
aERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Potential Flow through Cascades -

 A Comparison between Exact and Approximate SolutionsBy
J.P. Gostelow,
University of Liverpool

LONDON: HER MAJESTY'S STATIONERY OFFICE
1965
Price 6s 6d net

Potential Flow through Cascades - A Comparison between Exact and Approximate Solutions
 - By -
 J. P. Gostelow,
 University of Liverpool

Communicated by Prof. J. H. Horlock

November, 1963

The transformation method of Merchant and Collar is developed in order to obtean an exact solution to the potential flow around a cascede of derived aerofolls. This solution is then used as a check on the accuracy of an approximate method, siven by Schliching, for the prediction of the flow around the derived cascade.

1. INTRODUCYION

This paper is primarily concerned with the direct problem of the application of potential flow theory to cascaces, i.e. that in which a solution to the flow a out a cascade of given jeometry is required. In ceneral most of the solutions which have been fiven suffer from the need for restrictions and epproximations and are of a lengthy nature.

The first solutions to the problem of potential flow in cascades were for cascades of flat plates and vithin the limitations of zero thickness and comber, antlytical solutions for lift coeficient and outlet anife were obtained ${ }^{2}{ }^{3}$. The more ceneral problem of thice, combered aerofoils in cascade, as used in axial flow compressois and turbines, has proved more difficult to solve. The solutions proposed fall into the tro catacories of (a) transformation methods and (i) singularity methods.
a) Transformation methods

Howell ${ }^{4}$ gave a solution, bascd upon a conformal iransformation, end by the use of suitable infermediate stages transformed the cascade of arbiourarıly specıficd aerofoil profiles inco a circle, the flow around which could be determined. This method has been
extended by Carter and Hughes 5 and programmed for an electronic computer by Pollard and Foresworth ${ }^{6}$. It was found that approximations arose in the transformation to an exact circle, $7 i t h$ special difficulty at the point corresponding to the aerofoil leading edge.

Garrick 7 has also given a solution to the problem based upon the Theodorsen conformal transformations, end this method of solution has been developed by Hall 8 .
b) Singularyty mothods

Schlichting ${ }^{9}$, whose mothod has been mocified by Mellor ${ }^{10}$ and proframmed for a low speed disital computer by Pollard and Vordsiorth ${ }^{6}$, distributed sources, sinks and vortices on the chord line in order to represent 0 given aerofoil cascade profile. This lamıted the application of the theory to profiles of lon camber. Doubts also arise concerning the convergence of the Fourzer series used for specifying the sangularaty distribu'ion.

A more sophisticeted epproach $2 s$ that due to Nartcnsonll, who distributed vorticity around the profile. pesulis from this methor, which is being widely uscd by other workers, may be the most relsable to catc, although the method seems to fall for profiles of low thickness.

In each of those methods an attempt is mace to predict lift coef́licient, outlet anćle anc distribution of pressure over a given blade profile; results have been puiblished, based upon one or other of these methods for many differend aerofoil profiles and blade configurations. Tovever, due to the possibility of crror in the lengthy computetions, and to the differing assumptions made, discrepancies arc noticeable when two or more of these methods ore applied to the same bla ce profile ${ }^{6}$.

During the years 1940-1944 Terchant and Collar produced an analysis giving a transformation linking the known potential flow around a series of ovels to thot oround a cascade of inclined flat plates. They also gave sugesestions for extension of the theory to a cascade of reroioul proffles, in an analozous menner to the theory of isolated Joukonsky transform aerofoils. 'inis theory has not, to the knorledge of the author, been extended prior to the Fork descrabed an the present paper. The assumptions made are those of conventional potential flow theory and the accuracj of calculation is limited only by the means of courutation available. Thus a stendard has been provided for comparison rith the approximate methocs outlined a'bove.
2. NOTATON AND EVDOLS (See also Jig. 2)
c chord length (distance between extremities of camber line)
${ }^{C} C_{I}(c) \quad$ lift coefficient (based on choma and mean line $C p=\frac{p-p_{1}}{\frac{1}{2}-u_{1}{ }^{2}} \quad$ pressure coefficient
$\ell=m+$ in complex coorcinates in plane of ovals
$\eta^{\prime}=m^{\prime}+i n^{\prime}$ centre of offset oval
p locel pressure ot a point on the profile
$q \quad$ local velocity on the proifle
$q_{f}=u_{l}+i v_{k}$ complex velocity in the "plene
$q_{z}=u_{z}+i v_{z}$ complex velocity in the z plane
s
space betwecn blades ($s=\lambda$ in this paper)
$U_{1}, U_{2} \quad$ velocity before and after cascade
$\mathrm{X}_{\mathrm{s}}, \mathrm{y}_{t} \quad$ camber and thickness ordinate in singularity method
$\mathrm{E}=\mathrm{x}+\mathrm{iy}$ complex coordinates in cascade plane
$a_{1} \quad$ inlet flow angle
$\alpha_{2} \quad$ outlet flow angle
$\begin{array}{ll}\beta & \text { size parameter of smaller oval } \\ \beta^{\prime} & \text { size parameter of larger oval }\end{array}$
$\lambda=\ell+\sin ^{2} \beta \operatorname{coth} \ell$
$\gamma=\beta+\sin ^{2} \beta \operatorname{coth} \beta$
$\zeta=\xi+i \eta$ complex coorcinates in intermediate plane
6 aerofoil stagger angle
p density of fluid
$\Gamma=-2 \lambda$ \quad circulation around each aerofoil
$w=\varnothing+i \psi$ complex potential in plane of ovals
3. $工$ IHE IXACT SOLUTION TO THE THOW THPOUGH A DERTVED CASCADE

