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SUMMARY 

The accuraoy of Schliohting's kinematic source flow equation 
has been investigated for an isolated symmetrical aerofoil. Studies 
are presented also of the suitability of the Glauert series for 
representing profiles by source/vortex distributions. Influence of 
data rounding off error upon profile analysis with large numbers of 
oontrol points has been examined, and importance of data aocuracy and 
smoothness stressed. An estimation of the optimum number of oontrol 
points has been maae for a typical profile. A method of initial data 
processing to ensure a valid computation has been suggested. 

Replaces A.R.C. 26 159 
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1. INTRODUCTION 
Of the wide variety of published cascade analyses, Schlichting's 

method of singularities, (1) applicable to incompressible inviscid flow 

through cascades of thin low-cambered aerofoils, is probably the most 
suited for extensive use. The method is rapid, well suited to digital 

computation and gives good agreement with experiment for a wide range of 

stagger and solidity. 

Following the established basis of thinaerofoil theory, Sohlichting 

represents the blade profiles as streamlines generated by source and 
vortex distributions q(x) and y(x) located in a uniform stream of 

velocity W,. The source distribution produces profile thickness while the 
vortex distribution induces curvature of the flow which in theory is 

matched to the curvature of the camber line, Figure (1). These singu- 

larity distributions are expanded as Fourier series with an additional 
special term. 

q(x) = 2U,[ B, (Co@,, - 2Sir$f) + B2 Sin2fi + etc* } 

Y(X) = 2% AoCot$/2 + A,Sin$ + A2Sin2$ + etc. 

where 

x=1 
T -p- (1 - co& 

U, is the component in the x or chord direotlon, Figure (1) of the 
vector mean velocity WT,. 1 is the chord length. 

The term containing Co@ 
/2 

has a special significance in each case. 
In the source series this term, in the absence of others, produces the 
thickness of a Joukowsky profile (1) . This 'berm is thus usually important 
sinoe it produces the general characteristics of an aerofoil, namely a 
blunt nose and sharp trailing edge. The Fourier series provides further 
control over the profile shape. 

In the vortex series.the first term alone corresponds to the 
vorticity distribution of a flat plate with inoidence.' The remaining 
terms of 'the Fourier series are required for producing curvature to match 
the camber line. If the cascade operates with shock-free inflow, by 
definition, the stagnation point is located on the camber line at the 
leading edge. - Ao is then zero. For all other incidences a vortex 
singularity exists at x = o producing the suction peak which is always to 
be fauna at off-design inlet angles. 
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The simplicity of Schlichting's analysis resultea from a number of 

restrictive assumptions. The major simplification was to locate the 
singularities on the chord line rather than the camberline. This reduced 

analytical complexity but restricted the allowable range of camber over 
which the theory may be safely applied. This assumption has not been 
investigated in great detail here but some indication of the range of 
validity has been given in the latter part of the report by a comparison 
of this theory with the exaot theory of Merchant and Collar applied to 
cascades of 70' and 120° of camber. The authors are indebted to Mr. P. 

Gostelow of Liverpool University for his cooperation in deriving these 
exact solutions. 

Further assumptions were made by Schlichting in deriving thekinematic 
equation which relates souroe strength to profile thickness. The mainpur- 
poses of this investigation were to examine the accuracy of the simplified 
equation and to study the adaptability of the source Fourier series for 
matching arbitrary profiles. The project was extended further on the basis 
of the conolusions that accurate smooth profile data were essential if 

large numbers of control points were to be used. To this end a method of 
input data processing was devised which ensures a valid analysis. 

The contents of the report may be summarised as follows. 

-Seation 2. 

Derivation of kinematic flow equations. 
Section 3. 

Investigation of the accuracy of the kinematic source flow equation 
by comparison with an exact solution. 
Section 4. 

Study of the adaptability of the source series when using large- 
numbers of control points; espeoially the importanoe of specifying 
accurate smooth input data, analysis of an unusual profile and estima- 

tion of the optimum number of control points. 
Section 2. 

