LINERSE DU DOYAL ARCRAFT DO DOY REDECIRLO

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL

CURRENT PAPERS

Influence of Chemical Contouring on the Fatigue and Sustained Load Properties of High Tensile Steel Sheet

By

Westland Aircraft Ltd., Saunders-Roe Division

LONDON: HER MAJESTY'S STATIONERY OFFICE

1965

TEN SHILLINGS NET

1

C.P. No.812 May, 1964

INFLUENCE OF CHEMICAL CONTOURING ON THE FATIGUE AND SUSTAINED LOAD PROPERTIES OF HIGH TENSILE STEEL SHEET

WESTLAND AIRCRAFT LTD., SAUNDERS-ROE DIVISION

.

Roplaces A.R.C.26 155.

. . ,

	CONTENTS	PAGE
	SUMMARY	1
	INTRODUCTION	1
PAR	TI FATIGUE TESTS	
1.	RANGE OF TESTS	1
2.	DESCRIPTION OF SPECIMENS	
	2.1 General 2.2 Material Composition 2.3 Heat Treatments 2.4 Test Groups and Specimen Conditions	1 2 2 2
3.	METHOD OF TEST	
	 3.1 General 3.2 Calibration of Test Machine 3.3 Fatigue Tests 3.4 Surface Finish Measurements 	44 44 44 44
4.	RESULTS	
	4.1 Fatigue Tests 4.2 Surface Finish 4.3 Control Tests 4.4 Metallurgical Examination	4 4 5 6
5.	DISCUSSION OF RESULTS	
	5.1 RS.130 Material 5.2 RS.140 " 5.3 H.50 "	7 7 7
6.	CONCLUSIONS	7
PAR	T II SUSTAINED LOAD TESTS	
7.	RANGE OF TESTS	8
8.	DESCRIPTION OF SPECIMENS	
	8.1 General 8.2 Heat Treatments 8.3 Chemical Contouring	8 8 8
9.	METHOD OF TEST	
	9.1 Control Tests 9.2 Sustained Load Tests	9 9
10.	RESULTS	9
11.	CONCLUSIONS	10

/<u>TABLES</u>

1

LIST OF TABLES

TABLE		PAGE
I II III	RS.130 Material - Results of Tests RS.140 Material - Results of Tests H.50 Material - Results of Tests LIST OF FIGURES AND PLATES	11 14 17
FIG.	·	
1 2 3 4 5 6	Test Specimens Method of Calibration and Test Summary of Results - RS.130 Material """-R .140 Material """-H.50 Material Details of Load Specimen	
PLATE		
1	Sustained Load Test Rig	

2 Specimen under test

•

SUMMARY

Reverse bend fatigue and sustained load tests have been carried cut on three low alloy steel sheet materials, 1% Cr-Mo, 3% Cr-Mo-V, and 5% Cr-Mo-V, heat treated to 88, 103 and 121 t.s.i. respectively, and chemically contoured in acid etching solutions developed by Bristol Aerojet Ltd.

All three steels showed the lowest fatigue properties in the as received condition, intermediate properties after machining or grinding and the highest properties after chemical contouring. The high properties after chemical contouring were sometimes, but not always due to removal of a decarburised surface layer.

The chemical contouring process caused no failures under sustained load at high proportions of the notched tensile strength.

Phosphate treatment after chemical contouring caused a slight reduction of fatigue properties and very slight embrittlement.

INTRODUCTION

A research programme was undertaken to investigate the effect of chemical contouring on the fatigue and sustained load characteristics of high tensile steel sheet.

The test programme was carried out by the Saunders-Roe Division of Westland Aircraft Ltd., in conjunction with Bristol Aerojet Ltd. who supplied the specimens and developed the chemical contouring processes for the steels tested. The development of these processes is covered in S. & T. Memo 23/60 and D.Mat. & S. Report No. 114. The contouring processes used were the preferred processes summarised in Sections 3.2.3 and 10 of D.Mat. Report 114.

PART I FATIGUE TESTS

1. RANGE OF TESTS

It was required to investigate the effect of chemical contouring on the fatigue characteristics of three sheet materials, and to compare the results with the fatigue characteristics of specimens in the 'as received' condition and specimens which had been reduced in thickness by the more conventional methods of grinding and machine milling.

The three steels tested were 1% chromium-molybdenum steel to Bristol Aerojet Ltd. specification RS.130, 3% chromium-molybdenum-vanadium steel to Bristol Aerojet Ltd. specification RS.140, and 5% chromium-molybdenumvanadium steel, H.50, supplied by Jessop-Saville Ltd.