The brocedure for evaluation of the blade profile shape and cascade conizguration follows that of Ierchent and Collar.
i) The normai ${ }^{*}$ flow past a series of ovals on the imasirary axis has bcen given by Lamb ${ }^{12}$.
ii) The normal flow past a series of lominae lying along the Imaginary axis is also known and a transformation can be obtaned Whicil converts the lamınae into the ovals of (i) (Fig. la). iii) In a similar way the general flow ${ }^{\wedge}$ round the laminae (which is known) gives the general flow round the ovals.
iv) A particular case of the general flow round the ovals is that for whach the flow at infinity is incloned to the axis but for which there is no circulation. In this ca e the ovals can immediately be iransformed into a cascade of flat plates parallel to the direction of flow at infinity (Fig. lb).

표 "Normal Elow" - flow perpendicular to the amánary axis.
A "General Flow" - flow with inlet engle and circulation
v) Application of this transformation to ovals which are of fsot from the origin produces a cascade of aerofoil shapes. This is the class of aerofoil for which the profile shape, and subsequently the aerodynamic characteristics, will be obtanned.

The procecure is similar to the usual Joukowsky process for an isolated aerofoil and, if the diameter of each oval is small compared with the space, these ovals tend to become circles and the transormation used becomes the Jcukowsky transformation. The full analysis is given below.

3.1 Deravation of aerofoils

3.1.1 General Flow Past a Cascace of Ovals

The potential field due to normal flow of a uniform siream past a series of uniform doublets lying along the imaginary ℓ plone axis is given by Lambl${ }^{12}$:-

$$
\begin{equation*}
w=U\left\{i+\sinh h^{2} \quad \beta \operatorname{coth} \ell\right\} \tag{1}
\end{equation*}
$$

This rationaliscs into

$$
\begin{aligned}
& \phi=U\left\{m+\frac{\sinh ^{2} \beta \sinh 2 m}{\cosh 2 m-\cos 2 n}\right\} \\
& \psi=U\left\{n-\frac{\operatorname{snn} h^{2} \beta \sin 2 n}{\cosh 2 m-\cos 2 n}\right\}
\end{aligned}
$$

where the sireamline $\psi=0$ marks part of the $n=0$ axis and the closed oval

$$
\begin{equation*}
\cosh 2 m=\cos 2 n+\frac{\sinh ^{2} \beta \sin 2 n}{n} \tag{2}
\end{equation*}
$$

β is now seen to be the length of the semi-major oval axis. If we consider a serıes of lammae distributed alons the η axis of the S plane with a period of λ, the stagnation points of the flow around these laminae may be made to correspond to those in the ℓ plane. re can thus put $\ell= \pm \beta$, as the staination point, in equation (I)

For sumplicity, following Merchant and Collar, λ and γ are deinined as

$$
\begin{align*}
& \lambda=1+\sinh ^{2} \beta \operatorname{coth} 2 \tag{3}\\
& \gamma=\beta+\sinh ^{2} \beta \operatorname{coth} \beta \tag{4}
\end{align*}
$$

The flow around the laminae is given by^{l},

$$
\begin{equation*}
W=U \cosh ^{-1}(\cosh \gamma \cosh \xi) \tag{5}
\end{equation*}
$$

and since, from (1), $W=U \lambda$ for the ovals

$$
\begin{equation*}
\cosh \lambda=\cosh \gamma \cosh \zeta \tag{6}
\end{equation*}
$$

This is thus the required transformation connecting the \bar{l} plane ovals and the S plane laminae.

