

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

On the Calculation of Cascade Flows

By
W.S. Hall and B. Thwaites,
Department of Mathematics,
University of Southampton

On the Calculation of Cascade Flows

- By -
W. S. Hall and B. Thwaites, Department of Mathematics, University of Southampton.

C.P. No. 806

November, 1963

SUMMARY

This paper considers the inviscid incompressible flow, uniform at infinity upstream, past a two-dimensional cascade of aerofoils, and in particular the problem of determining the flow field, given the geometrical characteristics of the cascade.

The literature on this problem is already very extensive but in spite of this, there is a need for a definitive method of solution, to any desired degree of accuracy, which can readily be applied as a routine procedure. Especially is the need felt to incorporate into such a standard method the power of the electronic computer, and the analysis needs to be positively fashioned to take full advantage of such machines.

Consideration of the inherent features of the two principal methods of tackling such Laplacian problems leads to the adoption of a method based on conformal transformations (closely akin to that of Garrick, 1944) in preference to one based on distributions of singularities. Such comparisons as have been made between the results obtained by these two approaches suggest that our preference is justified.

The problem of design is notoriously more difficult and we do not report, in this paper, any progress towards a practical and accurate design method. Perhaps, however, the thought might be expressed that design ideas may be formulated on the basis of numbers of solutions of the direct problem.

It is hoped that, if this work can be regarded as a definitive procedure for the highly idealised case of potential flow about a cascade of aerofoils, others may be encouraged to build on it methods equally valid for the more complicated flows which occur in the reality of turbo-machinery.

1. Introduction

Until recent years, the technology of gas turbine engines was not sufficiently advanced in any of its aspects to necessitate accurate methods of performance estimation; certainly, engine designers have not been accustomed to fluid-dynamic theories as accurate as those of external aerodynamics.

However,/

However, there are many indications that the efficiency of gas turbines has reached some kind of limit according to available design methods, many of which in any case describe flow conditions only in the large, rather than in detail. This is particularly true of multi-stage compressors in which, for example, it is still virtually impossible accurately to take into account non-uniformities in the inlet flow.

A full theory of viscous compressible flow through an annulus of varying cross-sectional area in which there are a number of rotor and stator stages is clearly beyond our reach at the present time; Wu (1952) has attempted to state the general problem, but there are limitations even in his statement of it, and in any case, there is much to be done before his work yields a practical method of calculation. Also, there are as yet, in this field of engine aerodynamics, no theories, however specialised, as highly developed and accurate in application as the corresponding theories in external aerodynamics.

In this situation, therefore, it seems worthwhile to return to some of the simplest idealisations so as to establish methods of solution of certain accuracy on which to build more complicated theories. Such a procedure is unlikely to give the engine designer everything he wants in the immediate future, and he will no doubt have to continue to rely for some time on more or less ad hoc and approximate theories. But in the long-term view, there is much to be said for disposing fully of the direct and indirect problem of a single two-dimensional cascade-row in incompressible inviscid flow, before going on to consider the complications due, in turn, to viscosity, compressibility, axisymmetry and a number of stages.

This paper attempts a definitive solution to the problem of determining this most highly idealised flow past a cascade row of prescribed geometrical shape. We do not seek a solution which can in some sense be displayed analytically in closed form, partly because even here the flow is too complicated to admit of the kind of formula typical of, say, linearised aerofoil theory, and partly because in any case the electronic computer is a legitimate constituent of any modern method. Thus our aim has been to develop a theory and its associated computational techniques which, when taken together, enable a solution of any desired degree of accuracy to be obtained.

It is instructive to admit, at this point, that much of the analysis in this paper has, in one form or another, appeared in the literature over the last thirty years, and it may be asked, if this is so, whether further work on similar lines adds anything of value. The answer, in part, is that earlier theories of cascade flow - for example, those of Collar (1940), Merchant (1940), Merchant and Collar (1941), Garrick (1944), Mutterperl (1944), Carter and Hughes (1946), Katzoff, Finn and Laurence (1947), Howell (1948), Isay (1953), Murai (1955), Schlichting (1955), Mortensen (1959), Polacek (1959), Czibere (1960), Riegels (1961), and Pollard and
Wordsworth (1962) - were devised with the desk calculating machine in mind. Such methods are not necessarily the most appropriate in this computer age and a modern method should be constructed so that, both in detail and in its overall features, it is wholly suitable for modern numerical techniques.

As to these overall features, there are two principal techniques available for solving the two-dimensional Laplace equation with conditions prescribed on given boundaries, namely the use of conformal transformations and representation by a suitable distribution of singularities.

The representation of the flow by singularities within the body contour has, of course, been highly developed in isolated aerofoil theory and is in effect the basis of linearised theories; the first applications to cescade flow seems to have been made by Betz (1942) and Katzoff, Finn and Laurence (1947). In their work the first approximation to the flow about a
cascade of blades is taken to be the flow about one of the blades in an infinite stream and this is represented by a distribution of discrete singularities within that blade's contour. This distribution of singularities is then assumed to be repeated in each of the remaining blades, and Betz gives a figure from which the effect of the row of equally-spaced singularities on the first-chosen blade can be calculated. In this way the original flow past the single blade can be modified and an iteration set up. This method was improved by Schlichting (1955) who gave the analytical expression for the velocity potential due to the series of equally-spaced singularities; a singular integral equation results.

Pollard and Wordsworth (1962) tackle the problem by assuming continuous distributions of singularities corresponding to the individual terms of a Fourier series. The boundary conditions are then satisfied at a number of discrete points on one of the blades to give a set of simultaneous equations for the Fourier coefficients. A number of simplifying approximations, similar to those of linearised theories, are employed and they restrict the validity of the method to blades of small camber. As it deals largely with simultaneous linear equations, the method is well suited to electronic computers.

A further refinement of the singularities method has been introduced by Martensen (1959) who transforms Schlichting's singular integral equation into a regular Fredholm equation of the second kind. Also, in his method, the singularities are placed on the blade contour itself, permitting consideration of a wider range of blade shapes.

Turning now to methods involving the use of conformal transformations, the first step normally consists of an initial transformation of the infinite series of aerofoils into a single closed contour in the whole plane by some periodic transformation. Simple standard transformations are then usually used to obtain a near-circle. Finally, the near-circle is transformed to an exact circle by Theodorsen's method. The flow past the cascade can now be derived from the known flow about a circle.

The practical success of such methods obviously depends on the transformations used; in particular, it is desirable to minimise the number of transformations and to avoid the creation of highly irregular shapes. A favourite initial transformation has been $\zeta=\tanh z$, used in this country notably by Howell (1948) and by Pollard and Wordsworth (1962); but it usually results in S-shaped figures which both authors had to treat with several successive Joukowski transformations in each of which it was necessary to choose the co-ordinate axes. Further, although all methods tend to become more difficult to apply as the pitch-chord ratio decreases, the tanh-transformation is particularly unsuitable in this respect.

A rather different method was put forward by Mutterperl (1944) in which the cascade of blades is transformed into a cascade of flat plates, the chord length being kept constant. The flat plates are then transformed into a circle by an equation similar to that used by Murai (1955). The first transformation is, of course, initially unknown and has to be determined by an iterative procedure; but a peculiarity of the method is that the final transformation to the circle is involved in the iteration and on the whole this gives an unfavourable comparison with the methods of, say, Howell or Murai in which each transformation can be made independently of the others.

There are naturally many variants of the two principal lines of attack which we have exemplified by quoting a few of the best-known papers, but enough may have been said to support our view that the singularity method is the less valid of the two wher it comes to laying down a definitive form. There are two main reasons for this view. First, any method based on a finite number of linearly-dependent unknown quantities is vulnerable to the
effects of the choice of pivotal points and to the possibility of ill-conditioned equations; and what is more, there are no known methods of guarding against these effects. Second, the algebraic complications become such as to make highly desirable some sort of linearised approximation in which the boundary conditions and values are not necessarily satisfied exactly on the boundary.

Transformation methods, however, are not completely free from disadvantages; their difficulties arise mainly in the choice and number of the transformations and especially of the co-ordinate axes.

This paper proposes the use of only two transformations (apart from a trivial translation), the first being that used by Garrick (1944) and the second that of Theodorsen (1932). Indeed the whole procedure given here follows Garrick's very closely with, however, two significant improvements. First, great attention is paid to the choice of axes and parameters involved in the first transformation so that the given blade contours are mapped into as smooth a near-circular shape as possible. Second, the computation of Theodorsen's theory is improved by the treatment given by Thwaites (1963) which, by using various formulae given first by Watson (1945), avoids the explicit determination of the coefficients of the Laurent series in the transformation.

2. Notation

(a) Geometrical properties of the given cascade

β	stagger angle
$\delta \beta$	parameter in \mathbb{T}_{1}; its derivation is given in Section 7
c	chord length of a cascade blade
¢c	parameter in T_{1}; its derivation is given in Section 7
d	pitch
y	parameter in T_{1} given by equation (6)
$\left(x_{n}, y_{n}\right), n=0,1, \ldots 2 N-1$	co-ordinates of the cascade referred to the axes of Fig. 4b.
${ }^{\text {L }}$	radius of curvature of the leading edge of a cascade blade
${ }^{\epsilon} \mathrm{L}$	angle between the directions of the blade chor and the normal at the blade leading edge
ρ_{T}	radius of curvature of the trailing edge of a cascade blade
ϵ_{T}	angle between the directions of the blade chor and the normal at the blade trailing edge
(b) Other notation	
$z=x+i y$	complex variable in the plane of the cascade
$z^{\prime}=x^{\prime}+i y^{\prime}$	alternative complex variable in the plane of the cascade

```
        \zeta = \zeta + i n ~ c o m p l e x ~ v a r i a b l e ~ i n ~ t h e ~ p l a n e ~ o f ~ t h e ~ n e a r - c i r c l e ~
        e}\psi|+i
                            point on the near-circle in the \zeta-plane
        \sigma=\psi+i0
            e i\mp@subsup{0}{T}{}
            point in the \zeta-plane corresponding to the sharp
                        trailing edge of the given aerofoil
            \zeta}\mathrm{ weighted mean of the points of the near-circle in
                        the \zeta-plane
\zeta'= 产'+i\mp@subsup{\eta}{}{\prime}=\zeta-\overline{\zeta}}\begin{array}{c}{\mathrm{ complex variable in the plane of the displaced }}\\{\mathrm{ near-circle }}
    an, n = 1,2, ... complex coefficients in Theodorsen's transformation
            T1 transformation from the z-plane to the \zeta-plane
            T2 transformation from the \zeta-plane to the \zeta'-plane
            T3 transformation from the \zeta'-plane to the Z-plane
                            (Theodorsen's transformation)
                    W velocity on the circle in the Z-plane
                    fgg,h functions used in calculating W
                    V1 e ia, velocity at infinity upstream of the cascade
                    Va e i\mp@subsup{\alpha}{2}{}
                    v fluid speed on a cascade blade
                    p pressure on a cascade blade
                    \rho1 fluid density.
```


3. Outline of General Procedure

We refer first to Figs. 1 and 2. In the z-plane it is assumed that the given shape of the cascade blades will be expressed as a list of randomly distributed co-ordinates of the surface.

The transformation T_{1} is designed to produce a reasonably regular curve approximating to a circle in the ζ-plane; the details are given in Sections 6 and 7. For the moment it is sufficient to remark that, unlike some of the other methods, T_{1} is entirely determined by the various geometrical properties of the cascade, and thus that a set of points is then known on the contour in the ζ-plane.

Now for the efficient application of Theodorsen's transformation, it is desirable that the variation of radial distance from the origin to the near-circle/
near-circle contour is, in some sense, minimised. Thus the ζ-plane contour is displaced by a constant ζ, of which the derivation is given in Section 5, so that in the $\zeta^{\prime}-\mathrm{plane}$ the radial distance - now $e^{\psi^{\prime}}$ - is more nearly uniform. Thus in this plane too, a set of points is known.

At the final stage, however, the transformation into a circle in the $Z-p l a n e$ is best done when the points are given at equal intervals of θ^{\prime}. Thus an interpolation is carried out in the $\zeta^{1}-p l a n e$ to obtain these equally-spaced values of $\psi^{\prime}\left(\theta^{\prime}\right)$.

The final transformation is arranged so that $\left|d y^{\prime} / d z\right|$ is evaluated at these equally-spaced points in the ζ^{\prime}-plane and so that the corresponding points on the Z -plane circle are known.

Finally it is necessary to relate the now equally-spaced ζ_{0}^{\prime}-values to points on the cascade but this only involves straightforward calculation through the transformations T_{1} and T_{2}.

We go on to discuss the general features of the three transformations.

4. T_{3} : Near-Circle to Circle

Theodorsen's theory is well known and depends on the fact that, on the boundaries, the transformation given in equation (3) of Fig. 2 reduces to the form

$$
\begin{aligned}
\psi^{\prime}\left(\theta^{\prime}\right)-\bar{\Psi}-i\left(\phi-\theta^{\prime}\right)= & \text { value on the circle }|z|=e^{\bar{\Psi}} \\
& \text { of the function } \sum_{n=1}^{\infty} a_{n} z^{-n} \text { which } \\
& \text { is analytic outside the circle. }
\end{aligned}
$$

Hence $\left(\psi^{\prime}\left(\theta^{\prime}\right)-\bar{\Psi}\right)$ and $\left(\phi^{-} \theta^{\prime}\right)$ are related by Poisson's integrals and the correspondence between the two planes is thus established. The analytical details and the computational procedure adopted in this paper are given by Thwaites (1963) with the improvement that this differentiation matrix is replaced by one derived from a Lagrangian partial range differentiation The method requires the values of ψ^{\prime} to be given at equally-spaced values of θ^{\prime}. To obtain these from the randomly-sited values of ψ^{\prime} which result from the previous transformation, seventh-order Lagrangian interpolation polynomials are used, and these are found to produce sufficient accuracy.

In our present problem an additional result is required, as will be seen later, namely the calculation of the point Z in the Z-plane which corresponds to a given point ζ^{\prime} exterior to the near-circle. Following Appendix C of Garrick (1944) we apply Cauchy's formula to the function
$f(z)=\sum_{n=1}^{\infty} a_{n} z^{-n}$ in equation (3) to give

$$
\begin{equation*}
\log \left(\frac{\zeta^{\prime}}{Z}\right)=-\frac{1}{\pi} \int_{0}^{2 \pi} \Psi(\phi)\left\{1-\left(z e^{-\bar{\Psi}}\right) e^{-i \phi}\right\} d \phi=f(z) \tag{4}
\end{equation*}
$$

where $\Psi(\phi)=\psi^{\prime}\left(\theta^{\prime}\right)$.
This equation (4) is an implicit equation for Z and can be simply solved by an iteration in which the $n^{\text {th }}$ value, Z_{n}, of Z is inserted in the integral to give an improved value, Z_{n+1}, where $Z_{n+1}=\zeta^{\prime} \exp \left(-f\left(Z_{n}\right)\right)$. Z_{1} may be taken as ζ^{\prime}.

5. T_{2} : Displacement of Near-Circle

The ζ-plane contour will, it is hoped, be approximately circular, but there is no reason for the origin in the plane to be near the centre of the approximating circle. There is obviously no exact criterion by which to determine this centre, and so some rough and ready procedure is sufficient, especially since the method of computing T_{3} is by no means critically dependent on the choice of origin.

The method employed here is to determine $\bar{\zeta}$ as something in the nature of a weighted mean of the given points in the ζ-plane. If these are denoted by $\zeta_{n}, n=0,1, \ldots(2 N-1)$, then the weighting given to the point ζ_{n} is $\frac{1}{2} r_{n}\left(\theta_{n+1}-\theta_{n-1}\right)$ in the notation of Fig. 3. As a result, the contour will be more evenly spaced round the origin in the $(\zeta-\bar{\zeta})-\mathrm{plane}$, that is the ζ^{\prime}-plane, than in the ζ-plane.