Data processing to ensure the best representation of a given profile. 
Seotion 6. 

Comparison of the performance of cascades with cambers of 70° and 

120°, as predicted by Schlichting's theory and the exact theory of 

Merchant and Collar. 



-4- 

2. KINEMATIC FLOW EQUATIONS 

The Kinematic flow equation of particular interest here is the one 
which relates q(x) to ihe profile thickness yd. If the continuity 

equation is written for the small area ABCD of the symmetrical profile 
illustrated in Figure (1) we have 

3s(x>ax = (urn + u g .  ax) (ya + * l w-(urn + U)Ya (4) 

Velocities are defined in Figure (1)a. 

This equation is not exact since it neglects the variation of u with 

Y? For thin profiles this is likely to be a good assumption apart from 
the leading and trailing edge regi,ons where a more detailed investigation 

of the assumption would be valuable. 

The profile slope, on rearranging terms, is 

dYa= 
3sw - Yd!g 

dX u, + u + au . t&q 
dx 

(4b 

Schlichting made the further assumption that &is small enough to be 
neglected also which then results in the more approximate equation. 

ay 
-a?=$%) 

It is possible, following Schlichting, to simplify this equation 
still further for the case of very thin isolated profiles for which 

u?<u,. The equation then,reduces to 

(5) . 

which as the special appeal that it is directly integrable yielding 
equation (10) below. 

The vortex kinematic flow equation states that the total induced 
velocity must have no component normal to the camber line, Referring to 
Figure (1)b this results in the equation, 

aYs v, + v 
-= u, +u ax (7) 

where U, and V, are the components, parallel and normal to the chord 

line, of the vector mean yelocity W, . u and v are the velocity components 
of the flow induoed by the singularities. If it is assumed, a3 is 
reasonable, that vq<< vy and also that u<<U, this equationapproximates to 
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dys = vm + VY 
ax QD 

where vy is give'n by 

Direct integration of equations (6) and (8) using equations (l), 

(2) and (9) yields 
(10) 

P ’ = 1B 2 ,, (Sing + $l.n2$)+ $ B2( 3Sin$ - Sin3~~+~3(2Sin2~Si~~~...etc. 
, 

(W 

ys -= +A, (l-Cos2fl) + IA (Co@- cos3(d)- 1 A3(l -2Cos2pI+ Cosrcpl)+...etc. 
1 TT2 z 

These equations were used for the studies described in sections (4) 
ana (5), 

From thispreliminarybackground theory we proceed to the various 
investigations. 

3. COMPARISON OF APPROXIMATE AND EXACT THEORY FOR FLOW PAST A 
SYMMETRICAL PROFILE 

In this section a comparison is made between the actual.profile 
generated by a given source distribution in a uniform stream U and the 
analysis of this profile by Schlichting's method using equation (5). The 
simplest case is considered, namely that of an isolated aerofoil, or cas- 
cade of infinite pitch. The complication of interference from adjaoent 
blades is then removed. The exaat theory used here actually required the 
implementation of numerical techniques for integration and was in practice 
subjeot to error from this ,source. By repeating the integrations with 

deareasing increments it was possible to check successive solutions and to 
ensure that errors were negligible in comparison with the analytical errors 

' under investigation. Details of the exaot theory are contained in 
Appendix II. The derivation of the approximate solution and the-general 
prodedure of the investigation were as follows. 
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An equation analogous to (V), but for the velocity induced by the 

source distribution, is 

x’=O 

'This equation may be integrated to yield 

u9 = u, ~~(1 + 2Cos@) - B2Cos2$ - B3Cos3$ +‘etc. 

Remembering also equation (I), equation (5) now becomes 

dya = Bo(Cot@ 2 - 2Sinfl) + B2Sin2$ + B Sin@ + etc. 
ax 1 + Bo(l + 2Co.5~8) - B2Cos2jd - B3Cos3$ + etc. 