The general flow past the S plane laminae is known to be

$$
\begin{equation*}
\frac{d W}{d \xi}=\frac{U \sinh ^{A} x+i W \cosh \varphi}{\sqrt{\sinh ^{2} \zeta+\tanh ^{2} \zeta}}-i V \tag{7}
\end{equation*}
$$

Where V is the component of velocity parallel to the η axis, and there is a circulation $2 \pi W$ around each lamina.

If transformation (6) is applied to the general flow past the laminae, the followino equation is obtained:-
$u_{\ell}-i v_{\psi}=\frac{d w}{d \phi}=\left[U+i\left(\frac{W \cosh \lambda-V \sinh \lambda}{\sinh ^{2} \lambda-\sinh ^{2} \gamma}\right)\right]\left[T-\frac{\sinh ^{2} \beta}{\sinh ^{2}}\right]$
This is the general flow past the ℓ plane ovals.
3.1.2 Transformation of ovals into inclined flat plates and cerofoils
Considering the particular case in which $\Pi=0, V=U \tan 6$, equation (8) becomes

$$
u_{p}-i v_{l}=\frac{d w}{d \eta}=U\left[1-\frac{i \tan h \sinh \lambda}{\sinh ^{2} \lambda-\sinh 2}\left|1-\frac{\sinh ^{2} \beta}{\sinh ^{2}}\right| \ldots(9)\right.
$$

Also, consicering the flow past a cescece of inclined flat plates as shown in Fig. 2,

$$
\begin{equation*}
\frac{d w}{d g}=U(1-i \tan t) \tag{10}
\end{equation*}
$$

Elimination of m in (9) and (10) gives

$$
\frac{d g}{d y}=e^{i 6}\left[\cos \delta-\frac{i \sin \phi \sinh \lambda}{\sinh ^{2} \lambda-\sinh ^{2} \gamma}\right]\left[\begin{array}{l}
1 \\
\sinh \phi
\end{array}\right] \ldots \text { (II) }
$$

Hence the transformation connecting the oval and cascade planes is given by

$$
\begin{equation*}
g=e^{i \phi}(\lambda \cos \ell-i \sin 6 \operatorname{arccosh}(\operatorname{sech} \gamma \cosh \lambda)) \tag{12}
\end{equation*}
$$

or, if the true chord is taken as abscissa,
$Z=\lambda \cos \delta-i \sin \delta \operatorname{arccosh}(\operatorname{sech} \gamma \cosh \lambda)$
Which can je expressed, for ease of computer programming, as
$Z=\lambda \cos \gamma-i \sin \phi \ln \left[\operatorname{sech} \gamma \cosh \lambda+\sqrt{\frac{\cosh ^{2} \lambda}{\cosh ^{2} \gamma}-1}\right]$
The procedure for the derivation of a cascade of aerofoils is thus to select a surtable set of V plane ovals, postulate a set of larger ovals with offset centres, and apply transformation (13) to these offiset ovals.

Experience enables the required type of cascade to be obtained. For example, β should be around 0.725 to give a space-chord ratio of unity and β^{\prime} should be approximately 10% larger than β to give a maximum thickness of 10% of the chord. Variat on of camber and position of maximum thickness is obtained by variation of n^{\prime} and m^{\prime} (the coordinates of the offset oval centre); the proviso is that the transformation singularities must be enclosed within the ofiset ovel, or, for a cusped trailing edge, lie on this oval. A more detailed explanation of this procelure is given by Collar ${ }^{13}$ and Iferchant and Collarl.

There exist two extreme particular examples of the eneralised method. In the firot case the transformation is applied to concentric ovals and a cascace of elliptic aerofoils is produced in the z plane. In the second example (the case uncer discussion in this paper) the stagnation point at the position on the ovals corresponding to the irailing edge is
placed at the trensformation singularıty, by application of Netton's method for the cetcmanation of roots to equation (2). This case gives a cascacie of cusped acrofolls. Between these two exureme cases the derivation of an infinite variety of aerofoll sections is possible. Ap ilications of such a generalisation wall be the subject of a second paper.

3.2.1 The Flow Around the Aerofoils

The rolationship between velocities in the $?$ and z planes is guven by

$$
\begin{equation*}
u_{z}-i v_{z}=\frac{u_{\ell}-i v_{\ell}}{\left|\frac{d z}{d k}\right|} \tag{15}
\end{equation*}
$$

Where suluscrapt z refers to the local velocity on the z plane cascade profile, subscript ℓ refers to the local velocity on the ℓ plane oval profile.