6. T_{1} : Cascade to Near-Circle

We refer to Fig. 1 again for some basic notation and to Fig. 4 for further details of T_{1} given by equation (1).
T_{1} is a modification of equation (6b) given by Garrick (1944). Its characteristic property is the mapping of the exterior of $|\zeta|=1$ onto the whole z-plane cut along an infinite number of straight, finite periodically-spaced lines.

To be more precise, the central cut is the straight line L'T joining the point $-(c-\delta c) \mathrm{e}^{-\mathrm{i} \delta \beta}$ to the origin in the z-plane. The ζ-points corresponding to T and L^{\prime} are $\zeta= \pm e^{i \theta_{T}}$ respectively where

$$
\begin{equation*}
\tan \theta_{\mathrm{T}}=\tanh \gamma \tan (\beta-\delta \beta) \tag{5}
\end{equation*}
$$

and θ_{T} is an acute angle. Here y is a convenient parameter which can be thought of as depending primarily on the gap-chord ratio.

In fact, the equation connecting the geometrical quantities $\alpha,(c-\delta c), \beta-\delta \beta$ and γ is

$$
\begin{align*}
\frac{\pi}{2}\left(\frac{c-\delta c}{d}\right) & =\cos (\beta-\delta \beta) \log \left[\frac{\cos (\beta-\delta \beta)+\left\{\cosh ^{2} \gamma-\sin ^{2}(\beta-\delta \beta)\right\}^{\frac{1}{2}}}{\sinh \gamma}\right] \\
& +\sin (\beta-\delta \beta) \tan ^{-1}\left[\frac{\sin (\beta-\delta \beta)}{\left\{\cosh ^{2} \gamma-\sin ^{2}(\beta-\delta \beta)\right\}^{\frac{1}{2}}}\right] \tag{6}
\end{align*}
$$

which is easily verified by expressing the length ($\mathrm{c}-\mathrm{Sc}$) as the distance $L^{\prime} T$ between the singular points of T_{1}, at which $\mathrm{d} z / d y=0$. Thus in principle - and the practical problem will be discussed in Section 7 - the value of y may be found from this equation (6) from the geometrical properties of the cascade.

Let us now look at some typical sets of contours in the z-plane which correspond to circles in the ζ-plane and, to begin with, we might consider the set of concentric circles $|\zeta|=e^{\psi}>1$, together with the orthogonal set of radial lines $\theta=$ constant. Fig. 5 gives a typical picture in the case $(\beta-\delta \beta)=-30^{\circ}$ and $(c-\delta c) / \alpha=0.3866$.

If a given blade profile from a cascade of the same gap/chord ratio and stagger angle as those of the figure were to conform to one of the full
lines, then the solution follows at once. But in practice the problem will involve placing a given cascade shape, on a suitable scale, in the z-plane so that, as has already been discussed, the ל-plane contour is closely circular. Now the ψ-constant curves in Fig. 5 appear substantially different from typical blade shapes, but this in itself does not imply that realistic shapes cannot be transformed into ζ-plane circles; it implies only that such circles will certainly not have their centres at the origin. Therefore it is of interest to examine the z-plane contours corresponding to other sets of ζ-plane circles.

Now most real turbine blades are more or less cusped at the trailing edge; such a trailing edge clearly should be located at one of the singularities of the transformation, namely at T (which has been arranged for convenience to lie at the origin of the z-plane). The other singularity I^{\prime} of the transformation should lie within the blade contour, and so we might consider the family of circles shown in Fig. 6. The z-plane contours corresponding to these circles are shown as full lines in Fig. 7, and the contour corresponding to the circle which passes through T is of a more realistic shape than the curves in Fig. 5. Conversely, one is led to hope that a given cascade could in fact be placed in the Z-plane to give a ζ-plane contour reasonably close to a circle.

The first step then for blades cusped at the trailing edge, is to place the trailing edge at one of the singularities of the transformation. There are then two parameters $\delta \beta$ and δc appearing in T_{1} which need to be determined, and this is done by matching the radius of curvature and normal direction of the appropriate ψ-constant curve with the racius of curvature and camber line direction of the given blade at its leading edge. This procedure is carried through in Section 7.

However, for blades with rounded trailing edges, the position of T the trailing edge must also be moved away from T^{\prime} the corresponding singularity of the transformation, and the analysis for this is briefly given as part of the worked example in Section 9(b).

7. Calculation of $\delta \beta$ and δc

The matching problem at the leading edge is attempted by an approximate analysis, linear in $\hat{o} \beta$ and $\delta c / c$, which is justified a posteriori on the grounds that these two parameters are found to be of order ρ_{I} / c, the ratio of the leading-edge radius of curvature to the blade chord length. On the assumption that $\delta \beta$ and $\delta c / c$ are $O\left(\rho_{L} / c\right)$, equation (1) gives

$$
\begin{equation*}
F(\zeta)=F_{0}(\zeta)\left(1+O\left(\rho_{I} / c\right)\right) \tag{7}
\end{equation*}
$$

where $\quad F_{0}(\zeta)=\frac{d}{2 \pi}\left\{e^{-i \beta} \log \frac{e^{\gamma}+\zeta}{e^{y}-\zeta}+e^{i \beta} \log \frac{\zeta+e^{y}}{\zeta-e^{\gamma}}\right\}-\frac{1}{2} c$.
We will write

$$
\begin{equation*}
F(\zeta)=F_{0}(\zeta) \tag{9}
\end{equation*}
$$

on the understanding that the errors in equations (9), (10) and (12) can be represented by a factor $\left(1+O\left(\rho_{L} / c\right)\right)$.

We have, at the singularity L^{\prime},
and also

$$
\left.\begin{array}{l}
\left(\frac{d F}{d \zeta}\right)_{L^{\prime}}=0 \\
\left(\zeta^{2} \frac{d^{2} F}{d \zeta^{2}}\right)_{L^{\prime}}=-B d \tag{11}\\
B=\frac{1}{2 \pi} \frac{(\cosh 2 y+\cos 2 \beta)^{2}}{\left(\cosh ^{2} y-\sin ^{2} \beta\right) \sinh ^{2} 2 y}
\end{array}\right\}
$$

where
and is real. In terms of the variable σ, where $\zeta=e^{\psi+i \theta}=e^{\sigma}$, equations (10) are

$$
\begin{equation*}
\left(\frac{d F}{d \sigma}\right)_{L^{\prime}}=0 ;\left(\frac{d^{2} F}{d \sigma^{2}}\right)_{L^{\prime}}=-B d \tag{12}
\end{equation*}
$$

With these values; an expansion of z, in terms of σ, may be made in the neighbourhood of L^{\prime}.

At this stage it is, in fact, more convenient to develop the analysis in terms of the two parameters A and δ, shown in Fig. 4, rather than $\delta \beta$ and δc. The point I^{\prime} is then given by

$$
\begin{equation*}
z=z_{L^{\prime}}=-c\left\{1-\operatorname{Ae}^{i \delta}\left(\rho_{I} / c\right)\right\} \tag{13}
\end{equation*}
$$

Once A and δ have been found, the required values of $\delta \beta$ and δc follow easily.

Thus, near L^{\prime}, we have, from equations (1), (12) and (13), that
$z=-c+\rho_{L} A e^{i \delta}-\frac{B d}{2}\left\{\sigma-i\left(\theta_{T^{+}}+\pi\right)\right\}^{\mathbf{Z}}\left[1+O\left(\frac{\rho_{L}}{c}\right)+O\left(\sigma-i\left(\theta_{T^{+}}+\pi\right)\right)\right]$.

Thus the value, σ_{L}, of σ at the leading edge (where $z=-c$) is given by

$$
\left\{\sigma_{L}-i\left(\theta_{T}+\pi\right)\right\}^{2}=\frac{2}{B d} \rho_{L} A e^{i \delta}\left[1+O\left(\frac{\rho_{L}}{c}\right)+O\left(\sigma-i\left(\theta_{T}+\pi\right)\right)\right] \ldots \text { (15) }
$$

Equation (15) shows that $\left\{\sigma_{L}-i\left(\theta_{T}+\pi\right)\right\}=O\left(p_{L} / c\right)^{\frac{1}{2}}$. Hence, sufficiently close to the leading edge, the errors in equations (14) and (15) can be represented by the factor $\left(1+O\left(\rho_{I} / c\right)^{\frac{1}{2}}\right)$, which is now understood to be the error in subsequent equations.

To calculate δ we use the condition that the tangent to the blade camber line at the leading edge should be parallel to the normal to the appropriate ψ-constant curve, or to the tangent to the orthogonal θ-constant curve. .Now, for a θ-constant curve,

$$
\left.\frac{\mathrm{dz}}{\mathrm{~d} \sigma} \right\rvert\,
$$

$$
\begin{equation*}
\frac{\mathrm{dz}}{\mathrm{~d} \sigma}=\frac{\mathrm{d} \mathbf{z}}{\mathrm{~d} \psi}=-\mathrm{Bd}\left\{\sigma-\mathrm{i}\left(\theta_{\mathrm{T}^{+}}+\pi\right)\right\} \tag{16}
\end{equation*}
$$

from equation (14). Thus the required condition is

$$
\begin{equation*}
\arg \mathrm{d} z=\arg \left[-\operatorname{Bd}\left\{\sigma-i\left(\theta_{\mathrm{T}}+\pi\right)\right\}\right]=\arg \left\{\sigma-i\left(\theta_{\mathrm{T}}+\pi\right)\right\} \tag{17}
\end{equation*}
$$

since B is real. Thus with the value at the leading edge given by equation (15),

$$
\arg \mathrm{d} z=\frac{\delta}{2}
$$

while from Fig. 4, arg $\mathrm{dz}=\mathrm{E}_{\mathrm{I}}$. Thus

$$
\begin{equation*}
\delta=2 \varepsilon_{\mathrm{L}} \tag{18}
\end{equation*}
$$

Once δ has been found, the condition that the radius of curvature of the appropriate ψ-constant curve and the radius of curvature of the leading edge should be the same, can be used to find A. The curve in the z-plane in the neighbourhood of I^{\prime} which corresponds to a small arc of a circle, centre the origin, in the ζ-plane is given by

$$
\begin{align*}
& x=\left\{-c+\rho_{L} A \cos \delta-\frac{B d}{2} \psi^{2}\right\}+\frac{B d}{2}\left(\theta-\theta_{T}-\pi\right)^{2}, \\
& y=\rho_{L} A \sin \delta-B d \Psi\left(\theta-\theta_{T}-\pi\right), \tag{19}
\end{align*}
$$

and its radius of curvature is given by

$$
\frac{\left[\left\{\operatorname{Bd}\left(\theta-\theta_{T}-\pi\right)\right\}^{2}+(-\operatorname{Ba} \psi)^{2}\right\}^{\frac{3}{2}}}{-(-\operatorname{Bd} \psi) \mathrm{Bd}}=\frac{\operatorname{Bd}\left\{\psi^{2}+\left(\theta-\theta_{T}-\pi\right)^{2}\right\}^{\frac{3}{2}}}{\psi}
$$

Now at the leading edge, equation (15) gives the values

$$
\psi=\psi_{L}=\left(\frac{2 \rho_{L} A}{B d}\right)^{\frac{1}{2}} \cos \frac{\delta}{2} ; \theta=\theta_{L}=\theta_{T}+\pi+\left(\frac{2 \rho_{L} A}{B d}\right)^{\frac{1}{2}} \sin \frac{\delta}{2}
$$

Equation (20) then yields

$$
\begin{align*}
& \rho=\operatorname{Bd}\left(\frac{2 \rho_{L} A}{B d}\right)^{\frac{3}{2}} /\left\{\left(\frac{2 \rho_{L} A}{B d}\right)^{\frac{1}{2}} \cos \frac{\delta}{2}\right\} \\
&=2 \rho_{L} A \sec \epsilon_{L}, \quad \text { from equation (18), } \\
& A=\frac{1}{2} \cos \epsilon_{L} . \tag{21}
\end{align*}
$$

which gives
Now that A and δ have been found it is a simple matter to calculate, from Fig. 4, the values of the parameters $\delta \beta$ and δc in terms of the blade geometry. They are

$$
\left.\begin{array}{l}
\delta \beta=\frac{\rho_{L}}{2 c} \cos \epsilon_{L} \sin 2 \varepsilon_{L}, \tag{22}\\
\frac{\delta c}{c}=\frac{\rho_{L}}{2 c} \cos \epsilon_{L} \cos 2 \epsilon_{L}
\end{array}\right\}
$$

8. The Flow about the Cascade

We proceed to describe the method by which the flow about the cascade is calculated now that the transformations which map a given cascade onto a circle have been completely determined.

Consider the flow in the Z-plane about the circle $|Z|=R$ given by the complex potential

$$
\begin{align*}
\Omega(Z)= & \frac{V d}{2 \pi}\left[e^{i \alpha} \log \frac{\beta_{1}+Z}{\beta_{2}-Z}+e^{-i \alpha} \log \frac{Z+R^{2} / \bar{\beta}_{1}}{Z-R^{2} / \bar{\beta}_{2}}\right] \\
& -\frac{i \Gamma}{4 \pi} \log \frac{\left(Z+R^{2} / \bar{\beta}_{1}\right)\left(Z-R^{2} / \bar{\beta}_{2}\right)}{\left(Z+\beta_{1}\right)\left(\beta_{2}-Z\right)} \tag{23}
\end{align*}
$$

which arises from concentrated sources, sinks and vortices placed as shown in Fig. 8, where $-\beta_{1}, \beta_{3}$ are the points corresponding to the points at infinity in the plane of the cascade.
$W=|d \Omega / \partial Z|$, the speed on the circle*, can be calculated as

$$
h=+\frac{1}{4 R}\left\{\frac{m_{a}-\frac{1}{m_{2}}}{\frac{1}{2}\left(m_{2}+\frac{1}{m_{2}}\right)-\cos \phi_{2}}\right\},
$$

[^0]and
\[

$$
\begin{equation*}
\mathrm{m}_{1}=\left|\beta_{1}\right| \mathrm{R}^{-1}, \mathrm{~m}_{2}=\left|\beta_{2}\right| \mathrm{R}^{-1} \tag{26}
\end{equation*}
$$

\]

Fig. 8 should be consulted for the definitions of ϕ_{1} and ϕ_{2}.
We must now discover the interpretation that should be placed on the variables V and α appearing in equations (23) and (24), in terms of the physical properties of the flow through the cascade. It will be shown that, in fact, $V e^{i \alpha}$ is the vector mean of the inlet and outlet velocities, $V_{1} e^{i \alpha_{1}}$ and $V_{2} e^{i \alpha_{2}}$; the angles α, α_{1} and α_{2} being measured from the line perpendicular to the stagger line (see Fig. 9).

