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Using numerical methods c1escribed in a previous paper (Dennis and 
Dunwoody, I%&.), the steady motion of a viscous, incompressible, fluid past 
a fixed circular cylinder is investigated over the complete range of Reynolds 
numbers. In particular, the limiting solution as the Reynolds number R 
becomes large is considered. 

The calculated drag coefficient is found to agree reasonably well with 
experimental measurements for low Reynolds numbers but starts to become 
higher for values of R greater than about 30. For large Reynolds numbers 
the theoretical estimate of the pressure drag tends to become constant 
while the frictional drag decreases proportionately to the square root of 
the Reynolds number. This tendency of the pressure drag greatly to exceed 
the frictional drag for large values of R has already been noted in 
experimental work. 

Secondly, with regard to the detailed flow patterns, the calculations 
shorn that for Reynolds numbers below R = 5.6 a non-separated flow takes 
place past the cylinder. The value R = 5.6 at which the standing vortex 
pair first appear behind the cylinder is in good agreement with the exper- 
imental estimates of Homann (1936) and Taneda (1956). As the Reynolds 
number increases the length of the vortex pair, measured downstream from 
the rear generator of the cylinder, increases and at R = 30 it exceeds 
the length of the diameter of the cylinder. At R 40 , however, the length 
of the vortices has decreased according to the present solution; and it 
continues to decrease as the Reynolds number is further increased. It is 
pointed out, however, that the description of this feature of the flow, viz. 
the behaviour of the vortices as R becomes large, is somewhat tentative 
owing to the necessity of limiting the size of the calculations. 

At very low Reynolds numbers the calculated solutions agree with the 
solution of Oseen's linearised equations., Some aspects of the Oseen linear- 
ised solution are discussed in detail in the present paper since it is 
found that they do not agree with the previously published results of 
Tomotika and Aoi (1950). 

Replaces A.R.C.26 104. 
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INl'RODUCTIOi'T 

The governing equations applicable to the present investigation 

and the method of numerical solution by which they are solved are essentially 

as described by Dennis and Dunwoody (1964) in a previous paper concerned with 

steady flow past a flat plate. For steady two-dimensional flow past a circular 

cylinder the appropriate coordinates are polar coordinates (r,0). The 

dependent variables are the stream function $(r,0) and the scalar vorticity 

i;(r,e). The first is defined in terms of the radial and transverse velocity 

components (vr,vC by the equations 
> 

v = r g, y-2 . 0) 

Equations (1) satisfy the equation of continuity of the fluid, which is 

assumed to be incompressible. The vorticity is expressed in terms of the 

velocity components by the equation 

z- 
ave ve I av 

=r +- 
-7" 

r -‘;:a0 l 
(2) 

The governing equation for ;j is obtained by eliminating the pressure from 

the Navier-Stokes equations of motion. This gives 

aaig 
x?- ( +;z i a2;5 

+';I"ae" ) 4 
= G!Laz; -2!Lar; 

ae ar ar ae J * (3) 

where v  is the coefficient of kinematical viscosity. 

Equations (I), (2) and (3) must be solved in conJunction with the 

no-slip condition v =v r 0 = 0 at the surface of the cylinder, r = a. If 

also the flow at large distances from the cylinder is a uniform stream with 

velocity U parallel to the positive direction of the x-axis, the appropriate 

conditions are that 

vr * ucose, 33 + -U&-B, as r + co. (4) 



b?eVlOUs theoretical results for the steady yrlotlon 01' :2 vxicou~ fluid 

Past a C~rCu1a.r cylinder may be roughly divided Into two categories. P1rstl-;, 

there are solutions of been’s linearised equztlons, valid at low Reynolds 

nu~-~bers. h aPPrOxlIIQte so~utlon of Oset:n's equztlons was first given by 1,amb 

(1311) and subsequently extended by both &lrytow, Cave and Ilang (4923) and 

Tomotika and Aol (1950). This extension hns been crl.ticlzed by Proudman and 

Pearson (1957). The Objects.on is that Lamb's solution 1s already correct to 

the order of approximation necessarxly Inherent In npproximatlng to the true 

equstlons of motion by Oseen's equations , and that nothing 1s added by obtaining 

higher order approxlmatlons to the solution of the latter. I(aplun (1957) has 

given what 1s considered to be the valid correction to Lamb's solution. 

A further point about Tomotlka and Aol's solution is that it purports 

to show that a separated flow, viz. one in which a pair of standing eddies 1s 

formed behind the cylinder, exists for all values of the Reynolds number, 

however small. TLS is in direct oonflzt with experiment. It 1s known 

experlmental@that, below a certain crltical Reynolds number, no separation 

takes place. The actual critical value 1s variously estimated at 3.2 by Nisi 

and Porter (1923)) 6 by Homann (1936) and 5 by 'l'aneda (1956). Since these values 

of the Reynolds number are beyond the range of validity of Oseen theory, no 

theoretical cotilrmatzon of this result has yet been obtained. 