From equations (9) and (11) the velocity on the z plane is glven by

To obtain ${ }^{\prime}$, the value of ℓ at the rear stagnation pount In the plane is substatutec into eruation (9). If the traning edge of the profile is cusped, then the Kutta condition must be setisfired. Since $\frac{d w}{d z}=\frac{d v / \frac{d y}{d z} / \overline{d r}}{}$ and both $\frac{d v}{d \eta}$ and $\frac{d z}{d \eta}$ become zero if the stagnation poznt is at the point of the cusp, the complex velocity in the z plane becomes sinute end the Kutia condition is satisfied. If the traュling edge is rounced then the rear stejnation jount is andetermanate and a surtable position must be chosen.

Shus, from equation (9), at the reir stagnation point

$$
\begin{equation*}
W=V \tanh \lambda_{t}+i U \sqrt{1-\frac{\cosh ^{2} y}{\cosh ^{2} \lambda_{t}}} \tag{17}
\end{equation*}
$$

Where the subscript t refers to trawling edge conditions.
Now the circulation is token as $\Gamma=-2 \pi W$ giving the following values for air angles a_{1} and a_{2}

$$
\tan a_{1}=\frac{V-V}{U} \quad \tan a_{2}=\frac{V+W}{U}
$$

Hence

$$
V=U \tan a_{1}+V
$$

and from equation (17)

$$
\begin{aligned}
& V=U\left[\frac{\tan a_{1} \tanh \lambda_{t}+\sqrt{\frac{\cosh ^{2} y}{\cosh ^{2} \lambda_{t}}-1}}{1-\tanh \lambda_{t}}\right] \\
& V=U\left[\frac{\tan a_{1}+\sqrt{\frac{\cosh ^{2} \gamma}{\cosh ^{2} \lambda_{t}}-1}}{1-\tanh \lambda_{t}}\right]
\end{aligned}
$$

Substituting these values for is and V into equation (16) we obtain,

$$
\begin{equation*}
(1+i A)\left(1-\frac{\sinh ^{2} \alpha^{2} \beta}{\sinh ^{2} p}\right) \tag{18}
\end{equation*}
$$

where $A=\frac{\left[\tan \alpha_{1} \tanh \lambda_{t}+\sqrt{\frac{\cosh ^{2} \gamma}{\cosh } \lambda_{t}-1}\right] \cosh \lambda-\left(\tan \alpha 1+\sqrt{\frac{\cosh ^{2}}{\cosh } \lambda^{2}}-1\right) \sinh }{(1-\tanh \lambda) \sqrt{\sinh ^{2} \lambda_{t}-\sinh ^{2} \gamma}}$
Also

$$
\frac{q}{U}=\sqrt{\frac{u_{z}^{2}+v_{z}^{2}}{U}}
$$

and we define the pressure coefincient

$$
C p=\frac{p-p_{1}}{\frac{1}{2} P_{U_{I}}{ }^{2}}
$$

From Bernoulli's equation

$$
p+\frac{1}{2} q_{1}^{2}=p_{1}+\frac{1}{2} q_{1}{ }^{2}
$$

therefore

Now

$$
\begin{aligned}
\frac{p-p_{I}}{\frac{1}{2}+U_{1}^{2}} & =1-\frac{\underline{q}^{2}}{U_{1}^{2}} \\
U & =U_{I} \cos a_{I}
\end{aligned}
$$

therefore

$$
\begin{equation*}
C p=\frac{p-p_{1}}{\frac{1}{2} P_{U_{1}}^{2}}=1-\frac{\left(u_{z}^{2}+v_{z}^{2}\right)}{U^{2}} \cos ^{2} \alpha_{1} \tag{19}
\end{equation*}
$$

Tor the potential flow around the β^{\prime} ovals to be determined, these ovals mus je relocated with their centres at the points $(0,0),(0, \lambda),(0,2 \lambda), \ldots$ in the ℓ plane.

$$
\text { If } \ell_{t_{2}}=\ell_{t}-\ell^{\prime} \text {, where } \ell^{\prime}=m^{\prime}+\text { in }{ }^{\prime}
$$

then

$$
\lambda_{t_{2}}=\varepsilon_{t_{2}}+\sinh ^{2} \beta^{\prime} \operatorname{coth} \varphi_{t_{2}}
$$

Now

$$
\tan a_{1}=\frac{V-W}{U} \text { and } \tan a_{2}=\frac{V+W}{U}
$$

thus

$$
\tan \alpha_{2}=\frac{\tan a_{1}\left(1+\tanh \lambda_{t_{2}}\right)+2 \sqrt{\frac{\cosh ^{2} \gamma_{2}}{\cosh ^{2} \lambda_{t_{2}}}-1}}{1-\tanh _{t_{2}}} \quad \ldots(20)
$$

