MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Measurements of Dynamic Stability from Three Simplified Free-Flight Models of a Supersonic Research Aircraft (Bristol T. 188) over the Mach Number Range I.2-2.6
by
K. J. Turner

```
U.D.C. No. 533.6.013.412 : 533.6.013.413 : 533.6.011.5 :
    533.6.055 : 533.652.1
```

 C.P. No. 816
 March, 1961
 MEASUREMENTS OF DYNAMIC STABILITY FROM THREE STMPLIFIED
FREE-FLIGHT MODELS OF A SUPERSONIC RESEARCH AIRCRAFT
(BRISTOL T.188) OVER THE MACH NUMBER RANGE $1.2-2.6$
by
K. J. Turner

SUMMARY

Values of the lateral stability derivatives y_{v}, n_{v}, i_{v} and ℓ_{p} have been measured on free-flight models of the Bristol T. 186 for Mach numbers between 1.2 and 2.6. These show that the aircraft should be laterally stable up to $M=2.6$, at least, although the freeflight results indicate a somewhat smaller stability margin than estimates or wind-tunnel measurements.

Some additional data on z_{W} and m_{W} have been derived from the longitudinal motion.
LIST_CF CONTENTS
Page
1 INTRODUCTION 5
2 DESCRIPTION OF THE NODELS 5
3 FLIGHT BEHAVIOUR 7
4 NETHODS OF ANALYSIS 8
4.1 Basic principles 8
4.2 Lateral stability 9
4.2.1 Analytic solution (method A) 9
4.2.2 Vector solution (method B) 10
4.2.3 Simplified solutions (methods C,D,E) 11
4.2.4 Direct solution for y_{v} (method F) 12
4.3 Longitudinal stability 12
4.4 Corrections for centre of gravity shift 13
5 DISCUSSION OF RESULTS 13
5.1 Lateral stability 13
5.2 Longitudinal stability 16
6 CONCLUUSIONS 17
LIST OF SYMBOLS 18-20
LIST OF REFERENCES 21
TABIES 1 AND 2 22-23
ILLUSTRATIONS - Figs. $1-42$
DETACHABLE ABSIRACT CARDS
IIST OF TABLES
Table
1 - Fhodel data 22
2 - Model instrumentation 23
IIST OF ILLUSTRATIONS
Fig.
The full-scale aircraft 1
General arrangement of models 1 and 2 2
General arrangement of model 3 3
Photographs of models4(a-e)

IIST OF IILUSTRATIONS (Contd)	Fig.
Body profiles	5
Wing details	6
Fin details	$7(a, b)$
Nacelle details	$8(a, b)$
Trajectories (models 1,2,3)	9
Velocity (models 1,2,3)	10
Mach number (models 1,2,3)	11
Range of Reynold's number (models 1,2,3)	12
Superimposed steady rate of roll	13
Hean side-force coefficient	14
Wean sideslip angle	15
Mean lift coefficient (models 1,2,3)	16
Mean incidence (model 3)	17
Sample of telemetry record	18
Sample of data for determining frequency and phase relationships of the Dutch-roll oscillation (model 2, oscillation 1)	19
Natural frequency of Dutch-roll lateral oscillation	20
Non-dimensional frequency parameter of lateral Dutch-roll oscillation	21
Phase relationships of Dutch-roll lateral oscillation	$22(a-0)$
Sample of data for determining damping of lateral Dutch-roll oscillation (model 2, oscillation 1)	23
Damping of Dutch-roll lateral oscillation	24
Amplitude ratios of Dutch-roll lateral oscillation	$25(\mathrm{a}-\mathrm{c})$
Estimated values of n_{p}	26
Estimated values of ℓ_{r}	27
Vector diagram of Dutch-roll oscillation (model 2, oscillation 2)	28
Side-force derivative y_{v}	$29(a-c)$
Yawing moment derivative n_{v}	30(a-c)

IIST OF ILIUSTRATIONS (Contd)
Fig.
Comparison of values of yawing moment derivative n_{v} between free-flight, wind-tunnels and estimates 31
Rolling moment due to sideslip derivative ℓ_{v} (model 2) 32
Roll damping derivative ℓ_{p} (model 2) 33
Yaw damping derivative n_{r} (model 2) 34
Side-force curves (models 2 and 3) $35(a, b)$
Lift curves (model 3) 36
Sample of data for determining frequency of short period longitudinal oscillation (model 2, oscillation 1) 37
Natural frequency of short-period longitudinal oscillation 38
Non-dimensional frequency parameters of short-period longitudinal oscillation 39
Pitching moment derivative m_{w} 40
Lift force derivative z_{w} 41
Manoeuvre margin 42

The Bristol T. 188 is a single-seat aircraft, powered by two turbo-jet engines, which has been designed for aerodynamic and structural research at Mach numbers up to about 2.5. The general configuration is shown in Fig. 1.

Although comprehensive wind-tunnel tests have been done on the design, free-flight tests were also considered necessary in order to obtain measurements free from the effects of wind-tunnel constraints. The $1 / 36$ th scale model tested in the R.A.E. Bedford $3 \times 3 \mathrm{ft}$ tunnel ${ }^{1}$ had its afterbody considerably modified in order to accommodate the single-sting support and the $1 / 12$ th scale model tested in the R.A.E. Bedford $8 \times 8 \mathrm{ft}$ supersonic tunnel ${ }^{2,3}$ and the A.R.A. $9 \mathrm{f}^{\prime} t \times 8 \mathrm{ft}$ transonic tunnel ${ }^{4}$ was supported on twin stings running into the rear of the engine nacelles.

The present paper describes a series of experiments conducted to investigate the lateral stability of the design and in particular to measure the stability derivative n_{v} at the higher Mach numbers. This is of special concern because the destabilising contributions to n from the long forebody and nacelles remain fairly constant with increasing mach number while the stabilising effectiveness of the fin decreases with Mach number so that a rather fine balance of large moments may exist at the upper end of the speed range with the attendant risk of poor lateral behaviour.

The lateral-stability analysis of the free-flight tests was based on the Dutch-roll oscillation and was therefore complicated by the presence of three degrees of freedom, sideslip, yaw and roll, compared with, say, the more simple analysis of longitudinel stability involving two degrees of freedom only. Very little free-flight model work has been done in this country on the lateral-stability problem; cherefore the present investigation was started rather tentatively with simplified models and instrumentation. Because of this, some of the results from the first two models in the series are not applicable to the full-scale aircraft but they are included here because of their interest in terms of techrique development. The third model was more representative of the full-scale aircraft though differing from the true configuration by having slightly modified body lines and trapezoidal, instead of circular-arc, wing sections. These differences, however, are expected to have only very small effects on the lateral-stability characteristics and the model yielded reliable stability data from which useful comparisons with the wind-tunnel results have been deduced.

Although the aerodynamic results from this investigation may be of somewhat limited interest, being applicable to this particular aircreft only, they do show, when compared with the wind-tunnel results, how important the effects of sting supports can be. From the point of view of free-flight testing, the programme has provided a valuable opportunity for examining the suitability of several different, and in some measure independent, methods of lateral-stability analysis. Vector methods and analytic methods have yielded consistent results and tine effects of various approximations to the complete Dutch-roll analysis have been investigated.

