.982	20.817
800	169.24	1.291	14.088	20.675
900	185.24	1.327	$14 \cdot 211$	20.554
	200. 44	1.363	$14 \cdot 327$	20.444
$T=1100^{\circ} \mathrm{K}$				
100	24.012	1.034	14.820	23.190
200	46.517	1.068	14.924	22.489
300	67.633	1.102	15.032	22.076
400	87.499	1.135	15.142	21.782
500	106.23	$1 \cdot 169$	15.255	21.553
600	123.93	1.202	15.370	21.365
700	140.70	1.235	15.486	21.207
800	156.61	1.269	15.504	21.069
900	171.72	1.302	15.724	20.946
1000	$186 \cdot 14$	$1 \cdot 334$	$15 \cdot 843$	20.837
$T=1200^{\circ} \mathrm{K}$				
100	22.066	1.032	$16 \cdot 304$	$23 \cdot 542$
200	$42 \cdot 822$	1.063	16.416	$22 \cdot 843$
300	$62 \cdot 394$	1.095	16.530	22.432
400	80.887	$1 \cdot 126$	16.646	$22 \cdot 140$
500	98.390	$1 \cdot 157$	16.765	$21 \cdot 912$
600	114.99	$1 \cdot 188$	16.884	21.725
700	$130 \cdot 81$	1.218	17.004	21.568
800	$145 \cdot 86$	$1 \cdot 249$	$17 \cdot 125$	21.431
900	$160 \cdot 21$	1.279	$17 \cdot 240$	$21 \cdot 308$
1000	173.93	$1 \cdot 309$	$17 \cdot 371$	$21 \cdot 201$
$T=13000 \mathrm{~K}$				
			17.806	23.871
200	39.681	1.059	17.924	23.173
300	57.922	1.088	18.044	22.763
400	75. 223	1.117	18.165	22.472
500	91.662	$1 \cdot 146$	18.287	22. 245
600	$107 \cdot 32$	$1 \cdot 175$	18.411	22. 059
700	122.24	1.203	18.535	21.902
800	136.50	1.231	18.660	21. 765
900	150.16	1.259	$18 \cdot 785$	21.645
1000	163.25	1.287	18.9,0	21.538

T'able 1 contd.

$T=1400^{\circ} \mathrm{K}$				
$\frac{\mathrm{P}}{\mathrm{P}_{0}}$	$\frac{\rho}{\rho_{0}}$	2	$\frac{\mathrm{H}}{\mathrm{RT}}$	$\frac{S}{R}$
100	18.986	1.028	19.323	24.178
200	36.976	1.055	19.447	23.482
300	54.058	1.083	19.571	23.072
400	70.319	$1 \cdot 110$	19.697	22.782
500	85.815	$1 \cdot 137$	19.823	22.556
600	$100 \cdot 61$	$1 \cdot 164$	19.950	22.371
700	$114 \cdot 77$	$1 \cdot 190$	20.077	$22 \cdot 214$
800	$128 \cdot 34$	$1 \cdot 216$	$20 \cdot 204$	22.078
900	141.36	$1 \cdot 242$	20.332	21.959
1000	$153 \cdot 86$	$1 \cdot 268$	20.459	$21 \cdot 851$
$T=1500{ }^{\circ} \mathrm{K}$				
100	$17 \cdot 746$	1.026	20.856	24.467
200	$34 \cdot 616$	1.052	$20 \cdot 984$	23.771
300	50.689	1.078	$21 \cdot 112$	$23 \cdot 363$
400	66.023	1.103	$21 \cdot 243$	23.073
500	80.685	$1 \cdot 129$	$21 \cdot 370$	22.847
600	$94 \cdot 720$	$1 \cdot 154$	21.500	22.663
700	$108 \cdot 18$	$1 \cdot 178$	21.630	$22 \cdot 507$
800	$121 \cdot 11$	$1 \cdot 203$	21.759	$22 \cdot 371$
900	$133 \cdot 55$	$1 \cdot 227$	$21 \cdot 889$	$22 \cdot 252$
1000	$145 \cdot 52$	$1 \cdot 251$	$22 \cdot 019$	$22 \cdot 145$
$T=1600^{\circ} \mathrm{K}$				
100	16.661	1.025	22.401	24.739
200	32.545	1.049	22.532	$24 \cdot 044$
300	$47 \cdot 715$	1.073	$22 \cdot 664$	$23 \cdot 636$
400	$62 \cdot 230$	1.097	22.796	$23 \cdot 347$
500	76.144	$1 \cdot 121$	$22 \cdot 928$	$23 \cdot 122$
600	89.495	$1 \cdot 145$	23.060	$22 \cdot 938$
700	$102 \cdot 32$	$1 \cdot 168$	$23 \cdot 192$	$22 \cdot 782$
800	114.68	$1 \cdot 191$	$23 \cdot 324$	$22 \cdot 647$
900	$126 \cdot 58$	$1 \cdot 214$	$23 \cdot 455$	$22 \cdot 528$
1000	138.06	$1 \cdot 237$	23.587	$22 \cdot 421$
$T=1700^{\circ} \mathrm{K}$				
100	15.701	1.023	23.957	24.997
200	30.708	1.047	24.091	24.302
300	45.076	1.069	24.226	23.895
400	58.858	1.092	$24 \cdot 360$	$23 \cdot 606$
500	$72 \cdot 090$	$1 \cdot 114$	$24 \cdot 495$	$23 \cdot 381$
600	$84 \cdot 820$	$1 \cdot 137$	$24 \cdot 629$	$23 \cdot 197$
700	$97 \cdot 072$	$1 \cdot 159$	$24 \cdot 764$	$23 \cdot 041$
800	108.90	$1 \cdot 180$	$24 \cdot 897$	22.907
900	$120 \cdot 31$	$1 \cdot 202$	25.031	22.788
1000	$131 \cdot 35$	$1 \cdot 223$	$25 \cdot 162$	22.682

Table 1 conta.