The complete flow around tho relocated β^{\prime} ovals will be needed, for use in obtaining the cascade profile pressure distribu-$\frac{u_{\ell}-i v_{\ell}}{U}=\left[1+i\left(\frac{\left(\operatorname{tana}_{1} \tanh \lambda_{t}+\sqrt{\left.\frac{\cosh ^{2} \gamma}{\cosh ^{2} \lambda_{t}}-1\right) \cosh \lambda-\left(\tan \alpha_{1}+\sqrt{\left.\frac{\cosh ^{2} \gamma}{\cosh ^{2} \lambda_{t}}-1\right)} \operatorname{sh} \lambda\right.}\right)}{\left(1-\tanh \lambda_{t}\right) \sqrt{\sinh ^{2} \lambda-\sinh ^{2} \gamma}}\right]\right.$.

In equation (22) all $\boldsymbol{\lambda}$'s and l 's refer to conditions around the β^{\prime} oval relocated and centred at the origin.
\# This corresponds to the equation

$$
\begin{equation*}
\tan \alpha_{2}=\frac{\tan \alpha_{1} y+2 \tan \varnothing}{y+2} \tag{21}
\end{equation*}
$$

of ref. 15 and it can easily be demonstrated that

$$
\frac{y}{y+2}=\frac{1+\tan h \lambda_{t_{2}}}{1-\tan h \lambda_{t_{2}}}
$$

and

$$
\frac{\tan \varnothing}{y+2}=\frac{\sqrt{\frac{\cosh ^{2} \gamma_{2}}{\cosh ^{2} \lambda_{t_{2}}}-1}}{1-\tanh \lambda_{t_{2}}}
$$

The next stage is the evaluation of the scale factor $\left|\frac{\partial z}{d \ell}\right|$ Making use of equation (11) we have

$$
\begin{equation*}
\left.\left|\frac{\partial z}{\partial l}\right|=\left|\left(\cos \sigma-\frac{i \sin \sigma \sinh \lambda}{\sqrt{\sinh ^{2} \lambda-\sinh }{ }^{2}}\right)\right|\left(1-\frac{\sinh ^{2} \beta}{\sinh ^{2} \ell}\right) \right\rvert\, \tag{23}
\end{equation*}
$$

Here, as in the basic iransformation used to determine the aerofoil profile, the β of the smaller oval is employed.

It is now possible to evaluate the $\frac{u_{z}-i v_{z}}{U}$ of equation (18) using the right hand side of equation (22) as the numerator, and that of (23) as the denominator. The value of the pressure coefricient for the corresponding point on the aerofoil surface is now given by equation (19).

The only remaining aerodyuamic parameter which can be calculated from potential flow theory is the lift coefficient. dhis is defined and calculated in two difierent ways below, both of which are in common usage.

3.3 Lift Coefficients

I'irstly $1 t$ is possible to base the lift coefficient on the chord line of the profile. The advantage of this defination is that the resuliing value of lift coefficient can be compared with the value obtaned by integration of the pressure distribution as is shown in Fig . 6.

$$
C_{I(c)}=\left\{\begin{array}{l}
x / c=1 \\
x / c=0
\end{array}\right.
$$

Thus the lift coefincient perpendicular to the chord line is defined as

$$
\begin{equation*}
C_{L(c)}=\frac{I\left(1^{p} r\right. \text { to chord) }}{\frac{1}{2} U_{\alpha_{1}}^{2} c} \tag{24}
\end{equation*}
$$

It may ve shown that

$$
\begin{equation*}
C_{I(c)}=\frac{s}{c} \cos ^{2} \alpha_{1}\left(\tan \alpha_{1}-\tan \alpha_{2}\right) \cdot\left(\left(\tan \alpha_{1}+\tan \alpha_{2}\right) \sin 6+2 \cos 6\right) \tag{25}
\end{equation*}
$$

An alternative definution of the lift coefficient is obtanned from a consideration of the lift perpendicular to the mean flow direction.

$$
\begin{equation*}
C_{J(m)}=\frac{\rho C_{m} \Gamma}{\frac{1}{2} C_{C_{m}}{ }^{2} C} \tag{26}
\end{equation*}
$$

It follows thet

$$
\begin{equation*}
C_{I(m)}=\frac{2 \cos 6 c_{I c}}{\sqrt{4+\left(\tan \alpha_{1}+\tan \alpha_{2}\right)^{2}}} \tag{27}
\end{equation*}
$$

4. $\triangle P P R O X I M A T E$ SOLUPIONS TO THE TIOV THEOUGI A DERIVID CASCEDF Of the potential flow solutions mentioned in the introduction the author was only able to use the singularity method of Schlichting. However, due to the cooperation of Dr. Hall of Southampton, who used his extended Garrick method and tho use by a team at Rolls-Royce of a modified Irortensen-Isay method, a more complete comparison mas possible.