2 DESCRIPTION OF THE MODELS

All three models were to $1 / 12$ scale and are illustrated in Figs.2-8; their principal data are listed in Table 1. They were simplified for ease of production by having the aerofoil sections modified from circular arc to trapezoidal sections and the bodies reduced to circular cross-sections about a straight centre-line. Some refinements to this simple layout were made on model 3 as described later. Wings and tail surfaces were machined from solid aluminium-alloy and the bodies were fabricated from aluminium-alloy tube with
brass and magnesiun castings for the nose and tail portions respectively. To minimise the effects of aero-elastic distortion particular care was taken in the design and monufacture of the body joints to make them rigid. The nacelles of models 1 and 2 were made from standard alurninium alloy tube to give an approximate representation of the nacelle design current at that time. This has since been superseded.

Models 1 and 2 were identical apart from small differences in c.g. position and moments of inertia, and the presence of the incidence/yow probe on the nose of the second model. No provision had been made on the first model for the deliberate excitation of the lateral oscillation but the second and third models were equipped with 5 lateral thrust units, 'bonkers', mounted in the tail cone and timed to fire at 1 second intervals after the model had separated from its boost motor. The positions of the bonkers are given in Figs. 2 and 3 and a photograph of the installation is given in Fig.4(a).

The third model was intended to repeat the experiment made with model 2 but with the main features of the aircraft that were expected to effect the lateral stability more accurately represented. These were considered to be the body side elevation, the fin aerofoil section and planform and the nacelles. The body profiles of the models are compared with the full-scale aircraft in Fig.5. The small side-area of the first two models is clearly apparent, this was remedied on the third model by building up the body with a \quad Hooden fairing to represent the cabin and, approximately, the centre-line profile of the fuselage. The body camber was not represented since this could not be achieved by any simple modification to the basic body and, in any case, was not thought likely to have much effect on the lateral stability. The moderate amount of body waisting on the actual aircraft was not represented.

Details of the fin as used on the first two models are given in Fig.7(a). These were relatively crude representations of the aircraft fin and the results from the second model strongly suggested that the fin suffered considerable loss of effectiveness below $M=1.8$, possibly arising from flow separation at the forward ridge line which is nearly sonic at this Mach number. The fin for the third model was therefore made to the correct planform and the forward ridge line was removed by building up the aerofoil section with an eraldite fairing (Fig. 7b). The aft ridge-line was also removed by working it dow to a smooth curve. The engine nacelles on model 3 were the same as those on the wind-tunnel models $1,2,3,4$ and represented the nacelle design for the Gyron Junior installation to be flom on the first full-scale aircraft. The free-flight model nacellos were designed to have their exits choked to give full mass flow at the intake at $\mathcal{H}=2.0$; details are given in Fig. 8. Each nacelle housed a magnesium flare to aid visual tracking by kinetheodolites and high speed cameras.

The telemetry equipment carried by each model is sumarised in Table 2. The most important measurements required for the lateral stability analysis are the angular rates (or angular accelerations) about the yawing and rolling axes, the lateral acceleration at the c.g. and the angle of sideslip. The models were too small to accommodate existing rate gyroscopes or angular accelerometers and so the necessary angular acceleration data had to be obtained from linear accelerometers suitably disposed about the appropriate axes. The angular acceleration in yaw was obtained from two lateral accelerometers mounted in the body, one near the c.g. and one in the tail, and rolling acceleration was obtained from nomal accelerometers mounted inside the centre body of each nacelle. The two normal accelerometers in the fuselage were used for the longitudinal stability analysis.

Wodel 1 carried a transponder-Doppler unit to measure velocity but this could not be installed in the later models because of lack of space and so their velocities had to be derived from kinetheodolite data only. The models were accelerated to their naximm velocity of about $3000 \mathrm{ft} / \mathrm{sec}$ by a single solid fuol motor. They were mounted in the pick-a-back position as show in Fig. $4(e)$ and separated fron the boost motor automatically at all-bumt.

3 PLIGHT BHEAVIOUR

Trajectory, velocity and liach number curves for all three models are given in Figs.9, 10 and 11. The small increases in maximum velcoity on the second and third models were achieved by keeping the model/boost conbination as clean and light as possible. Toi reasons of range safety the models were required to roll at about one revolution per second throughout their flight; this was to ensure that they would keep within the desired safety area should they fly at a high lift cofficiont. The roll was cibtained by setting a differential incidence of 10 minutes between the two wing panels. The rates of roll are plotted in Fig. 13 which shows that the first two models rolled at abcut the desired rate over the larger part of their flight but that the third model rolled at a higher rate at the higher Nach nuibers. The main effect of the steajy rate of roll on the lateral behavicur arises from inertia cross-coupling and the yawing monent derivative n_{p} so as to induce a steady angle of sideslip. The magnitude of the sideslip angle was, however, always small because the roll frequency was kept well below the yaw and pitch frequencies so that rollmpitch-yaw divergence could not cocur. The way in which the side-force and sideslip follow the superimposed rate of roll can be seen most clearly on model 3 at the higher liach numbers (Figs. 13,14,15). The effect of the steady rolling motion on the lateral cscillatory mode should appear in the form of a perturbation at the frequency of the short period longitudinal oscillation. Close examination of the lateral oscillatory data railed to show any such erfect and so the superimposed rate of roll was neglected in the analysis for the lateral stability derivatives.

Curves of mean lift coefficient and incidence are given in Figs. 16 and 17. The values of the mean lift ccefficient for models 1 and 3 agree very closely and follow the trend of decreasing $C_{I_{m e a n}}$ with increasing
liach number expected from the results $f f$ wind-tumel tests. The behaviour of model 2, hovever, was quite different in that the mean lift coefficient decreased in several distinct steps as the velocity fell, finally trimming out at a small negative C_{L} at subsonic velocities. The most likely explana-
tion for this is that the tailplane on inis model suffered some loss of effectiveness because of local flow separations over the fin, particularly at the higher angles of yam at the beginning of each oscillation. The basis for this argunent is given more fully in Section 5. The only cscillation that could be analysed on the first model for the evaluation of the stability derivatives was that producod by the disturbance as the model separated from the boost motor. On the seccnd mociel the separation oscillation was analysed and four of the five bonker-excited oscillations; one was of toc small amplitude for accurate measurement. On the third model all five bonker oscillations and the separation oscillation were analysed. A somple cf the telemetry record is show in Fig. 18. Unfortunately on this model the two normal accelerometers in the nacelles, which were needed to obtain the oscillatory roll data, failed at the noment of separation.

4.1 Basic principles

For the analysis of the stability measurements the flight of each model was broken down into a number of discrete time intervals during each of which the velccity was assumed constant. These intervals generally corresponded to the duration of the oscillation between the firing of one bonker and the next, but sornc oscillations were subdivided and analysed over two intervals where there was a measurable change in the frequency of damping characteristics.

The analysis was based on the classical cquations of aircraft dynamic stability but only five degrees of freedorn wore considered because of the constant-velocity assumption. It was also assumed that the second-order terms of the perturbation velocities were negligible and that there was no aerodynamic cross-coupling between the longitudinal and lateral moaes. Body axes werc used with the x axis along the body centre-line and all instruments were accurately aligned with this set of axes.