Seconay, there are the approximate numerlcal solutions of the full 

equations of motion, i.e. the solution of Thorn (1929) at H = IO, Thorn (1933) 

ati K = 20, Kawaguti (1953) and Apelt (1961), both at K = 40 and flnally Allen 

and Southwell (1955) at R = 0, 1, IO, 100 and 1000. Allen and Southwell cover 

the largest range of Reynolds numbers but their results have recently been 
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criticized by Kawaguti (1959), whose main obJectlon is to the detailed floI[ 

patterns round the cylinder given by these results. Kawaguti suggests that 

all the evidence of previous investigations of the problem indicates that the 

standing vortex pair behind the cylinder should elongate with increasing Reynolds 

number and that Allen and Southwell's flow patterns at -? = 100 and 1000 are not 

in accordance with this. IJone the less , LLlen and Southwell's results are the 

only moderately high Reynolds number results that have so far been attempted. 

In the present paper , results are obtained for the complete range of 

Beynolcds numbers from 0.01 up to indefinitely large values. Bt the lower end of 

thescale, where the numerical solutions are believed to be extremely accurate, 

the ObJect is to compare the results of the various theories and determine 

accurately the Repolds number at which separation starts to occur. At 

intermediate and hi;;her Reynolds number an attempt is made to correlate existing 

numerical results and determine the general features of the flow as R becomes 

large. 

To reduce the problem to a form comparable with that solved in the case 

of the flat plate, we make the transformation 

4 r=ae, 8=q (5) 

and introduce the dimensionless quantities defined by the equaticns 

* 
2aU =&I+?', [+, R=v , 

where a is the radius of the cylinder. Suppressing primes, equation (3) 

becomes 

(7) 

while (1) and (2) together give 

v=* + eaQ = 0, (8) 
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where Va= a2 /at2 + a2/aq2. 

The boundary conditions vr = v8 = 0 on the cylinder give rise to 

the conditions 

g+ = $$ = 0, when 5 = 0 (9a> 

while the free stream conditions (4) become 

(9b) 

By the symmetry of the motion about the x-axis we also obtain 

(//=c =0 whenn=O,n. (94 

It may now be observed that the mathematical problem involved in solving 

(7) and (8) is almost identical with that described in the paper by Dennis and 

Dunwoody in the case of a flat plate. This paper will subsequently be 

referred to as I. The method of numerical analysis used is identxal and 

only those features especxally relating to the case of the circular cylinder 

need be mentioned. 

DETAILS OF TBE SOLUTION FOR A CIRCDLAE C:YlND~ 

Equations (7) and (8) are reduced to ordinary differential equations 

by the same substitutions as in I, viz. 
43 

(Irkd?) = ’ 
2. 

f,(S) s=n nr7 

n=l 

(10) 

and 

Equation (8) is reduced to the set of equations 

f: - n2fn + r n (t) = 0, (n = 1,2,3,..;..) (12) 
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with 
rnW = I’ g (3 

-J P n-p - JJn+p)e2P (13) 

p=l 

and, as before, 

The only essential change 1s therefore in the definition of m(t), which is 

less complicated. 

The bounbry conditions (ga) give the same initial conditionsfar the 

f$), ==e* 

qO) = f;(O) = 0, (n = 1,2,3,.....). 

At large distances, (Yb) lead to the conditions 

(15) 

ew'fn(t) + 0 bfl) y (16) 

so there is a slight difference In a numerical factor from the case of the 

flat plate. 

If we follow the analysis used in I to determine the form of 9 at large 

distances, it is readily deduced that, as 4 3 CO, 

I1((4d - e'sin q + K(1 - ,", 07, 

The value of the constant K is obtained, as in I, from the theorem of Goldstein 

(1929). This gives 

Ic. = - D 
2* = - 9, , 

where C D is the drag coefficient. 

The drag D 1s found by evaluating the Integral (31) in I round the 

contour of the cylinder. This yields 

)' 2x 
D =. - 

J 
(paces q + pvU[sln T])dT) , 

0 

(12) 
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where p and p are the pressure and density and 5 is non-dimensional. The 

part of this integral dependin g on the viscosity gives the frictional drag 

Df* By symmetry 
7l 

Df = -2puu 
/ 

S,slw dq j 
0 

(20) 

where 5, is the value at 4 = 0. Now, as 

is chosen to satisfy the equation 

in I, the function F(<,q 8) in (11) 

2 = lJ$2 
8 4 a77 

and also the condition 

F(O,q) = 0. 