These methods for determinations of the potential flow were applied to the cascace of blades with the profle shom in graph 2c, having the given stageer, space/chord ratio and inlet ansle, the object being to determine the outlet angle at downstream infinity, the lift coefficient, and the distribution of pressure around the blade profile.

This process was carried out by the author using the Schlichoing singularity method and a brief description of the procedure is jiven below. Results of the comparison between the analysis and the application of the a'jove mentioned methods are glven in Fig. 4.

In the Schlidmtinf metiod, sources, sinks and vortices are distributed along the true chord of the blade and the velocity induced by the sum of these sangularities is celculated throughout the flow regime and added to the free stream velocity. The magnitude of the singularities is chosen so that a fluic stream-

The main assumptions and approximations are as follows:-
i) a distribution of singularities is used to match the profile at a rinite number of points.
ii) this num'er of matchinf yoints is restricted by the stability of the Fourier serles which is used to represent the sincularity distribution ${ }^{6}$.
iii) the blare profile is split into a camber line arrd thickness distribution; these are considered separately.
IV) the singularities are distributed along the chord line. Hence the induced veloci'ies are calculated on the chord line and corrected to give the velocity on the profile, utilisins a factor

$$
\frac{V c}{V m x}=\frac{V x}{V m x} \quad \frac{I}{\sqrt{1+\left(y_{s}^{1} \pm y t\right)^{2}}}
$$

given by Riegels ${ }^{14}$.
v) the llode profile shape is not introduced in the form of (x, y) coordinates but in the form $\left(x, \frac{d y}{d x}\right)$ and since the profile gradients of an arbitrary profile are difficult to measure or compute with good accuracy it is difficult to avoid small errors in profile specification.

The calculations were carried out on the Deuce computer for the given cascade proiile of Fig. 2, matching camber and thickness gradients at seventcen stations along the chord. The lift coefficient, outlet angle and pressure distribution were obiained. Provision had been made, in the work of Pollard and Fordsworth, for integrating the expressions for camber line and thickness gradient as finally obtained, to give the actual "integrated" profile around which the flow had been found. This integrated profile proved to be slightly different from the given profile, as show in Fig. 3a.

The enture calculation using the singularity method was carried out independently several bimes in attompts to improve the profile matching. The final pressure distribution was found to vary only slightly with chance in anterratec nrofile. The curves shown in Jigs. 3 a and 4 are for the integrated profile nearest to the reguired one.

5. COTCTUSIOITS

The analysis of Merchant and Collar has been programmed for an alectronic computer in order to obtain a cascade of aerofoil profiles; this analysis has been extended in order to calculate fully the potential flow around these profiles. It was also found possible to determine the variation of outlet angle, theoretical lift coefficient and prescure distribution over a wide range of inlet angles. As a check on the accuracy of the calculations the theoretical lift coefficient was compared with the value of lift coefficient obtained by planımeter integration of pressure distribution, the results beang shown in Eig. 6. Good agreement was obtained, as was to be expected sunce no assumptions other than those of potenial flow theory vere made and the only lamitations on the accuracy were those of the computing equipment (viz. 7 decimal places, allowance having been made for roundinc oif errors). The results of the calculations are presented both grapaically and in the form of tables for $x / c, y / c$ and $c p$, thus facllitating a check on the accuracy of other, morc general, potential flow solutions.

Comparisons have been made wath the slagularity method of prediction of potential flow in cascaces, ct developed by Pollard and wordsuorth. Dificulines and lmmtations of this method have been discussed and graphs are presented shoving the difficultics of matcing the profile exactly. The outlet angle, as predicted by the singularity methoci, is seen to be in error
by 0.70 and the pressure distribution is seen to be in reasonajle gencral agreement, al binough aiscrepancies occur near the suction peak.

The results viluch Dr. Hall has provided, based on the Garrick method, show an accuracy in outlet angle of almost four decimal places and excellent agreement in pressurc distribution.

A generalisation of the precedin potential flow solution is to be presented in a further paper in which the possibilities and limitations of the solution vill be explored. ACKNO:TMDGLEMS

She euthor wishes to express has gratitude to Professor J.H. Horlock, who gave much valua'jlc assistance in the understanding of the analysis. Ihanks are also due to Professor W. IIerchant, Dr. Doit. Smith and Lssociated Illectrical Industries Itc. for the loan of some usoful IEtropolitan Vickers internal reports on tho subject. Finally, acknovicdgement is due to Dr. A. Young of the Department of Numerical Anel ysis, Inverpool University, who provided tiae computer faczlaties, and to Dr. ". . . dall of Southampton University for nermiting the author to reprocuce his results.

