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The transformation method of Nerchant and Collar1 is developed 

in order to obtcin an exact solution to the potential flow around 

a cascade of derived aerofoils. This solution is then used as 

a check on the accuracy of an approximate method, given by 

Schlichving, for the prediction of the flow around the derived 

cascade. 

1. INTROIXX!'ION 

This paper is primarily concerned with the direct problem m-...Aa.La-- 
of the application of potential flop theory to cascades, i.e, 

that in !:hich a solution to the flor7 e?out a cascade of given 

geometry is required. In ;eneral mo6-1‘ of the solutions nhich 

have been Liven suffer from -the need for restrictions and 

epproxima-tions and are of a lengthy nature. 

IThe first solutions -to the problem of potential flow in 

cascades were for cascades of flat ylates and nlthin the 

limitations of zero thickness and comber, anzlyticel solutions 

for lift coefzicient and outlet aq,le were o')Lained 293 . The 

more Lenera proble:a of Lhlc!;, cambered aerofoils in cascade, as 

used in axial flow compressors and turbines7 has proved more 

difficult to solve. The solutioas proposed fall into the 

-i;~o catak,ories of (a) traasformation methods and (b) singularity 

metbods. 

a> Transformation methods -- 

Howell4 gave a solution, based qon a conPorma1 Iransformation, 

end by the use of suitable in-;crmcdiatc stases transformed the 

cascade of arbilrarily specified aerofoil profiles into a circle, 

the flow around nhich could be determined. qlhis method has been - 
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extended by Car-bcr and Hughes 5 and programmed for an electronic 

computer by 3011ard and ~iordsnorth6. It v~as found that 

approximations arose in the transformation to on exact circle, with 

special difficulty at the point correasonding to the aerofoil 

leading edge. 

G-m--ick7 has also Liven a solution -i-o the problem based 

upon the Theodorsen conformal trsnsformetions, and this method 

of solution has been developed by Ha118. 

b) Singularity mcuhods 

Schlichtingg, -' l~nose method has been modified by Mellor 10 

and programmed for a lo'-? speed digital computer by Pollard and 

KordsJorth6, distributed sources, sinks and vortices on the 

chord line in order to represent c given aerofoil cascade profile, 

This limited the application of the theory to profiles of ion 

camber. Doubts also arise concerning the convergence of the 

Fourier series used for specifying the smgularlty distrlbulion. 

A more sophisticated a2proac5 1s that due to %rtcnsonll, 

who distributed vorticity around the profile. Zesuli-s from 

this me-i-hoc?, Rhich is being llidely used by other workers, may be 

the most relltible to da-tc, although the method seems to fail for 

profiles of 10s~ thickness. 

In each of these methods an attempt is lnade to ;lrcdict lift 

coef~~~cicnt, outlei- an;;le and distribution of preSsUX2 over a 

Given blade profile; results have been published, based qlon 

one or other Qf these methods for many differen? aerofoil profiles 

and blade configurations. Yonever , due to the sossi5ility of 

error In the lengthy com?utetions, and to the differing assumptions 

made, discrepancies arc noticeable nhen Tao or more of these 

methods are applied to the same blac'e grofileb. 
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During the years 1940-1944 Yerchant end Collar 1 produced 

an analysis giving a transformation 1lnkin.g the known potential 

flow around a series of ovals to thci; around a cascade of 

lncllned flat plates. ';:hey also gave suggestIons for extension 

of the theory to a cascade of eerofoll profiles, in en analogous 

manner to the theory of isolated Joukoilsky transform aerofoils, 

:g-hls theory has not, to the knonledce of the author, been 

extended prior to the norlr described XI. the present paper, 

5!he assumptions made are those 01 conventional potential flow 

theory and the accuracy of calculation 1s llmi-ted only by the 

means of coq3utation available. Thus a stzndard has been 

provided for comparison vii-th the as?roximate methods outlined 

2. KOTA : 'I 0-F AN3 C Y: GOLS -- (See also Fig. 2) 

C chord length (distance betneen extremities of camber lme) 

QC)’ ILL?-t coefficient (based on chord and mean line 
'1 Cm> respec-Lively. ) 

cp = P - Pl 
tr 

pressure coefficient 

i! =m+in complex coor?inates in plane of ovals 

I ‘I = m* + in' centre of offset oval 

P local pressure at a point on the profile 

q local velocity on the profile 

qt = UC. i- i3 complex velocity in the! plane 

qz = uz + iv, complex velocity in the z plane 

S space be-tnecn blades ( s =+ in this paper) 