Hence substituting for Co in the above integral from (11) we obtain 

Df = -~pulJg,(O) 

and the corresponding dimensionless drag coefficient is 

(22) 

The term in (19) involving the pressure likewise gives the pressure drag D , i.e. P 

D = -2a 
P 

pocosrl dr7 

= 2a sinrj dq, 
0 

on integrating by parts, where the suffix zero again refers to =?j = 0. If the 

equations of motion are expressed in terms of < and q it is easy to show that 

Substituting in the integral and differentiating (11) with regard to 4, using 

the fact that (aF/aoo= 0 from (21), we obtain 

D p = npvUg;(O) 
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end hence D 
C 
P =pa=R +- a g; (0) l (23) 

The ratlo of the pressure drag to the frictional drag IS therefore 

-ii; w/q (0) l It is subsequently found that this ratlo tends to unity as R is 

indefinitely decreased, in agreement with 3Jsecn theory. Anen x becomes large 

the ratio increases as R'. 

The governing equation (7) for the vortlcity 1s identical with the 

corresponding equation for the case of tne flat plate. Using the substitution 

(II), the method of treating it is identically that described In I, viz. it is 

reduced to a set of equttions 

EC; - nagn + lkn,pgp = 0, (n = l,2,3,S.r..), (24) 

p=l 

where k ,,,(t) and all th e associated functions are exactly as defined in I. 

Numerical solutions are obtained precisely as before; they are finally 

expressed In the form 

g,(E) = C,Gn(d, (n = W,3,~-0) (25) 

with 

G,(O) = I. (26) 

As for the flat plate, the solutions (25) are supposed to have been 

chosen to satisfy a condition which ensures that $(<,q) tends to the correct 

form (17) for large 5. Tne method of satisfying the condition is as described 

in I, although the condition itself is mowied by a numerical factor on account 

of the different numerical factor In the first of (16). A first integral of 

(12) is " E 
fi + nfn + e@ eWntrn(t)dt = Brie* 

, 
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where B n are all zero b> (15). Dlvrdlng each side by e ti , lettx@ 5 + o3 

and uslnc (16)) then 

M eegrn(E)dE = -2 (n = 1) -1 
0 j (27) 

= 0 (n # 1). 

Plnall), in terms of the solutions (25), the total drag coefficient is 

given by 

CD = - 911 - G;(O)] , w3) 

the two separate terms corresponding to the frxtional and pressure drags 

respectively. 

C&C~\TIONS AT LOY RJUT'OLDS i'JUHEBRS - 

In this section the results of calculatiops for low values of the 

Reynolds number are comp;cred with Oseen theory and modifications to this theory. 

In effect, the Oseen lxnearlsed solutxon may be obtained by substltutrn~ 

the outer boundary conditions (yb) for (I, into, (7), which becomes 

dubstltutlng the expression (11) for 5, dnd Taking 

E(c$ ,?-/) = ~xe%osq , 

equations (24) for the fhnctlons g,(E) become 

c12 2 ( \ gi - (n2 + s e )g, = 0. 

Fun&mental solutions which vanish for large e are 

f$$ > = qP>, 
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where IC is the modified Bessel function of the second kind and n 

?!e my tLlereforc tz';e the functions G,(t) in (25) as 

G,(e) = An "n@) 
WY (30) 

where A 
1 

= 1 111 order to satisfy (26). 

This solution 1s valid for large 5 and is, with manor chan~cs, Ihe 

solution at large distances discussed in I. In Oseen theory, however, It is 

assumed to hold for all E. To fxnd the constants An (n =2,3,4,....) we 

substitute In the second of the conditions (27), noting that the function n 5 90 

is now the modified Bessel funotion of the first kind with argument@, viz. 

This gives the set of simultaneous equations 

2-J A 
n,pPi, 

= 0, (n = 2,j,&,.,..) f71\ 
..J I 

I rhr-re 
A - 1 

nyp - I Kp(%-'/4) o 
* e @14qI 

n-p(') -1 n+p @)I Kp@) db (32) 

Vrit:r ng P n,P = An pKp (R/4) Y 

then cc n p denotes the integral in (32). This integral may be evaluated by 
Y 

expressmg the lntegrand as a function of /3 alone and m3klng use of the result 
,- 1 

$g [@‘[Iq@) x,(P) + Iq+,(P) Kr+, WI j \ 

= p-’ c b+cl+r)Iq@ )K,@) + (p-q-r-2)Iq+, ((3 > K,,, (P > t 
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where p, q and r are any integers. This result is given by Matson (1944) 

for the cylinder functions but it is equally valid for the modified Bessel 

functions. By sultable choice of p, q and r it follows that 

2(n-1hn p = In-p-,Kp-,+I n-pKp -1 -1 K, 
3 n+p-lKp+l n+p P 

provided n # 1, while 
P 

4 
?,p = B c 

(Iq-,Kq,, + 

q=l. 

IqKq > . 

(33) 

(34) 

In these formulae the arguments of all the Bessel Functions are R//4. 

Since A, = 1, the remainder of the An can be found by solving equations (31). 