The equations of metion then reduce to
(a) The longitudinal set

$$
\begin{align*}
& \hat{t}\left(\frac{\dot{w}}{V}-q\right)+\frac{1}{2} C_{L}(1-\cos \varphi)-z_{W} \frac{W}{V}=0 \tag{1}\\
& \hat{t} i_{B} \dot{q} \frac{\ddot{\bar{c}}}{V}-m_{w} \frac{W}{V}-m_{q} q \frac{\overline{\bar{c}}}{\bar{V}}-m_{w} \frac{\dot{W}}{V^{2}} \overline{\bar{c}}=0 . \tag{2}
\end{align*}
$$

(b) The lateral set

$$
\hat{t}\left(\frac{\dot{v}}{V}+r\right)-\frac{1}{2} C_{L} \varphi-Y_{v} \frac{V}{V}=0
$$

$$
\begin{equation*}
\hat{t}\left(i_{A} \dot{p} \frac{b}{2 V}-i_{E} \dot{r} \frac{b}{2 V}\right)-\ell_{p} p \frac{b}{2 V}-\ell_{r} r \frac{b}{2 V}-\ell_{V} \frac{V}{V}=0 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\hat{t}\left(i_{C} \dot{r} \frac{b}{2 V}-i_{E} \dot{p} \frac{b}{2 V}\right)-n_{p} p \frac{b}{2 V}-n_{r} r \frac{b}{2 V}-n_{V} \frac{V}{V}=0 . \tag{5}
\end{equation*}
$$

Because of the complicated motion abcut all axes experienced by the models, as illustrated by the telemetry record (Fig.18), the use of these simplified equations requires some comment.

The primary object of the experimental programe was to measure the yawing-moment derivative n_{v}, and with the instrumentation available this was considered feasible since n_{v} is one of the dominant dorivatives determining the frequency of the Dutch-roll oscillation. Considering the aircraft configuration one would not expect large acrodynamic coupling derivatives from the longitudinal into the lateral mode because of the moderate sweep, lack
of dihedral, and attached-flow conditions that should exist over the wing for the very low incidence range covered by the tests. For cxample, windtunnel tests ${ }^{1}$ have shown that at $I=2$ the variations of n_{v} and l_{v} with incidence are less than $\pm 5 \%$ for the free-rlight model conditions.

The assumption that the lateral motion is independent of the longitudinal oscillation looks reascnable in the first instance from examination of the lateral-acceloromoter and sideslip records of Fig. 18. The lateral motion appears to be a simple damped harmonic cscillation practically unaffected by the higher-frequency oscillation in the pitch-plone. This is confirmed in that indepondent methods of analysing the lateral motion based on these simplifying assumptions give consistent and reasonable results. On the other hand the pitching motion is evidently strongly influenced by the lateral oscillation so that the wave-form is composed of at least two superimposed cscillations and the amplitude is not exponentially damped in fact; it increases for the first few cycles. Standard methods of analysis for the longitudinal-stability data cannot, therofore, be applied, and only approximate values of m_{w} and z_{w} have been obtained. But, since the main emphasis of the investigation was on lateral stability, a more detailed analysis of the longitudinal motion was not considered justified. In the following paragraphs several methods of lateral-stability analysis are described. These have aII been applied to tho proscont tests for the following reasons:-
(a) Some practical experionce was required on the suitability of the various methods of analysis for free-ilight testing.
(b) The effects of various degrees of apprcximation had to be investigated, particularly because of the incomplete data recorded from the third model.
4.2 Lateral stability
4.2.1 Analytic solution (method A)

The instrunentation systen yields direct measurements of linear acceleration at various peints on the model, angle of incidence and sideslip. The various methods of analysis adcpted to extract the aerodynamic derivatives require this data in the followine form:-
(a) Frequency and damping of the Dutch-roll oscillation.
(b) Amplitude relationships between roll, yaw and sidoslip.
(c) Phase relationships betweci roll, yaw and sideslip.
(d) Continuous curves of side-force and sideslip for two or three cycles of each oscillation.

The angular acceleration in yaw was obtaince from the two lateral accelerometers and the roll acceleration from the two normal accelerometers in the nacellcs. This latter pair of instrments was also responding to the longitudinal oscillation and so the quality of the data for determining roll acceleration was not so good as that for the yaw acceloration.

A sample of the data for determining Prequoncy and phase angle is given in Pig. 19 and the collected rroquency data from all the models are plotted in Fig. 20 and again in Fig. 21 in the form of tho non-dimensional lateralfrequency paramoter. Phase relationships for model 2 are prosented in Fig. 22 . The quality of the roll data relcvant to the oscillations at $M=1.55$ and 1.9
was such that the phasc comparisons, $\phi_{\mathrm{p}}{ }_{\mathrm{r}}$, at these inch numbers were considered unreliable and values from the mean curve were taken and used in the analysis. The damping of the Dutch-roll oscillation was obtained by drawing the best sct of parallel lincs through the log-plets of the yawing and rolling accelerations and the sideslip angles. A sample of these plots is given in Fig. 23 and the collocted damping results art plotted in Fig. 24. The amplitude ratios betweon the three degrees of freedon of the Dutch-roll oscillation were obtained froa the logarithmic damping plots of the kind shown in Fig. 23.

Voepel ${ }^{5}$ has shown that the lateral set of equations (3), (4), (5) can be solved in terms of the anplitude and phase relationships of roll, yaw and sideslip to yicld the following expressions for the more important derivatives.

$$
\begin{align*}
& n_{V} \bumpeq \frac{i_{C}}{\mu_{2}}\left(\hat{t} \frac{K_{\dot{r}}}{K_{\dot{B}}}\right)\left\{1-e_{C}\left|\frac{K_{\dot{p}}}{K_{\dot{p}}}\right|\left[s g \cdot \cos \phi_{\dot{r} \dot{p}}\right]\right. \tag{6}\\
& \ell_{V} \bumpeq \frac{i_{A}}{\mu_{2}}\left(\hat{i}_{i} \frac{K_{b}}{K_{\dot{B}}}\right)^{2}\left\{\frac{\left|\frac{K_{\dot{p}}}{K_{\dot{r}}}\right|\left[\operatorname{sg} \cdot \cos \phi_{\dot{r} \dot{p}}\right]-e_{A}}{1-e_{A} e_{C}}\right) \tag{7}\\
& y_{v} \bumpeq g \frac{\hat{t}}{V} \frac{K_{a y}}{K_{\beta}} \tag{8}
\end{align*}
$$

where sg. $\cos \phi$ is the sign of the trigonometrical function. In the figures the results from these expressions are labelled 'method A'. They have been obtained for model 2 only bccause of the lack of roll information from the other models.

4.2.2 Vector sclution (nethod B)

The vector method of anclysis fer oscillatory damped motions, due to Doctsch ${ }^{6}$, has been mppied to the rolling and yewing-monont cquations (4) and (5). While, in principle, the vector solution should give the same answers as the analytic solution (method A), the experimental data is used somewhat differently in each case so that different experimontal exrers may arise. Thesc consideraticns are discussed more fully in para 5.1.