The velocity in the z-plane is obtained from the equation

$$
\begin{equation*}
\frac{d \Omega}{d z}=\frac{d \Omega}{d Z} \cdot \frac{d z}{d \zeta^{\prime}} \cdot \frac{d \zeta^{\prime}}{d \zeta} \cdot \frac{d \zeta}{d z^{\prime}} \cdot \frac{d z^{\prime}}{d z} \tag{27}
\end{equation*}
$$

the terms of which can be evaluated using equations (1), (2), (3) and (23). Considering the flow at infinity upstream of the cascade we have from equation (27), since we are taking the direction of flow to be from left to right,

$$
\begin{equation*}
\left[\frac{d \Omega}{d z}\right]_{-\infty} \equiv \cdot V_{1} e^{i\left(-\alpha_{1}+\beta\right)}=V e^{i(\alpha+\beta)}+\frac{i \Gamma}{2 d} e^{i \beta} \tag{28}
\end{equation*}
$$

Similarly the outlet velocity vector is

$$
\left[\frac{\mathrm{d} \Omega}{\mathrm{dz}}\right]_{+\infty} \equiv \mathrm{V}_{2} \mathrm{e}^{\mathrm{i}\left(-\alpha_{2}+\beta\right)}=\mathrm{Ve}^{i(\alpha+\beta)}-\frac{\mathrm{i} \Gamma}{2 \mathrm{~d}} \mathrm{e}^{i \beta}
$$

Addition of equations (28) and (29) shows that the mean of the inlet and outlet velocities has magnitude V and is at an angle $(\alpha+\beta)$ to the x-axis. We can also show that the inlet and outlet angles are given by

$$
\alpha_{1}=-\tan ^{-1}\left(\frac{\sin \alpha+\frac{\Gamma}{2 v a}}{\cos \alpha}\right) ; \alpha_{2}=-\tan ^{-1}\left(\frac{\sin \alpha-\frac{\Gamma}{2 v a}}{\cos \alpha}\right) \cdot \ldots \text { (30) }
$$

In the practical problem of finding the flow about a cascade we will be given the inlet velocity $V_{1} e^{i \alpha_{1}}$ and the Joukowski condition at the trailing edge of the blade, from which the outlet velocity $V_{2} e^{i \alpha_{2}}$ is calculated as follows. Rewrite equation (24), using equations (30), as

$$
\begin{equation*}
W=\frac{V_{1} d \cos \alpha_{1}}{\pi}\left(f-g \tan \alpha_{1}-h \tan \alpha_{a}\right) \tag{31}
\end{equation*}
$$

in which $V \cos \alpha$ has been replaced by $V_{1} \cos \alpha_{1}$, from the real part of equation (28). Then, for a stagnation point at the trailing edge, we have

$$
\begin{equation*}
f_{T}-g_{T} \tan \alpha_{1}-h_{T} \tan \alpha_{2}=0 \tag{32}
\end{equation*}
$$

where the suffix T denotes values at the point on the Z-plane circle which corresponds to the trailing edges of the blades. Thus the outlet angle is given by

$$
\begin{equation*}
\alpha_{2}=\tan ^{-1}\left(\frac{f_{T}-g_{T} \tan \alpha_{1}}{+h_{T}}\right) \tag{33}
\end{equation*}
$$

Also, from equations (28) and (29), the outlet velocity is given by

$$
\begin{equation*}
V_{2}=V_{1} \cos \alpha_{1} \sec \alpha_{2} \tag{34}
\end{equation*}
$$

The speed, W, on the circle can now be evaluated from equation (31)
since α_{2} is known. It is clear that, in our case, it will be most convenient to calculate W at the points on the circle with the angular displacements ϕ which result from Theodorsen's transformation; that is, corresponding to the interpolated, equally-spaced points on the near circle in the そ'-plane. The points on the cascade corresponding to these can then be traced back through transformations T_{2} and T_{1}. The speed, v, at these points on the cascade can then be calculated using the moduilus of equation (27), which becomes

$$
\begin{equation*}
\left|\frac{d \Omega}{d z}\right|=v=W\left|\frac{d z}{d \zeta^{\prime}}\right| \cdot\left|\frac{d \zeta}{d z^{\prime}}\right|, \tag{35}
\end{equation*}
$$

since $\left|d \zeta^{\prime} / d \zeta\right|=1, T_{a}$ being merely a translation. $\left|d Z / d \zeta^{\prime}\right|$ is calculated as part of Theodorsen's method (see Thwaites, 1963); $|\mathrm{d} / \mathrm{hz}|$ can be derived from equation (1) and is given by

$$
\left|\frac{d z^{\prime}}{d \zeta}\right|=\frac{2 d}{\pi\left|z^{\prime}\right|} \times
$$

The pressure on an aerofoil is usually giver in terms of the pressure coefficient C_{p}, defined as $\left(p-p_{1}\right) / \frac{1}{2} p_{1} \sqrt{1}$, where p_{1} is the free-stream pressure. Thus, by Bernoulli's equation

$$
\begin{equation*}
c_{p}=1-\frac{\nabla^{2}}{v_{1}^{2}} \tag{42}
\end{equation*}
$$

In the case of a profile with a cusped trailing edge, W and $|\mathrm{dz} / \mathrm{d} \zeta|$ are of course both zero at the trailing edge, so that v has to be calculated as a limit. It is easily found that

$$
\begin{equation*}
\nabla_{T}=\left|\frac{d \Omega}{d z}\right|_{T}=\left.\left|\frac{d Z}{d \zeta}\right|_{T}\left|\frac{d^{2} \Omega}{d Z^{2}}\right|_{T}| |_{T \zeta^{2}}\right|_{T} \tag{37}
\end{equation*}
$$

where, from equation (1),

$$
\begin{equation*}
\left|\frac{d^{2} z}{d \zeta^{2}}\right|_{T}=\frac{d\left\{\cosh ^{2} \gamma-\sin ^{2}(\beta-\delta \beta)\right\}^{\frac{3}{2}}}{\pi(\sinh \gamma \cosh \gamma)^{2}} \tag{38}
\end{equation*}
$$

and from equations (23) and (30),

$$
\begin{equation*}
\left|\frac{d^{2} \Omega}{d Z^{2}}\right|_{T}=\frac{\nabla_{1} d \cos \alpha_{1}}{2 \pi}\left(P^{2}+Q^{2}\right)^{\frac{1}{2}} \tag{39}
\end{equation*}
$$

In equation (39), P and Q are given by

$$
\begin{align*}
& P=-A_{1}+A_{2}-A_{3}+A_{4}-\tan \alpha_{1}\left(B_{1}-B_{2}\right)+\tan \alpha_{2}\left(B_{2}-B_{4}\right), \\
& Q=-B_{1}+B_{2}-B_{3}+B_{4}+\tan \alpha_{1}\left(A_{1}-A_{3}\right)-\tan \alpha_{2}\left(A_{2}-A_{4}\right), \tag{40}
\end{align*}
$$

and

$$
\begin{aligned}
& A_{1}=A\left(m_{1}, \phi_{1 T}\right), \\
& B_{1}=B\left(m_{1}, \phi_{1 T}\right), \\
& A_{2}=A\left(-m_{2}, \phi_{2 T}\right), \\
& B_{2}=B\left(-m_{2}, \phi_{2 T}\right), \\
& A_{3}=A\left(1 / m_{1}, \phi_{1 T}\right), \\
& B_{3}=B\left(1 / m_{1}, \phi_{1 T}\right), \\
& A_{4}=A\left(-1 / m_{2}, \phi_{2 T}\right), \\
& B_{4}=B\left(-1 / m_{2}, \phi_{2 T}\right),
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{\frac{1}{2}\left(\frac{1}{m}+m \cos 2 \phi\right)+\cos \phi}{2 m R^{2}\left\{\cos \phi+\frac{1}{2}\left(m+\frac{1}{m}\right)\right\}^{2}} \underset{\sin \phi+\frac{1}{2} m \sin 2 \phi}{2 m R^{2}\left\{\cos \phi+\frac{1}{2}\left(m+\frac{1}{m}\right)\right\}^{2}}\right\} \tag{41}
\end{equation*}
$$

9. Test Examples

(a) Merchant and Collar Cascade

To test the foregoing theory, a flow was required whose properties can be determined exactly, but which was not derived by Garrick's transformation. The most convenient method of producing such a flow seemed to be that of Merchant and Collar (1941) which has also been used for comparison purposes by other recent workers, especially by Gostelow (1963).

Merchant and Collar's analysis is not reproduced here, but the blade shown in Fig. 10 was derived by a straightforward calculation using the following values of the parameters in the original notation:-

$$
\begin{aligned}
& \text { Stagger angle }=37.5^{\circ} \\
& \beta=0.725 \\
& \beta^{\prime}=0.8 \\
& \text { Co-ordinates of the centre of the } \beta^{\prime} \text {-oval } \\
& \text { in the } b \text {-plane }=(-0.06320,+0.11251) .
\end{aligned}
$$

For the application of the present method to fhis cascade, it is necessary to specify the blade shape as a set of points whose co-ordinates could be used as input data. Two sets of co-ordinates were in fact used, one of 30 points and the other of 40 points; and upon these were based respectively the 20 -point* and 40 -point programmes. The set of 40 chosen points is indicated on Fig. 10, on which is also given the points on the blade which were found, after calculation, to correspond to the equally-spaced points in the ζ^{\prime}-plane. Fig. 11 shows, for the 40 -point programme, the

contour/

[^1]contour in the ζ-plane and also this contour when displaced by the transformation T_{2}; again the given points and interpolated points are shown. This figure indicates how successfully the choice of parameters in T_{1} has avoided the irregularities usually present in contours obtained by transformations.

The flow about this given Merchant and Collar cascade has been calculated exactly for an inlet flow angle $\alpha_{1}=53.5^{\circ}$, namely that used by Gostelow (1963). The exact pressure distribution for this inlet angle is shown in Fig. 12 on which are also plotted the points calculated by the 20-point and 40-point programmes. These calculated points agree very well with the exact result and it is surprising that the 20 -point calculation seems almost as satisfactory as the 40-point. No doubt, the accuracy of the calculations could be further improved by taking more than 40 points. (It may be further noted that 40 -point calculations come close to using all the available storage space on the Pegasus computer used here; blade profiles specified at many more points could, of course, be handled on larger machines.)

The outlet angle has also been calculated using the 40-point and 20 -point programes and is compared in the following table with the exact value.

	Exact value	40-point	20-point
$\tan \alpha_{2}$	0.57793	0.57808	0.57704
\% error	-	0.026	-0.154

Some of the other methods of calculating cascade pressure distributions have recently been applied to the same Merchant and Collar cascade. Fig. 13 shows results obtained by Gostelow (1963) using Schlichting's singularity method, and by Rolls-Royce Ltd.* using the singularity method of Martensen (1959), compared with the values obtained by the 40-point programme. The reader may draw his own conclusions.

(b) Cascase of $10 C 4 / 30 c 50$ aerofoils

In a recent report, Pollard and Wordsworth (1962) have compared two theoretical methods of solving the direct problem of cascade flow. Their methods were: first, a conformal-transformation method based on Howell's transformation and second, a modified version of Schlichting's singularities method. They have calculated the pressure distributions and deviation angles for a cascade of $1004 / 30 C 50$ aerofoils with gap-chord ratio unity, for a variety of stagger angles.

Further interesting comparison can be made by applying the present method to the same examples. We have thus used a $1004 / 30 C 50$ aerofoil given at 32 points as shown in Fig. 15. These are derived from the 17 values of the C4 thickness distribution given in Howell (1946) which were also the basis of Pollard and Wordsworth's calculations.

It will be noted that the C4 profile has a non-zero trailing-edge radius of curvature. To take account of this the proceeding theory must be modified slightly at the stage when the axes of the z-plane are being fixed. The position of T, the trailing edge, must'be moved away from $T^{\prime \prime}$, the corresponding singularity of the transformation, in the same way as, at the leading edge, L was moved away from L '.

Fig. 14 shows the general position of a blade relative to the co-ordinates in the z-plane. The transformation T_{1} is now given by equation (43) of Fig. 14, where δz is calculated by an argument similar to that used in Section 7 to find $\delta \beta$ and δc. δz and the now modified expressions for $\delta \beta$ and δc are given by equations (44) to (46) on Fig. 14.

Initially we consider a cascade with stagger angle 36°. The computations were based on 32 equally-spaced points interpolated in the $\zeta^{\prime}-\mathrm{plane}$ from the 32 initially specified points. The interpolated points and the points in the ζ - and z-planes corresponding to them are shown in Figs. 15 and 16. Retaining the inlet angle of 51° used by Pollard and Wordsworth, the pressure distribution has been calculated and is compared on Fig. 17 with the results obtained by their two methods.

Over the central parts of the blade, the results from the two conformal transformation methods lie, on the whole, very closely together and both differ significantly from the values given by the distributed singularities method. However, there are some striking differences between the conformal transformation methods in the neighbourhood of the leading-edge pressure peaks.

The lift coefficient has been independently calculated from the integrated pressure distribution and from the total angle through which the flow is turned, and is given in the following table, for a stagger angle of 36° :

Integrated pressure distribution	Turning angle	$\%$ difference
0.724	0.720	0.6

Pollard and Wordsworth give the difference for this calculation as $\frac{1}{2} \%$ in the Howell transformation case and 1% in the singularities case.

One of the most disturbing results for practical design is the lack of agreement which Polland and Wordsworth found between the curves of deviation V. stagger when calculated by Howell's and the singularities method.s. The curve obtained by the present method, shown in Fig. 18, is not in close agreement with either of the other curves, and until many more cases are calculated, it is difficult to draw any firm conclusion.
10. Conclusions

A method has been produced to calculate the potential flow about a given two-dimensional cascade of aerofoils. It has been programmed for a Pegasus computer and needs no intermediate curve-plotting.

Comparisons with an exactly-known flow have been made. Excellent agreement between the exact and calculated pressure distributions is achieved; in particular the fluid outlet angle is given to three significant figures. It appears likely that the method will give results superior to those obtained from other methods of treating the problem such as those based on the work of Schlichting (1955) and Martensen (1959). The Schlichting method, in the modified form of Pollard and Wordsworth (1962), may be the least satisfactory.

With a cascade of $1004 / 30050$ aerofoils, comparison between the present method and the methods developed by Pollard and Wordsworth (1962) shows that, of the latter methods, that based on Howell's transformation gives the closest agreement except for the leading-edge pressure peaks. Once again the results based on Schlichting's singularity method differ substantially from those of the transformation methods. The curve for the deviation angle as a function of stagger obtained by the present method lies a little lower than those obtained by Pollard and Wordsworth. Experimental investigation of the pressure distrikution and the variation in deviation angle for this profile would be of interest.

Satisfactory results from the present method have been obtained for cascades of low cambered profiles using at most 40 point progranmes which require $1 \frac{1}{2} \mathrm{hr}$ computing time in the Autocode version given in this paper. A Pegasus machine orders version has also been prepared which allows calculations using up to 70 points to be carried out and which reduces the computing time to 20 min . When it is noted that this time would be reduced to under 10 sec on an Atlas computer, the possibility presents itself of using the method as a part or subroutine of an iterative design calculation.