Without going into detail It may be shown, by expanding the Bessel functions in 

(33) in terms of R, that as R + 0 the first order solution of (31) is 

A n+l = o(RnlogR), (n = 1,2,3,.....). (35) 

Now the equation determining the constant C, which occurs in (25) is, 

from the first of (27) 
03 
--, 

cl 
' h 
L 1 GAP = 

-2. 

p=l 

In obtaining a first approximation to C, we can, by (35), omit all the An 

except A,, wkoh is unity, from this equation. Using (34), this gives 

c, % RK.1 
- 2(IoKo+I,K,) ' 

where the arguments of the Bessel functions are again 

The formula (28) for the drag coefficient does not apply to the Oseen 

solution. This formula depends upon the satisfaction of the conditions 

(36) 

F= aWe = 0, when 6 = 0. In the numerical solutions of the full equation 
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(7) tne function F(E,q) is chosen to satisfy these conditions but, by (29), 

the Oseen solution does not. To obtain the drag we must return to the basic 

formulae and substitute the details of the Oseen theory. Substituting for 5 

in (20) it is readily verified that we obtain a frictional drag coefficient 

cf= B 
2g, 

r 
nAIK nnn 0 I 

n=l 

Similarly, the basic formula for the pressure drag is 
. 

and if we substitute for (ag/~%$)~ we obtain, after some reductions of Bessel 

functions, 43 

C 
P= cf - &cc, 

c (In-,'n-) - ln+qKn+j)An . (38) 
n=l 

In both these formulae the arguments of the Bessel functions are R/4. Alternative13 

a formula for the total drag can be obtained from (18) by determining a value 

for K. It is found (of Dennis and Dunwoody) that this gives 

CD = (39) 

n=l 

For low Reynolds numbers the terms arising from the summation in (38) are 

of higher order than the leading term in Cf. Hence for smalls enough 8, CxC . 
f P 

Tomotilca and Aoi claim that this result holds exactly for any Reynolds number, 

according to Oseen theory. We cannot find such an exact relationship; 

moreover, the result (39) for the total dra g is not exactly consistent with 

that obtained from (37) and (38). If, however, we teke the value of C, given 
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by (36) and expand all the Bessel functions in terms of R, retaining only 

first order terms, we obtain Lamb's original result 

CD = 8x 
R($+log R/8) (40) 

consistently from either (39) or (37) and (38). This is in agreement with 

the general observations made by Proudman and Pearson, viz. that Lamb's formula 

is already correct to the order of accuracy involved in approximating to the 

exact governing equations by Oseen theory and that there 1s no virtue in 

lmprovlng it. On this basis the refinements of Oseen theory given by Bairstoa, 

Cave and Lang and by Tomotika and Aoi are hardly valid. Kaplun has given a 

second approximation to Lamb's solution which is based on the exact Yavier- 

Stokes equations. This is obtalned by matching a solution of Oseen's equations 

far enough from the cylinder with an inner solution based on Stokes' theory. If 

c = (-&-log R/8)-' , 

Kaplun suggests that the correct development of (40) according to the exact 

equations should be 00 
8x CD = 76 dn' n\ 

! 
n=2 

clnd calculates the valoe d 
2 

= -0.87. 

Another aspect of Tomotika and AOX's soluticn of Oseen's equations is the 

descrlptlon of the detailed flow patterns it gives for very low Reynolds numbers. 

According to their calculations a separated flow, with a pair of stanang 

eddies behind the cylinder, exists for all small values of R, no matter how 

Sllttll. This contradicts experimental evidence; and one might suppose that 

some small enough value of R could be found below whach Oseen theory predicts 
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a non-separated flow, in accordance with the experimental results. 

To consider the question of the formation of the standing edties, the 

equation of the separated streamline 1s & = 0 and the an,;;ular coordinate of 

the point of separation is found by putting < = 0 In equation (10) for 9. 

In view of (15) we may replace fn(0) by f"(0) and moreover divide out the 

factor sinq, whose vanishing gives the known streamlines 77 = 0 and q = X. 

The result 1s the equation 

f;'(O) + 2f$(O) co9 q + fl;(O)(J - 4 sin"t,) + .., = 0, 

which is valid for any solution in the form (10). In the case of the Oseen 

solution obtained In this section, the first order solution for f:(O) is 

obtained directly from the differential equations (12) by substituting the 

first order solution for r,(O). The latter is easily obtained once the first 

order solution for the constants An has been obtained and, without going into 

detail, it is found that for n > 0 

f;+,(O)/f;1(0) = &Rnlog R) 

at least. Also f;'(O) > 0 and f:(O) < 0, as R + 0. 