If the Dutch-roll mode only of the lateral motion is considered, then the variables p, r and β in equations (4) and (5) may be considered as vector quantities all having the same period and damping. The measured quantities were actually angular accelerations \dot{p} and \dot{r} and the sideslip angle β but the corresponding amplitude and phase data for the rates can be cbtained from the knom relationships between rate and acceleration vectors in a damped harmonic system. Namely:
(a) The undamped natural frequency gives the amplitude ratio between the acceleration and rate vectors so that

$$
\left|\frac{r_{0}}{\frac{p}{K_{p}}}\right|=\left|\frac{K_{\dot{r}}}{K_{r}}\right|=\left|\frac{\bar{K}_{\dot{p}}}{\bar{K}_{\beta}}\right|=\omega_{n} .
$$

(b) The acceleration vector leads the velcoity vector in phase by 90° plus the damping angle, so that

$$
\phi_{\underline{p p}}=\phi_{\dot{r} r}=\phi_{\dot{\beta} \beta}=90^{\circ}+\varepsilon_{\mathrm{D}}
$$

where

$$
\operatorname{Tan} \varepsilon_{D}=\frac{\lambda}{\omega}
$$

Although sideslip measuroments were available from the yavmeter probe, they were not used in the vector analysis because the accustic lags in the piping between the sensing hoad and the transducers precluded accurate evaluation of the sideslip phase relationship. Fore consistent results were obtained by using the lateral acceleration at the centre of gravity and vectorially solving for $\dot{\beta}$ by the kinematic relationship.

$$
\begin{equation*}
a_{y}-\frac{V}{g}(\dot{\beta}+r)+p=0 \tag{9}
\end{equation*}
$$

Sample voctor solutions from nodel 2 for cquations (4), (5) and (9) are given in Fig.28. In both the yawing and rolling moment polygons there are three unknow dorivatives so that a solution is not possible unless one derivative in each case is lonom or assumed. In the present analysis the yowing and rolling moment derivatives exereising the least influence on the Dutch-roll oscillation were n_{p} and ℓ_{r} respectively and estimated values of these were used (Figs. 26 and 27). This complete form of the vector anolysis of the Dutch-roll motion yields data on $n_{v}, n_{v},{ }_{v}$ and l_{p}. It has beon applied to the noasurements from model 2 only, because of the lack of roll information from the other models, and in the figures is referred to as "VECTOR DIMTHOD B".

4.2.3 Simplified solutions (methods C,D,E)

The lack of roll measuremonts for models 1 and 3, and sideslip data for model 1, precludes the complete anolysis of their lateral-stability characteristios by the previous two methods A and B. Therefore various simplified metheds have had to be applied.

Analytic solution (method C)

The crudest approach is to noglect the freedom in roll altogether so that the Dutch-roll mode is simplified to a two-degree-of-freedom oscillation in yaw and sideslip. The sclution is then analogous to that for tho shortperiod oscillation in the longitudinal mode ${ }^{\prime}$ and yields a value for n_{v} depending on the frequency only of the lateral oscillation so that,

$$
\begin{equation*}
n_{v} \bumpeq \frac{i_{C}}{\mu_{2}}\left(\omega_{n_{2}} \hat{t}^{2}\right. \tag{10}
\end{equation*}
$$

Also the focal-point analysis ${ }^{7}$ can be uscd to give

$$
\begin{equation*}
y_{v} \bumpeq \omega_{n_{2}}^{2} \frac{\hat{t}}{v} D \tag{11}
\end{equation*}
$$

Analytic solution (method D)

A closer approximation for n_{V} has been derived by Thomas and Neunark ${ }^{8}$ which includes the yawing-moment term arising from the rolling derivative l_{V} and the product of inertia. Then,

$$
\begin{equation*}
n_{v} \bumpeq \frac{i_{C}}{\mu_{2}}\left(\omega_{n_{2}} \stackrel{\dot{t}}{ }\right)^{2}-\ell_{V} \frac{i_{E}}{i_{A}} \tag{12}
\end{equation*}
$$

Vector solution (method E)

A simplified vector solution can be obtained by neglecting the rolling motion; this should produce an answer for n corresponding to that of equation (10) (method C). This approxinaticn is shown by the dotted line on the vector diagram for the yawing-monent equation (Fig. 28). In this figure the resulting error in n_{v} is clearly apparent and, in this instance, arises mainly from neglecting the product of inertia term. The effect of neglecting the yawing-moment derivative n_{p} is very snall.

4.2.4 Direct solution for y_{v} (method F)

The previous two methods for obtaining y_{V}, equation (8) (method A) and equation (11) (method C) use data from the envelopes only of the lateral oscillation. They therefore give average values of y_{v} ever the range of sideslip covered and do nct yield any infomation on the linearity of the side-force coefficient with sideslip. It is possible to plot side-force curves directly from the records of the lateral accelerometer at the $0 . \mathrm{g}$. and the sideslip probe. These are show for models 2 and 3 in Tig. 35 .

4.3 Longitudinal stability

Because of the complex metion in the longitudinal mode the only derivatives that could be extracted with reasonable confidence were z_{w} and m_{w}. Lift curves were cbtained from model 3 from the data yielded by the normal accelerometer at the c.g. and the incidence probe (Fig. 36). These were considered linear within the experimental accuracy and the slopes are plotted as z_{w} agoinst Mach number in Fig. 41.

It was possible to extract the frequency of the pitching oscillation for all models. A typical frequency plot is shown in Fig. 37 and the collected frequency information from all three models is given in Figs. 38 and 39. In the usuol analysis 7 of the short-period longitudinal oscillation the pitching moment derivative m_{W} is obtained from the approximate relationship

$$
\begin{equation*}
m_{w} \bumpeq \frac{i_{B}}{\mu_{1}}\left(\omega_{n_{1}} \hat{t}\right)^{2} \tag{13}
\end{equation*}
$$

In the present experiment, because the damping could not be evaluated, the measured pitoh frequency ω_{1}, was used in place ci the undamped value $\omega_{n_{1}}$,
This should, however have only a small effect on the evaluation of m_{w}.

4.4 Corrections for centre of gravity shift

The centre of gravity positions on the free-flight models were brought forward compared with the full-scale aircraft in order to obtain the relatively high frequencies of the oscillatory modes required for analysis. The measured values of the monent derivatives have therefore had to be corrected to make them comparable with the wind tumel results and thecretical estimates.

A corrected curve for n_{v} is given in rig. 31 where

$$
\begin{equation*}
n_{V_{N}}=n_{V_{M I}}-\frac{y_{V}}{b / 2}\left(x_{c \cdot g \cdot M}-x_{c \cdot g \cdot}\right) \tag{14}
\end{equation*}
$$

The suffices F and M refer to the values appropriate to the full-scale and model centre of gravity positions respectively. The values of y_{v} used in this expression were those measured on the appropriate model, i.e. from Fig. 29(b) for model 3.