2. DESCRIPTION OF SPECIMENS

2.1 General

18 groups of specimens, of dimensions shown in Fig. 1, were supplied by Bristol Aerojet Ltd. They had been cut from 13 s.w.g. rolled sheet with the exception of groups 1 and 2 which had been cut from 15 s.w.g. material. After profiling, the specimens had been heat treated as described in para. 2.3 to give the 'as received' condition. Groups 5 to 8 and 11 to 18 had then been reduced in thickness by either grinding, machine milling or chemical contouring, the material being removed equally from each surface. The number of specimens in each group is given in para. 2.4

2.2 Material Composition

RS.130 (S.A.E.4130 type)

С	Mn.	Si.	S.	P.	Ni.	Cr.	Mo.	Fe.
% .315	•49	•23	•01	•014	•17	•97	•2	Remainder

<u>RS.140</u> (En 40c type)

	С	Mn.	Si.	S.	Ρ.	Ni.	Cr.	Mo.	v.
%.	37	•66	•25	•008	•01	•07	3.09	.86	•14

H.50

ſ	С	Mn.	Si.	S.	Ρ.	Ni.	Cr.	Mo₊	۷.
	% .41	•50	•90	•012	•009	•29	5.08	1.35	1.11

2.3 <u>Heat Treatments</u>

- <u>RS.130</u> The specimens had been hardened at 900° C. for 40 minutes, oil quenched, and tempered at 450° C. for 1 hour.
- <u>RS.140</u> The specimens had been hardened at $940^{\circ}C_{\bullet}$ for 40 minutes, oil quenched, and tempered at $550^{\circ}C_{\bullet}$ for 1 hour.
- <u>H.50</u> The specimens had been air hardened from $1000^{\circ}C_{\bullet}$, and tempered at $580^{\circ}C_{\bullet}$ for 60 minutes.

2.4 Test Groups and Specimen Conditions

2.4.1 RS.130 material

Group 1	15 s.w.g. (0.072 in.) 'as received' condition, descaled by pickling in 'Ferroclene 100'.	19	off
Group 2	15 $s_{\bullet}w_{\bullet}g_{\bullet}$ 'as received' condition, pickled, phosphated, baked and stained.	19	off
Group 3	13 s.w.g. (o.092 in.) 'as received' condition, descaled by pickling in 'Ferroclene 100'.	20	off
Group 4	13 $s_{\bullet}w_{\bullet}g_{\bullet}$ 'as received' condition, pickled, phosphated, baked and stained.	20	off
Group 5	13 s.w.g. Rough milled to approximately .064".	18	off
Group 6	13 s.w.g. Rough milled to approximately .064", pickled, phosphated, baked and stained.	19	off
Group 7	13 s.w.g. Chemically Contoured to approximately .064", phosphated, baked and stained.	22	off
	This group consisted originally of 20 specimens but on examination it was found that the edges of some specimens were badly notched and serrated. The three worst specimens were rejected and a further 5 specimens, which had better edges but which were not phosphated, baked and stained, were supplied, thus making a total of 17 original and 5 replacement specimens.		

-2--

Group 8	13 s.w.g. Chemically contoured to approximately	6 off
-	.064". Edges of waisted section hand polished.	
	Subsequent to the testing of group 7, this group	
	was introduced to check the effect on endurances	
	of extra fine edge definition.	

2.4.2 RS.140

Group	9	13 s.w.g. (0.092 in.) 'as received' condition, descaled by pickling in 'Ferroclene 100'.	20	off
Group	10	13 s.w.g. 'as received' condition, pickled, phosphated, baked and stained.	20 [.]	off
Group	11	13 s.w.g. Machined to .06", pickled, phosphated, baked and stained.	20	off
Group	12	13 s.w.g. Ground to .06", pickled, phosphated, baked and stained.	20	off
Group	13	13 s.w.g. Chemically contoured to .06".	20	off
Group	14	13 s.w.g. Chemically contoured to .06", pickled, phosphated, baked and stained.	20	off
Group	15	13 s.w.g. Chemically contoured to .06", edges of waisted section hand polished.	16	off

2.4.3 H.50

Group	16	13 s.w.g. (0.092 in.) Ground to .064", phosphated, baked and stained.	20	off
Group	17	13 s.w.g. Rough milled to .064", phosphated, baked and stained.	20	off
Group	18	13 s.w.g. Chemically contoured to .064", phosphated, baked and stained.	19	off

2.4.4 Pickle, Phosphate, Bake and Stain treatments

Details of pickle, phosphate, bake and stain treatments for the RS.130 and RS.140 specimens were as follows:-

- 1) Pickle for 20 minutes in 'Ferroclene 100' at 110°-120°F.
- Phosphate to DEF-29, class II, by immersion for 10 minutes in 'Bonderite 65' (40 point solution) at 140°-145°F.
- 3) Hot water swill and chromate passivation rinse.
- 4) Dry.
- 5) Bake for not less than 1 hour at $150^{\circ}C_{\bullet}$ ($302^{\circ}F_{\bullet}$).
- 6) Apply Pyrene P.41c, black spirit lacquer stain.