		References
Betz, A.	(1942)	Diagrams for calculation of airfoil lattices. Tech. Memor. nat. adv. Comm. Aero., Wash. 1022.
```Carter, A. D. S. and Hughes, H. P.```	(1946)	A theoretical investigation into the effect of profile shape on the performance of aerofoils
		in cascade.   Rep. Memor. aero. Res. Coun., Lond. 2384.
Collar, A. R.	(1940)	Cascade theory and the design of fan straighteners.   Rep. Memor. aero. Res. Coun., Lond. 1885.
Czibere, T.	(1960)	Computation method for the design of straight aerofoil lattices with strongly curved profile blades (in German).   Acta tech. Fung. 28, 43.
Garrick, I. E.	(1944)	On the plane potential flow past a lattice of arbitrary aerofoils. Rep. nat. adv. Comm. Aero., Wash. 788.
Gostelow, J. P.	(1963)	To be published.
Howell, A. R.	(1946)	Fluid dynamics of axial compressors. Proc. Instn. Mech. Engrs., Lond. 153, 441.
Howell, A. R.	(1948)	A theory of arbitrary aerofoils in cascade. Phil. Mag. Z, 913.
Isay, W. H.	(1953)	Beitrag zur Potentialströmung durch axiale Schaufelgitter.   Z. angew. Math. Mech. 33, 397.
Katzoff ${ }^{\text {, S., }}$	(1947)	Interference method for obtaining potential
$\begin{aligned} & \text { Finn, R. G. } \\ & \text { and } \end{aligned}$		flow past an arbitrary cascade of airfoils. Rep. nat. adv. Comm. Aero., Wash. 879.
Laurence, J. C.		
Kopal, Z .	(1955)	Numerical Analysis. Chapman and Hall, London.
Martensen, E.	(1959)	Die Berechnung der Druckverteilung an dicken Gitterprofilen mit Hilfe von Fredholmshen Integralgleichungen zweiter Art. Mitt. Max-Plank-Inst. 23.
Merchant, W.	(1940)	Flow of an ideal fluid past a cascade of blades. Rep. Memor. aero. Res. Coun., Lond. 1890.
Merchant, W. and	(1941)	Flow of an ideal fluid past a cascade of blades (Pt.II).
Collar, A. R.		Rep. Memor. aero. Res. Coun., Lond. 1893.
Murai, H.	(1955)	```Theory on the cascade flow of any form of aerofoil with large camber and thickness ratios (in German). Z. angew. Math. Mech. 35, 48.```
Mutterperl, W.	(1944)	A solution of the direct and inverse potential problems for arbitrary cascades of airfoils. Wartime Rep. nat. adv. Comm. Aero., Wash. WRI E1 Polásek, J./


Polásuek, J.	(1959)	```On the calculation of the non-viscous incompressible flow for a plane cascade (in German). Z. angew. Math. Mech. 39, 495.```
Pollard, D. and   Wordsworth, J.	(1962)	A comparison of two methods for predicting the potential flow around arbitrary airfoils in cascade. Curr. Pap., aero. Res. Coun., Lond. 618.
Riegels, F. W.	(1961)	Fortschritte in der Berechnung der Strömung durch Schaufelgitter.   Z. Flugwiss. (1961) 9, 2.
Schlichting, H .	(1955)	Berechnung der reibungslosen inkompressiblen Strömung für ein vorgegebenes ebenes Schaufelgitter. Forschlteft Ver. dtsch. Ingen., Berlin, 21, 447.
Theodorsen, T.	(1932)	Theory of wing sections of arbitrary shape. Rep. nat. adv. Comm. Aero., Wash. 411.
Thwaites, B.	(1963)	On the numerical calculation of Theodorsen's transformation.   Curr. Pap., aero. Res. Coun., Lond. 691.
Watson, E. J.	(1945)	Formulae for the computation of the functions employed for calculating the velocity distribution about a given aerofoil. Rep. Memor. aero. Res. Coun., Lond. 2176.
Wu, Chung-Hua	(1952)	A general theory of three-dimensional flow in subsonic and supersonic turbo-machines of axial, radial and mixed-flow types. Tech. Notes nat. adv. Conm. Aero., Wash. 2604.

## APPENDIX

## Computing Progranmes and Detailed Formulae

A description is given here of the programme used in the calculation of the pressure distribution and outlet velocity for a given cascade, and the required form in which the data must be made up, together with formulae too detailed to be suitable for presentation in the main part of the report.

The calculation has been programed for a Ferranti Pegasus machine using the Automat progranme code which allows both arithmetic and matrix instructions to be written in the same programme. Automat is a combination of the usual Pegasus Autocode and the Matrix Interpretive Scheme which has been made up by Dr. Samet of the Computation Laboratory, Southampton University. It can be used only on Pegasus machines which have a large drum.

The complete calculation programme is arranged as a series of nine sub-programes each dealing with a distinct part of the calculation. The sub-programes mun consecutively using information calculated and stored from stage to stage, giving a completely automatic solution. The maximum number of blade points which can be dealt with is 40 . The annotated programme shown at the end of this Appendix applies only to blades with cusped trailing edges although a more general programme which can be used for blades with both cusped and rounded trailing edges has also been produced. A description of the sub-programes follows.

Sub-Programme 1. Calculation of the Transformation Parameters
Given the cascade parameters $\beta$, and $c / \alpha$, together with the blade characteristics $\rho_{I} / c$ and $\epsilon_{L}$, the parameters $\delta \beta$ and $\delta c$ are calculated using equations (22). The transformation parameters ( $\beta-\delta \beta$ ) and ( $c-\delta c$ ) are then set up and the related parameter $\gamma$ is calculated from equation (6) using Newton's root finding procedure. In fact it has been found simpler to perform the iterations involved to find the quantity $Q$ which is defined by

$$
Q^{2}=\cosh ^{2} y-\sin ^{2}(\beta-\delta \beta) .
$$

Thus equation (6) is rewritten as
$G(\dot{Q}) \equiv \frac{\sin (\beta-\delta \beta)}{Q}-\tan \left[\frac{\pi c}{2 \alpha \sin (\beta-\delta \beta)}-\cot (\beta-\delta \beta) \log \left\{\frac{Q+\cos (\beta-\delta \beta)}{\left\{Q^{2}-\cos ^{2}(\beta-\delta \beta)\right\}^{\frac{1}{2}}}\right\}\right]$
$=0 . \quad \ldots(47)$
Also required is


To obtain a good initial value of $Q$ we note that, in Fig. 2 of Garrick (1944), for a given value of $y$ the variation of $(c-\delta c)$ with $(\beta-\delta \beta)$ is small. Thus we may put $(\beta-\delta \beta)=0$ in equation (6) to obtain the following approximation to cosh $\gamma:-$

$$
\begin{equation*}
\cosh y=\operatorname{coth}\left[\frac{\pi(c-\delta c)}{2 d}\right] \tag{49}
\end{equation*}
$$

This expression is used to calculate the first approximation to $Q$. Once $y$ has been calculated, $\theta_{T}$ is found from equation (5).

The required input data for this programme is as follows:-
specified accuracy for the complete calculation expressed
as the number of significant binary digits
$\beta$ - the stagger angle
c/d - chord/pitch
$\rho_{I} / c$ - leading-edge radius of curvature/chord
$\epsilon_{L}$ - direction of the leading-edge normal
d - pitch.
Sub-Programme 2. Reduction of the Blade Data to a Standard Form
The cartesian co-ordinates of an individual blade of the cascade with its chord line along the $x$-axis are first of all transformed so that the trailing edge is at the origin. The blades are now in the position shown in Fig. 4b. These co-ordinates are then transformed so that the blade is rotated by $-\delta \beta$ and the trailing edge moved to the point $\left(\frac{1}{2}(c-\delta c), 0\right)$. This is done so that the simpler form of the original Garrick transformation can be used in sub-programme 3 and the blade co-ordinates thus transformed will be in the $z^{\prime}$-plane.

An additional part of this sub-programe can be called upon by reading in a non-zero camber angle, to generate blades made up from a thickness distribution on a circular arc camber line.

The form of the input data for this programme follows. It should be noted that the blade points or thickness distribution must be read in consecutively, starting with the trailing-edge value.

$$
+1 \text {, input parameter }
$$

Camber angle
Number of given blade points
Blade co-ordinates in cartesian form or thickness distribution based on unit chord.

## Sub-Programe 3. $T_{1}$ - Transformation to the $\check{\zeta}$-plane

This sub-programme starts with the transformed trailing-edge point which is known to be $e^{2} \mathrm{~T}$, so that $\sigma_{0}=i \theta_{T}$, and a step-by-step procedure for calculating in turn the value of $\zeta$ corresponding to each value of $z$, is followed from there. In general, to go from a point $z_{n}^{\prime}$, at which $\sigma_{n}$ is known, to $z_{n+1}^{\prime}$, the difference $d z_{n}^{\prime}=z_{n+1}^{\prime}-z_{n}^{\prime}$ is formed and used in the formula

$$
\begin{equation*}
d \sigma_{n}^{(0)}=\frac{d z_{n}^{\prime}}{e^{\sigma_{n}^{-}} F^{\prime}\left(\sigma_{n}\right)} \tag{50}
\end{equation*}
$$

where | $\sigma=\psi+i \theta$ and |  |
| :--- | :--- |
|  | $F^{\prime}(\sigma)=A+i B$ |

and
$\frac{\pi A}{4 d}=\frac{\sinh \psi\left[\cos (\beta-\delta \beta) \cos \theta \cosh \gamma\left(c \operatorname{sh}^{2} \gamma-\cosh ^{2} \psi-\sin ^{2} \theta\right)+\sin (\beta-\delta \beta) \sin \theta \sinh \gamma\left(\cosh ^{2} \gamma+\cosh ^{2} \psi-\sin ^{2} \theta\right)\right]}{\cosh ^{2} 2 y-2 \cosh 2 y \cosh 2 \psi \cos 2 \theta+\sinh ^{2} 2 \psi+\cos ^{2} 2 \theta}$
$\frac{\pi B}{4 d}=\frac{\cosh \psi\left[\cos (\beta-\delta \beta) \sin \theta \cosh y\left(\sinh ^{2} y+\sinh ^{2} \psi+\sin ^{2} \theta\right)+\sin (\beta-\delta \beta) \cos \theta \sinh y\left(\cosh ^{2} \psi-\cosh ^{2} y-\sin ^{2} \theta\right)\right]}{\cosh ^{2} 2 y-2 \cosh 2 y \cosh 2 \psi \cos 2 \theta+\sinh ^{2} 2 \psi+\cos ^{2} 2 \theta}$.

Now $z_{n}^{\prime}(0)=F\left(\sigma_{n}+d \sigma_{n}^{(0)}\right)$ is calculated. In general this will not be the same as $z_{n+1}^{\prime}$, in which case the difference $d z_{n}^{\prime(1)}=z_{n+1}^{\prime}-z_{n}^{\prime}(0)$ is formed and used in equation (50) with $\sigma_{n}$ replaced by $\sigma_{n}+d \sigma_{n}^{(0)}$ giving $d \sigma_{n}^{(1)}$ and hence $z_{n}^{\prime(1)}$ which should be a closer approximation to $z_{n+1}^{\prime}$. The sequence is repeated until the desired accuracy is obtained. The method of iteration is illustrated in Fig. 19.

There are some modifications to this scheme which come into operation near the trailing edge. Once again the difference $d z_{0}^{\prime}=z_{1}^{\prime}-z_{0}^{\prime}$ is formed. However, since $F^{\prime}\left(\sigma_{0}\right)=0$, equation (50) is replaced by
where

$$
\begin{gather*}
d \sigma_{0}=\left[\frac{2 \mathrm{~d} z_{o}^{\prime}}{F^{\prime \prime}\left(\sigma_{0}\right)}\right]^{\frac{1}{2}},  \tag{54}\\
F^{\prime \prime}\left(\sigma_{0}\right)=\frac{d}{\pi} \frac{\left\{\cosh ^{2} y-\sin ^{2}(\beta-\delta \beta)\right\}^{\frac{3}{2}}}{\sinh ^{2} y \cosh ^{2} y} \tag{55}
\end{gather*}
$$

Now $z_{0,0}^{\prime}=F\left(\sigma_{0}+d \sigma_{0}\right)$ is calculated and if $\left|z_{1}^{\prime}-z_{0}^{\prime}\right|<\left|z_{1}^{\prime}-z_{0,0}\right|$ the interval ( $z_{0}^{\prime}, z_{1}^{\prime}$ ) is halved so that the end of the step to be taken is now at $z_{0}^{\prime}+\frac{1}{2}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)$. The approximation $z_{0,1}$ to this is calculated, and if $\left|\frac{1}{2}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)\right|<\left|z_{0}^{1}+\frac{1}{2}\left(z_{1}^{\prime}-z_{0}^{1}\right)-z_{0,1}^{1}\right|$ the end of the step is taken as $z_{0}^{\prime}+\frac{1}{4}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)$ and so on until $\left|\frac{1}{2^{p}}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)\right|>\left|z_{0}^{\prime}+\frac{1}{2^{p}}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)-z_{0, p}^{\prime}\right|$.
Once this condition has been fulfilled the iteration is allowed to continue in the way described in the previous paragraph to calculate, first of all, $\sigma_{0, p}$ corresponding to $z_{0}^{\prime}+\frac{1}{2^{p}}\left(z_{1}^{\prime}-z_{0}\right)$. The programme then calculates values of $\sigma$ at the end of each subinterval of length $\frac{1}{2^{p}}\left(z_{1}^{\prime}-z_{0}^{\prime}\right)$ until $z_{1}$
is reached. The procedure has been illustrated in Fig. 20. It has been designed to combat the possible poor convergence obtained by using equations (50) and (54) in the neighbourhood of the singularity situated at the trailing edge.

The input data for this programme is:-
+1 , input parameter.

Sub-Progranme 4. $T_{2}$ - Change of Origin
$\bar{\zeta}$ is calculated according to the procedure of Section 5. The contour in the $\zeta$-plane is then transformed to the $\zeta^{\prime}$-plane by $\mathrm{T}_{2}$.

The input data required is:-
+1, input parameter.
Sub-Programme 5. Lagrangian Interpolation of Points at Equal Angles
Values of $\psi^{\prime}$ are interpolated at equally spaced values of $\dot{\theta}^{\prime}$ starting with $\theta_{\mathrm{T}}$, using Lagrangian interpolating polynomials of the seventh order based on four given points on each side of the point being interpolated. Any number of interpolated points, within the overall maximum of 40 points, can be produced.

The input data required by the programme is as follows:-

> +1, input parameter.

Number of interpolated points required.
Sub-Programme 6. $\mathrm{T}_{3}$ - Theodorsen's Transf'ormation with Lagrangian Differentiation
The programme calculates $\Psi(\phi), \bar{\Psi}, \in$ and $\left|\alpha \zeta_{3} / d Z\right|$ using $T_{3}$. Thwaites (1963) should be consulted for details of the analysis. Some small changes have, however, been made to his method. First, six terms of the series for $\Psi$ or $\in$ (equations (18) and (20) of Thwaites (1963)) were found to give surficient accuracy. . Second, his differentiation matrix ( $D$ ) has been replaced by one which produces Lagrangian derivatives based on three values on either side of the position at which the derivative is required. The coefficients used were taken from Kopal (1955).

The input data required for this progranme is:-
+1 , input parameter.
Sub-Programme 7. The Position of the Singularity Points in the Z-Plane
The position of singular points in the $\zeta^{\prime}-\mathrm{plane}$, i. e., $\mp \mathrm{e}^{y}+\bar{\zeta}$, are calculated and then referred to the line $\arg \left(\zeta^{\prime}\right)=\theta_{T}$. The value of $\Psi(\phi)$, found in sub-progromme 6, is then used in a direct iteration of equation (4) to calculate the positions, $-\beta_{1}$ and $\beta_{2}$, of the singular points in the $Z-p l a n e$. For the purposes of computation the real and imaginary parts of equation (4) are required and are as follows. If $f(z)=p+i q$ then

$$
\begin{align*}
& \mathrm{p}=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{\left(X e^{-\bar{\Psi}} \cos \phi+Y e^{-\bar{\Psi}} \sin \phi-1\right) \Psi(\phi) \mathrm{d} \phi}{1-2\left(X e^{-\bar{Y}} \cos \phi+Y e^{-\bar{\Psi}} \sin \phi\right)+\left(X^{2}+Y^{2}\right) e^{-2 \bar{\Psi}}}  \tag{56}\\
& q=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{\left(X e^{-\bar{Y}} \sin \phi-Y e^{-\bar{\Psi}} \cos \phi\right) \Psi(\phi) d \phi}{1-2\left(X e^{-\bar{\Psi}} \cos \phi+Y e^{-\bar{\Psi}} \sin \phi\right)+\left(X^{2}+Y^{2}\right) e^{-2 \bar{\Psi}}} . \tag{57}
\end{align*}
$$

The input data required for this programme is:-

> +1, input parameter.

## Sub-Progranme 8. Interpolated Co-ordinates

The co-ordinates in the $\zeta$-plane corresponding to the equally-spaced interpolated values in the $\zeta^{\prime}$-plane are calculated using $T_{2}$. These ל-plane co-ordinates are then transformed by $T_{1}$ to give the interpolated points on the blade. [The programme comes to a stop fust before printing out the data required for a possible re-run of sub-programe 9. A short amount of blank tape should be punched out before running on, and the punched tape which follows preserved.]

The input data for this programe is:-
+1, input parameter.

## Sub-Programme 9. Velocities and Blade Pressure Distribution

With given values of the inlet angle and speed, the outlet angle and speed are calculated using equations (25), (33) and (34). W is now calculated using equations (25) and (31) and hence $v$ and $C_{p}$ are calculated from equations (35), (36) and (42). $\quad v$ and $\left|\frac{d \zeta}{d z}\right|$ will be printed only if handswitch 0 is depressed. The calculation of $\forall$ at a cusped trailing edge is a special case and is done by evaluating equations (37) to (41).

The input data required for this programme is as follows:-

$$
\begin{aligned}
& +1, \text { input parameter } \\
& \nabla_{1} \text { inlet speed } \\
& \alpha_{1} \text { inlet angle. }
\end{aligned}
$$

Other values of the inlet conditions can be considered by reading in new data in the form given above when the progranme has come to a stop, or the programme can be re-run at another time with the following data:-