(13) 

(14) 

The investigation,proceeded in three stages dealt with in the- 
following subsections. ' 

3.1 Derivation of a set of realistic coefficients Bo, B2, B3, 
for a three term series. 

3.2 Computation of the induced profile and surface velocity 
using exact theory. 

3.3 Analysis of the exact profile by Schlichting's method . 

yielding the approximate source distribution and surface 
velocity. 

3.1 Derivation of a Tvuical Source Distribution 

In order to derive a set of coefficients Bo, B2* BJ which would for‘ 
sure produce a realistic aerofoil, the first step was to choose a typical 

aerofoil and to match it by Schlichting's method using a simplified form 
of equation (14) corresponding to the approximate kinematic equation (6). 

_. 

?a = Bo(C"tJ8,2 - 
ax 

2Sin$) + lj2Sin2/d + B3Sin$ + etc., (15) 
Y, 

By matching the profile slope at the three control points 

X/ 1 = 3/4, T/12, 11/12 recommended by Schlichting, a set of three 

simultaneous equations in B B , B 
the values 

09 -2 3 
was obtained. The solution yielded 

BO 
= 0.081307 . 

B2 
= 0.111628 

B3 
= 0.035256 

for which the corresponding distribution is shown in Figure (2), curve (a). 
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3.2 Derivation of Induced Profile by Exact Theory 

For this source distribution the corresponding profile was computed 
by exact theory as outlined in more detail in Appendix II. The resulting 
profile is shown in Figure (3), curve (a), plotted to an expanded yd soale. 

3.3 Anal.ysis of Exact Profile b.y Schlichting's Method 

Having obtained now a profile and its source distribution, the 

accuracy of Sohlichting's approximate kinematic equation (5) was checked 
by subjeoting this profile to an analysis identical to that described in 

Section 3.1, but making use of the more exact equation (14) for the profile 
slope corresponding to Schlichting's equation (5). 

The surface velocity W was computed, remembering equation (13), by 
the introduction of Riegel's factor (1). 

w = u, + u 06) 

-J 
1 +($i >2 

I 
The source distribution and profile derived by this procedure are 

compared with the e\xact analysis in Figures (2) and (3). The profile 
could not be derived here by direct integration of equation (14). Instead 
the slope was computed for a large number of chordwise po'sitions and the 
profile determined by numerical integration from the. trailing edge for- 

wards.. Because of the infinite slope at the leadibg edge thi$ was an 
unsuitable starting point for the integration. 

The coefficients thus determined were 
. . 

BO 
= 0.072546 . 

B 
2 

= 0.093271 

B3 
= 0.013467 

/ 
The approximate profile matched the exact one very closely, Figure 

(31, although in this case the derived source distribution was on average 
about 8% of the true value. The good profile matching is not surprising 
when it'is remembered that the profile shape is related to a three term 
source series through the more approximate equation (15). Indeed slich 
good agreement of the profiles was the originaldeliberate intention in 
orderthat the errorinq(x) coulabe isolatedfrom the errorinprofile 
matching. 

The surfaoe velocity and pressure distributions yielded by the two 

theories are compared in Figure (4) and (5). An encouraging measure of 

agreement was obtained for this profile which has a fairly large maximum 
thickness of 14.4 per cent of the chord. The fractional error in velocity 

and pressure is less than that of the derived source strength because the 
source-induced velocity has finally to be added to U,,, whichis at all points 



at least five times the 
a first order error in 

velocity and. pressure. 

This investigation 
Sohliohting's kinematic 
praotical purposes. 

, -a- 

magnitude of the source velocities. In other words 

q(x) leads only to a seoond order error in 

has demonstrated that for a typical aerofoil, 
source flow equation is accurate enough for 

It is well known that a source in a uniform stream generates a 
parabolio streamline separating the 'mainstream from the source flow, with 
a stagnation point upstream of the source. It is shown in Appendix 11 
the series sour08 distribution generates a profile whose leading edge 
coordinate is located just upstream of x = 0 at a position given by 

that 

3.4 Position of the Leading Edge. 

B 
+ 3Bo-0B2 - B 

5B0 
-.4B2 - 6~ 

- - 
3 

1 + 3B, - Bp - B 
3 

x 

For the aerofoil under investigation 
--. 