$T=1800^{\circ} \mathrm{K}$				
$\stackrel{P}{P}^{P_{0}}$	$\frac{\rho}{\rho}$	Z	$\begin{array}{r}\text { H } \\ \mathrm{RT}^{\text {\% }} \\ \hline\end{array}$	$\frac{S}{\text { S }}$
100	$14 \cdot 846$	$1 \cdot 022$	25.523	$25 \cdot 241$
200	29.070	$1 \cdot 044$	$25 \cdot 660$	$24 \cdot 547$
300	$42 \cdot 720$	1.066	$25 \cdot 797$	$24 \cdot 140$
400	$55 \cdot 836$	$1 \cdot 087$	$25 \cdot 933$	23.851
500	$68 \cdot 456$	$1 \cdot 108$	$26 \cdot 070$	$23 \cdot 627$
600	$80 \cdot 621$	$1 \cdot 129$	$26 \cdot 206$	$23 \cdot 424$
700	92. 293	$1 \cdot 151$	$25 \cdot 347$	$23 \cdot 283$
800	103.69	$1 \cdot 171$	26.477	$23 \cdot 154$
900	$114 \cdot 66$	$1 \cdot 191$	$26 \cdot 612$	23.036
1000	$125 \cdot 26$	$1 \cdot 212$	$26 \cdot 747$	22.930
$\mathrm{T}=1900^{\circ} \mathrm{K}$				
100	$14 \cdot 080$	$1 \cdot 021$	$27 \cdot 097$	$25 \cdot 474$
200	$27 \cdot 598$	1.042	$27 \cdot 237$	$24 \cdot 780$
300	$40 \cdot 597$	1.062	$27 \cdot 376$	$24 \cdot 373$
400	$53 \cdot 113$	1.083	27.514	24.085
500	$65 \cdot 177$	$1 \cdot 103$	27.652	23.861
600	76.824	$1 \cdot 123$	$27 \cdot 790$	23.678
700	88.079	$1 \cdot 143$	27.927	23.523
800	98.971	$1 \cdot 162$	28.064	23.389
900	109.52	1.181	28.200	23.270
1000	$119 \cdot 74$	$1 \cdot 201$	$28 \cdot 336$	$23 \cdot 164$
$T=2000^{\circ} \mathrm{K}$				
100	13.390	1.020	28.679	25.696
200	$26 \cdot 269$	1.040	$28 \cdot 821$	25.002
300	38.647	1.060	$28 \cdot 968$	24.595
400	$50 \cdot 641$	1.079	$29 \cdot 103$	$24 \cdot 307$
500	$62 \cdot 201$	1.098	$29 \cdot 242$	24.084
600	$73 \cdot 374$	$1 \cdot 117$	$29 \cdot 381$	$23 \cdot 901$
700	84-192	$1 \cdot 136$	29.519	$23 \cdot 746$
800	$94 \cdot 666$	$1 \cdot 154$	29.657	$23 \cdot 612$
900	104.83	$1 \cdot 173$	29.794	$23 \cdot 494$
1000	$114 \cdot 70$	$1 \cdot 191$	29.931	$23 \cdot 388$

Table 2/

Table 2

Values of the Dimensional Constents

$$
\begin{aligned}
& P_{0}=1.01371 \times 10^{5} \mathrm{Newt}^{2} \mathrm{~m}^{-2}(=1 \text { atmosphere }) \\
& P_{0}=1.25046 \mathrm{Kg} \cdot \mathrm{~m}^{-3}(=1 \text { amagat }) \\
& T_{0}=273.16 \mathrm{o} \\
& R=296 \cdot 774 \text { joules } \mathrm{Kg}^{-1} \mathrm{oK}^{-1} \\
& R T_{0}=81.0669 \times 10^{3} \text { joules } \mathrm{Kg}^{-1}
\end{aligned}
$$

A.R.C. C.P. No. 771

Jamuary, 1964
Wilson, J. L. and Regan, J. D.
CaLCULATIONS OF TER THERMODYNAMIC PROPERTIES of NITROGEN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from $600^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$ and at pressures of up to 1000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

A.R.C. C.P. No. 771

Jamary, 1964
Wilson, J. L. and Regan, J. D.

CALCULATIONS OF THE THERMODYNAMTC PROPERTTES OF NITROGEAN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from $600^{\circ} \mathrm{K}$ to $2000^{\circ} \mathrm{K}$ and at pressures of up to 1000 atmospheres. The virial coefficients used are thase of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

A.R.C. C.P. No. 771

January, 1964

Wilson, J. L. and Regan, J. D.
CALCULATIONS OF THE THERMODYNAMIC PROPERTIES OF NITROGEN AT HIGH PRESSURES

The thermodynamic properties of nitrogen have been calculated in the range of temperatures from 6000 K to $2000^{\circ} \mathrm{K}$ and at pressures of up to 1000 atmospheres. The virial coefficients used are those of Amdur and Mason, and the low pressure internal energy is taken from Hilsenrath et al.

(C) Crown copyright 1965

Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w 1
13A Castle Street, Edinburgh 2
109 St Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmıngham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England

C.P. No. 771

S.O. Code No. 23-9015-71