Hence for small enough R, according to our solution of Oseen's equations, the 

first two terms of (42) dominate and approximately 

cos q = -f;(o)&(o) >> 1 

and no separation takes place. If, as R is increased, a stage is reached at 

which separation starts to occur, the angle of separation at which it first 

occurs will be given by cos 77 = 1, i.e. the fluid starts to separate from the 

rear generator of the cylmder. The critical value of R will then be that 

value which makes 
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In the present paper solutions of the exact @seen equations have been 

obtained in two ways, firstly by obtaining accurate numerical solutions of 

the equations (Jl), and secondly b y solving the complete Oseen problem using 

numerical techniques previously described. In the latter case it 1s easily 

arranged that the same computer programme which solves the general fn and gn- 

equations (12) and (24) shall inc.!.ude Oseen theory as a special case. By 

comparing the two solutions we then obtain some check on the efficiency and 

accuracy of the numerical methods. As this chec;: was being ccLrried out, the 

sum S was evaluated. It was found that as K 3 0 

S- f;'(O) > 0, 

in accordance vnth the above, and that S decreases as R increases, becoming 

zero at about R = 3. The c,Jmparison between the two solutions was uniformly 

good, e.g* the results at R = 3 are typical. Here it was found from the 

analytiaal solution that C, = -2.056, correct to three decimals, while 

f;'(O) = 1.584, f;(O) = -0.899, f;(o) = 0.065, f;:(O) = 0.005. 

The corresponding figures from the numerical solutLon of Oseen's equationsvere 

c, = -2.059 with 

f;'(O) = 1.587, f;(O) = -0.yo1, f];(O) = 0.065, fj+w = 0.005. 

In both solutions f;(O) = 0.0002, i.e. the convergenca appears quite good. 

These accurate solutions of Oseen's equations are, of course, subject to 

Froudman and Fearson's criticisms. They do, however, predict the existence of 

a critical Reynolds number, contrary to Tomotika and 1~01's account of the theory. 

The value is about half of the value (R=6) that we obtain from the numerical 

solutions of the full Navier-Stokes equations given in table 3 in the following 

section. 
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In table 1, values of the drag coefficient c&culated by present 

methods from the full Navier-Stokes equations are compared with values 

obtained from Lamb's formula (40) and from Kaplun's result (41) 

(including only the term in d2). It might, perhaps, have been 

expected that slightly better agreement with Kaplun‘s results would 

have been obtained at the very low Reynolds numbers, since our results 

are thought to be reasonably accurate here. 

CALCULATED RFZXLTS 

Calculated frictional and pressure drag coefficients, together 

with the total drag coefficient CD , are given in table 2. Infigure 

1, CD is compared with experimental measurements and with previous 

numerical integrations of the exact Navier-Stokes equations. The 

experimental curve (based on measurements carried out at the National 

Physical Laboratory and at C&tingen) has been taken directly from 

Goldstein (1938) since this curve seems to cover the largest Reynolds 

number range. At the lower Reynolds number end of the range, compari- 

son is also made with the recent experimental results of Tritton (1959) 

in figure 2. Tritton's results for R> 50 are a little lower than 

the experimental values in figure 1, although the latter are largely 

confirmed by the experiments of Wieselsberger (1921). It will be 

noticed that the present theoretical results become increasingly 

higher than the observed values as R increases beyond about 30. 

As R becomes large the theoretical pressure drag becomes constant 

while the frictional drag tends to zero; this tendency has been 
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observed in experimental work [Blasius (1913)) Thorn (1930)]. 

The theoretics1 result for large R can be demonstrated by obtain- 

ing a limiting solution of equations (UC) as R -, 03 in the manner 

previously described by Dennis and Dunwoody. It was there shown that 

by making the transformation E F 62, so that (UC) become 

* gn 
co 

Y 
-- = 0, 
az" $I 

the quantity 6 could be chosen in such a way that 6 + 0 as R + 00 and 

where the K 
n9p 

are independent of R. Solutions of (45) can then be 

found, as 6 + 0, as functions of 2 alone. The necessary choice of 6 

is to make it satisfy the relation 

h3RC, = o 

and it is then found that in order to satisfy the conditions of type 

(27) we must have 

c1 
= a&-'. 

Here a and c are numerical constants; the constant c may be assigned 

and the value of a then depends upon the solutions computed from (45). 

Jn the present case the value c = -21.47 was taken. From the 

computed solutions of (45) it was found that 

a = -2.30; (dg,/dz)o = -0.838 . 

Hence 

6 = 3.05R--, C, = -0.753R' . : 

The limit of the frictional drag coefficient is therefore 
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and the limit of the pressure drag coefficient is 

c 
=I % 

c > p = -ST Z-O = 1.300 . 

Owing to limitations of computer storage space it was found 

necessary to restrict the calculations to five terms g,(s) of the 

series (11). Expressing these in the form (25), we may calculate 

an approximation to the vorticity distribution over the surface of 

the cylinder in the form 

.5 

2;bd = c G,(O)sin nq . 