U19U2 velocity before and after cascade 

Ydt camber and thickness ordinate in srngularity method 

5 = x + iy complex coordinates ln cascade plane 

inlet flow angle 

outlet flow angle 
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P size parameter of smaller oval 

P’ size parameter of larger oval 

h =t -t sin h2p cothe 

Y = p + sm h2p coth p 

r=f i-it) complex coordinates in intermediate plane 

aerofoil staA,ger angle 

P density of fluid 

r = -2 h ii1 circulation around each aerofoil 

w = $ -+ it/ complex potential in 13lane of ovals 

3e 'IHE XACT SOLUTION TO THE 2'30'8 THFOUGB A DEI?IYED CASCADE 

The ;Jrocedure for evalualion of the blade profile shape and 

cascade configuration follows i-hat of 9crchant and Collar 
1 . 

j-1 Thenorrr@L*fbwpast 7. c series of ovals on the imaginary axis has 

been given by Lamb12. 

ii) The normal flolv past a series of lominae lying along the 

imsginary axis is also known and a transformation can be obtained 

which converts the laminae into the ovals of (i) (Fig, la). 

iii) In a similar l!ay the general flow' round the laminae (which 

is known) gives the general flow round the 

iv) A particular case of the general flow 

for which the flow at infinity is inclined 

ovals. 

round the ovals is that 

to the axis but for 

which there is no circulation. In this ca e the ovals can 

immcdietely be transformed into a cascade of flat plates parallel 

to the direction of flow at infinity (Fig. lb). 

--------------------__u_______y__ 

w "Normal Fl0v7~~ - flow perpendicular to the Ima;lnary axis, 

4 "General 790~" - flow with inlet en&e and circulation 
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VI Application of this transformation to ovals which are offset 

from the origin produces a cascade of aeroioil shapes, This is 

the class of aerofoil for which the ;,rofile shape, and subsequently 

the aerodynamic characteristics, nil1 be obtained, 

!i!he procedure is similar to the usual Jouko~~ky process for 

an isolated aerofoil and, if the diameter of each oval is small 

compared with the space, these ovals tend to become circles and 

the transormation used becomes the Jcukowsky trcnsformation, 

The full analysis is given below. 

3.1 2rivation of aerofoils 

3.1.1 General Plow Pas-i; a Cascade of Ovels 

The potential field due to normal flow of a uniform stream 

past a series of uniform doublets lying along the imaginary [ 

plane axis 1s given by Lamb 12:- 

w = sinh* (3 coth,B 

This rationalises into 

#=Um+ _smh2 
i cosh2m - cos 2n 

Y 
=Un- m-h2 Q c 

i cash 2m - cos2n 

. . ...(l) 

where the slreamliney= 0 marks part of the n = 0 axis and the 

closed oval 
2 

cash 2m = cos 2n + sinh p sin 2n . ..*.(2) 
n 

p is now seen to be the length of the semi-maJor oval axis. 

If ne consider a series of laminae distributed alon:, the 7 

axis of the s plane with a period of A , the stagnation points 

of the flow around these laminae may be made to correspond 

to those in the 4 plane. Ye can thus nut P = 2 p, as the 

staGnation Joint, in equation (1) 
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For simplicity, follovzing Nerchant and Collar, h and y 

are defined as 

‘3 =p +sinh* p coth- t B ..,..(3> 

Y = (3 + sinh* Q coth p . ..0.(4) 

The floty around the laminae is given by'? 

vv = U cpsh-l(cosh y coshc) . . ...(5) 

and since, from (l), w = VA for the ovals 

coshA= cash y coshr‘ . . ...(6) 

This is thus the required transformation connecting the? plane 

ovals and the e plane laminae, 

The general flow past the c plane 

dvJ= U sinhe -t iY/ coshe 
dc sinh*c + tanh*$ 

- iV o...(7) 

where V is the component of velocity parallel to the? sxis, and 

there is a circulation 2/+17 around each lsmina. 

laminae is known to be 

If transformation (6) is applied to the general flow past 

the laminae, the following equation is obtainedz- a!! - ivu = d~ Y . 
wcoshh ---- 

slnh*A 
. . ...(8) 

-- 
This is the general flow pas-t the eplane ovals. 