```
+0, input parameter
* inlet speed
a1 inlet angle.
Special output from sub-progranme 8.
```


## Annotated Programme

The Automat programme which follows is amotated with reference to the equations of the text showing which instructions deal with each part of the calculation. It is iollowed by an example ahowing the required form for the data and also by a list of operating instructions.

Programme Operating Instructions
Notes:- $\quad S+R=$ Start and rum
$R=\operatorname{Run}$

* = Data or parameters on a separate tape. The remainder comprises the main programme tape.

All progranmes and data are read by tape reader 1.

Operating instruction	
$S+\mathrm{R}$	Sub-programe 1 -
R	Input data (cascade and blade parameters)*
$S+\mathrm{R}$	Sub-prograsme 2
R	Input data (blade co-ordinates)*
$S+\mathrm{R}$	Sub-programe 3
R	Input parameter
$S+\mathrm{R}$	Sub-programme 4
R	Input parameter
$S+R$	Sub-programme 5
R	Input parameter
R	Data (number of interpolated points required)*
$S+R$	Pre-set parameter instruction ( T 1600 )
R	Parameter (number of points)*
R	Sub-programme 6
R	Input parameter
$S+R$	T1600
R	Parameter (mmber of points)*
R	Sub-programme 7
R	Input parameter
$S+\mathrm{R}$	T1600
R	Parameter (number of points)*
R	Sub-programme 8
R	Input parameter
R	After stop and punching out some blank tape


Operating   instruction	
$S+R$	T1600
$R$	Parameter (number of points)*
$R$	Sub-programme 9
$R$	Data (inlet velocity)*
$R$	Further inlet velocity data, if required*.

Q6600
Read in AUTOMAT from magnetio tape.
D
N
PR.I CALCULATION OF TRANSFORMATION PARAMETERS

	Initial orders.
STOP	
$n_{2} 7=$ TAPE	Head in accuracy required.
V100 $=$ TAPES	Road in $\beta, c / a, p / a, e_{1} d_{\text {d }}$
$\begin{aligned} & v_{18=3 * 14159265} \\ & v 19=v 18 / 180 \end{aligned}$	Lill
$V_{10}=V_{100 X}$ V19	
vowvioixvic	
nosiza 7	
$v_{2}=2 \times v_{0}$	
$v_{4}=\operatorname{COS} v_{2}$	
$v^{2}=51 N 0$	Calculation of $80 / 0$ and $\delta \beta$ using oquations (22)..
$v 6=\operatorname{COSvo}$	
$v_{0}=0.5 \times v_{4}$	
$v_{34}=0 \cdot 6 \times 20$	
vor.sxv 5	
$v_{3} 5=06 \times v_{0}$	
$X v_{3}=v_{34} \times V_{103}$	
$v_{4}=v_{3} 5 \times v_{102}$	
$v_{5}=v_{4} / v_{19}$	
PR INTV3.3035	Print $80 / 0, \delta \beta$.
PRINTU524005	Print 00/o, ${ }^{\text {P }}$
XVIO=V゙ェ0-v4	
$\begin{aligned} & v_{I}=I_{3}-v_{3} \\ & v_{I O}=v_{I O I} \end{aligned}$	Caloulation of $\beta-8 \beta$ and $\frac{0-80}{d}$.
UIOI=VIXVIOI	
$v 103=v 5$	
vixESINvio	
$v_{12}=\operatorname{CoSv} \mathrm{IO}_{10}$	Constants required in the caloulation of $\gamma$.
$v_{13}=1 / v_{11}$	
$V_{14}=V_{12} \times V_{13}$	
UIS $=$ V12 $\times$ VI2	
UIfi=U12XVI4	$\sim$
$\nu_{0}=218 \times 0.5$	
visotor	
$v_{20} 0=v_{0 \times 1}$	
$v_{23}=v_{30 \times 1} v_{13}$	
PRINTUI,3035	
Sv8=0	Print $0-80$ and $\beta-8 \beta$
vo=violvig   PRINTVO,4065	Print $\frac{d}{}$ and $\beta-8 \beta$
$\mathrm{V}_{\mathrm{gO}}=20$	Store $\beta=8 \beta$

vozEXPVzo
$v_{I=1}+20$
$v_{3}=v_{0}-1 \quad$ First approximation to $Q=\left\{\cosh ^{2} \gamma-\sin ^{2}(\beta-\delta \beta)\right\}^{t}$.

## $n_{3}=0$ <br> 2）$n_{3}=n_{3}+1$ <br> ＋1124＝1／v22 <br> $U_{2 I}=v_{22} \times V_{22}$ <br> v25＝024×ข24 <br> $v_{5}=v_{2}$ I－v゙15 <br> $\rightarrow 3,0>v 5$ <br> $v_{4}=S Q R T v_{5}$ <br> vi＝viaz＋viz <br> $v_{0}=v_{1} / v_{4}$ <br> vo＝LOGVO <br> vo＝とI $4 \times$ VO $_{0}$ <br> vaがvizovo <br> $v_{0}=$ TANU $_{2} 6$ <br> ขK＝VIIXV24 <br> ข6ェข6～V。 <br> $v_{0}=v_{2} 6 x v_{2} 6$ <br> $v_{0}=\Sigma+v_{0}$ <br> vo＝ $20 \times V 5$ <br> $v_{0}=v_{1} \mathrm{~F} / v_{0}$ <br> VIェージIIXU25 <br>  <br> $v_{9}=-v_{6} / v_{7}$ <br> $v_{22}=v_{23}+v_{9}$ <br> $\rightarrow 5, v_{22}=v 8$ <br> $v 8=v_{2} 2$ <br> $\rightarrow 2$

5）$v_{1} \sum_{1}=v_{5}+1$
$v_{2}=v_{4}+v_{1}$
$U_{0}=L_{1} \operatorname{UG}_{2}$

PP．1NTV2．4065 PRINTVO． 4025 PRINTn ${ }^{2} 4000$	Print out ${ }^{\boldsymbol{Y}}, \gamma$ and the number of iterations．
$v_{91}=v_{2}$	Store $e^{y}$ ．
$>_{1}$	
$\begin{aligned} & \text { 3) } n_{3}=n_{3}+1 \\ & v_{22}=S Q R T v_{15} \\ & v_{22}=v 22+0.000001 \\ & \rightarrow_{2}=100>n_{3} \\ & \text { PRINTn } \end{aligned}$	Outlet sequence when an iteration of $Q$ isplies $\cosh ^{2} y<0$ ．


vo $=V_{12}$ xvir 2
$v_{3} 7=v o$
$v_{3} \mathcal{E}=$ v $^{2} 2 \times v{ }^{2} 3$
$v_{0}=1 / v_{2}$
$v_{1}=v_{0}+v_{2}$
$v_{2}=v_{2}-v_{0}$
$v_{0}=.5 \times v i$
$v I=v_{2 x}^{x} \cdot 5$
$v_{39}=v_{0} \times v_{0}$
$v_{40}=v_{10} V_{1}$
$v_{4 I}=v_{1} / v_{0}$
$v_{0}=v_{4} I / v_{3} 8$
$v_{1}=A R C T A N V_{0}$
$v_{42}=v_{1 / v i g}$
PFIITTV 2,3065
Print $\theta_{T}$ ．
$v_{94}=v_{42}$
v96＝vio3
$v_{99}=v_{103}$
v97＝0104
$v 98=v 101$
Calculation of $\theta_{T}$ using equation（5）． when consecutive approximations diffor by less then $\mathrm{m}_{0}$ binary digits．

D
N
N
PR． 2 REDUCTION OF BLADE COORDINATES TO STANDARD FORM

$\begin{aligned} & \overline{J 7090} \\ & \mathrm{Ji}_{\bullet 0} \end{aligned}$	Initial ordera．
$\frac{x, x_{1} x}{\text { STOP }}$	
$\mathrm{n}_{\mathrm{I}}=$ TAPE	Read in input parameter．
$\begin{aligned} & \rightarrow_{I_{4}, n I^{\prime}=I} \\ & v_{9} 6=T A P E_{4} \end{aligned}$	Read in parameters if calculation is started at this programme，
$\begin{aligned} & 14) \cup 100=T A P E \\ & n_{2}=T A P E \end{aligned}$	Read in camber angle（non－zero only with thickness
$n_{3}=2 \times r_{2}$	distribution），no．of given points and given coordinates．
$v_{151}=$ TAPEn $_{3}$	
$\begin{aligned} & v_{I} \delta=3=14159265 \\ & v_{1}=v_{18} / 180 \end{aligned}$	
viIo＝vg $8 \times v_{97}$   viII＝ $296 \times 297$	

$\overrightarrow{I O}, 0 \cdot r>v 100 \quad$ Jump to caloulation of standard forma
PRINTVI00． 3060
vioo $=$ voooxvig
$n_{4}=-1$
$n_{1}=n_{2}-I$
II）$n_{4}=n_{4}+1$
$n_{5}=2 \times n_{4}$
$n 6=n_{5}+x$
$n_{7}=n_{3}-n 6 \quad$ Calculation of blade coordinates with a oircular arc
$n_{7}=n_{7}+n_{3}$
camber line from a given thickness distribution and
ทクニラク＋148 oamber angle．
$n 8=\pi 7+1$
$n_{5}=n_{5}+15 \mathrm{I}$
n6＝n6＋151
$v_{0}=0.5-v n 5$
$v_{0}=v 0 \times v i 00$
U50＝SINUO
$v_{51}=\operatorname{cosvo}$
vo $=0.5 \times V I 00$
$v_{I=S I N}$
$v_{52}=1 / v_{1}$
$v_{53}=\operatorname{COSvo}$
v54＝viIIX0．5
vo $=0$ 50×v 52
v55＝vioaxvn6
$v_{I}=1+v_{5 S}$
$v_{2}=1-v 55$
$v_{\text {I }}=v_{\text {IX }}$
$v_{2}=v_{a} \times v_{0}$
$v I=I-v I$
$v_{2}=1-v_{2}$
$v_{5}=v_{2} \times v_{54}$
$v_{n_{7}}=v_{2} \times v_{54}$
$v_{1}=1+v_{55}$
$v_{2}=1-v_{5} 5$
$v_{1}=$ IIX $_{51}$
$v_{2}=v_{2} \times v_{51}$
$v_{I}=v_{I}-v_{53}$
$v_{2}=v_{2}-v_{53}$
vo $=v 54 \times v 52$
$v n 6=v o \times v i$
$v{ }^{n} 8=v_{0} \times v_{2}$
$\rightarrow I_{1}, n_{1}>n_{4}$
$X n_{2}=n_{3}-2$
so)vo=MODVIOz
$X n_{1}=1 n_{2-1}$
$\rightarrow 0,0.00000001>20 \quad$ End if $\delta \beta=0$.
PRINTVIIO.1025
PRINTVIII,2025
PRINTU99,2005
Print $0-\delta 0,0$ and $\delta \beta$.

$v_{55}=S$ INVO
Calculation of standard
XV56=COSvo
$257=0.5 \times V 110$

$n_{4}=-1$
12) $n_{4}=n_{4}+1$
$n_{5}=2 \times r_{4}$
$n_{5}=n_{5}+151$
n6:0.5+1
$v_{0}=v_{5}-v_{58}$
PRINTVO. 3045
PRINTVN6,4045 Print blade coordinates with trailing edge at the origin.
$v_{I}=00 \times v_{56}$
$v_{2}=00 \times v 55$
vo=ขn6xV 55
vor=-votvi
$v \operatorname{nnsevotv}_{57}$
PRINTUn5.4085
$v o=v n 6 \times v 56$
vn $6=00+v_{2}$
PRINTVN6. 4045 Print out blade coordinatos rotated through
$\rightarrow$ I2, $n_{1}>n_{4} \quad$ an angle - $\delta \beta$.

$n_{4}=n_{4}+1$	Store number of given points.
$\begin{aligned} & (\rightarrow 0) \\ & * * * * * * * * \end{aligned}$ $z$	Stop; to enable blade coordinates to be read in .

D
N
$\stackrel{N}{N}$
PR． 3 Tr－TRANSFORMATICN TO ZETA PLANE

J7090	Initial orders．
JIOQ	
STOP	

$n_{1}=T A P E \quad$ Read in input parameter
$\rightarrow 19, r_{1}=1$
$n_{2} 7=T A P E$
$v_{90}=T A P E 2$
$v_{94}=$ TAPE
$v_{9} 6=$ TAPE．$_{3} \quad$ Input if calculation is atarted with this programme．
$n_{4}=T A P E$
$176=2 \times n_{4}$
VI 51＝TAPEn6
19）$v_{12}=096 \times 097$
グ： $0=127$
niz＝149
n6＝0
$n_{\eta}=1$

$n_{2}=151$ initial values for the atep－by－step calculation
$n_{3}=152$
$n_{13}=147$
$\operatorname{nin}_{4}=\mathrm{I}_{4} 8$
ni SE300
ni 6＝30I
$n 8=0$
ขI8＝3－I4I59265
vIg＝vi8／I80
UIO＝V90XVI9
$\frac{v_{14}=v_{94} \times v_{19}}{v_{4}=S I N V_{4}} \quad \theta_{0}=\theta_{T}$.
$v_{4} 7=\operatorname{COSV} 14$
nioto
$v_{0}=1 / 291$
vェニンgI－vo
$v_{2}{ }^{8}=v i x-5$
$v_{a}=v_{9} I+v_{0}$
$v_{29}=v_{2} X .5$
$v_{2} 6=\cos v_{10}$
va $7=S 1 N v i o$
$v_{3} 0=v_{29} \times v_{26}$
$v_{3} I=v_{2} 8 \times v_{27}$
$v_{32}=v_{2} 9 \times v_{29}$
$v_{33}=v_{32}-1$
vo $=2 \times v_{32}$
$v_{34}=v_{0-1}$
$v_{3} 5=v_{34} \times v_{34}$
vo＝ $4 \times V 97$
$v_{3} 6=v_{0} / v_{1} 8$
$v_{37}=0.125 \times v_{3} 6$
$v_{3} 8=0.5 \times v_{2} 6$
$v_{39}=-0.5 \times v_{27}$
$v_{2}=v_{32} \times v_{33}$
vo＝va7xva7
$v_{0}=v_{32}$－vo
vIESQRTVO
VOEVOXVI
vozaxvo
$v_{53}=v_{2} / v_{0} \quad \mathrm{P}^{n}\left(\sigma_{0}\right)$ 。
$v_{13}=0$
13）$n 8=98+1$
$\therefore 5=0$
ジ23 $=$ V12
nIa $=5122+2$
$n I=n I+2$
$n_{2}=n_{2}+2$
$n_{3}=n_{3}+2$

$n_{14}=$ nI $_{4}+2$
n土 5＝nis $5+3$
nictinicta
vทis $=E X P$ II $_{3}$
PRINTVni 3.3065
VnI4 4 VI4
$v_{0}=V_{14} / V_{19}$
PRINTVO．4085
ขnis＝ひ47
ขที $6=v_{4} 6$
$n_{7}=1$
v60＝vin2
$v 61=v n_{3} \quad$ s＇nos．
v66＝vin2－vnia
v67 $=v n_{3}-v n_{1}$ de．
$567=0 n_{3}$
$\$ 0,118 \geqslant n_{4}$
82）$v_{4} 6=5 \sin 1_{4}$
$v_{47}=\operatorname{COS} v_{4}$
$v_{4} 8=v_{4} 6 \times v_{4} 6$
$v_{49}=2 \times V_{48}$
$v_{49}=\mathrm{z}-v_{49}$
$v_{50}=v_{49} \times v_{49}$
$v_{0}=E X P V I_{3}$
$v_{I}=I / v_{0}$
Calculation of $\mathbf{a}^{\prime}(\zeta)$
$v_{40}=v_{0}+v_{1}$
$v_{40}=-5 \times v_{40}$
$v_{4} I=v_{0}-v_{1}$
$v_{4} I=-5 \times v_{4} I$
$v_{42}=v_{40} \times v_{40}$
$v_{43}=v_{42}-v$
$v_{44}=2 \times V_{42}$
$v_{44}=v_{44-1}$
$v_{45}=v_{44} \times v_{44}$
$v_{45}=v_{45}-\boldsymbol{I}$
$v_{I}=v_{32}+v_{42}$
$v_{5 I}=V_{1}-V_{4} 8$
$v_{0}=v_{33}+v_{43}$
$v_{52}=v 0+v_{4} 8$
$v_{2}=2 \times v_{47}$
$v_{0}=v_{3} \times v_{29}$
vo＝voxv40

vom SI＋VO
$v_{9}=v_{0} / v_{I}$
$v_{0}=v_{2} \times v_{2} 8$
ข $0=v_{0} \times V_{4} I$
$v_{I}=v_{53}-v i o$ vo＝U52＋U0
$v 8=v o / v I$
$V_{I I}=V_{2} 8 \times V_{40}$
$v_{2}=v_{29} \times V_{4} I$
$v_{0}=v_{1}-V_{2}$
vIモーVI－V2
$v_{7}=v_{4} 6 / v o$
$v 6=1{ }_{4} 6 / v I$

$v_{0}=v_{20} 0 v_{24}$
$V_{I}=V_{2} I X V_{25}$
vo＝vorvi
$v_{I}=v_{20} 0 \times v_{25}$
$v_{2}=v_{2} I \times v_{2} 4$
$v_{I}=V_{1}-V_{2}$
voェvoxva2
$V_{I=V I X V 22}$


10）$n 6=n 6+1$
v60 $0660+v 66$
Prooedure for setting up the next sub－step．
v6I＝U6Itv67
$\rightarrow \Sigma 6, n 6 * n 7$
$n 6=0$
$n_{S}=-1$
$\rightarrow$ I 6

18）$n 5=0$
$17=1$
$v_{23}=v_{12}$
$v 60=v n_{2}$
v6I＝Un3
v66＝0n2－09
v67＝v䄧～V8
nIo $0=1$
$\rightarrow$ I 6
$(\rightarrow 0)$

$+I$
＂むれホネホ＊

D
N
PR. 4 Tz - CHANGE OF ORIGIN

37090	Initial oraers.
dryerya	
STOP	
$n_{10}=T A P E$	Read in input parameter.
$\rightarrow 28, \mathrm{MIO}=1$	
$n_{4}=$ TAPE	
$n 6=11_{4} \times 2$	
$v_{149}=$ TAPE. 6	Input if the programme is run separately
$\begin{aligned} & v \mp 8=3.14159265 \\ & v 19=v \times 8 / \times 80 \end{aligned}$	
$n_{I}=148$ Used when programe is run separately	
$n_{7}=148+n 6$	
24) $n_{I}=n_{I+2}$	
$v n_{1}=v n_{1 \times 19}$	
$\rightarrow_{24}{ }^{\prime} n_{7}>n_{1}$	
28) $v_{94}=v_{150}$	
$n_{7}=300+n 6$	
$n_{2}=300$	
$n_{3}=301$	
$3_{4}=148$	
$\rightarrow 29, n_{10}=1$	
25) $n_{2}=122+3$	
$n_{4}=r_{3}+2 \quad$ Calculation of $\cos \theta_{n}, \sin \theta_{n}$ when the	
$v n_{2}=\operatorname{COSVn_{4}} \quad$ programme is run separately.	
$\begin{aligned} & v n_{3}=S \operatorname{SN} v n_{4} \\ & \rightarrow 25, n_{7}>n_{2} \end{aligned}$	
29) $\times 1060=2 \times 218$	
$v_{I} 4^{8=v(148+n 6)-v 69}$	oulation of
$X n y=146$	
$n_{2}=150$	
$n_{4}=250$	
$n_{7}=250+n_{5}$	
20) $n_{4}=n_{4}+1$	
$n_{1}=n_{1}+3$	
$n_{2}=n_{2}+2$	
$v o=v n_{2}-v n t$	
$v n_{4}=5 \times v 0$	

$v_{3}=0$
$v_{4}=0$
$v_{5}=0$
$v 6=0$
n土=147
$n_{4}=250$
$n_{2}=300$
$n_{3}=301$
2 I) $n_{4}=n n_{4}+1$
$n I=n I+2$
$\mathrm{H}_{2}=n_{2}+2$
$n_{3}=13_{3}+2$

$v n_{2}=v n_{1} \times v n_{2}$
$v n_{3}=v n_{1} \times v n_{3}$
$v_{0}=v_{2} \times v n_{2}$
$v_{I}=v_{2} \times v n_{3}$
$v_{I I}=2 n_{I} \times V_{1}$
$v_{I O}=V_{I I X} V_{1}$
$v_{3}=v_{3}+v_{2}$
$v_{4}=v_{4}+v_{0}$
$v_{5}=v_{5}+v_{1}$
$v 6=v 6+v 10$
$\rightarrow 2 I, n_{7}>n_{4}$
$v_{4}=v_{4} / v_{3}$
$v_{s}=v_{s} / v_{3}$
$v_{0}=v 6 \times 0.5$
vo=vo/vI 8
$v f=S Q R T V O$
Pr:INTV4.3065
PRINTV 5.4065
PFINTV6.4065
$\sqrt{92}=v_{4}$
Calculation of $\sum_{n=0}^{2 N-1} \frac{1}{2} r_{n}^{2} \sin \theta_{n}\left(\theta_{n+1}-\theta_{n-1}\right)$,

$$
\sum_{n=0}^{2 N-1} \frac{1}{2} x_{n}^{2} \cos \theta_{n}\left(\theta_{n+1}-\theta_{n-1}\right)
$$

.
$v_{23}=v_{5}$
Store 5 .
$v_{0}=v_{4} \times v_{4}$
$v_{I}=v_{5} \times v_{5}$
$v o=v o+v I$
$v_{0}=S Q R T V_{0}$
$v_{I}=v_{S} / v_{4}$
$V_{I}=A R C T A N V_{I}$
$v_{I}=V_{I} / V_{19}$
PRINTUO. 4065
PRINTV1.4085
$X V \eta=-100$
$X \cup_{9}=0$
no=199
クr=i 49
$n_{2}=300$
n3 $=301$
$n_{7}=199+n_{5} \quad$ Transformation of points to the S'plane
22) $n_{0}=n_{0}+1$
nr=11I+1
$n_{2}=122+2$
$n_{3}=n_{3}+2$
$v_{0}=v n_{2}-v_{4}$

$v_{2}=v o x v_{0}$
$v_{3}=v_{1} \times v_{1}$
$v_{2}=v_{2}+v_{3}$
ข $n_{0}=S Q R T V_{2}$ Store $e^{\phi 0}$ from location 200.
PRINTUno. 3065
v6=ขェ/vo
$v_{0}=A R C T A N v 6$
$\rightarrow 23, v 6>v 7$
$v_{9}=v_{9}+v_{1} 8$
23) $v n z=v_{0}+U_{9}$
$v_{7}=2: 6$
$v n_{1}=v n_{I} / v i g \quad$ Store $\theta$ from location 150
PRINTVnz,4085
$\rightarrow 22, n 7>n o$

XV95=U150
PFINTV 25.1008 Store and print 09.
$\begin{array}{ll}X n_{3}=I 49 \\ X n_{7} & =149+n_{5} \quad \text { Output of } \theta^{\prime} \text { and } e^{\phi \prime} \text { separately to }\end{array}$
$36 n_{3}=n_{3}+1$
PRINTVn ${ }_{3} \cdot 3085$ serve as data for the following
$\rightarrow 26, n_{7}>n_{3}$
$X n o=199$
$X n_{7}=199+n 5$
27)no=noti

PRI INTUno,3065
$\rightarrow 27, n 7>n 0$
010=75
Store no. of points.
$(\rightarrow 0)$

$+1$
Data: input parameter.