Corrected curves for m_{w} are given in Pig. $40(\mathrm{~b})$ where

$$
\begin{equation*}
m_{W_{F}}=m_{W_{M}}-\frac{z_{W}}{\bar{c}}\left(x_{c \cdot g_{\cdot j}}-x_{c \cdot \delta \cdot}\right) \tag{15}
\end{equation*}
$$

5 DISCUSSION OT RESUITS

5.1 Lateral stability

The very limited data cbtained frcm model 1 showed that while the longitudinal stability characteristics were in fair agreement with estimates (Tigs. 40 and 4 1) the lateral stability derivative n_{v} appeared low. The second model yielded results that agreed with those from the first one at $M=2.4$ and because of the rocre comprehensive instrumentation enabled a full analysis to be made of the Dutoh-rcll oscillation. Furthermore, the 'bonker' installation allowed the stability to be investigated over the Mach number range 1.2 to 2.5 . The third model was much more representative of the fullscale configuration but unfortunately a full analysis of the lateral motion could not be made because of the failure of the roll accelercneters. This was not, however, so sericus as might be supposed because careful comparison of the results from various methods of anolysis for each model has given a good measure of the effect of the rolling freedom on the yawing motion.

Since the main purpose of the investigation was tc obtain values of $n{ }_{v}$, the discussion will be mainly concerned with the evoluation of this derivative with only a few remarks on the other information obtained.

In Fig. 30 the results from the five methods of analysis for n_{v} are compared for model 2. The simplest solutions, methods C and E (Fig.30a)
which neglect the freedom in roll completely, yield results which are in close agreement with each other. Thecretically, of ccurse, they are bound tc agree since they are merely two ways of sclving the same equations. In their practical application to experimental data, however, the same result will only be obtained if the instrumentation system is working satisfactorily since method C depends upon the frequency only of the lateral oscillation whereas the simplified vector solution E uses amplitude and phase measurements from the motions in yaw and sideslip. The measure of agreement between these two solutions is therefore a useful guide to the acouracy of the instrumentation system.

The two methods A and B, which include the rolling froedom, also yield results which are in close agrement with each cther (Fig. 30b) but the general level of the n_{v} curve is about $10 ;$ higher than that cbtained from the simple solutions C and E. This difference arises from neglecting the terms $-n_{p} \cdot \frac{p b}{2 V}$ and $-i_{E} \hat{t} \frac{\dot{p} b}{2 V}$ in the simplified solutions. The vector diagram for the yawing motion (Fig. 28) shows clearly that, in this instance, it is the product of inertia term which plays the more inoortant part. The approximate solution D (Fig. 30b), which neçlects all the rolling terms except for the derivative l_{v} and its coupling intc the yawing moment via the product of inertia i_{E}, yields results for n_{v} which are in very close agreement with those from the more complete foms of cnalysis (methods A and B). The fact that only the ℓ_{V} term is necessary to give a clesc approximation to the result from the complete solution is mest useful and has been used in the analysis of the third-model results.

The most surprising feature of the n_{v} curves from model 2 was that the values of n_{v} increased with increasing Mach nuriber instead ci decreasing as the estimated values suggest. This was theught to be a most unlikely characteristic of the design and an explanation was sought by examination of the other aerodynamic characteristics of the model. The main clues are evident in Figs. 29 (a) and 40, which indicate that a change in aerodynamic characteristics occurred ncar $M=2$. As the Hach number fell belcw this value the longitudinal stability suddenly decreased and there was also a fairly suaden loss of y_{v}. The major contribution to m_{w} arises from the tailplane, and a large proportion of y_{v} from the fin. Thus the whole tail assembly appears to have suffered a considerable loss of effectiveness below $M=2.0$. The most probable cause of such a loss was thought to be a flow separation from the forward ridge line on the fin. Such a separation is most likely to occur when the component of the local flow normal to the ridge-line falls to a subsonic value. The gecmetry of the fin (Fig. 7a) is such that this corresponds to a flight Mach number of about 1.8. A complete flow separation from this line would cause a marked loss of effectiveness of the fin and also of the tailplane because of its position above the fin. Although there was no direct proof that this explanation was the correct one, it seemed plausible enough to justify a modification to the fin of the third model which would eliminate the offending ridge lines. At the same time the fin shape was altered to make it more representative of the fullscale fin (Fig.7b).

The effects of the fin modifications on the lateral and longitudinal characteristics is evident from comparison between the results of the second and third models in Figs.29, 30 and 40. There were other differences between the second and third models, notably in the fuselage cross-section and the nacelle size as mentioned earlier, but j.t is unlikely that these caused the marked difference in characteristics below $h=2.0$. At hach numbers above 2.0 the results from the second and third models are in good agreement.

The values of n for the third model are given in Pig. $30(c)$. They have been colculated from the lateral-frequency data (method C) and from the better approximation of method D. Since a complete lateral analysis was not possible on this model no measured values of l_{v} were obtained for substitution in the equation of method D. The values actually used are given in Fig. 32. Here the measured values from the second model show the same drop below $M=2$ as cocurred in the other derivatives mainly dependent on tail effectiveness. But since the third model did not suffer from this trouble, an ostimated curve for l_{v} has been used which agroes fairly well with the measured values from model 2 around $M=2.0$

Admittodly, the l data of Fig. 32 may nct be very accurate but even a. 25% error in the values of l_{v} used in method D does nct effect the values of n_{v} by more than 5%

The n_{v} curve from model 3 has been correctod to the full-scale centre of gravity position and is preserted in Fig. 31 in comparison with the estimated curve and the wind-tunnel results fron Refs.1-4. Between $M=1.4$ and 2.0 the results from the free-flight model and the $8 \times 8 \mathrm{ft}$ tunnel are in good agreement but above $M=2.0$ the free-flight result falls below the tunnel values until at $M=2.4$ there is a discrepancy of 20% in n. In
general the curve from model 3 follows the trend of the estinated values but lies some 10\%-20;0 below them. Near $M=1.4$ the results from the frecflight model, the $8 \times 8 \mathrm{ft}$ tunnel, the $9 \times 8 \mathrm{ft}$ tunnel and the estinated volues oll lic close together. The results from the $3 \times 3 \mathrm{ft}$ tunnel model are some 40% too high threughout the Mach number range of the tests. This is perhaps not surprising in view of the modifications made to the afterbody of the model.

Some confidence may be placed in the accuracy of the free-flight results for n_{v} since the evaluation of this derivative is mainly dependent on the yawing frequency which can be measured to an accuracy of about $\pm 3 \%$. The uncertainty in the volue of l_{v} has been shown to have only a small effect and a pessimistic evaluation of all the experimental errors in the free-flight analysis indicates that the overall accuracy of $n v$ should be within $\pm 10 \%$. The curve for model 3 on Fig. 31 may therefore be taken as a fairly accurate measurement of n_{v} on the free-flight model when moasured in the oscillatrey mode.

The question then arises as to how closely the model represents the full-scale aircraft configuration (ings. 1 and 3). The major geometrical differences, as discussed in Section 2.0 were introduced to simplify the model construction and are considered to have only a very smoll effect on n_{v}. The most signifioant difference between the acrodynamics of the free-
flight models and the full-scalc aircraft lies in the possible effects of the efflux from the engines on the flow ficld around the tail assembly. The internal flow through the model nacelles is not fully expanded as it leaves the nacelle cxit. The nacelles were designed to have sonic flow at the exit giving a pressure ratic, between the intermal and extermal flows at the exit, of 3.8 at $M=2.0$. There will, then, be some looal shock pattern arising from the expansion of the internal flows as they leave the nacelle exits, which will impinge on the f in and tailplane at certain Mach numbers. No attempt has been made in the present anolysis to assess the significanco, in terms of lateral stability, of the differences between this (medel) flow and the engine efflux on the full-scale aircraft. Some aspects of this flow interference problem have been investigated in the Bodford $3 \times 3 \mathrm{ft}$ supersonic wind-tunnel.