3.1.2 Transformation of ovals into inclined flat ;slates and 

Cerofoils 

Considering the 

equation (8) becomes 

- iv 
9 y 

particular case in which 17 = 0, V = U tan& 

g&l I 
= df = u I ,l- 

f-!&o, considering the flow past a cssccc'e of inclined flat 

plates as shown in Fig, 2, 

dw=U(l- 
ii5 

itant) . . . ..(lO) 
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Elimination of w in (9) and (10) gives 

de = eib cos 45 isind sinhA 
7 

- 
d sinh2x - 

Hence the transformation connecting the oval and cascade planes 
. 

is given by 

8 =e ih (~cos~ - isind arccosh(sechy coshi)) ,....(12) 

or, if the true chord is taken as abscissa, 

z =\cos(j- isin6arccosh(sech y coshA) . . . ..(13) 

which can ie erQressed, for ease of computer programming, as 

z =Xcosd - isin In sech y coshA -f- 
i 

w - 1 

1' I 
cosk2y 

. . . ..(14) 

The procedure for the derivation of a cascade of aerofoils 

is thus to select a suitable set oI f t plane ovals, postulate a 

set of larger ovals wit!? offset centres, and apply transformation 

(13) to these offset ovals. 

Experience enables the required Q--e of cascade to be 

obtained. For example, p should be around 0.725 to give a 

qace-chord ratio of unity and pt should be approximatiely 1% 

larger than p to give a maximum thickness of 10% of the chord. 

Variation of camber ard position of maximum thickness is obtained 

by variation of n' and mt (the coordinates of the offset oval 

centre); the proviso is that the transformation singularities 

must be enclosed within the offset ovel, or, for a cusped trailing 

edge, lie on this oval. A more detailed explanation of this 

procedure is given by Collar13 and Xerchant and Collarl. 

There exist tno extreme partYcular examples of the 

_eneralised llethod. In the first case the transformation is 

applied to concentric ovals and a cascac'e of elliptic aerofoils 

is produced in the z plane. In the second example (the case 

unc'er discussion in this paper) the stagnation point at the 

position on the ovals corresponding to the trailing edge is 
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placed at the transformation singularity, by application of 

Newi-onts method for the Setcrmination of roots to equation (2). 

!i'hrs case gives a cascade of cusped aerofoils, Setv,een these two 

exmeme c8s es the derivation of 872 infinite variety of aerofoll 

sections is possible. Ap:3lications of such a generalisation 

~111 be the subject of a second ?a;3er, 

3.2.1 The Flow Around the fierofoils_ 

Fhe rzlationshlp be-kween velocltles in the [ and z ;?lanes is 

given by 

uz - iv, = U& - iv, .,,,,(15) 
dz 

I I g- 

where subscript z refers to the local velocity on the z plane 

cascade LxoLile, subscript [ refcra -Lo the local velocity on thee 

plane oval profile. 

From equations (9) and (11) the velocity In the z plane is 

0.0.416) 

I- \/sinh2A - siz4- 1 e - 
To obtain TJ, the value of p at the rear stagnation 2oin-k s 

in the & glane is substituted into ecuation (9). If the trawling 

edge of the profile is cusped, then the Ku-Ma condition must be 

s?tisfled. & i3ince dz 2nd both dn 
T 

and $$ become zero 

if 77Yie stagnation saint is a-i; -the loin-i; of the cusp, the complex 

velocity in the z plane becomes Finite and the Kutta condition 

is satisfied. If the trailing edge is rounded then the rear 

stz;nation joint is indeterminate and a suitable position must 

be chosen. 

Ll1us 0 from equation (oJ)9 at the rear stagnation point 

lJ = V tanhh-i; -!- . D 0.. (J-7) 
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adhere the subscript t refers -ix trailing edge conditions, 

ROYI the circulation 1s taken as 
r = -2biY, giving the following 

wlues for air a%les al and a2 

Hence 

tan a2 = ' *u " 

v= U tan 

and from equation (17) 

r T:/ = 
v 

tan al 

l- tanhi, 

:-ban a 
I, 

cash+ 
A 

v=u 
I 

1+ cosh2k+ 
-1 

l- tenhjlt 

Su3s-k1 iu i-m& these value-s for ii and V into ec,uation (16) t-je obtaln9 
sir *) 4k rd 

Uz - iv,: 
(1 + iA)(l - z,, 

c -. . 
U II 45 cos isin4sxnhX - .-fi. 