Some sets of values of the G,(O) with the constant C, are shown for 

values of R up to I 60 in table 3. Beyond a=160 these constants may 

not be very accurate, since their values may be affected by truncation 

of the series (11). However, the vorticity distribution is shown 

graphically for various Reynolds numbers in figure 3. 

At the point of the surface where c=O (i.e. the local shearing 

stress vanishes), the fluid separates from the cylinder. The condition 

t; : 0 for separation is consistent with (42) since 

fp> = -m(O) = -CIGn(0). 

From (43), the critical value of R is therefore the value which makes 

sp 
s’ = 

z 
nG,(O) = 0 . 

\n=l 
On the basis of the values in table 3 we find that S' = 0.121 for R= 4 
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and S' = -0.106 for R = 7. A linear interpolation therefore gives the 

critical value as R = 5.6, which is in good agreement with the experi- 

mental estimates of Taneda and Homann. 

One of the interesting features of the present problem is the 

question of the growth of the standing vortices behind the cylinder 

as the Re,ynolds number increases. In figures 4 to 10, streamlines are 

shown for the flow past the upper half of the cylinder for a range of 

Reynolds numbers from 4 to 80; the function tabulated is the dimension- 

less stream function JI' defined by the first of equations (6). Denoting 

the length of the vortex pair by d (as shown in figure 5) it will be 

seen that d steadily increases up to B = 30. Its value of about one 

diameter at R = 20 is in good agreement with the estimate of Thorn. At 

R= 33.5 (not shown) d is found to have about the same value as at R = 30 

but thereafter it decreases, as indioated in figures 9 and 10. At 

R= 160 it is not more than O.ja and for larger values of K it decreases 

still further. In this respect the present solutions for R > 30 are 

different from previously'published results. At R = 40 Kawdguti finds 

d to be almost two diameters of the cylinder and Apelt gives 2.13 

diameters, increasing to 2.3 diameters at R = &. Allen and Southwell*s 

results suggest that d decreases for higher Reynolds numbers, but hardly 

on the scale suggested by the present solutions. 

Figure 11 shows graphionlly the various estimates, theoretioal and 

experimental, of the ratio a/2a as a funotion of R. It must be noted 

that the theoretioal results of Kawaguti and Apelt are in good agreement 
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with the experiments1 estimates of Tcneda, who messw.ed the length of 

the sLnding vortex IJair up to R = 57.7. The significance of this is 

difficult to Judge, however, since it is well knov~ that within the 

range R = 30 to 50 the onset of the Karman vortex street is observed 

in the wake. The actual Reynolds number at which the street appears 

is variably estimated and seems to depend considerably upon external 

conditions, such as the ratio of the cylinder diameter to the experi- 

mental channel width. Since the Karman vortex street is not a steady 

state, it cannot be described by the preseti equ&io~. It is 

therefore not easy to see what the relation between solutions of these 

equations and experimental observations should be with regard to the 

growth of the vortices in the critical region of R at which the street 

ap?eJrs. The main ObJection to the present solutions tiith regard to 

their description of the behaviour of the vortices is that only a 

limited number (five) of terms have been used in calculating the stream 

function. Without further investigation, it is impossible to say what 

the effect of includin;: further terms would be, so that our conclusions 

with regard to this phenomenon must to this extent be tentative*. It 

seems, however, rather coincidental that the tendency of d to decrease 

starts to occur in the neighbourhood of the critical Reynolds nunioer 

at which the vortex street appears. 

The only comment that could be made on Apelt and Kawaguti's 

numerical solutions is that, compared with the present solutions, the 

mesh lenglhs of the relaxation fields are a little coarse. Kawaguti 

works in terms of the variables 

*The series for $ certainly converges more slowly in the wake at 
larger distances from the cylinder than it does near the cylinder and 
this may affect the estimation of the length of the vortices. This 
point is under investigation. 



- 21 - 

X = a/r, Y = a-&c 

and divides the range outside the cylinder (X = 1 to X = 0) into ten 

intervals. The row of mesh points next to the cylinder therefore corres- 

ponds to the value E = 0.105 and the spacing between mesh points in 

the <-coordinate increases with c. To obtain a reasonoble solution at 

R = 40 we found it necessary to take a step h = 0.025 in the E;- 

coordinate. For higher values of R (and also in the previous calcula- 

tions of Dennis and Dunwoody for the flat plate) the step h was 

adJusted to be approximately proportional to R-'. Apelt's mesh length 

for R = 40 is even coarser than Kawaguti's, corresponding to a step 

h = n/20 in the c-coordinate. 

The vorticity distribution throughout the flow field is deter- 

mined from (11). The form of this distribution near the cylinder is 

shown for some representative Reynolds numbers in figures 12-15 . 