X/ 1 = - 0.005 

whioh is negligible for practioal purposes 

4. INFLUENCE OF DATA ACCURACY. PROFILE SHAPE, AND NUMBER OF 
CONTROL POINTS UPON MATCHING. . 

This seotion is concerned with the accuracy with which an aerofoil 
may be represented by the source'series. Partioular attention is 
concentrated on the advantage or otherwise of using an extended series with 
many control points for the purpose of obtaining closer matching. Light is 
shed tipon the importance of beginning with accurate smooth data when using 
large numbers of control points. A restricted study has also been made to 
estimate the optimum number of control points for obtaining the best 
matching of a typical aerofoil. 

This investigation could be viewed alternatively as a study of the 
adaptability of the particular series chosen for representing functions with 

the general characteristics of aerofoil thickness distr,ibution. For this 
reason, the simplest kinematic equation (6) wassadaquate to illustrate this 
point. A further computational advantage was gained in that the profile was 
then represented analytically by equation (IO), and the profile slope by 

equation (15). The surface velocity was computed by equation (16). 
d 



-Y- 

4.1 Importance of Data Accuracy with Many Control Points _ 

Three calculations were made of flow past a given profile with 19 
control points. Data was supplied to eight, four and three significant 
plaoes respectively, in order to study the influence of data accuraoy upon 

the efficacy of Schlichting's method. 

The profile chosen for this purpose was geqerated by a three term 
series using equation (IO), and is shown as curve (a) in Figure (7). It 
was expeoted therefore ideally that analysis of this profile with 19 con- 
trol points would yield ooeffioients Bn of zero magnitude for n> 3 and 
identical coefficients for n< 3. As the original profile was given to 
eight significant figures, this procedure represents the best working . 
accuracy within the computing faoilities, but of course an accuracy far 
in excess of that which is usually practicable. The coefficients are 
compared'in columns I and 2 of the table below. 

Table of Coefficients for Source Series 

Coeffioient 

BO 

*2 

?3 

B4 

B5 
*6 

B7 

B8 

*9 

*lo 

Bll 
B 

12 

B13 
B 

14 

B15 

B~6 

B17 

B18 

Blsj 

Actual 
Value 

+.08y2y 

+.10417 

+.oye22 

8 Sig.Fig. 

+.08938721 +.01227 

+.I0403869 +.21420 

+.03404535 +.I8591 

-,-.00008599 +.ojo43 

-00016487 +.I4285 

-.00005200 +.03878 

-.00014320 +;12525 

-.00002236 +01684- 

-.00011359 +.09953 

-.00000887 +.00435 

-.00007902 +.06942 

-.00000011 -.00077 + -05279 - 6.211496 

-.00004376 +.04078 +I.12344 d5.87339 

-.00000005 -.00158 - 000559 - 3.90033 

-.00001995 +.01890 + .52030 +11.69935 

+.00000106 

-.00000560 

+.00000059 

-.ooooooy1 

Derived Values 

4 Sig.Fig. 

-.00084 - .ooysa - 1.52059 

+.00618 + .I6938 + 3.67146 

-.00021 - .00296 - .30429 

+.00108 + .02932 + .60093 

3 Sig.Fig. 

-2.03680 

+3.20245 

+4.22084 

+2.05419 

+3.94196 

+1.20631 

+3.45599 

+ .6002-I 

+2.74549 

+ 023139 

+I.91463 

Modifie a 
Profile 

-49.61142 

+66.41216 

+97.89990 

+37.04083 

+92.18334 

+14.60056 

+80.77051 

+ 056769 

d4.01240 

- 5.65969 

+44.50483 
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The coefficients in column 1 for three control points and in column 

,2 for nineteen control points, agree to only three decimal places despite 

eight significant figures of accuracy of initial data. This is due partly 

to rounding off errors during the solution of the simultaneous equations 
and partly to the added necessity for matching with high order terms the 
rounding off error in the eighth decimal-place of the original data. 