. ..(18) 
_ Y-D. 

slnhLA - 

Also 

(1 - taA)Jslti2At - 2 sinh y 

g J--+ve”l 
U U 

and ne define the prcssurE coefL1cien-t 

#+J12 
From Bernoullils equation 

therefore 

iTow 

therefore 

P - Pl q2 
gpu12 =l - ii12 

u =ul cos a1 

(u2 cp= P-Pl=l- z +v 2> 
- -  z- 

U2 
cos2a1 l . Q.. (19)  

$ P u12 
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Par the potential flow around the p' ovels to be determined, 

these ovals mus6 3e relocsted with their centres at the pomts 

(O,O), (0,h ), (0,2b),..in the p plane, 

If It, = [, - [I 9 where &I = mf + in' 

t twefj . 
\*t2=tt2 -t si.nh2F' cothtt. 

Now v - 77 
tan a v -f ‘,T = 1 U 

,and tan a2 = 
U 

thus cosh2y, _ 1 
tan a2 = 

tan al(l + tanhXt2) + 2 J cosh2& . e (20) --- 
l- tanhAt 

% 

Ai e complete flow around th=, relocated Q' ovals vi11 be 

needed, for use in obtaining the cascade profile pressure dis-i-ribu- 

tion; from (8) 

In equztion (22) allA's and l's refer to conditions around 

the p' oval relocated and centred at the origin. 

--------------------______I______ 

% This corres:2onds to the equation 

tan al y + 2 tan $ 
tan a2 = - 

Y+-2 
of ref. 15 and it can easily be demonstrated that 

and 

Y 1 + tan hkt2 
C 

y+2 l- tan h\2 

1 - tanhqet2 

. . . ..(21) 
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The next stage 1s the evaluation of the scale factor 
I 
&ii 
df! 

MakIng use of equstion (11) we have 

dz, i I 
isin. sinhA 

d! -&&??A- slnh*y 
--------)(I - '&)I . . . ..(*3) 

Here, as in the basic transformation used to determzne the 

aerofoil profile, the p of the smaller oval 1s employed. 

1-t is now possible to evaluate the uz - ivZ of equation (18) 
U 

using the right hand side of equation (22) as the numerator, and 

that of (23) as the denominator. The value of the pressure 

coefficient for the corresponding point on the aerofoil Surface 

is now given by equation (19). 

The only remainxng aerodytlamjc pasanet-er which can be 

calculated from potential flow theory is the lift coefficient. 

L%EI is defined and calculated in -two dlfieren-k ways below, 

both of which are in common usage. 

303 Lift Coefficients 

Pirstly it 1s possible to base -the 1lf-t coefficient on the 

chord line of the profile. The advantage of this definition 

1s that the resulling value of lift coefficient can be compared 

width the value obtained by integration of -the pressure distribution 

as is shown m Fig, 6. 

CL(c) = (J.=l CP d(2) 

) / XC’0 
Thus the lift coefflclent perpendicular to the chord line is 

defined as 

CL(c) = L(& to chord) 
qqJ* c 

al 

m-(24) 

It may be shoYvn that 

CL(c) = g 
C 

cos2al(tanal - tana*)-((tanal f tan-c*) sing + 2~0~4) 

.,...(*5) 
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An alternative definiiion of the left coerficient is obtained 

from a consideration of the lift perpendicular i;o the mean flow 

direction. 

CL(m) = 

It fOllOWS tl?cnt 

%(m) = 

P'rnr 
g+2m% 

,....(26) 

2 cos6 CLc 

-5- 4 + (tanal + ta.na2) 
e 0.. . (27) 

4, ~PPTtOXINATE SOLUTIOtiS TO TFE 3'IO'iJ 'I'E'OUGU A DWIVDD CASCVDE e-L-La-- ---- 

Of the potential flow solutions mentioned in the introduction 

the author was only able to use the singularity method of 

Schlichting. However, due to the cooperation of Dr. Hall of 

Southampton, who used his extended Garrick method and the use by 

a team at Rolls-Royce of a modified ?l;artensen-Isay method, a 

more corn;-)lete comparison rrras Tossible. 

These methods for determinations of the potential float were 

applied to the cascac'e of blades v\Iith the profile shown in graph 

2c, having the given stagLer, sTace/chord ratio and inlet a&e, 

the object being to determine the outlet angle at downstream 

infinity, the lift coefficient, and the distribution of pressure 

around the blade profile. 