As R increases the vorticity tends to become more and more concentrated 

into the region near the surface of the cylinder and in the laminar 

wake behind the cylinder. Even at very high Reynolds numbers it is 

found that the effect of the wake is important, leading to a resultant 

pressure drag on the cylinder. This may be seen as follows. 

It was shown in I that as 5 + M 

m(g)+ nC = 2nK/7c , (47) 

where K is the constant (depending on R) which appears in (17). This 

limiting form is satisfied automatically by the numerical solutions 

on satisfying the initial conditions (15) and the conditions (27); 

and it is easily shown, using Oseen theory, that it corresponds to a 
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vorticity distribution concentrated into a wake near ?J = 0 as E 

becomes large. Near enough to q = 0, equation (11) may be written 

For any R and large enough E we have, from Oseen theory 

8Jc > - a,K,(P), F(Ld - P-q 9 

where 

Since Es is large 

P be'. = 4 

.i 

K,(p) - 2$t emP 
0 

and hence 

(48) 

The vorticity is therefore exponentially small everywhere except in 

the wake whose boundary is given by 

? 1 
= U@-+ (49) 

which ultimately coincides with ?l = 0. Also, by comparing the 

governing equation (8) with the transformed analogue (12), we have 

2e2’ 
m(C) = - 

r 
c sin nq dq . 

x 
0 

For large enough E we may replace the upper limit by ?j, and write 
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and using (48) and (49) it is seen that this leads to the forlu (47). 

The strength of the vorticity in the rJ-a:ce therefore depends 

rlirectly on the constant C which, by (la), is directly proportional 

to the drag coefficient Cl,. Thus the tendency of CD to become con- 

stant as K becomes large is associated with an appreciable residual 

vorticity in the woke which persists for large R. It is in fact 

found from the numerical solutions as il becomes large that the 

vorticity (which becomes proportional to 11' on the cylinder) falls 

very rapidly in the wake near the cylinder but then decays more 

slowly in the wake at larger distances. 

The slower decay in the wake at larger distances does not, 

however, destroy the concept of the boundary layer thickness c = 6 

vlhich has been used in computing solutions at higher Reynolds numbers. 

It hns been explained in I that 6 is a number used to re@ce the 

upper limit in the integral in (27) in estimating values of the con- 

stants associated with the solutions of (24). Although for large 

enough g the m(E) must assume the form (47) and)as R + o3)C tends to 
in 

an absolute constant, it has been pointed out in I that/practice we 

record the functions R,(G) defined by 

m(G) = -C,Rn(c), (n = 1,2,3,...-.) . 

In effect, therefore, the integral . 
P 
J een'Rn(E)% 

0 

is evaluated in (27). As R + M, C, = o(R*), so that near < = 0 the 

Rn(c) are d)(l) and at 5 = 6 they are o(R$. The value of 6 is there- 
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adjusted so that the OCR-') contribution to (50) is insignificant for 

g > 6. It is possible that this leads to a small amount of truncation 

error at high Reynolds numbers in the present problem. It is certainly 

more critical than in the flat plate problem for, although the wake is 

similar in both problems, only the frictional drag is present in the 
1 

case of the flat plate and C D varies as R-' as R + 00. 

The variation of vorticity over the surface of the cylinder in 

the limiting solution as R + 03 is shown in figure 3 . To some extent 

it is tentative since, as previously mentioned, it is not known 

precisely how the inclusion of further terms g,(E) in the series (11) 

would affect the estimation of the G,(O) in (46). It is, however, 

certain thAt it does not agree with Kawaguti's conjecture that as R + 00 

the point of separation moves round the cylinder to the angle ?J = 128.70 

given by Schmieden (1930) according to the discontinuous potential 

flow theory. This is impossible since, even at high Reynolds number, 

the terms involving G,(O) and G2(0) in (46) dominate the solution and 

they are of opposite sign so that g cannot vanish at an angle q > 90". 

Finally, the pressure distribution over the surface of the 

cylinder is shown for various values of R in figure 16. It is obtained 

by integrating the appropriate equations of motion firstly along the 

axis q = x from infinity to the surface of the cylinder, and then 

around the surface to the point with coordinate ?l. The result for 

the pressure p at station ?l on the surface is 
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The trend of the distribution at R = 40 is similar to the 

cslculations of Kawaguti and of Apelt, although the numerical values 

are somewhat different. The probable reason is that the present 

calculated value of the pressure drag at this value of R is higher than 

the result given by either of these authors. We cannot be sure of the 

reason for this, although it is possible that our result for the 

pressure drag is on the high side due to overestimation of the cons- 

tant Cl. 
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Table 1 : Comparison of CD for low R 
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Table 2 : Calculnted drag coefficients 
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Table 3 : Vorticity on cylinder surface 