In order to assess which was the more important of the above causes, 

two further calcula.tions were made of the same #profile, but with the 
coordinates rounded off to four and to three significant figures represen- 

ting the usual order of accuracy encountered in practice. It will be 

observed that the coefficients, tabulated on the previous page, in neither 
case bear any resemblance to the original ones. On the contrary, some 

high order coefficients are greater in magnitude than Bo, B2, and B 3 . 
This confirms that these high order terms are required to match the sur- 
face ripple of amplitude equal to the rounding off error, 

The singularity distributions, profiles and pressure distributions 
for these cases are shown in Figures (6), (7) and (8). Curves (a) are for 
the original three term series. Curves (b), (c) and (d) show results for 

eight, four and three significant figures. 

The singularity distribution with eight significant figures differed 

by a negligible amount from the original, Figure (6). Case (c) agreed 
quite well over the central range but large oscillations occured at the 
extremities. These errors increased and extended further into the mid- 
chord region for case (d). 

The corresponding profiles, Figure (7), were derived from equation 
. (IO). As before cases (a) and (b) differed by a negligible amount. For 

case (c), the profile shape was correct over the central range but dis- 

placed slightly. The further reduction of acouracy in case (d) produced 
a remarkable result. Although as before the general profile shape was 
retained over the central range, the vertical shift was increased to such 
an extent that the coordinates assumed large negative values over the whole 
chord. The high order terms had introduced such large oscillations at the 
extremities of the range as to introduce a large net sink strength upstream 
of the position where the profile slope is more accurately matched. The 
profile results are of course meaningless. With such a singularity distri- 
bution in reality no profile would exist. Streamlines would enter the chord 
line near the leading edge, and leave towards the trailing edge& The 
computed pressure distributions, Figure (8), exhibited similar tendencies. 
In this case the pressure distribution with four significant figures was 
quite'close to the original. 
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From these calculations it is evident that accurate presentation and 

smoothness of data is vital. Smoothness of data and suitability to the 
matching series was ensured by choosing a profile corresponding to a three 
term series. For this special profile a reasonable prediction of pressure 

distribution was obtained with four significant figures. On the other 
hand no advantage was gained by matching the profile at 19 control points. 

Further improvement would require greater accuracy of specified data. 

4.2 Matching an Unusual Profile 

As already mentioned, the profile dealt with in seotion (4.1) was 
carefully chosen to ensure a favourable thickness distribution devoid of 

characteristics which would require higher order terms of the series. For 
the next study a bulge was added onto this profile, Figure (7)e, near to 
the trailing edge in order deliberately to introduce dominant high order 
terms. The profile was then matched at 19 control points resulting in the 
coefficients given in the last column of the table. The singularity 
distribution, profile and pressure distribution are plotted in Figures (6) 
to (8), curves (e). 

The oscillations of singularity strength at the extremities of the 
range were even greater than case (a). Once again the general profile 

shape including the bulge was quite well matched, though displaoeda con- 
siderable distance in the negative y a direotion. 

It is quite clear from this study that the method must be applied with 

care. The adoption of a large number of control points is not the 
irrefutable remedy for dealing with unusual profiles. In fact the samemight 
be said for profiles whioh appear reasonablei but which nevertheless require 

large high order terms. This is further illustrated in the next section 
which deals with such a profile analysed for 3,.5 and 10 control points. 

4.3 Estimation of Optimum Number of Control Points for a Typic'al Aerofoil 

The purpose of this investigation was to estimate for a typioal aero- 
foil and optimum number of control points. The profile was analysed with 

3, 5 and 10 aontrol points. Data was specified to four significant figures. 
The simplified equation (10) was used. Results are shokn in Figures (9) 

to (11). 