REFERENCES

1. Merchant, w. and Collar, A.R.
2. Grammel
3. Pistolesi, E.
4. Howell, A.R.
5. Carter, A.D.S. and Hughes, H.P.
6. Pollard, D. and Wordsworth, J.
7. Garrick, J.R.
8. Hall, W.S. and Thwaites, B.
9. Schlichting, H.
10. Mellor, G. L.
11. Martensen, E.
12. Lamb, J.
13. Collar, A.R.
14. Riegels, F.
15. Merchant, W. and Smith, D.M.

Flow of an Ideal fluid past a cascade of blades (Part II).
A.R.C. R. \& M. No. 1893. Hay, 1941.

Dıe hyċrodynamischen Grundlagen des Fluges. 1917.

On the calculation of flow past an infinite screen of thin aerofoils. Na. C.A. Memo.968. 1941 .

A theory of arbitrary aerofolls in cascade. Phıl.Mag. Vol. 39, No.299. Dec. 1948. pp. $913-927$.

A theoretical Investigation into the effect of profile shape on the performance of aerofolls In cascade.
A.R.C. R \& M 2384. March, 1946.

A comparison of two methods for preducting the potential flow around arbitrary aerofolls in cascade.
A.R.C. C.P. 618. June, 1962.

On the plane potential flow past a lattice of arbitrary airfoils. N.A.C.A. Report 788. 1944.

On the calculation of cascade flows. A.R.C. C.P.806. Novenber, 1963.

Berechnung der reibungslosen inkompressiblen Strömung für ein vorgegebenes ebenes Schaufelgitter. V.D.K. Forschungshaft 447, 1955.

An analysıs of axial compressor cascade aerodynamics. J1. of Baslc Engrg. September, 1959.

Archive for rational mechanics and analysis. Vol. 3, No. 3, 1959.

Hydrodynamzcs. C.U.P. 5th edition. P.68.

The flow of a perfect fluid through cascades of aeroforls. J1. of R.Ae.Soc. May, 1941.

Arrfoll Sections. Butterworths 1961.

The flow of an ldeal flund past a cascade of blades. Part 1.
Wetropolitan-Vickers Co. Lta. Internal Report.
16. Horlock, J.H. Axial Flow Compressors. But terworths 1958.
17. Weing , F.
18. Lewas, R.I.
19. Jorge, J.

Die Strömung um die Schaufeln von Turbomaschinen.
Joh Ambr. Barth. Leipzig, 1935.
Private communications.
Potential flow through cascades with blades of finite camber and thickness.
Ph.d. thesis. Princeton University, 1962.

APPINDIX A.

A profile with a stageer 6 of 37.5° and a space/chord ratio of 0.9901573 .has been computed and the results are given below. As mentioned in paragraph 3.1.2 a value of $\beta=0.725$ was chosen as the jarameter for the basic oval. From equation (4) we obtain

$$
\cosh \gamma=2.91481083 .
$$

Examining equation (11) it will be scen that the zeroes of this equation are given by

$$
\sinh \lambda= \pm \cos \delta \sinh \gamma .
$$

Since γ and 6 are known, the values of λ at the positions of the zeros are determined. Since λ is a function only of ℓ for constant β the two velues of ℓ can be obtainod.

For the example of the text

$$
\begin{aligned}
& \ell_{1}=+0.632248112-0.351257149 i \\
& \ell_{2}=-0.632248112-0.3512571491
\end{aligned}
$$

The negative value, ℓ_{2}, is taken to bo the position of the rear stagnation point in the ℓ plane.

Considering the larger ovols, given by $\beta^{\prime}=0.8$, these ovals can be placed anywhere in the ℓ plane so long as they include all zeros and infinities. To obtain the limiting case of a finally transformed acrofoll which has a ausped extremity, the β^{\prime} oval is positioned so as to actually pass through the previously deterwinod zcro. In this example the β^{\prime} oval was displaced so that its centre was at the point

$$
\ell^{\prime}=m^{\prime}+i n^{\prime}=+0.112512215-0.0632 i .
$$

The procedure was then purely a computation of the aerofoil profile from equation (14) and subsecuently computation of the pressure distrijution and acrodynamic parameters from equations