The treatment of the H.50 specimens differed from the above in two respects - they were not pickled and were de-embrittled as required by DEF-29 and DTD.934 by baking for 4 hours at $200^{\circ}C_{\bullet}$ instead of not less than 1 hour at $150^{\circ}C_{\bullet}$

3. METHOD OF TEST

3.1 General

All the specimens were tested on three Avery Reverse Plane Bend Machines type 7303, Serial Nos. E 47419/11, E 55515/10 and E 61783/2.

3.2 Calibration of Test Machines

Calibration was carried out by using a loading lever extension arm and deadweights as shown in Fig. 2. Each specimen was individually calibrated because of variation in the widths and thicknesses.

3.3 Fatigue Tests

Each specimen was measured with a micrometer to obtain width and thickness in order to calculate the bending moment to give the required stress level. The variable crank on the test machine was then adjusted to give the required dial gauge deflection determined from the calibration curve for the specimen.

3.4 Surface Finish Measurements

Surface finish measurements were made, after the completion of the fatigue tests, using a Taylor Hobson 'Talysurf' Model 3 instrument, the readings being taken over a 5/16" long stroke at the mid-length of the specimens.

4. <u>RESULTS</u>

4.1 Fatigue Tests

The results are tabulated in Tables I to III and summary plots are shown in Figures 3, 4 and 5.

Long endurance specimens were initially allowed to run for approximately 30×10^6 cycles, but this was later reduced to 15×10^6 cycles before terminating the test. One specimen in group 14 was allowed to run 101 x 10^6 cycles without failure.

4.2 Surface Finish

Surface finish measurements were taken on random selected specimens of all groups, with the exception of groups 2, 3 and 4 which were in the same 'as received' condition as group 1.

(Crown	Matoria 7	C.L.A Mi	.cro Inches	Canditian
aroup	Material	Longitudinal Transverse		Condicion
1 56 7 8	RS.130 "" "	20-65 90-200+ 125-200+ 45-155 70-138		As received Rough milled "" Chemically contoured """
9 10 11 12 13 14 15	RS.140 "" " " " " "	100-168 140-200+ 20-48 12-20 82-100 52-55 62-63	40-75 150-188 35-42 12-17 68-95 88-92 60-66	As received """ Machined Ground Chemically contoured """
16 17 18	H•50 "	35-95 20-70 50-100		Ground Rough milled Chemically contoured

4.3 Control Tests

All material control tests were carried out by Bristol Aerojet Ltd. The results were as follows:-

RS.130

Material Gauge	.1% Proof Stress. T/in. ²	.2% Proof Stress. T/in. ²	Ultimate Stress. T/in. ²	Elongation % on 2 ins.
15 s.w.g.	75•7	76.9	84•8	9½
"	80•0	80.5	88•9	10
13 s.w.g.	79.0	80.1	89.8	10
	79.7	80.3	89.0	9 1 /2

RS.140

Material Gauge	.1% Proof Stress. T/in. ²	•2% Proof Stress. T/in. ²	Ultimate Stress. T/in. ²	Elongation % on 2 ins.
13 s.w.g. """"""""""""""""""""""""""""""""""	76.8 77.3 81.5 82.5	82.9 83.6 86.9 87.7	102.0 102.8 103.8 105.0	8½ 9½ 10 9½

•

<u>H.50</u>

Material Gauge	•1% Proof Stress• T/in•2	•2% Proof Stress• T/in•2	Ultimate Stress. T/in. ²	Elongation % on 2 ins.
13 s.w.g.	82.6	94•3	121.1	610100-101-101-101-101-101-101-101-101-1
"	82.1	94•8	121.6	
"	84.4	96•1	121.5	
"	84.8	96•7	122.5	

.

.

4.4 Metallurgical Examination

4.4.1 Hardness Tests

Hardness tests were carried out on the surfaces, edges and cores of specimens from each group, several impressions being made on each specimen. The results were as follows:-

Cnorm	Matonia 7	Vicker	s Pyramid	Approximate U.T.S T/in. ²	
Group	Werceligt	Surface	Edge	Core	based on Core Hardness
1 2 3 4 5 6 7 8	RS 130 "" " " " " "	315–301 277 309 344 390 381 402 390	380 358-329 391 348 346 343 398 398 390	380 380 397 397 390 390 397 397	80 80 84 84 82 82 82 84 84
9 10 11 12 13 14 15	RS_140 ," " " " "	383-409 281-294 548-560 579-592 579-627 599-620 579-585	297–330 330–336 542–560 450–503 560–572 579–599 514–572	561 554 547 554 568 571 554	120 119 117 119 122 122 122 119
16 17 18	H•20 "	542-545 548-582 575-592	560-606 579-585 572-596	543-557 540-564 564-579	117–119 116–121 121–125