Tuming now to the discussion of the other lateral derivatives, the most reliable results were obtained for y_{v}. Here again several metheds of analysis have been applied which yield fairly consistont results. The curves of C_{y} against β ($F i g .35$) for model 3 are linear within the experimental accuracy over the range of sideslip covered but there is some evidence of non lincarity in the results from model 2. The suspected reason for the lass of y_{v} on model 2 below it $=2.0$ has already been discussed in Section 5 and has been ascribed to flow separation from the forward ridge line of the fin. The curve of Fig. 29(a) cemot therefore be considered representative of the full-scale aircrart. In Fig. 29(c) the values of y_{v} obtained fron model 3 (Fig. 29b) are ocnpared with the wind-tunnel results and theoretical estimates. There is again close acreenent between the results from the free-flight model and the $8 \times \delta \mathrm{ft}$ and $9 \times \delta \mathrm{ft}$ windtunnel model except above $I=2.0$ where, as in the caso of n_{v}, the freeflight results start falling away belor the wind-tunnel values. In this respect the y_{V} and n_{V} results are censistent.

The three derivatives ℓ_{v}, ℓ_{p} and n_{r} were obtained from model 2 only and are show in Figs. 32,33 and 34 . The values of l_{v} were obtained from the analytic method A (equation 7) and the vector solution, nethed 3 . Here again the two approaches yield results which are in close agreenent with each other and in fair agreement with the wind-tunnel values and estimated values at Mach numbers above 2.0.

The damping dorivatives l_{p} (Fig. 33) and n_{r} (Fig. 34) were obtained from the vector solution (method B). While there is fair agreement between the measured and estimated curves for l_{p}, particularly in the variation with
Mach number, there is a gross discrepancy between the measured and estimated values of n_{r}. Moving the centre of gravity aft from the model position $(-0.24, \vec{c})$ to the full-scale position ($+0.18 \overline{\mathrm{c}}$) would reduce the measured values of n_{r} by some 15% only still leaving the larger part of the difference to be explained. The most likely reason for this discrepancy con be seen from the sample vector diagram (Fig. 28) which is typical of all the diagrams obtained in the analysis of model 2. The amplitude ratios between the varicus components of the oscillatory motion, which give the length of the vectors, can generally be obtained tc $\pm 5 \%$ and the phasc angles to abcut $\pm 2^{C}$. While uncertainties of this crder have only a small effect on the $n v$ vector and moderate effects on the l_{v} and l_{p} vectors, they clearly have a very large effect on the n_{r} vector. It is therefore not possible, with the instrumentation used on this model, to evaluate the n_{r} derivative with any reliability. For this reason no attempt has been made to correct the experimentally determined values to the full-scale c.g. position. It should be possible, however, with more accurate instmumentation to obtain n_{r} by
free-flight techniques providing the derivative is large enough to influence the lateral oscillation by an appreciable anourt.

5.2 Lengitudinal stability

The experimontal programe was mainly dirccted towards the investigation of lateral stability und the models wore equipped acoordingly. It was therefore something of a bonus that the laterally-incunted 'bonkers' also produced the large response in pitch evirent in Fig. 18. Thilo a certain amount of the pitching motion was fed in from the lateral oscillation, a large
disturbance in pitch was clearly applied the moment each'bonker' unit was fired. The reason for this is apparent from the location of the 'bonkers' in the tailcone (Figs.2,3 and 4d). A strong shcor wave would form ahead of the bonker efflux being ejected from the body side so that the associated pressure field would react on the tailplane producing a nose-down pitohing moment.

A full treatment of the longitudinal-stability analysis has not been attempted for the reasens given in Section 4.1 .

The lift curves shown in Fig. 36 cover only a very small range of incidence, $\pm 2^{\circ}$ at the most, but their slopes agree very well with the estimated values of z_{W} given in Fig. 41. In spite of the complex nature of the pitching oscillation it was found possible to extract the short-period pitch frequency with a high degree of accuracy. The sample irequency-plot illustrated in Fig. 37 is typical of all the oscillations and shows that the decreasing amplitude of the accompanying lateral motion has negligible effect on the frequency of the pitching oscillation. Some confidence can therefore be placed on the derived values of m_{w} as being appropriate to the pure pitching motion alor. The collected frequency data from all the models are presented in Fig. 38 and again in Fig. 39 as the non-dimensional frequency parameter $\omega_{1} \overline{\bar{c} / V}$.

The curves of the pitching moment derivative m_{W} (rig.40a) clearly show the loss of stability on model 2 bolow $i=2$ but the results from all the models, when corrected for the shirt of centre-of-gravity, agree very closely with the estinated values aloove $\mathrm{M}=2$ (Fig .40 b).

The manoeuvre margin has been evaluated from the relationship

$$
-\frac{\partial C_{m}}{\partial C_{I}}=\frac{m_{W}}{z_{W}}
$$

and has been plotted for all three models in Fig. 42. Again there is close agreement between the measured and estimated values above $M=2$ and reascnable agreement at lower Mach numbers for the third model.

6 CONCLUSIOISS

(1) Several semi-independen't methods of analysis have been applied to the lateral oscillatory mede of three free-flight dynainc-stability models and have yielded consistent rosults fer the derivatives y_{v}, n_{v}, ℓ_{v} and ℓ_{p}. The methods have also show the effect, on the evaluation of n_{v}, of neglecting the freedom in roll in the lateral motion.
(2) Comparison of these results with corresponding wind-tunnel tests have shown that, as measured on the mest representative model, n was some 20,5 lower at $M=2.5$ than values obtained in the Bedford $8 \times 8 \mathrm{ft}$ supersonic tunnel. At Mach numbers below 2 there was close agreement in n between the freewfight results and those obtained in the Bedford $8 \times 8 \mathrm{ft}$ and the A.R.A. $9 \mathrm{ft} \times 8 \mathrm{ft}$ tunnels. Earlior measurements of n_{v} made on a snall model with a larga sting support in the Bodford $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel were some 40% higher than the freewilight results. Reliable aata was also sotained on y_{v} which agreed closely with the $8 \mathrm{it} \times 8 \mathrm{ft}$ tunel results up to $N=2.0$ but were 1 ower by abcut 10% at $\mathrm{hi}=2.4$

From one of the models reasonable neasurements of the derivatives ℓ_{V} and ℓ_{p} were obtained for Mach numbers between 1.8 and 2.4. At lower Mach numbers, however, this particular model is suspected of having suffered a severe loss of fin and tailplane effectiveness arising from a flow separation from a ridge line on the fin. The experimentally detemined values of these derivatives below $\mathrm{i}: 1=1.8$ are therefore prcbably unrenresentative of the full-scale aircraft on which such a flow separation should not occur.
(3) The longitudinal stability derivatives z_{w} and m_{w} were obtained for Mach numbers between 1.4 and 2.6 and these, in the main, agree well with the firm's estimates. They do not indicate any abnormal characteristics.