AP? MNDIX B

Calculated correct to $7 \mathrm{~d} . \mathrm{p}$. on the Liverpool University
Deuce electionic computer.
Arbitrarzly selocted parameters:-

$$
\begin{aligned}
n^{\prime} & =-0.0632 \\
\alpha_{1} & =53.5^{\circ} \\
\text { Stacier angle } & =37.5^{\circ} \text { (Compressor) } \\
\beta^{\prime} & =0.8 \\
\beta & =0.725
\end{aligned}
$$

Derived paraneters

$$
s / c=0.9901573
$$

$$
m^{\prime}=+0.112512215
$$

n^{\prime} and m^{\prime} aro coordinates of $\beta^{\prime}=0.8$ oval centre
in $l=m+$ in planc. \quad Also $\tan \alpha_{2}=+0.57793012$

Reference
Number
$\mathrm{N} \quad \mathrm{X} \quad+\quad$ iY

Profile coordinates
Based upon unit chord
+0.0949930
+0.0889340
+0.1010401
+0.1062824
+0.1130286
+0.1117387
+0.1067143
+0.0992816
+0.0948774
+0.0900909
+0.0795404
+0.0679148
+0.0554474
+0.0423583
+0.0288868
+0.0153348
+0.0021437
-0.0003936
-0.0099254
-0.0192226
-0.0193545
-0.0159400
-0.0157915
-0.0135341
-0.0025069
+0.0007947
+0.0010332
-0.7329363
+0.0219360
-0.0941639
-0.1659479
-0.3597584
-0.4992400
-0.6094902
-0.6973123
-0.7337957
$-0.7656 .136$
-0.8156043
-0.8470333
-0.8571795
-0.8368069
-0.7538457
-0.4766543
+0. 4363445
$+0.6827467$
$+0.9211494$
$+0.4121105$
+0. 2977494
$+0.3248899$
$+0.3260522$
$+0.3432965$
+0.4167019
+0.4359517
$+0.4373066$

The \angle Plane ovals
FIG. 2

Z Plane cascade and Notation

Fig 4. PRESSURE DISTRIBUTION FOR MERCHANT AND COLLAR PROFILE

STAGGER $371_{2}^{\circ} \quad 5 / C \quad 0.9901573 \quad \alpha_{1}=59.5^{\circ}$
KEY

$$
\begin{aligned}
& \text { —— AnALysis } \\
& \text {--.- SCHLICHTING METHOD } \\
& \text { (POLLARD \& WORdSWORTH) } \\
& \text { - - - GARRICK METHOD } \\
& \text { (MALL) }
\end{aligned}
$$

Analetical Methoo

$$
\begin{aligned}
& \text { STAGGER } 37 / 2 / 2 \quad \underline{S}=0.9901573 \\
& \text { KET. } \quad \alpha^{0} \\
& \text {---- } 47.5 \\
& \text { —— } 53.5 \\
& \text {-- } 59 \cdot 5
\end{aligned}
$$

Fig 6 Variation of Lift Coefficient and
Outlet Angle with Inlet Angle $\alpha_{\text {. }}$

Appendix C. Computer Program block DiAgram.

A.R.C. C.P. NO. 807
 April. 1964
 J. P. Gostelon

PCTENTIAL FLOW THROUGH CASCADES

A COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTIONS

The transformation method of Merchant and Collar ${ }^{1}$ is developed in order to obtain an exact solution to the potential flow around a cascade of derived aerofoils. This solution is then used as a check on the accuracy of an approzimate method, given by Schlichting, for the prediction of the flow around the derived cascade.

A.R.C. C.P. NO. 807
 Apr11, 1964

J. P. Gostelom

POTENTIAL FLOW THROUGH CASCADES A COMPARISON BETWEEN EXACT AND APPROXIMATE SOLUTIIONS

The transformation method of Merchant and Collar' is developed in order to obtain an exact solution to the potential flow around a cascade of derived aerofoils. This solution is then used as a check on the accuracy of an approximate methor, given by schlichting, for the prediction of the flow around the derived cascade.

A.R.C. C.P. No. 80

Apri1, 1964

J. P. Gostel ow

POTEN:IAL FLOW THROUGH CASCADES A COMPARISON BETWEEN EXACT ANO APPROXIMATE SOLUTIONS

The transformation method of Merchant and Collar is developed in order to obtain an exact solution to the potential flow around a cascade or derived aerofolls. This solution is then used as a check on the accuracy of an approximate method, given by Schlichting, for the prediction of the flow around the derived cascade.
© Crown copyright 1965
Printed and published by
Her Majesty's Stationery Office
To be purchased from
York House, Kingsway, London w c 2
423 Oxford Street, London w. 1
13A Castle Street, Edınburgh 2
109 St Mary Street, Cardfff
39 Kıng Street, Manchester 2
50 Farfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller
Printed in England