4.4.2 Decarburisation

Sections were then cut from each of these specimens and examined for decarburisation in a Vickers Projection microscope. The results were as follows:-

Group	Material	Depth of Deca Inche	rburisation es	Condition
		Surface	Edge	
1 2 3 4 5 6 7 8	RS_130 " " " " " "	.005 .005 .004 .006 Nil Nil Nil Nil	.003 .002 .003 .0025 .004 .002 Nil Nil	As received ""P.P.B. & S. # ""P.P.B. & S. # Rough milled ""P.P.B. & S. # Chemically contoured P.B. & S.# "Edges polished
9 10 11 12 13 14 15	RS •140 " " " " "	.002 .002 Nil Nil Nil Nil Nil	.001 .001 Nil Nil Nil Nil Nil	As received " " P.P.B. & S. # Machined P.P.B. & S. # Ground P.P.B. & S. # Chemically contoured " " P.P.B.&S.# " Edges polished
16 17 18	H.50 "	Nil Nil Nil	Nil Nil Nil	Ground P.B. & S. ¥ Rough milled P.B. & S. ¥ Chemically contoured P.B. & S.¥

Note: P.P.B. & S. = Pickled, Phosphated, Baked and Stained. P.B. & S. = Phosphated, Baked and Stained.

5. DISCUSSION OF RESULTS

5.1 RS.130 Material

The results summarized in Fig. 3 show that the endurance limits vary from 16 ton/in.² to over 32 ton/in.². As might be expected, the relative order of endurance appears to be related to the degree of decarburisation. Groups 1-4 having both surface and edge decarburisation have the lowest endurance limits, Groups 5 and 6 with only edge decarburisation have higher limits, and for Group 7, with no decarburisation, the limit is 4 ton/in.²

The low results of Groups 5 and 6 can also be partly attributed to the poor machine finish of the surfaces.

Group 7 gave a lower endurance limit than expected due to the very poor edge finish of these specimens. This is confirmed by the fact that Group 8, with very good edge finishes, had an endurance limit of 32 ton/in.² which was 8 ton/in.² better than Group 7. Chemical contouring therefore improved fatigue properties by removing the decarburised surface layers; it seems unlikely that the improvement was any less than it might have been because of any concomitant adverse effect from the contouring process.

5.2 RS.140 Material

There appears to be some discrepancy between the ultimate strengths obtained from the control test specimens (para. 4.3) and the ultimate strength based on the core hardness figures obtained from specimens after testing (para. 4.4.1). This may be accounted for to some extent by the decarburisation of the surfaces of Groups 1 and 2 but not for the other groups in which no decarburisation was detected.

The results summarised in Fig.4 show that the endurance limits vary from approximately 13 ton/in.² to 35 ton/in.². Groups 9 and 10 with some very slight surface and edge decarburisation had the lowest endurance limits as expected.

All three conditions of chemically contoured material appeared to have roughly the same fatigue characteristics but the phosphating of Group 14 resulted in a slight reduction in the endurance limit of this group. No benefit seemed to be gained by polishing the edges of Group 15 as compared with Group 13, which had unpolished edges, but Group 13 showed more scatter in results than is usually obtained.

Groups 11 and 12, machined and ground respectively, exhibited equal endurance limits of approximately 28 ton/in.², although slightly better endurances were obtained with the ground specimens at the higher stress levels.

On this material, chemical contouring led to higher fatigue strengths than machining or grinding. The as received sheet, which had a slightly decarburised surface, had low fatigue properties.

5.3 H.50 Material

The results summarised in Fig.5 show that the endurance limits vary from approximately 21 ton/in.² to 36 ton/in.² with the chemical contouring giving much the better results. No decarburisation was detected in this material.

6. CONCLUSIONS

All three steels showed the lowest fatigue properties in the as received condition, intermediate properties after machining or grinding, and the highest properties after chemical contouring. The high properties after chemical contouring were sometimes, but not always, due to complete removal of a decarburised surface layer. The pickling, phosphating, baking and staining treatments, applied after chemical contouring to the RS.140 material caused a slight reduction in fatigue properties.

PART II SUSTAINED LOAN TESTS

7. RANGE OF TESTS

The three steels tested were the same as those in Part I.

The results of tests on the RS.130 specimens are contained in S. & T. Memo. 23/60.

8. DESCRIPTION OF TEST SPECIMENS

8.1 General

All the specimens were supplied by Bristol Aerojet Ltd., who also carried out all the treatments.

A sketch of the specimen used is shown in Fig. 6.