```
PF.S LAGRANGIAN INTERPOLATION OF POINTS AT EQUAL ANGLES
```

$\begin{aligned} & \mathrm{J} 7090-1 \\ & \mathrm{~J}_{512} \\ & 07568 \end{aligned}$	Initial orders .
$(300,8 \times 8) \cdot{ }_{4} 400$	
$(300,8 \times 8)-(400,8 \times 8) \rightarrow 300$	Coefficients of the interpolation
$\left\{\begin{array}{l} 300,8 \times 8)+(500,8 /) \rightarrow 300 \\ 300,8 /) \times(308,8 \times I) \rightarrow 60 \end{array}\right.$	polynomial .
$(60,8 /) \times(316,8 \times 1) \geqslant 60$	
$(60,8 /) \times(324,8 \times 1) \rightarrow 60$	
$(60,8 /) \times(332,8 \times 1) \rightarrow 60$	
$(60,8 /) \times(340,8 \times 8) \rightarrow 60$	
$(60,8 /) \times(348,8 \times 2) \rightarrow 60$	
$(60,8 /) \times(356,8 \times 1) \rightarrow 60$	
O7101	


$\begin{aligned} & 1 \\ & J_{320} \\ & J_{7090} \\ & J_{8} \end{aligned}$	Initial orders .
STOP	
$n_{1 I}=T A P E$.   $n_{13}=T A P E$.	Read in input parameter and number of equally spaced points required.
no $=010$	
V150ETAPE	
$v_{200}=$ TAPE ${ }^{\text {c }}$	Input if programme is rum separately.


nIモーI
na $=$ no-I 1
$n_{3}=n_{0}$
$n_{4}=0$
$n_{4}=0$
$6=\left(150+n_{2}\right)=0\left(150+n_{2}\right)-360$
Extra end values of $\zeta^{\prime}$ ourve
$v\left(150+n_{3}\right\} \Rightarrow\left(150+n_{4}\right)+360$
$v\left(200+n_{2}=v\left(200+n_{2}\right.\right.$
(using the periodiaity of the funotions).
$v\left(200+n_{3}\right)=v\left(200+n_{4}\right)$

n2ㅍn2-1
$n_{3}=n_{3}+1$
$n_{4}=n_{4}+1$
$\rightarrow 6,4>n 4$
$v_{20}=v_{5} 50$
vo=nis
Initial $\theta$ ' value and $\theta$ interval.
$v_{2 i}=360 / v_{0}$
$n_{2}=0$
$n_{3}=0$
$n_{4}=n_{3}$
$n_{7}=3940$
$v 5 I=0200$
v5IT0 200
$\rightarrow$ I
12) $110=200$
$\rightarrow$ M7080,300

$n 8=300$	Caloulation of the coeffioients of the
$n 9=I$	Lagrangian interpolation polymomial

$110=0$
2) $n 8=n 8+n 9$
3) $v n 8=v(26+n 9)-v(26+n 10)$
$n 8=178+\Sigma$
n9=119+1
$\rightarrow 3,8>n_{9}$

n9=ntotI
$\rightarrow 2,7>n \geq 0$
$\rightarrow$ M7103.2

(I) $n \boldsymbol{I}=0$	
U50=1	
$13) v(40+n \mathrm{r})=020-0(26+n \mathrm{r})$	
$050=050 \times 0(40+n \mathrm{I})$	
$\rightarrow \pm 3,8>n \mathrm{r}$	Caloulation of interpolated. value.
$v 51=0$	
v 52 $=0$	
$n_{5}=196+n_{3}$	
$n z=0$	
I 5 $)$ vowv (40+nz $) \times v(60+n z)$	
$\begin{aligned} & v_{I}=I / v_{0} \\ & v o=v n_{5} \times v i \end{aligned}$	
$v_{5 I=}$	
$v_{5 a}=v_{5 a+v}$	
$n \mathrm{I}=12 \mathrm{I}+\mathrm{I}$	
- 550n5+1	
$\rightarrow 150871$	
$v_{53}=0{ }_{52} \times 250$	
USIEVSIXV50	
PRINTV 5I +4028	Storage of $\phi^{\prime}$ from location 3940 .
PR INT 33.4060	Storaso of t 2ack looation 390.
Un7=LOGUSI	
$\boldsymbol{n 7}_{\mathbf{7}=37 \boldsymbol{7}+1}$	


18)Xn7=3940

Xny $=$ ni $3+394^{\circ}$
z9)PRINTVn7. $8008 \quad$ Output of $\psi^{\circ}$.
n7=n7t2
$\rightarrow 29, \mathrm{ni}_{2} \mathrm{H}_{7}$

```
(>0)
```


$+1$

Data: Input parameter.

TI600
Present parameters instruction.
2 Stop; to allow the number of interpolated pointa used to be Fega 11.

rr.en $T_{3}$ - the dofssens. transfofmation with Lagrangian diffn.

J7090-1
J512
07168 Initial orders.

07060	Completion of (C) and (D) matrices,
$(100,24 \mathrm{IXI}) \rightarrow 100$	(C) from location 100,
07060	(D) from location 1700.
$(1700,241 \times 1) \rightarrow 1700$	
07101	



07060	Calculation of $(-1)^{n} \phi^{(n)} / \mathrm{n}$ ! . if $\mathrm{n} 28=0$,
	or $E^{(n)} / \mathrm{n}$ ! if $\mathrm{n} 28=1$,
$\begin{aligned} & 070 \mathrm{Fio} \\ & (\mathrm{I} 2) \times(3340,24 \mathrm{IXI}) \rightarrow 3300 \end{aligned}$	from location ( $3260+40 n$ ) .

$(100,24 I \times 24 I) \times(3940,24 I \times I) \rightarrow 3780$
$(3780,24 I \times I) \rightarrow 3820$
$(3820,24 I /) \times(3340,24 I \times I) \rightarrow 3940$
$(3780,24 I /) \times(3820,24 I \times I) \rightarrow 3820$
$3820,24 I /) \times(3380,24 I \times I) \rightarrow 3860$
$(3940,24 I /)+(3860,24 I /) \rightarrow 3940$

Calculation of 6 terms of series
for $\psi$ if $\mathrm{n} 28=0$,
or $E$ if $n 28=1$,
from location 3940.


$(3780,341 /) \times(3830,24 \times I)+3820$ $\{3820,241 /) \times(3500,241 \times I) \rightarrow 3860$ $(3940,24 \mathrm{I} /)+(3860,24 \mathrm{I} /) \rightarrow 3940$
$(3780,34 \mathrm{I} /) \times(3820,34 \mathrm{IXI}) \rightarrow 3820$ $\left\{\begin{array}{l}3820,34 I /) \times\left(\begin{array}{l}3540,24 I X I\end{array}\right) \rightarrow 3860 \\ 3940,34 I /)+\left(\begin{array}{l}3860,34 I /) \rightarrow 3940\end{array}\right.\end{array}\right.$
$(3940,34 I /)+(3300,24 I /) \rightarrow 3940$
$(3940,1 \times 24 \mathrm{I}) \times(3940,24 \mathrm{I} \times \mathrm{I}) \rightarrow 49$ 7101

$(3240,241 \times 1) \rightarrow 0$	Print ${ }^{\text {w }}$			
$(50,1 \times 241) \times(3940,241 \times 1) \rightarrow 99$				
( 6 ) $\times(99) \geqslant 99$				
(99) $\rightarrow 0$	Print $\bar{\Psi}$.			
(3300,24IXI ${ }^{\text {a }} 3380$				
( $1000.341 \times 24 \mathrm{f}) \times(3940,24 \mathrm{IXI}) \rightarrow 3300$	Print E			
$(3300,241 \times 1) \rightarrow 0$				
$(3940,341 \times 1) \rightarrow 260$				
$\left(33^{80}, 241 \times 1\right) \rightarrow 140$				
(3300,24IXI) ${ }^{\text {a }} 3940$				
(3940,341赶) 37780				
$(3340,241 I /) \times(3340,3,41 \times 1) \rightarrow 100$	$1+\left(p^{1 /(1)}\right)^{2}$ from location 100.			
$(50,341 /)+(100,341 /) \rightarrow 100$				
$(3300,1 \times 24 I) \times(3300,24 I \times 1) \rightarrow 48$	\|	E		in location 48.