The singularity distribution, which is equal, by equation (6), to 

2U, y; was computed in between control points, Figure (9). Progressive 
inorease in accuracy of matching was obtained. 

The computed profile, Figure (IO), with IO control points matched the 
original closely over most of the chord including the curvature at the 
trailing edge. The latter, however, introduced high order terms which 
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caused a reversal of profile curvature at about 7 per cent of the chord. 
This produced a kink-in the pressure distribution at the same position, 

Figure (11). With 5 control points it was not possible to follow the 
trailing edge curvature. 'In consequence the derived profile was parallel 

to the original but displaced in the yd direct5on by about 6 per cent of 
the chord. The pressure distributions suggest that this was an acceptable 
error. Agreement was close over the mid-chord region- where the 10 oontrol 

point case gave aocurate profile representation. The suctionpeak 

corresponding to ideal flow around the ourved trailing edge was of course 

eliminated. In fact an advantage has been gained here by reducing the 

number of control .points. In actual fluid flow past the trailing edge, 

this suction peak is not found because of the cushioning effect of the 
bound&y layer which has grown to its maximum thickness at the trailing- 
edge. Correction of the original profile by addition of the displacement 
thickness would be more representative of the ideal fluid situation we 
wish to match. Furthermore, the fluid in practice separates from the 
trailing edge as from a bluff body,and leaves the aerofoil in a direction 
which is probably close to the camber line. The solution with 5 control 

points may well be much more representative of the true visoous flow at 
the trailing edge. Added to this,the elimination of the reversal of 

curvature near the leading edge commends the 5 control point case. 

- With three control points a much inferior profile match was obtained. 

. . This was reflected in the pressure distribution also. 

From this investigation it was concluded that a good representation . 
of an average profile could be obtained with 5 control points. With less 
control-points a smooth profile was obtained, but the general shape was 
not adequately matched. With more oontrol points the general shape was 
matohed closely at the expense of the leading edge where the beginnings of 
profile undulations were observed. In addition, the close matching of the 
trailing edge curvature with IO control points did not necessarily repre- 
sent the real visoous flow. In fact the 5 control point case was 
considered to be more probably equivalent in character because of the 
smooth decelerating flow from the trailing edge. 

5: DATA PROCESSING TO GIVE BEST MATCHING. 

It is possible to overcome the diffioulties outlined,in section (4) 
by processing the input data4 A method which has been used with success (2) 

is as follows. As the source series is finally to be used, it is logical 
to begin by representing the original profile by a function which it is 
certain can be closely matches. Equation (10.) for the thickness and 
equation (II) for the camber are the obvious choioe. These series, 
truncated to the same number of terms as will be used in the cascade 

analysis,are thenmatchedto the given aerofoil by the method ofleast squares. 
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This method has been tried out on a compressor casoade lOC2/2OC5O 

using three control points. The original, processed and final integrated 
profiles are oompared in Figure (12), where yd is plotted on an expanded 

scale. Three terms were sufficient in this ease to represent the C2 
profile and circular arc camber line with good accuracy- The processed 
profile was close to the original and the final integrated profile 
derived from the actual cascade analysis agreed with the original to well 
within 1 per cent of the chord at all points. 

6. HIGH CAMBER CASCADES 

Schlichting's assumption that the singularities are located on the 

ohord lineis theone mostopento question. Afullinvestigationwas beyond 
the scope of this project. The comparisons presented here between exact . 
and approximate theoriesdohowevergive an indicationofthe rangeofvali- 
dity of this assumption. The profiles chosen, showninFigure+(lLt), have 
cambers of 70' and 120' respectively. The 7o'cambered profile is very 
similarto lOC4/7OC50. Also showninFigure(14) arethe integrated profiles 
derivedfromtheccmputedsingularitystrengths which showthatthe Schlichting 
analysis was obtaininga goodprofile match. Threecontrolpoints were used. 