The majority of the tests carried out were on notched specimens, either edge or face notched. Initially edge notched specimens were used but these had the disadvantage that the notch, which was cut before contouring, became enlarged during the contouring process to a degree dependent on the depth of contouring. The angle, depth, and root radius of the notches thus varied from batch to batch. Because of this problem face notched specimens were These notches were cut on one side of the specimen only before also used. contouring and material was contoured only from the opposite side. This type of notch had the disadvantage, however, that where there was any curvature along the longitudinal axis arising from machining or heat treatment distortion, bending stresses were applied to the root of the notch on straightening and gave rise to erratic results, particularly on notched ultimate tensile control tests.

Details of both types of notch are shown in Fig. 6.

8.2 Heat Treatments

The hardening heat treatments for RS.140 were:-

- (a) Martempered by austenitising in air for 40 minutes at 940°C., transferred to an air furnace held at 510°C. and soaked for 60 minutes. They were then oil quenched and tempered in air for 60 minutes at 300°C.
- (b) Hardened by austenitising in air for 40 minutes at 940°C., oil quenched and then tempered in air for 60 minutes at 550°C.

H.50 was austenitised at $1000^{\circ}C_{\bullet}$, air cooled, and tempered for 60 minutes at $580^{\circ}C_{\bullet}$

8.3 Chemical Contouring

All specimens were chemically contoured in the fully heat treated condition. Before chemical contouring, specimens were degreased in trichlorethylene vapour and pickled in Ferroclene 100.

9. METHOD OF TESTING

9.1 Control Tests

These were carried out by Bristol Aerojet Ltd. Notched tensile control specimens, where required, were processed with each batch.

9.2 Sustained Load Tests

A photograph of a test rig is shown in Plate 1. Each rig consists of a frame carrying a loading beam with a lever ratio of approximately 40: 1. The fulcrum and loading points are knife edges. The upper holder is attached to the frame while the lower one is attached to the beam. The specimens were bolted between bushes which are carried in the holders to provide pin joint ends (see Plate 2). The load pan is attached to the beam by an extension link by two pins horizontally in line.

With the specimen fitted and the beam adjusted to an approximately horizontal position by means of the screw on the upper holder the load was then applied by fitting a hand lever into the extension link and raising the weight pan until the second pin could be inserted in the extension link. The full weight was then transferred gently to the specimen and the hand lever removed.

An electric clock wired in series with a micro-switch bearing on the beam was used to record the time of failure.

All specimens were measured up and the loads to be applied specified by Bristol Aerojet Ltd.

10. RESULTS

Batch A Plain Specimens.

RS.140 chemically contoured from 0.104" to 0.050".

Heat treatment	Hardened as	nd tempered	Martemper	ed
U.T.S. T/in. ² 0.1% P.S. T/in. ²	105 . 8 78 . 7	105 . 3 78 . 7	121.2 110 84.7 8	6•7 4•4
Elongation	9.0%	. 9.0%	6.5%	7.0%

Six martempered and six hardened and tempered specimens were tested, three of each at 110% and three at 125% of 0.1% P.S. All the specimens were removed unbroken from the rigs after 28 days.

Batch B Face notched specimens

Martempered RS.140 chemically contoured from 0.104" to 0.064".

Motched U.T.S. 94.2 - 118.0 T/in.²

One specimen was loaded at 80%, one at 90% and two at 95% of 94.2 T/in.². As no failures occurred within 24 days Bristol Aerojet asked for the loads on the two specimens loaded at 95% of 94.2 T/in.2 to be increased by gentle addition of weights to the pan to 90% of 118.0 T/in.². The first two specimens were removed from the rigs unbroken after 28 days and the latter after a further 28 days at the increased loading.

Batch C Edge notched specimens

RS.140 chemically contoured from 0.104" to 0.064".

Heat treatment	Hardened an	d tempered	Martemp	ered
U.T.S. T/in.2	110 .2	110.4	121.1	121.9
0.1% P.S. T/in. ²	77.7	77.8	90.2	91.8
Elongation	7.0%	8 . 5%	6.5%	6.0%
N.U.T.S. T/in. ²	1	16.1	1	31.2

Three hardened and tempered, and three martempered specimens were loaded at 90% N.U.T.S. and a further three of each at 95% N.U.T.S. There were no failures within 28 days.

Batch D Face notched specimens

RS.140 Chemically contoured from 0.104" to 0.064".

Heat treatment	Hardened a	and tempered	Martempered
U.T.S. T/in. ² 0.1% P.S. T/in. ²	108.5 75.7	109•1 75•8	116.4 116.7 88.2 87.4 7 5% 8 0%
N TI D D m/m 2	0.0%	9.5%	
NeU ToSe T/Ine	100] ∎] = 1

Three specimens of each heat treatment condition were loaded at 90% N.U.T.S. and two of each at 80% N.U.T.S. No failures occurred within 28 days.

The notched tensile strengths quoted above are those covering these particular specimens but further notched tensile tests on similarly treated material gave extremely erratic results within the range 80.0-112.0 T/in.² for hardened and tempered specimens, and 70.0-116.0 T/in.² for martempered ones.