Gg(4 
___-__ ---- 

-0.002 

-0.005 

-0.013 

-0.023 

-0.031 

-0.036 

D 3ii'i'Q/i/Ut.60 K4 3165 XL & CL 



------- Gottingen 

- Dennis and Shimshoni 

Allen and Southwell 



FIG. 2 

N 

x 

0 

H 

7 



FIG 3 

-0.3 

R =Q) 

(s 
I 
= dlmonslonless scalar vorticlty) 



FIG. 4 

.- 
c, 
U 



FIG. 5 

0 
M 
. 



FIG, 6 

5 
b 

0 
0- 

zoo 

&& 

I ’ 





FIG. 8 



\I 
4 



FIG. IO 



FIG. II 

Experimental 

+ F;aga (Proc-Roy.Soc A 144 

p, Thorn (1933) 1934) 

o Tanada (I 956) 

Calculated 

x Thorn (1933) 
II Kawaguti (1953) 
o Allen and Southwoll (1956) 
v Apolt (1961) 

----Dennis and Shimshoni 

8 

0 
+ 

/- 
“t 

/ \ 
/ \ 

‘x 0 ‘, 

:‘t 
\\ 

// 
\ 
\ 

/ 
\ 
\ 

d’ @ 

1 

g0 \ 0 
\ 

I 
‘. 

\ 

/ 0 
\ 

\ 

i 
‘\ 

‘l 
‘. 

+v 

I 
- 

2 
lo9,o R 

3 







FIG. 14 



FIG. 15 



FIG. 16 

P - Pa 

‘l2p u’ 

: . 

R = 40 



A.R.C. C.P. NO. 797 
bmt. 1961. 
S. CO R- Dennis (Unlverslty of Sheffield) and 
Ii. Shlxmhonl (Welemann Instltute, Rehovot, Israel). 

THE STEADY FLOW OF A VISC’XJS FLUID PAST A CIRCULAR CYLINDER 

Using numerical methods described by Dennis and Dunwoody, the steady 
motion or a viscous, incompressible fluid past a fixed circular cylinder 
is investigated over the complete range of Reynolds numbers. In particular, 
the limiting solution as the Reynolds number R becomes large is 
considered. 

The calculated drag coerricient Is found to agree reasonably well with 
experimental measurements for low Reynolds numbers but starts to become 
higher ror values of R greater than 30. 

The calculations shon that a standing vortex palr,behind the cylinder, 
first appears at R = 5.6 which is in good agreement wlth the experimental 
results of Homann and Taneda. 

AeR.C. C.P. NO. 797 
August, 1964. 
S. c. R. Dennis (Unlverslty of Shefrleld) and 
Il. Shimshonl (Welsmann Institute, Rehovot, Israel). 

THE STEADY J%CW OF A VISCUJS FLUID PAST A CIRCULAR CYLINDER 

Using numerical methods described by Dennis and Dunwoody, the steady 
motion of a viscous, incompressible lluld past a fixed circular cylinder 
is investigated over the complete range of Reynolds numbers. In particular, 
the limiting solution ss the Reynolds number R becomes large is 
considered. 

The calculated drag coefficient is found to agree reasonably well wlth 
experimental measurements for low Reynolds numbers but starts to become 
higher for values of R greater than 30. 

The calculations show that a standing vortex palr, behind the cylinder, 
first appears at R = 5.6 which is in good agreement with the experimental 
results or Homann and Taneda. 

A.R.C. C.P. No. 797 
!!wust, 1964. 
S. C: R.-Dennis (University or Sheffield) and 
I-l. Shlmshoni (Weizmann Institute, Rehovot, Israel); - - ~. _ __ 

THE STEADY FLOW OF A VISCOUS FLUID PAST A CIRCULAR CYLINDER 

Using numerical methods described by Dennis and Dunwoody, the steady 
motion of a viscous, incompressible fluid past a fixed circular cylinder 
is investigated over the complete range of Reynolds numbers. In particular, 
the limltlng solution as the Reynolds number R becomes large is 
considered. 

The calculated drag coefficient is ro’md to agree reasonably well vfith 
experimental measurements for low Reynolds numbers but starts to become 
higher ror values of R greater than 30. 

The calculations show that a standing vortex pair, behind the cylinder 
rirst appears at R = 5’6 which is in good agreement with the experimental 
results or Hmnann and Taneda. 

-- - 





C.P. No. 797 

0 Crown cop.vrrght 1965 

Prmted and pubhshed by 

HER MAJESTY’S STATIONERY OFFICE 

To be purchased from 
York House, Kmgsway, London w  c 2 

423 Oxford Street, London w 1 
13~ Castle Street, Edmburgh 2 

109 St Mary Street, Cardiff 
39 Kmg Street, Manchester 2 

50 Fairfax Street, Bristol 1 
35 Smallbrook, Rmgway, Blrmmgham 5 

80 ChIchester Street, Belfast 1 
or through any bookseller 

Prrnted m England 

C.P. No. 797 

S.O. Code No. 23-9015-97 