This process was carried out by the author using the 

Schlich-cinz singularity me tbo d End a brief description of the 

procedure is Given below. Results of the comparison between 

the analysis and the application of the above mentioned methods 

are given in Fig. 4. 

In the Schlidhting method, sources, smks and vortices are 

distributed along the true chord of the blade and the velocity 

induced by the sum of these singularities is calculated throughout 

the flo77/ regime and added to the free stream velocity. The 

ma,ni-i;ude of the singularities is chosen so that a fluid stream- 

line corresponds to each blade profile. 
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The rnam assumptions and approximations are as follows:- 

9 a distribution of singularities 1s used to match the profile 

at a finite number of points. 

ii) this num'jer of matchu?g yOlnts is restricted by the stability 

of the Fourier series which is used to represent the singularity 

distribution6. 

iii) the blac'e profile is split into a camber line and thickness 

distribution; these are considered sepsrately. 

IV) the singularities are distributed along the chord line. 

Hence the induced velocibics are calculated on 

line and corrected to give the velocity on the 

utilising a factor 

the chord 

profile, 

Vt = EL 1 
Vmx Vmx 

given by Siegels 14 . 

4 the :)lade profile shape is not introduced in the form of 

(x,y) coordinates but in the form (x,8) and since the profile 

gradients of an arbitrary profile are difficult to measure or 

compute v~~t21 good accuracy it is difficult to avoid small errors 

in profile specification. 

The calculations were carried out on the Deuce computer for 

the given cascade profile of Fig. 2, matching camber and thickness 

gradients at seventeen stations along the chord. The lift 

coefficient, outlet angle and pressure distribution were obtained. 

Provision had been made, in the work of Pollard and Wordsworth, 

for integrating the expressions for camber line and thickness 

gradient as finally obtained, to zive the actual "integrated" 

profile around which the flow had been found. This integrated 

profile proved to be slightly different from the given profile, as, 

shown in Pig, 3a. 
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The entire calculation usmg the singularity method v'as 

carried out independently several Limes in attcmgts to improve the 

profile matching, The 

vary only slightly 7:;ith 

shown in IQs. 3a and 4 

the required one. 

5. COlTCT,USIOBS 

final pressure distribution was found to 

change in inte,<rated l>rofile. The curves 

are for the integrated profile nearest to 

The analysis of Merchant and Collar 1 has been programmed for 

an dlectronic computer in order to obtain a cascade of aeroloil 

profiles; this analysis has been extended in order to calculate 

fully the potential flow around tkzse profiles, It was also 

found possible to determine the variation of outlet angle, 

thcoretlcal lift coefficient =and pressure distriktion over a wide 

range of inlet angles. As a check on the accuracy of the 

calculations the theoretical lift coefficient was compared yvith 

the value of lift coefficient obtained by 7lanlmeter integration 

of pressure distribution, the results being shown In Fig. 6. 

Good agreement was obtained, as nas to be expected since no 

assumptions other than those of poten-bial 110~ theory nere made 

and the only limitations on the accuracy were those of the computing 

equipment (viz. 7 decimal places, allowance having been mgde 

for ropLnding of1 errors). The results of the calculations 

are presented both gragiiically and in the form of tables for 

x/c, y/c and Cp, thus facilitating a check on the accuracy of 

other, more general , potential flow solutions, 

Comparisons kavc been made with the singularity method of 

prediction of potential flow in cascaces, s'z developed by 

Pollard and VorGsT:orth, Difficulties and limitations of this 

method have been discussed and graphs are presented showing the 

dlfficultics of ma.tcZting the profile exactly. The outlet angle, 

as predicted by the slngularlty me-i-hod, is seen to be in error 
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by 0,7o and the pressure dlstrlbutlon is seen to be in reasonable 

general agreement, all-izou;~!i dlscrepancles occur near the suction 

peak. 