The JO0 camber profile was analysed with zero stagger, a pitch/chord 
ratio of 0:~ and for inlet angles of +35O and -35'. For both cases the 
computed pressure distributions, Figure (15), were in very good agree- 
ment. The computed outlet angles were as follows: . 

Inlet 
Angle ' - 

a2 Merchant 
and Collar 

a2 Schlichting 
3 control points 

+ 35O 23.80' 20.28' 

- 35O 24.84' * 22.57' 

This can be considered as good agreement considering the large 

deflection of the cascade. 

The 120’ cambered blade was analysed for zero stagger and-a pitch/ 
chord ratio of 0.59- In this case, Figure (16), the pressure distri- 
butions bore some resemblanoe over the first 5@ of chordbut differed 

strongly over the remainder of the span. The outletangles were as 
follows; 

a2 = 51.17O Merchant & Collar 
, = 46.32' Schlichting 

Thus although the the deflection was predicted to within 5 per 
cent, Schlichting's theory did not give a satisfactory prediction of 
pressure distribution for this case of very high camber. 
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7. SUMMARY OF CONCLUSIONS 

The main conclusions may be summarised as follows:- 

(a) It has been demonstrated that for a typical asrofoil 
Schlichting's kinematic source flow equation is aocurate enough 
for normal profiles. Source strength is 15 per cent too small, but 

pressure is given to within b-per cent of the main stream dynamic 
head. 

(b) The streamline representing the profile outs the chord at a 
pogition of approqimately 3 per cent of chord upstream of the 
assumed profile leading edge. 

(c) Accurate presentation and smoothness of data has been found to 
be vital. 

(a) The adoption of large numbers of control points will not ensure 
better matching of unusual profiles. On the oontrary severe surface 

undulations and even complete breakdown of the matching process can 
occur. On the other hand, the method has proved eminently suitable 
for practical profiles which are known to be good aerodynamically. 

1: 'L (e) The optimum number of control points for a typical profile was 

5. This can only be regarded as a guide. A greater number leads 
to surfaoe undulation and less representative flow at the trailing 
edge. Having less control points restricts the matohing accuracy 
oirer the central chord region. 

(f) These difficulties can be overcome by initial data processing 
to ensure accurate input data of a form acoeptable to the matching 
process. Most of the restrictions to profile matching resulting 

from use of a truncated series are imposed in this initial step. 
A valid Sohlichting's analysis is then ensured. 

(g) The method proved accurate enough for a casoade with 70' Of 
camber. Pressure distributions are probably inacourate above this, 
although fluid outlet angle was predicted to within 3’ for the case 
oonsidered here with 120' of' camber. G, 
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APPENDIX I 

NOTATION 

X 

Y 

Ya 
ys 
1 
16 

Direction parallal to Chord line. 

Direation perpendicular to chord line, 

Profile thickness. 

Camber line ooordinate. 

Chard. 

Variable of chord defined X J--Q - cospl) -f-= 2 

SOURCE strength per unit length. 

Vortex strength per unit length. . 

x 
= ./ l&Q da 

0 2u 

Vector mean velocity. 

Component Of W, in x direction. 

COmponent of W, in y directionS 

Stream Function. _ 

* Singularity Velocityperturbationin x direction. 

Singularity Velocity perturbation in y direction. 

x’ =l 

-k 
s ” -_ X’S0 

Velocity perturbation 
due to source distribution. 

Velocity perturbation 
due to vortex distributio 
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APPENDIX II 

Derivation of profile induced by a source distribution 
in a Uniform Stream 

The stream function is defined by 

Jv av 
U =-, v= - 

ay ax 
(2.1) 

The profile in Figure (13) is to be represented by the streamline 

v= 0 generated by the source distribution q(x) in a uniform stream of 
velocity U. 