Batch E Edge notched specimens

RS.140 chemically contoured from 0.104" to 0.064". Immediately after contouring, specimens were phosphated in Bonderite 65, baked for 4 hours at 200°C. and stained with Pyrene finish P41C.

Heat treatment	Hardened an	nd tempered	Martem	pered
U.T.S. T/in. ² 0.1%P.S. T/in. ²	107 . 9 79 . 9	106.1	120 . 1 92 . 5	120 . 8
Elongation 2	10.5%	9•5%	5.5%	6.5%
Neueres, Trine	123.0		1	2402

Three specimens of each heat treatment condition were loaded at 90% N.U.T.S. and three of each at 95% N.U.T.S. A martempered specimen loaded at 95% N.U.T.S. failed between 240 - 305 hours after loading, this was the only failure within 28 days.

Batch F Edge notched specimens

H.50 chemically contoured from 0.120" - 0.064".

U.T.S. T/in. ²	121.4	121.6
0.1% P.S. T/in. ²	82.0	82.3
Elongation	7.0%	7.5%
N.U.T.S. T/in.2	117	.0

Four specimens were loaded at 80% N.U.T.S., four at 90% N.U.T.S., and four at 95% N.U.T.S. There were no failures within 28 days.

11. CONCLUSIONS

These tests have shown that RS.140 and H.50 are not embrittled by the Bristol Aerojet chemical contouring process.

When chemically contoured RS.140 was phosphated, baked and stained there was one failure at 95% of the notched U.T.S. but none at 90%. This failure was probably due to the embrittling action of the phosphating process rather than that of the chemical contouring.

TABLE I

- - -

RS.130 MATERIAL - RESULTS OF TESTS

GRO	UP 1	GRO	UP 2		GRO	UP 3
Stress T/in. ²	Endurance cycles	Stress T/in.2	Endurance cycles		Stress T/in.2	Endurance cycles
56	20,000 34,000 20,000	48	34,000 31,000 32,460		40	67,000 61,000 55,000 71,000
LOG MEAN	23 , 870	36	80,000		LOG MEAN	63.210
44	48 , 000	24	66,000 74,000	-	30	150,000
40	10 3,000 90,000	LOG MEAN	58,000 68,990		2	153,000 168,000
LOG MEAN	96,270	24	325,000		LOG MEAN	166,230
36	116,000 86,000	·	271,000 244,000 254.000		24	492,000
LOG MEAN	99 , 880	LOG MEAN	271,830			407,000 439,000 525,000
32	15 3, 000 140,000	20	821,000 345,000		LOG MEAN	463,450
LOG MEAN	146,350		759,000		20	1,455,000 724,000
28	£1,399,000	LOG MEAN	569,370			<i>4</i> 1,990,000 1.408.000
LOG MEAN	579 / 30	18.4	1,275,000 1,233,000		LOG MEAN	1,310,800
	515,450	LOC MEAN	784.000		18.4	1,590,000
24	467,000 505,000	LOOF MISAIN	m11 193 000		LOG MEAN	1.752.600
LOG MEAN	485 , 620	10	¥15,469,000		10	
20	/5,863,000 1,163,000 1,644,000	<u> </u>	<u></u>)	16	#24,686,000 #17,587,000
LOG MEAN	2,238,200					

* These specimens unbroken at these cycles.

18.4

16

2,792,000

±15,227,000

 $\not\vdash$ Machine failed to switch off on failure of specimen.

TABLE I (Contd.)

GRO	UP 4	GROU	IP 5	GROUP 6		
Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles	
40 .	60,000 64,000 62,000	56	9,000 10,000	56	12,000 9,000	
	68,000	LOG MEAN	9,490	LOG MEAN	10 ,3 90	
log mean 32	63,430 125,000 73,000	40	74,000 61,000 65,000	40	48,000 47,000 58,000	
	138,000 132,000	LOG MEAN	66,450	LOG MEAN	58,250	
LOG MEAN	113,550	32	213,000 205,000 353,000	32	137,000 92,000	
64	498,000 537,000	LOG MEAN	226,560		241,000	
LOG MEAN	621,000 554,630	24	782,000 481,000	LOG MEAN 24	141,910 721,000	
22	₩27,626,000 921,000	LOG MEAN	598,000 608,140		1,015,000 603,000 764,000	
LOG MEAN	2,465,500	20	1,460,000 \$24,229,000	LOG MEAN	761,920	
20	1,167,000 1,956,000	LOG MEAN	12,459,000	20	871,000 #8,523,000 #49,058,000	
	#22,620,000	18.4	-# 8,266,000		₩21,234,000 ₩33.012,000	
LOG MEAN	5,753,000		¥17,809,000	LOG MEAN	12,061,000	
18.4	ж 24 , 423,000					

These specimens unbroken at these cycles.