```
\((230,24 t X I) \rightarrow 0 \quad\) Print \(|\mathrm{d} Z / \mathrm{d} 5|\).
07101
(3940.241/) \(\boldsymbol{3} 780\)
Ji 6
```

1
$J 30$
$J 320$
J 7090
J8 Initial orders.
STOP

$\begin{aligned} & V_{I=3}={ }^{I} 4 I \\ & n_{2}=T A P E . \end{aligned}$	Read in input parameter
$\rightarrow 8, n_{2} 5=1$	Input if programme is run separately.
$n_{13}=T A P E$	
$n_{2} 7=\text { TAPE. }$	
$8) v_{2}=1713$	
$n_{2}=v_{3}$	
$n \pm=v_{2}$	
$v_{4}=v_{1} / v_{2}$	
$\begin{aligned} & v_{S}=v_{4} x_{2} \\ & v G=I / v_{2} \end{aligned}$	


U94=V99	Resitoring 89 in location 94.
$16=1127$	

```
\(\left.\begin{array}{l}n_{3}=0 \\ 4\end{array}\right)\left(50+n_{3}\right)=1\)
\(n_{3}=n_{3}+1\)
\(\rightarrow_{4}, n_{1}>n_{3}\)
Unit vector from looation 50 .
\(n_{3} 0=0\)
v100=0
\(v(100+172)=0\)
\(v_{10} O=V_{4}\)
\(n_{3}=I\)
\(v I I=-1 \quad\) Caloulation of first column of (c) matrix \(\quad . ~\)
ェ)ข12=COTVュO
\(n_{4}=n_{12}=n_{3}\)
\(\rightarrow 2, V I I=-1\)
\(v\left(100+n_{3}\right)=0\)
\(\rightarrow 6\)
i) \(v\left(100+n_{3}\right)=v_{12} / 0_{3}\)
6) \(v\left(100+n_{4}\right)=-v\left(100+n_{3}\right)\)
```




```
\(v_{10}=v_{10}+v_{4}\)
\(n_{3}=n_{3}+1\)
\(\rightarrow I, n_{2}>n_{3}\)
```

```
v1700=0
UI70I=-540
U1702F+108
v1703=-12
n4=nI-7
n3=0
27iv(1704+n3)=0 Caloulation of first column of (D) matrix.
n
```



```
v(1704+n3)=+12
v(1705+n}\mp@subsup{n}{3}{\prime})=-10
O(1706+n_n)}=+54
vo=v5X720
von\7vo.
n3=0
28)v(1700+n_n3)=v(1700+\mp@subsup{n}{3}{})\times\mp@subsup{v}{0}{}
n3=n3+1
>28, nI> n3
```

$n_{3}=n 1$


$n_{2} 8=0$	Set for iteration of $\psi$ ．
199）$n_{3}=1$	
$n_{29}{ }^{=0}$	
$n_{3} 0=0$	Caloulation of $(-1)^{n} \phi^{\prime}(n) / n!$ if $n 28=0$ ，
$n_{3} I=40$	$p(n) / n!$ if $n 8=1$
UIII $=1$	$E^{(n) / n!~ i f ~} n 28=1$.
$\left.\mathrm{I}_{7}\right) \rightarrow \mathrm{I} \mathrm{I}_{2} n_{3} 8=0$	
$\rightarrow 18$	
r 8 ）$\rightarrow$ M 7 IO3．10	
$n_{3} 0=n_{30}+40$	
$n_{3} \mathrm{I}=n_{3} \mathrm{I}+40$	
$n_{3}=n_{3}+1$	
UII $=01 \mathrm{ITI}$	
$\rightarrow 17,6 \geqslant n_{3}$	

5）$\rightarrow 15,728=1 \quad$ Iteration for $q$ ，ceasing when inner
$\rightarrow$ il7103： 15 products are unohanged to no binary

7）$\rightarrow$ I $_{4}, v_{4} 8=v_{49}$ significant figures．
$v_{4} 8=v_{49}$
$\rightarrow 5$
54）$\rightarrow 16, n_{2} 8=1$
$\rightarrow \mathrm{M}_{7103.36}$
$\mathrm{n}_{2} 8=1$
$\rightarrow 19$
I5）$\rightarrow \mathrm{M}_{7503.58}$

Iteration for E．
$\rightarrow 7$

## a

I6） ¹9 $_{9}=$ XPV $_{99}$
PRINTV99：10a8
$\rightarrow \mathrm{MyIO}_{3} 5 \mathrm{~S}$
$n_{3}=0$
$\begin{array}{ll}n_{3}=0 \\ ) & v_{10}=E X P v \\ 140+n_{3}\end{array} \quad \quad$ Caloulation of $|d Z / d \zeta|$ ．
Uェロ＝Uェ०／V99
$V_{\Sigma I=S Q R T V}\left(100+n_{3}\right)$
VIomuIoxvic
$v\left(220+n_{3}\right)=010 / v\left(180+n_{3}\right)$
$n_{3}=1 n_{3}+1$
$\rightarrow 24, \mathrm{nI}_{1} \mathrm{nH}_{3}$
$\rightarrow$ M7IO3．56

## （ +0 ） <br> 

Data：input parameter．


J7090-1	
J512	
O768 Initial orders.	
$\left\{\begin{array}{l} 20\left\{\begin{array}{l} \times(600,24 I X I) \\ 2 I \end{array}\right)=500 \\ X(300,24 I X I) \rightarrow 540 \end{array}\right.$	
(500.24IXI) $+(540.241 \times 1) \rightarrow 540$	
$(23) \times(540,241 \times 1) \rightarrow 500$	Iteration of equations (56) and (5才.
(22) $-(500,241 /) \rightarrow 420$	
(20) $\times(300.241 \times I) \rightarrow 500$	
(2I) $\times(600.24 \mathrm{IXI}) \rightarrow 540$	
$(500,241 \times 1)-(540,241 \times 1) \rightarrow 380$	
$(420,241 /),(640,24 I \times I) 7460$	
$(380,241 /) \times(460,241 \times 1) \rightarrow 540$	
\{ $260,1 \times 24 \mathrm{I}) \times(500,241 \times 1) \rightarrow 30$	
$(260,1 \times 24 \mathrm{I}) \times(540,24 \mathrm{IXI}) \rightarrow 3 \mathrm{I}$	
O7IOI	

$(0,242 \times I) \rightarrow 260 \quad$ Input of $\psi$ if programme is run separately .
$\mathrm{O}_{71 \mathrm{IOI}} \quad$.

1
J320
$J 7090$
18 Initial orders.

STOP

$\rightarrow 8,{ }^{\text {n }}$ IO $=1$	
$n_{1}=$ TAPE	
$n_{27}{ }^{\text {a }}$ TAPE	Input if programme is run separately .-
$v_{91}=$ TAPE 3	
$v_{95}=$ TAPE	
$\psi_{99}=$ TAPE	
$\rightarrow \mathrm{M}_{7103.16}$	
8) $n_{2}=n \mathrm{I}$	
$n_{0}=n_{2} 7$	
$v 88=-v 91$	
v89 $=09 \mathrm{~g}$	
	Calculation of monstants
XV12=r/V99	

XVI2 $=1 / v_{99}$
vo=-I
U18=ARCCOSVO
$v_{2}=112$
$v 8=2 / v_{2}$
$v_{0}=18 / v_{2}$
$v_{3}=3 \times v 0$
$v_{7}=2 \times v_{1} 8$
UIgनr80/VI8
vo=v9s/v19
$v_{27}=\operatorname{COSvo}$
U28=SINVO

## $n \mathrm{I}=0$

$v_{4}=0$
$3) v\left(600+n_{r}\right)=\operatorname{COSV}_{4}$
$v\left(300+n_{I}\right)=\operatorname{SIN} v_{4}$
$n_{I}=n_{I+1}$
$v_{4}=v_{3}+v_{4}$
$\rightarrow 3, n_{2}>n i$

## V23=2

$v_{24}=-1$
$n_{I}=0$
Scalar matrices in locations 23 and 24.
7) $v\left(640+n_{I}\right)=1$
$n_{I}=n_{r}+1$
$\rightarrow 7, n_{2}>n_{1}$









D
N
PR. 8 INTERPOLATED COORDINATES

$\begin{aligned} & J_{5090-1} \\ & J_{512} \\ & 07568 \end{aligned}$	Initial orders.
$\begin{aligned} & (0,241 \times I) \rightarrow 140 \\ & 0_{7101} \end{aligned}$	Input of $\psi^{\prime}$ at equally spaced $\theta^{\prime}$ if programme is run separately.
$\left.\begin{array}{l} \left\{\begin{array}{l} 700,24 \text { IXI } \\ 220,24 \text { III } \end{array} \rightarrow 0\right. \\ (260,241 \times \mathrm{CI} \end{array}\right) \rightarrow 0$	Output of data for the following programme, if required.

I
J320
J7090 Initial orders.
J8.
STOP

Voe=I	
$v$ ¢ 8=ARCCOSvo	
vIg=VI8/土80	-
$\rightarrow 18, n y o=1$	
$v_{90}=$ TAPE9	
$n_{2}=$ TAPE	Input if programme is run separately
$\rightarrow \mathrm{MiOO}_{3} \mathrm{r}$	


28) $v_{4}=-4 v_{92}$	
$v_{5}=-0_{93}$	
XV $7=-100$	
$X \chi_{9}=0$	
$v_{2}={ }^{2} 2$	Transformation of equally spaced interpolated
$v_{2}=v_{2} \times 0.5$	points in the $\zeta^{\prime}$-plane to the $\boldsymbol{\zeta}$-plane using
$v_{11}=v_{18} / v_{2}$	Ta.
$v_{10}=095 \times 019$	
nI $=259$	
$\mathrm{n}_{4}=139$	
$n_{3}=299$	
n7=259+172	
22) $n \mathrm{r}=n \mathrm{I}+\mathrm{I}$	
$n_{4}=n_{4}+x$	
$n_{3}=n_{3}+1$	
$v o=C O S v i o ~$	
$v_{I}=S I N V_{10}$	
$v_{2}=\operatorname{EXPV}_{4}$	
$v_{20}$ vevax $^{\text {a }}$	
$v_{21}=v_{2} \times v_{1}$	
$v 0=020-04$	
$v_{1}=20 y_{1}-05$	
$v_{2}=00 \times 20$	
$v_{3}=v_{1 \times 2}$	
$v_{2}=v_{2}+v_{3}$	
$v n_{3}=S Q R T v_{2}$	
PRINTUn3.3065	
$v 6=0 \mathrm{I} / \mathrm{v}_{0}$	
$v_{0}=$ ARCTANV 6	
$\begin{aligned} & \Rightarrow 23, v 6>v 7 \\ & v g=v g+v \leq 8 \end{aligned}$	
23) $v$ nr $=00+0_{9}$	
$v 7=06$	
vnI= $n_{1} / V_{19}$	
PRINTUn土, 4085 vso=0 iotvis	
$\rightarrow_{22}, n_{7}>n_{1}$	

$v_{10}=v_{90 \times V} 9$
$X v_{0}=r / v_{9} I$
XVI $=V 9 \mathrm{~V}$-vo
$v_{2} 8=V_{1 X}$ Caloulation of oonstants
$v_{2}=v_{9} I+v_{0}$
v29=v2X.5
$v_{2} 6=\operatorname{COS} v_{10}$
$v_{2}{ }^{2}=S I N V_{10}$
$v_{3} 0=v_{29} \times v_{2} 6$
$v_{3} I=v_{2} 8 \times v_{27}$
$v_{32}=v_{29} \times v_{29}$
$v_{33}=v_{32}-1$
vo $=v_{9} 8 \times v_{97}$
$v_{57}=0.5 \times v 0$
$v_{0}=v_{94} \times V_{19}$
$v_{34}=\operatorname{COS} v_{0}$
$v_{3.5}=S 111 v_{0}$
$v_{0}=v 97 / v \pm 8$
$v_{37}=0.5 \times v 0$
$v_{3} 8=0 \cdot 5 \times v_{2} 6$
$v_{39}=-0.5 \times v_{27}$
$n_{4}=0$
10) $v_{13}=v\left(300+n_{4}\right)$
$v_{14}=v\left(260+n_{4}\right) \times v I_{9}$
$v_{4} 6=51 \mathrm{NO}_{4}$
$v_{47}=\operatorname{COSv} 1_{4}$
$v_{4} 8=v_{4} 6 \times v_{4} 6$
$v_{49}=2 \times v_{43}^{3}$
$v_{49}=1-049$
$v_{50}=v_{49} \times v_{49}$
Iransformation of interpolated points to the
z-plane by $T_{2}$.
vo=vi3
$v_{I}=1 / v_{0}$
$v_{40}=v_{0}+v_{1}$
$v_{40}=5 \times v_{40}$
$v_{4} \mathrm{I}=\mathrm{VO}^{-v \mathrm{~V}}$
$v_{4} I=-5 \times v_{4} I$
$v_{42}=v_{40} \times v_{40}$
$v_{43}=v_{42}-1$
$v_{1}=v_{33}+v_{42}$
$v_{5 I}=v_{1}-v_{4} 8$
$v_{53}=v_{4} 8+v_{43}$
$v_{52}=0{ }_{53}+v_{33}$
$v_{2}=2 \times v_{4 T}$
$v_{0}=v_{2} \times v_{39}$
vo=voxv40
$v I=v_{5 I}-v 0$
$v_{0}=v_{S I}+v_{0}$
$v_{9}=V_{0} / U_{I}$
$v_{0}=v_{2} \times v_{2} 8$
vo $=v 0 \times V_{4} I$
$\nu_{1}=v_{5 z-v 0}$
vo=v $52+V 0$
$v 8=v_{0} / v_{1}$
$v_{1}=v_{2} 8 \times v_{40}$
$v_{2}=v_{29} \times v_{4} I$
$v_{0}=v_{1}-v_{3}$
$v_{I}=-v_{1}-v_{2}$
$v_{\eta}=v_{4} 6 / v_{0}$
$v_{6}=v_{4} 6 / v_{1}$
$v_{7}=$ ARCTAN $v_{7}$
v6=ARCTANV 6
$\rightarrow 7, v 0>0$
$\rightarrow 9, v_{4} 6>0$
$v_{7}=\boldsymbol{7} \boldsymbol{v}$ I 8
$\rightarrow 8$
g) $\boldsymbol{v}_{7}=7+v{ }^{2} 8$
$\rightarrow 8$
7) $>8,0>01$
$\rightarrow 6, v 46>0$
$v 6=06+v$ ェ 8
$\rightarrow 8$
6) $v 6=v 6-v \leq 8$
8) $v_{9}=$ LOG $v_{9}$
$v_{9}=v_{9} \times v_{3} 8$
As above.
$v 0=v 7-v 6$
vo=voxv27
vacug+vo
$0_{9}=v_{9} \times V_{37}$
XPVg=V9-V57
$v 8=L O G 08$
$v 8=v 8 \times 039$
vo $=06+v 7$
$v 6=v 0 \times v 26$
$v 8=08+v 6$
$\mathrm{SPV8}=08 \times 037$
$v_{0}=v_{9} \times v_{34}$
vi=v8×v3s
$v\left(400+i_{4}\right)=v 0+v z$
$v_{0}=v_{9} \times v_{3} 5$
$v_{1}=08 \times ข_{34}$
$v\left(440+n_{4}\right)=v 2-00$
PRINTV $\left(400+n_{4}\right) .3045$
PRINTV (440+n4).4045
$n_{4}=n_{4}+1$
$\rightarrow 10, n_{2}>n_{4}$
STOP