LIST OF SMBBOLS

A inertia about roll axis
B inertia about pitch axis
$\mathrm{C}_{\text {I }} \quad$ lift coefficient
C_{m} pitching moment ccefficient
C inertia about yaw axis
D distance of the fccal point forward of the centre of gravity
E product of inertia about the roll and yaw axes amplitude of lateral acceleration oscillation
$K_{\beta} \quad$ amplitude of sideslip oscillation
K_{p} amplitude of roll oscillation
K_{r} anplitude of yaw oscillation
I_{p} rolling moment due to rate of roll
$I_{r} \quad$ rolling moment due to rate of yaw
I_{V} rolling moment due to sideslip

M pitching moment
$M_{w} \quad$ pitching moment due to incidence
M_{w} pitching moment due to rate of change of incidence
M_{q} pitching moment due to rate of pitch

N_{p}	yawing moment due to rate of roll
N_{r}	yawing moment due to rate of yaw
N_{v}	yawing moment due to sideslip
S	gross wing area
V	flight-path velocity
7	weight
Y_{v}	side-force due to sidesliv
Z_{w}	ncrmal force due to incidence
a_{y}	lateral accelcration at the centre of gravity
b	span
$\overline{\mathrm{c}}$	geometric mean chord
$\overline{\bar{c}}$	aerodynamic mean chord
$e_{A}=i_{E} / i_{A}$	
$e_{C}=\dot{i}_{E} / i_{C}$	
8	accoleration due to rravity
$i_{A}=A / m(b / 2)^{2}$	
$\dot{i}_{B}=B / m \bar{c}^{2}$	
$\mathrm{i}_{\mathrm{C}}=\mathrm{C} / \mathrm{m}(\mathrm{b} / 2)^{2}$	
$i_{B}=E / m(b / 2)^{2}$	
$e_{p}=I_{p} / p \operatorname{si}(b / 2)^{2}$	
$e_{r}=I_{r} / \rho S V(b / 2)^{2}$	
$\ell_{V}=I_{V} / \rho S V(b / 2)$	
$m=$ mass ci model	
$m_{W}=M_{W} / \rho S V \overline{\bar{c}}$	
$\begin{aligned} & m_{\bar{W}}= \\ & m_{q}= \end{aligned}$	$\begin{aligned} & M_{W} / \rho S \overline{\bar{c}}^{2} \\ & M_{q} / \rho S V \overline{\bar{c}}^{2} \end{aligned}$

LISI OF STABOLS (Contd)

```
\(n_{p}=N_{p} / \rho S V(b / 2)^{2}\)
\(n_{r}=N_{r} / \rho S V(b / 2)^{2}\)
\(n_{v}=N_{v} / \rho S V(b / 2)\)
\(p\) rate or roll
\(q\) rate of pitch
\(r\) rate of yaw
\(\hat{t}=m / \rho S V\)
v lateral perturbation velocity
w normal perturbation velocity
\(\mathrm{x} \quad\) position of the centre-of-gravity olong the body centre-Ine
\(y_{v}=Y_{V} / \rho S V\)
\(z_{w}=z_{w} / \rho S V\)
```

$\alpha \quad$ angle of incidence
$\beta \quad$ angle of sideslip
φ bank angle
$\phi \quad$ phase ongle ($\phi_{r p}$ is phase advance of r relative to p)
sg. $\cos \phi$ sign or the cosine of ϕ
λ exponential index to the envelope of the damped cscillaticn
$\mu_{1}=m / \rho S \overline{\bar{c}}$
$\mu_{2}=m / p s(b / 2)$
ν_{1} frequency of short-period longitudinal oscillation
ν_{2} frequency of Dutch-roll oscillation
$\omega_{1}=2 \pi \nu_{1}$
$\omega_{2}=2 \pi \nu_{2}$
ω_{n} undamped natural frequency
$p \quad$ air density

LIST OF REFEREMCES

No. Author(s)

1 Squire, I. C.

2 Taylor, C. R., Cook, T. A.

3 Cock, T. A.

4 Iandon, R. H.

5 Voepel, H.

6 Doetsch, K. H.

7 Hamilton, J. A., Hufton, P. A.

8 Thomas, H.H. B. M., Neumark, S .

Title, etc
Wind-tumnel tests u_{p} to $M=2.0$ on a model of the supersonic research aircraft
F.R. 134 (Bristol 188)
R.A.E. Report Aero 2633, A.R.C. 22 364. Dec. 1959.

Supersonic wind-tunnel tests on a $1 / 12$ th scale model of the Bristol type 188 research aircraft. Part 1. $M=1.4$ to 2.0 .
R.A.E. Feport Aero 2649, A.R.C. 23 278. April 1961.

Supersonic wind-tunnel tests on a $1 / 12$ th scale model of the Bristol type 183 research aircraft. Part 2. $M=2.0$ to 2.7 . R.A.E. Eeport horo 2657, A.R.C. 23 748. Sept. 1961.

Transonic longitudinal and lateral stability tests and the effects of controls on a $1 / 12$ th scale model of the Bristcl 188. Unpublished A.R.A. Note.

Unpublished M.O.A. Report.

The time-vector method for stability investigations.
A.R.C. R \& $M .2945$. August, 1953.

Free-filight techniques for high-speed aerodynamic research. Jour. Reyal Aero. Soc. March 1956.

Interim note on stability and response characteristics of superscnic aircraft. (Linear theory).
R.A.E. Tech Note Aero 2412 .
A.R.C. 18 263. November, 1955.

Fodel data

	Model 1	Model 2	Model 3
Weight 1 b	113.3	107.7	117.3
Roll inertia (A) slug ft^{2}	0.418	0.390	0.450
i_{A}	0.0557	0.0549	0.0578
Pitch inertia (B) slug ft ${ }^{2}$	6.56	6.46	6.808
i_{3}	1.768	1.831	1.772
Yaw inertia (C) slug $f t^{2}$	6.83	6.71	7.063
i_{C}	0.911	0.94	0.908
Product of inertia (\$) slug ft^{2}	-	0.27	0.18
i_{E}	-	0.0380	0.0231
Relative density (mean) μ_{1}	556.8	559.5	591.8
H_{2}	391.7	398.3	418.0
Centre of gravity	-0.27c	$-0.24{ }^{\text {c }}$	$-0.21 \overline{0}$
Inclination of principol axis to datum axis	-	$-2^{\circ} 27^{\prime}$	$-1031{ }^{\prime}$
Wing area (gross)	$2.75 \mathrm{ft}^{2}$		
Aspect ratio	3.1		
Geometric mean chord $\overline{\mathrm{c}}$	0.94 ft		
Aerodynamic mean chord $\overline{\bar{c}}$	1.027 ft		
Semi-span b/2	1.462 ft		

TABLE 2

Model instrumentation

$465 \mathrm{Mc} / \mathrm{s} 24$ channel telemetry

Model 1

$\pm 30 \mathrm{~g}$ normal accelerometer 3.94 inches forward of c.g.
$\pm 30 \mathrm{~g}$ " " 10.19 inches forward of c.g.
$\pm 30 \mathrm{~g}$ " " 21.81 inches aft of c.g.
$\pm 7 \frac{1}{25}$ lateral accelerometer 3.94 inches forward of c.g.
$0-10 \mathrm{~g}$ longitudinal accelerometer 4.937 inches forvard of c.g.
Transponder Doppler set.