TABLE I	(Contd.)
---------	----------

.

GROUP 7					
Stress T/in.2	Endurance cycles				
48	\$ 40,000 \$ 32,000				
LOG MEAN	35,780				
40	109,000 75,000 141,000 140,000				
LOG MEAN	112,720				
32	239,000 272,000 201,000 \$ 478,000				
LOG MEAN	281,120				
30	264,000 770,000 308,000 292.000				
LOG MEAN	367,700				
28	<pre>#15,740,000 289,000 #21,423,000 \$ 442,000 474,000</pre>				
LOG MEAN	1,828,100				
.24	<pre> # 9,442,000 #14,623,000</pre>				
LOG MEAN	4,001,300				

.

.

۰.

-

GROUP 8				
Stress T/in. ²	Endurance cycles			
36	361,000 188,000 287.000			
LOG MFAN	269,080			
32	₩ 8,167,000 ₩16,568,000 ₩ 5,619,000			

* These specimens unbroken at these cycles.

.

& Replacement specimens.

TABLE II

GROUP 9		GRO	GROUP 10		GROUP 11	
Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles		Stress T/in. ²	Endurance cycles
41•4	35,000 26,000 28,000 454,000	31	73,000 69,000 71,000 60.000		44.6	83,000 74,000 57,000
LOG MEAN	34,245	LOG MEAN	68,062		LOG MEAN	/U,409
31	62,000 62,000 85,000 60,000	20•7	198,000 242,000 238,000 221,000		41•4	114,000 109,000 130,000 112,000
LOG MEAN	66.542	LOG MEAN	221.080		LOG MEAN	115,990
20.7	178,000 202,000 202,000 194,000	18.1	314,000 350,000 324,000 254,000		36.2	116,000 161,000 164,000 170.000
LOG MEAN	193.730	LOG MEAN	308, 390		LOG MEAN	151,040
18.1	503,000 319,000 281,000 322,000	15.6	1,418,000 781,000 691,000 735.000		31	200,000 359,000 251,000 545,000
LOG MEAN	347 , 140	LOG MEAN	865,960		LUG MEAN	514,770
15.6	¥29,842,000 464,000 ¥29,779,000 ¥ 4.337.000	13.5	# 38,551,000 972,000 # 45,644,000 # 12.281.000		28.5	x18,026,000 x 5,350,000 x15,309,000 x52,933,000
LOG MEAN	6,502,800	LOG MEAN	12,040,000		<2•7	xz),))(,000

RS.140 MATERIAL - RESULTS OF TESTS

These specimens unbroken at these cycles.

 \neq Machine failed to switch off on failure of specimen.

GROUP 12		GROUP 13		GROUP 14	
Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles
41.4	118,000 118,000 \$165,000 114,000	50.7	64,000 62,000 65,000 72.000	46.6	87,000 83,000 84,000 97,000
LOG MELN	127,210	LOG MEAN	62,820	LOG MEAN	87 , 579
36.2	293,000 153,000 148,000 198,000	46 . 6	166,000 94,000 91,000 83,000	41•4	100,000 159,000 97,000 142,000
LOG MEAN	190 ,37 0	LOG MEAN	104,180	LOG MEAN	121,650
33.6	180,000 218,000 250,000 219.000	44	114,000 125,000 85,000 113.000	36.2	208,000 243,000 217,000 12,961,000
LOG MEAN	215,280	LOG MEAN	108,170	LOG MEAN	614,040
31	380,000 1120,875,000 249,000 246,000 312,000	41.4	±15,424,000 245,000 ±15,241,000 160,000	33.6	±13,710,000 2,905,000 ↓14,845,000 ±15,360,000
LOG MEAN	685, 810	LOG MEAN	1,742,200	LOG MEAN	9,763,200
28.5	#13,656,000	38.8	¥13,675,000 198,000	31	±15,258,000 ±18,938,000 ±101,122,000
	316,000	LOG MEAN	1,645,900		₩ 52,268,000
log mean	4,060,700	36.2	206,000 ±15,830,000		
		LOG MEAN	1,805,900		

TABLE II (Contd.)

 \mathbf{x} These specimens unbroken at these cycles.

 $\not\prec$ Machine failed to switch off on failure of specimen.

TABLE II (Contd.)

GROUP 15				
Stress T/in. ²	Endurance cycles			
46 . 6	90,000 101,000 183,000 100.000			
LOG MEAN	113,580			
41 . 4	253,000 177,000 123,000 153,000			
LOG MEAN	170,380			
38.8	±10,929,000			
36.2	541,000 1,015,000 ¥15,079,000 ¥14,182,000			
LOG MEAN	3,291,500			
33.6	#15,013,000 7,517,000 #17,381,000			
LOG MEAN	12,517,000			

•

.

ı,

.