```
4,nIO=0
X74=0
5)PRINTv(80+n4),3108
n4=\mp@subsup{n}{4}{}+1
>5,4>n4
4)}x\mp@subsup{n}{4}{\prime}=
XnII=g+nro
2&)PRINTV (90+n4),3I08
n4=n4+1
\aI, nII>n4
vornio
vo=2xvo
nir=vo
nII=50nII
MM1O3,nrf
(}>0
*********%
\(+1\)
Data: input paramtor.
```



Preset parameters input order.
Stop to allow number of points being used to be read in.
D
N
PR. 9 VELOCITIES AND BLADE PRESSURE DISTRIRUTION

$\begin{aligned} & \mathrm{J} 7090-1 \\ & \mathrm{~J} 512 \\ & 07168 \end{aligned}$	Initial orders.
$(0,241 \times I) \rightarrow 700$	
$(0,241 \times I) \rightarrow 220$	Input of programme is rum separately.
$\left(0,24 \times 1\right.$ ) $>_{260}$	
$(0,241 \times I) \rightarrow 300$	
$(0,241 \times 1) \rightarrow 400$	
O7101	

I
J320
$J 7090$
Initial orders.
STOP

n10 $=$ TAPE	Read in input parameter
V14 $_{4}=$ TAPE2	Read in $V_{1}, \alpha_{1}$.
Vo=-T	
ข18=ARCCOSvo	
vIg=U18/I80	
$\rightarrow \mathrm{I} 8, \mathrm{nIO}=1$	
$n_{2}=$ TAPE	
$v 80=$ TAPE 4	
V90-TAPEIO	Input if programme is run separately.
$\rightarrow \mathrm{M7IO3,1}^{\text {a }}$	
18) $v_{2}=42$	
$v 0=_{2} \times 18$	
$v_{3}=v_{0} / v_{2}$	
$r_{3}=0$	
$v_{4}=v_{95} \times v_{19}$	Calculation of $\phi=\theta^{\prime}+\boldsymbol{E}$.
$n_{4}=700$II $v^{\prime}\left(100+n_{3}\right)=v_{4}+0 n_{4}$	
$\text { II) } v\left(100+n_{3}\right)=v_{4}+0 n_{4}$$v_{4}=v_{4}+v_{3}$	
$n_{3}=n_{3}+1$	
$n_{4}=n_{4}+1$	

## $n_{1}=0$

v82 $=08_{2}-180$
I) $v_{0}=v\left(8_{2}+n_{I}\right)+v_{95}$
$v(82+n T)=v \circ \times v 19$
$n_{1}=n_{1}+1$
$\rightarrow \mathrm{I}_{\mathrm{g}}, 2>\mathrm{nI}_{\mathrm{I}}$
$V_{15}=V_{15} \times V_{19} \quad$ Calculation of constants
$v_{0}=\cos v_{15}$
vi6=voxvis
vonvoxv97
$v_{27}=00 / v 18$
$n_{12}=0$
$v_{2}=1 / v_{99}$
$v 80=v 80 \times v 2$
ข8ı $=$ v* $8 \mathrm{I} \times \mathrm{V}_{2}$
$v_{0}=1 / v 80$
$v_{1}=\mathrm{r} / v_{1} \mathrm{I}$
$v_{20}=v 80-v_{0}$
$v_{2 I}=v 81-v i$
$v_{0}=v o+v 80$
$v_{22}=0.5 \times v 0$
$v_{0}=V I+V 8 I$
$v_{23}=0.5 \times v 0$
$v_{24}=0.25 \times v_{2}$
$V_{0}=V_{2} \times V_{2}$
$v_{2} 8=0.25 \times v 0$
$v_{25}=T A N V_{5}$
and trailing edge initial values.


$x v_{0}=1 / v_{9}$
XVIFOI-vo
$v_{2} 8=v_{1 x} 5$
$v_{2}=v_{9}+v_{0}$
$v_{29}=v_{2} x-5$
$v_{26}=\operatorname{COSv} 80$
$v_{27} 7=S$ INVIO
Funotions of $(\beta-\delta \beta), \gamma$ and $d$.
$v_{30}=V_{29} \times$ V $_{26}$
$v_{3} \mathrm{IV} 28 \times \mathrm{v}_{2} 7$
$v_{54}=v_{30} \times v_{32}$
$v_{32}=v_{29} \times v_{29}$
$v_{33}=0_{32-1}$
$v_{0}$ ® $_{2} \times V_{32}$
$v_{34}=00-1$
$v_{35}{ }^{2} 0_{34 \times} v_{34}$
$v_{0}=4 \times v_{97}$
v36=volvi 8
$v_{37}=0.125 \times v_{3} 6$
$v_{59}=2 / v_{3} 6$
$v_{3} 8=0.5 \times v_{2} 6$
$v_{39}=-0.5 \times v_{2} 7$
$v_{2}=v_{32} \times v_{33}$
$v_{0}=v_{2} 7 \times v_{27}$
$v_{57}=v_{0} \times v_{33}$
$v_{1}=v_{2} 6 \times v_{2} 6$
$v_{58}=v_{3} 2 \times v I$
$v_{0}=v_{32}-v_{0}$
$v_{I}=S Q R T V_{0}$
$v_{0}=v_{0} \times v I$
$v_{0}=v_{0} / v_{2}$
vo=voxv37
U6I $=00 \times 2$
vo=v97×v96
$v_{2}=1 / v_{0}$
$n_{4}=0$
$\left.1_{4}\right) v_{1_{3}}=v\left(300+n_{4}\right)$
$v_{14}=v\left(260+n_{4}\right) \times 01_{9}$
$v_{4} 6=S I N v_{4}$
$v_{47}=\operatorname{COS} v_{4} 4$
$v_{48}=v_{4} 6 \times v_{4} 6$
$v_{49}=2 \times v_{48}$
$v_{49}=1-v 49$
$v_{50}=v_{49} \times v_{49}$
Caloulation of $\left|\frac{d r}{d s}\right|$
$v_{0}=v_{4} 6 \times v_{4} 7$
$055=2 \times 00$
$v_{0}=v_{13}$
$v_{I}=I / v_{0}$
$v_{40}=v 0+v_{1}$
$v_{40}=-5 \times v_{40}$
$v_{4 I}=00-v I$
$v_{4} I=-5 \times v_{4 I}$
$v_{42}=v_{40} 0_{40}$
$v_{43}=v_{42}-1$
$v_{44}=2 \times v_{42}$
$v_{44}=v_{44}-1$
$v_{45}=v_{44} \times v_{44}$
$v_{45}=v_{4} 5^{-2}$
vo=v $40 \times V_{4 I}$
$v 56=2 \times v 0$
$v_{I_{21}} v_{32}+v_{42}$
$v_{5 I}=v_{1}-v_{4} 8$
$v_{53}=v_{4} 8+v_{43}$
$v_{52}=v_{53}+v_{33}$

```
I6, n4mo
vo=v 58xv 53
v1=042-U48
VI=0 57xUz
va=054xv55
vovvolvi
vo=vo-v2
vI=v44XV49
vI=034-UI
vI=vixvi
ขam056xv55
v2=v2xva
vy=uz+va
vomuI/vo
vo=SQRTvO
vo=voxv(300+n4)
UKo=U 59xU0
> %7
16)v60=2/v6x
17) \(v_{2}=060 \times 0\left(280+n_{4}\right) \quad\) Caloulation of \(/ V_{1}\)
vI=U(400+n4)Xv6a
UI=I+VI
PRINTVI,3065
vo=02XV2
vO=I-vo
PRINTV0,4087
```



```
(->0)
```



## Z




## Casoade data



## Z

+40 Number of interpolated pointe．
Z

+1	Input parameter．
+100	$V_{1}$.

Inlet flow data．

Z
ジ心太＊＊＊＊＊＊＊＊＊＊＊＊


The pointe $B_{1}$ and $B_{2}$ correspond to the points at $x=+\infty$ in the s-plane.

## Transformation

$$
\begin{equation*}
T_{1}: z=\frac{d}{2 \pi}\left[e^{-i \beta} \log \frac{e^{\gamma}+\zeta}{e^{\gamma}-\zeta}+e^{i(\beta-2 \delta \beta)} \log \frac{\zeta+e^{-\gamma}}{\zeta-e^{-\gamma}}\right]-\frac{1}{2}(c-\delta 0) e^{-i \delta \beta} \tag{1}
\end{equation*}
$$

$=P(5)$
Figure 1. Some notation and the firat tranaformation of the cascade.

## S'-plane



2-plane
On $C, \zeta^{\prime}=e^{\prime \prime}\left(\theta^{\prime}\right)+1 \theta^{\prime}$.

The points $B_{1}$ and $B_{2}$ correspond to the points at $x=\mp \infty$ in the z-plane.


$$
\begin{gathered}
Z \equiv X+i Y \\
\text { On } C, Z=e^{\frac{\pi}{3}+1 \phi}=R e^{1 \phi}
\end{gathered}
$$

## Transformations

$$
\begin{align*}
& T_{2}: \zeta^{\prime}=\zeta-\zeta, \zeta \text { constant }  \tag{2}\\
& T_{3}: \log \left(\zeta^{\prime} / z\right)=\sum_{n=1}^{\infty} a_{n} z^{-n} \tag{3}
\end{align*}
$$

Pigure 2. Purther notation and transformations.


Pigure 3. Notation used in the determination of the constant $\overline{\mathrm{G}}$ in $\mathrm{T}_{2}$.

(b)


The transformation from the $z^{\prime}-$ to the $2-p l a n e$ is $z=\left\{z^{\prime}-\frac{1}{2}(c-\delta c)\right\} e^{-1 \delta \beta}$;
obtain $T_{1}$ as

$$
z=\frac{\alpha}{2 \pi}\left[e^{-1 \beta} \log \frac{e^{y}+\zeta}{e^{y}-\zeta}+e^{1(\beta-2 \delta \beta)} \log \frac{\zeta+e^{y}}{\zeta-e^{-\gamma}}\right]-\frac{1}{2}(c-\delta c) e^{-1 \delta \beta} .
$$

Figure 4. Details of transformation $T_{4}$, showing its derivation from the
standard Garrick equation.



Figure 6. The $\zeta$-plane circles to which the curves in Figure 7 correspond.


Pigure 7. The z-plane curves to which the circles in Figure 6 carrespond (full lines) together with the orthogonal curves (broken lines).


The points $B_{1}$ and $B_{2}$ correspond to the points st $x=\mp \cdots$ in the s-piane, $B_{3}$ and $B_{4}$ are their inverse points in the circle.

At $s_{1}, Z=\beta_{1}$ and $|z|=m_{1} R$.
At $B_{2} ; Z=\beta_{2}$ and $|z|=m_{2}$.
At $B_{3}, Z=-\frac{\mathrm{R}^{2}}{\bar{\beta}_{1}}$ and $|z|=\frac{1}{n_{1}} \mathrm{R}$.
At $B_{4}, Z=\frac{R^{2}}{\beta_{2}}$ and $|Z|=\frac{1}{R_{2}}$.

Figure 8. System of singularities for the circle plans.


Figure 9. Inlet and outlet velocities.


Figure 10. The test blade profile calculated from the method of Merchant and Collar (1941).


+ The 40 given points.
O The points equally spaced in the $\zeta^{\prime}$-plane.
$B_{1}$ and $B_{2}$ are the $\zeta$-plane singular points.
$B_{1}^{\prime}$ and $B_{2}^{\prime}$ are the $\zeta^{\prime}-p l a n e$ singular points.
Figure 11. Contours in the $\zeta^{-}$and $\zeta^{\prime}$-planes for the Merchant and Collar cascade.



$L$ and $T$ are the leading and trailing edges of a blade.
$L^{\prime}$ and $T^{\prime}$ are the corresponding singularities of transformation $T_{1}$.
$T_{1}$ ia now given by

$$
\begin{equation*}
z=\frac{d}{2 \pi}\left[e^{-i \bar{\beta}} \log \left(\frac{e^{\gamma}+\zeta}{e^{\gamma}-\zeta}\right)+e^{i(\beta-2 \delta \beta)} \log \left(\frac{e^{-\gamma}+\gamma}{\zeta-\beta^{-\gamma}}\right)\right]-\frac{1}{2}(c-\delta c) e^{-\frac{1}{2} \delta \beta}-\delta_{\varepsilon}, \tag{43}
\end{equation*}
$$

## where

$$
\begin{align*}
\delta \varepsilon & =\rho_{T} A_{T} e^{2 i E_{T}} \\
& =\frac{1}{2} \rho_{T} \cos E_{T} e^{2 i E_{T}} \tag{44}
\end{align*}
$$

folluwing the procedure of Section 7 to find $A_{T}$. Also

$$
\begin{align*}
\delta \beta \approx \frac{L^{\prime} P}{L T} & =\left(\rho_{L} A_{L} \sin 2 E_{L}-\rho_{T} A_{T} \sin 2 E_{T}\right) / \epsilon \\
& =\frac{\left.1^{\prime}\left(\frac{\rho_{L}}{e}\right) \cos \varepsilon_{L} \sin 2 E_{L}-\frac{1}{( } \frac{\rho_{T}}{c}\right) \cos E_{T} \sin 2 E_{T}}{} . \tag{45}
\end{align*}
$$

and

$$
\begin{equation*}
8_{0} \approx \frac{1}{2} \rho_{L} \cos E_{L} \cos 2 E_{L}+\frac{1}{2} \rho_{T} \cos E_{T} \cos 2 \varepsilon_{T} \tag{46}
\end{equation*}
$$

Figure 14. Calculation of the parameters in transformation $T_{1}$ for bladea with rounded trailing edges.


Figure 15. The 10C4/30c50 blade.


+ The 32 given points
- Interpolated points
$B_{1}$ and $B_{2}$ are the $\zeta$-plane singular points
$B_{1}^{\prime}$ and $B_{2}^{\prime}$ are the $\zeta^{\prime}-$ plane singular points

Pigure 16. Contours in the 5- and $5^{\prime}$-planes for the cascade of 10ch/30c50 aerofoils.


Phgure 17. Pressure distribution: Comparative resulta for the $1004 / 30 C 50$ cascade.


Curve a - Howell's conformal transformation method b - Method of distributed singularities c - Rule for nominal deviation d - Present method

Pigure 18. Deviation $V_{\text {. atagger: Comparative results for the } 10 C 4 / 30 C 50 \text { cascade. }}$


Figure 19. The iterative scheme for calculating $\boldsymbol{C}$-plame points.


Figure 20. The S-plane iterative scheme near the trailing edge.

## A.R.C. C.F. No. 806 <br> November, 1963 <br> W. S. Hall and B. Thwaites

## ON THE CALCULATION OF CASCADE FLOWS

This paper considers the calculation of the inviscid incompressible flow, uniform at infinity upstream, past a two-dimensional cascade of aerofoils, given the geometrical characteristics of the cascade.

The solution is obtained by means of a series of conformal transformations, the most important of which are those due to Garrick and Theodorsen to which, however, essential modifications have been made which allow a practical numerical solution. The mathematical validity is successfully tested against the known surface pressure distribution about a given compressor cascade as calculated by Gostelow.
A.R.C. C.P. No. 806

November, 1963
W. S. Hall and B. Thwaites

ON THE CALCULATION OF CASCADE FLOWS
This paper considers the calculation of the inviscid incompressible flow, uniform at infinity upstresm, past a two-dimensional cascade of aerofoils, given the geometrical characteristics of the cascade.

The solution is obtained by means of a series of conformal transformations, the most important of which are those due to Garrick and Theodorsen to which, however, essential modifications have been made which allow a practical numerical solution. The mathematical validjty is successfully tested against the known surface pressure distribution about a given compressor cascade as calculated by Gos telow.
A.R.C. C.P. No. 806

November, 1963

## W. S. Hall and B. Thwaites

ON THE CALCULATION OF CASCADE FLOWS
This paper considers the calculation of the inviscid incompressible flow, uniform at infinity upstream, past a two-dimensional cascade of aerofoils, given the geometrical characteristics of the cascade.

The solution is obtained by means of a series of conformal transformations, the most important of which are those due to Garrick and Theodorsen to which, however, essential modifications have been made which allow a practical numerical solution. The mathematical validity is successfully tested against the known surface pressure distribution about a given compressor cascade as calculated by Gostelow.

C.P. No. 80؛

## © Crown copyright 1965 <br> Printed and published by <br> Her Majesty's Stationery Office

To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England
C.P. No. 8(
S.O. Code No. 23-901


[^0]:    A similar expression for $W$ was given by Howell (1948) and it may be useful to note that the source strengths are $\pm V a \pi$ in his notation where we have $\pm V \alpha \cos \alpha$, and the vortex strengths are $V_{W_{1}} \pi$ and $V_{W_{2}} \pi$ in his notation corresponding to our values (Vd sin $\alpha+\Gamma / 2$ ) and (Vd $\sin \alpha-\Gamma / 2$ ).

[^1]:    A P-point programme is one which takes $P$ equally-spaced points on the $\zeta '-p l a n e ~ c o n t o u r . ~$