Since yis a function of x and y 

av a\Y 
dyr=-.dy+--dx 

- ay ax 

% 

A 
Hence for two points on the profile '?A - u/B = udy. - 

$” VdX = 0 (2.2) 
B 

If the integration-is taken along the contour BpqrA for example 
where the y co-ordinate ~of q and r approaches zero, then 

Lt 

s 

Y 
X 

udy - 3 4 
qdx =o 

Ed0 0 E 
(2.2)a 

4 
A 

since v dx equals half of the souroe flux from the x 
B 

axis between B and r. 

The velocity component u is given,by u = U + ui 

where u i is induced by the source distribution and is given 

bY 

I 
u= i 

sl 

(x - 4 s(a) da . 
(x - a)" + y2 I 2n 

a=0 



Upon integration with respect to y it can be shown that 

s 

Y 

ui ay = 
E 

[ $-$ -{ tsn-d & - tan-' & } da 

It then follows that 

PY 
1 I, IJt 

J Ed0 ,g 
uiay = 

J 
s(a) tan" y da 

0 2 =a 

Thus 

profile. 

which has 

(2.3) 

Where tan" _ 
n 

+a lies between + 2 

We now define 

Q(x) + P ox ;$’ da 
Q(O) = 0 

Q(l) = 0 

since Q(1) is the total source strength which is zero for a dosed 

In fact Q(x) is an approximation to the yd co-ordinate, equation (6), 

been evaluated in equation (10). 

The integration in (2.3) is now carried out to give 

1 
r 

J- 
q(a) c 

tan-1 gg 
da 

0 2n 
1 

= UQ(x) -v Q(a) Y 
n O (x-a)2+y'2 

Finally equation (2.2)a becomes 1 I- $ s Q(a) da = 0 
0 (x-a) '+y2 

da 

(2.4) 

x,y in this equation are the profile streamline co-ordinates corres- 

ponding to-the source distribution q(a). To deter&e the streamline, equation 

(2.4) was integrated numerically for several values of y at chosen x positions, 
the correct value of y being finally obtained by interpolation. 

5 
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Leading edge co-ordinate 

There is no reason to expect that the profile streamline stagnation‘ 
point will occur at x = 0. It is more likely to be slightly upstream of this 

point. At the nose we have, since y = 0 

n = s 
Q(a) 

0' * (x - a)2 da _ 

It can be shown that this reduceswith good approximation to 

J- -x = BO 
5Bo-02-6B3 x 

1+3Bo-B2-B3 ?+3Bo - B2 - B 
3 

U-5) 

the second term in fact being negligible. For the profile considered here 
this gave, referring to Figure (13)) the value 

B e 
P 

.005 

D 37305/1/vt.61 KJ+ 6/65 TXL & CL 
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COMPARISON OF PROFILE GIVEN BY EXACT THEORY 
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SCH LIGHTING% METHOD OF ANALYSIS 
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FIG.4 

Curve (a) exact theory. 

Curve (b) Schlichtin& theory. 

PROFILE SURiACE VELOCITY 

BY EXACT AND APPROXIMATE- ‘THEOi?IES. 



pzp -poz+ 
fPU2 

0 

-0 2 

-. 4 

Curve (a> exact theory 

Curve (b) Schlic hting’s approximate theory. 

SURACE PRESSURE DISTRIBUTION 
BY EXACT AND APPROXIMATE THEORIES. 



FIG.6 

-I I I I I 1 
I 

I .- .--. -..- .-.--. -.A. 

I 



*l cl 

co! 

-. OE 

-. 1 

-* lF . 

-. 2 

Yd 
-6.55 

-6.6( 

i 
.2 

F 
__ _.-. 

(a)(b) Original prbfilc showing also 1 1’ 
-profile with bulge. , 
(c) Integrated profile. 4 sib. figures. 

(d) Integrated profile 3 sig. figures 

l 
(e) tntegrated rofik with bulge. 

(d) 

, 
!!L 

FIG. 7 

INTEGRATED PROFILES FOR SINGULARITY 

STRENGTHS SHOWN IN FIGURE 6. 
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MATCHING OF PROFILE SLOPE WITH 
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