* These specimens unbroken at these cycles.

TABLE III

H.50 MATERIAL - RESULTS OF TESTS

GROUP 16		GROUP 17		GROUP 18	
Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles	Stress T/in. ²	Endurance cycles
42.3	58,000 71,000 62,000	42 . 3 39 . 3	82,000 71,000	54•5	45,000 65,000 32,000
LOG MEAN	78,000	36.3	94,000 1,006,000	LOG MEAN	45 , 404
36.3	128,000 115,000 98,000	LOG MEAN	1,076,000 109,000 <u>324,490</u>	45.3	52,000 116,000 6,358,000 50,000
	100,000	33•3	163,000	LOG MEAN	209,250
10G MEAN 33•3	801,000 109,000 1,053,000	30.2	236,000 746,000 316,000	42.3	107,000 138,000 93,000 82.000
LOG MEAN	451,340	LOG MEAN	381,780	LOG MEAN	103.010
30.2	165,000 8,481,000 1,006,000	27.2 LOG MEAN	3,310,000 609,000 1,419,800	39•3	112,000 131,000 136,000
LOG MEAN	622,000 162,000 676,710	24.2	/∞13,314,000 /∞14,610,000 2,391,000	LOG MEAN	99.000 118,550
27.2	415,223,000 x 16,594,000	LOG MEAN	5,278,000 7,038,800	36.3	253,000 209,000 ₩14,753,000
LOG MEAN	<u>415,062,000</u> 12,753,000	21.2 LOG MEAN	4 10,624,000 2,909,000 4 11,101,000 4 2.110,000 5,186,900	LOG MFAN	1,843,800

* These specimens unbroken at these cycles.
/ Machine failed to switch off on failure of specimen.
M These specimens failed under the clamp due to fretting action of the clamping plates.

·

FIG. l

DETAILS OF LOAD SPECIMEN.

~ - -· · · .

PLATE I. SUSTAINED LOAD TEST RIG

PLATE 2. SPECIMEN UNDER TEST

ν.

*
**
**
**
**
**
**
**
**
**
**
**

.

.

A.R.C. C.P. No. 812 May, 1964 Westland Aircraft Ltd., Saunders-Roe Division

INFLUENCE OF CHEMICAL CONTOURING ON THE FATIGUE AND SUSTAINED LOAD PROPERTIES OF HIGH TENSILE STEEL SHEET

Reverse bend fatigue and sustained load tests have been carried out on three low alloy steel sheet materials, 1% Cr-Mo, 3% Cr-Mo-V, and 5% Cr-Mo-V, heat treated to 88, 103 and 121 t.s.i. respectively, and chemically contoured in acid etching solutions developed by Bristol Aerojet Ltd.

The fatigue properties after chemical contouring were higher than those after machining or grinding.

The chemical contouring process caused no failures under sustained load at high proportions of the notched ultimate stress. A.R.C. C.P. No. 812 May, 1964 Westland Aircraft Ltd., Saunders-Roe Division

INFLUENCE OF CHEMICAL CONTOURING ON THE FATIGUE AND SUSTAINED LOAD PROPERTIES OF HIGH TENSILE STEEL SHEET

Reverse bend fatigue and sustained load tests have been carried out on three low alloy steel sheet materials, 1% Cr-Mo, 3% Cr-Mo-V, and 5% Cr-Mo-V, heat treated to 88, 103 and 121 t.s.i. respectively, and chemically contoured in acid etching solutions developed by Bristol Aerojet Ltd.

The fatigue properties after chemical contouring were higher than those after machining or grinding.

The chemical contouring process caused no failures under sustained load athigh proportions of the notched ultimate stress.

A.R.C. C.P. No. 812 May, 1964 Westland Aircraft Ltd., Saunders-Roe Division

> INFLUENCE OF CHEMICAL CONTOURING ON THE FATIGUE AND SUSTAINED LOAD PROPERTIES OF HIGH TENSILE STEEL SHEET

Reverse bend fatigue and sustained load tests have been carried out on three low alloy steel sheet materials, 1% Cr-Mo, 3% Cr-Mo-V, and 5% Cr-Mo-V, heat treated to 88, 103 and 121 t.s.i. respectively, and chemically contoured in acid etching solutions developed by Bristol Aerojet Ltd.

The fatigue properties after chemical contouring were higher than those after machining or grinding.

The chemical contouring process caused no failures under sustained load at high proportions of the notched ultimate stress.

•

© Crown copyright 1965

Printed and published by HER MAJESTY'S STATIONERY OFFICE To be purchased from York House, Kingsway, London w.C.2 423 Oxford Street, London w.1 13A Castle Street, Edinburgh 2 109 St. Mary Street, Cardiff 39 King Street, Manchester 2 50 Fairfax Street, Bristol 1 35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

Printed in England

C.P. No. 812