The results w:llch Dr, Hall has provided, based on the Garrick 

method, show an accuracy in outlet angle of almost four decimal 

;?laces and excellent agreement m ;Jressurc distribution, 

k generalisation of the precedlnz potential flo\f! solution 

is to be presented 1n a further paper in which the Gossi>ilities 

and limitations of the solution ~~111 be explored, 

J.H, Horlock, t/ho gave much Valua’Jlc assistance in the under- 

standing of the analysis. li'hanks are also due to Professor 

W, iIcrchant, Dr, D,I'I. Smith and fssociatcd Electrical Industrlcs 

Ltd. for the loan of some useful Xetropolitan Vickers internal 

reports on the subject. Finally, acknovllcdgemdnt 1s due to 

Dr. A. Young oT the Department of Zumcrical Analysis, Liverpool 

University, who provided tLc com?utcr facrllties, and to 

Dr, ' .b, hall of Southampton Univcrslty for l?ermitting the author 

to reproduce his results. 
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A profile with a stagger 6 of 37.5' and a space/chord ratio 

of 0.3901573~..has been computed and the results are given below, 

k3 mentioned 11~ 2cragraph 3.1.2 a value of p t 0.725 was 

chosen as the ;laramcter for the basic ovalo Prom equation (4) 

we obtain 

cash y = 2.91481083, 

Examining equation (11) it ~111 be seen that the zeroes 

of this equation are given by 

slnhk= 2 cos6 sinh y. 

Since y and6 are known, the values of)\ at the positions of the 

zeros are determined. Since X 1s a function only of c for 

constant p the two vrlucs of a can be obtained. c 
Par the exailrgle of the text 

t! 1 = +0.632248112 - 0.35125714gi 

t 2 = -0.632248112 - 0.3512571491 

The negative value, ,2p Y is taken to bc the position of the rear 

staenatlon point in the e plane. 

Considering the larger ovals, given by pt = 0.8, these ovals 

can be placed anywhere in the [ plane so long as they include 

all zeros and infinities. To obtain the limiting case of a 

finally transformed acrofoil which has a nusped extremity, the Qf 

oval is positioned so as to actually >ass through the previously 

deter&nod zero,, In this examglc i-he (31 oval was displaced so 

that Its centre was at the point 

L I( = ml + in' = +0.112512215 - 0.0632i. 

The procedure was then purely a computation of the aerofoil 

profile from equation (14) and subsequently computation of the 

pressure distribution and aerodynamic parameters from equations 

(18) arm-i (19). 
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AP-?7"-NDIX B 

j v;yc; :fQJ3 L' f\ IT> cojyrI" T, CASC.,Z”T: -R-b/$)' Y?OIIL:7: AND PRJZ?SlJRE DIS~~'?I3U'r7ION 

Calculr-ted correct to 7 d.p. on the Liverpool University 

Deuce electronic computer. 

4rbitrarilg selected parameters:- 

nl = -0,0632 

9 = 53.5O 

StaLGer angle= 37.5°(Compressor) 

P' = 0.8 

Q = 0,725 

Derived narart~eters 

s/c = 0*9901573 

mt = 1-0.112512215 

nl and ml arc coordinates of pt = 0.8 oval centre 

inl= m + in plane. Also tan a 
3 

= + 0.577g3012 

Profile coordinates 

Based up3n unit chord 

x -t iY 

i-O.1840367 +0*0949930 
+o.6500792 +0.0889340 
+O. 5685042 +0.1010401 
+0.5211449 +0.1062824 
+00403o553 +0.1130286 
+0.32X776 -1-0.1117381 
+0,2599128 +0.1067143 
+a2069867 +0.0992816 
+0,1834664 +0.0948774 
+0.1616129 +0.0900909 
+0.1223507 +0.0795404 
+0.0884371 +0.0679148 
+0.0595318 +0.0554474 
+0.0356275 -1-0.0423583 
+0.0170584 -1-0.0288868 
-t-o eOo46149 +0.0153348 
-0.0001414 +0.0021437 
-:-0.0000631 -oeooO3936 
+OeOO59857 -0.0099254 
+0,0308941 -0.0192226 
+0,1109821 -0,0193545 
+o,1451326 -0.0159400 
+o.1464393 -0.0157915 
-1-0.1653660 -0.0135341 
-to,2472125 -o,oo25069 
+0,2708527 +0.0007947 
+0.2725677 +0,0010332 

CL 
cp = p - p1 

SfJ u12 

-0.7329363 
+o.o219360 
-0.0941639 
-0.1659479 
-0.3597584 
-0.4992400 
-0.6094902 
-o,6973123 
-0.7337957 
-0.7656136 
-0.8156043 
a.8470333 
-0.8571795 
-0.8368069 
-0.7538457 
-0.4766543 
+0.4363445 
+0.6827467 
+0,9211494 
+0.4121105 
+0.2977494 
-:-oo3248899 
+0.3260522 
+o.3432965 
+o.4167019 
d-o.4359517 
+0.4373066 
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