Model 2

$\pm 10 \mathrm{~g}$ normal accelerometer 2.00 inches forward of c.g.
$\pm 20 \mathrm{~g}$ " " 17.56 inches aft of c.g.
$\pm 17 \frac{1}{2} g$ " in port nacelle
$\pm 17 \frac{7}{2 g}$ " " in starboard nacelle
$\pm 7 \frac{1}{2} \mathrm{~g}$ lateral accelerometer 3.00 inches forward of $\mathrm{c} . \mathrm{g}$.
$\pm 10 \mathrm{~g}$ lateral accelerometer 16.56 inches aft of c.g.
4 hole differential pressure hemispherical head for incidence and sideslip
5 Imp Mk. IV lateral thrust motors ('bonkers') timed to fire at $5,6,7,8,9$ seconds after launch.

Model 3
$\pm 10 \mathrm{~g}$ normal accelerometer 3.47 inches forward of c.g.
$\pm 20 \mathrm{~g}$ " 17.08 inches aft of c.g.
$\pm 17 \frac{1}{2} \mathrm{~g}$ " " in port nacelle
$\pm 17 \frac{1}{2} g$ " " in starboard nacelle
$\pm 7 \frac{1}{2} g$ lateral accelerometer 2.37 inches forward of c.g. $\pm 10 \mathrm{~g}$ " " 15.98 inches aft of c.g.
4 hole differential pressure hemispherical head for incidence and sideslip
5 Imp Mk. IV lateral thrust motors timed to fire at $5.0,6.2,7.4,8.6,9.8$ seconds after launch.

NOTE
DIMENSIONS IN FEET.
FIG.I. THE FULL-SCALE AIRCRAFT.

FIG.2.GENERAL ARRANGEMENT OF MODELS $1 \& 2$.

FIG. 3. GENERAL ARRANGEMENT OF MODEL 3.

a. MODEL

b. MODEL 2

d. BONKER INSTALLATION MODEL 2

e. MODEL 3 AND BOOST ASSEMBLY

FIG. $4 d$ \& e. PHOTOGRAPHS OF MODELS

FIG.5. BODY PROFILES.

FIG.6. WING DETAILS.

FIG.7. FIN DETAILS.

(a) MODELS 182

(b) MODEL 3

NOTE- DIMENSIONS IN INCHES
FIG. 8 NACELLE DETAILS.

FIG. 9 TRAJECTORIES (MODELS I, 2,3.)

FIG.IO VELOCITY (MODELS I,2,3.)

FIG.II MACH NUMBER (MODELS 1,2,3.)

FIG. 12. RANGE OF REYNOLD'S NUMBER (MODELS $1,2 \& 3$.)

FIG. I3. SUPERIMPOSED STEADY RATE OF ROLL.

FIG. 14 MEAN SIDE-FORCE COEFFICIENT.

FIG.I5 MEAN SIDESLIP ANGLE.

FIG. 16 MEAN LIFT COEFFIENT (MODELS $1,2,3$)

FIG. 17 MEAN INCIDENCE
(relative to body axis) (mODEL 3).

FIG.18. SAMPLE OF TELEMETRY RECORD (MODEL 3)

FIG. 19. SAMPLE OF DATA FOR DETERMINING FREQUENCY AND PHASE RELATIONSHIPS OF THE DUTCH ROLL OSCILLATION. (MODEL 2. OSCILLATION i.)

FIG.20. NATURAL FREQUENCY OF DUTCH-ROLL OSCILLATION.

FIG.2I. NON-DIMENSIONAL FREQUENCY PARAMETER OF DUTCH-ROLL OSCILLATION.

(b) LATERAL ACCELERATION-YAW PHASE ANGLE.

(c) SIDESLIP-YAW PHASE ANGLE.

FIG. 22. PHASE RELATIONSHIPS OF DUTCH-ROLL OSCILLATION (MODEL 2.)

FIG.23. SAMPLE OF DATA FOR DETERMINING DAMPING OF THE DUTCH - ROLL OSCILLATION. (MODEL 2, OSCILLATION 1)

FIG.24. DAMPING OF DUTCH-ROLL OSCILLATION.

FIG.25. AMPLITUDE RATIOS OF DUTCH-ROLL OSCILLATION (MODEL 2.)

fig.26. ESTIMATED VALUES OF n_{p}.
(LINEARISED THEORY-FIN EFFECT ONLY)

FIG. 27. ESTIMATED VALUES OF $\boldsymbol{l}_{\boldsymbol{T}}$.
(Linearised theory - fin effect only)

FIG. 28. VECTOR DIAGRAM OF DUTCH-ROLL OSCILLATION .
(MODEL 2, OSCILLATION No.2)

(a) MODEL 2.

(b) MODEL 3.

FIG. 29. SIDEFORCE DERIVATIVE y_{v}.

FIG. 29. SIDEFORCE DERIVATIVE y_{v}.

(a) MODELS 1\&2. TWO-DEGREES-OF-FREEDOM ANALYSIS.

(b) MODEL 2. THREE-DEGREES-OF-FREEDOM ANALYSIS.

FIG. 30. YAWING - MOMENT DERIVATIVE n_{v}.

(C) MODEL 3-TWO-DEGREE-OF-FREEDOM ANALYSIS.

FIG. 30. YAWING-MOMENT DERIVATIVE n_{v}.

FIG. 3I.COMPARISON OF VALUES OF YAWING-MOMENT DERIVATIVE n_{v} FROM FREE-FLIGHT, WIND-TUNNELS AND ESTIMATES.
(ALL REFERRED TO C.G. AT $+0.18 \overline{\mathrm{c}}$)

FIG.32. ROLLING MOMENT DUE TO SIDESLIP $\boldsymbol{\ell}_{v}(M O D E L ~ 2)$

FIG.33. ROLL-DAMPING DERIVATIVE ℓ_{ρ} (MODEL 2)

FIG. 34. YAW DAMPING DERIVATIVE n_{+}(MODEL 2) (C.G. AT-0.24 E.)

(b) SIDE-FORCE CURVES(MODEL 3)

FIG.35. SIDE-FORCE CURVES (MODELS 283)

FIG. 36. LIFT CURVES (MODEL 3.)

FIG. 37. SAMPLE OF DATA FOR DETERMINING FREQUENCY OF SHORT-PERIOD LONGITUDINAL OSCILLATION .

$$
\text { (MODEL } 2, \text { OSCILLATION 1) }
$$

FIG.38.NATURAL FREQUENCY OF SHORT-PERIOD LONGITUDINAL OSCILLATION.

FIG. 39. NON-DIMENSIONAL FREQUENCY PARAMETER OF SHORT-PERIOD LONGITUDINAL OSCILLATION .

FIG.40. PITCHING-MOMENT DERIVATIVE m_{w}.

FIG.4I. LIFT-FORCE DERIVATIVE z_{w}.

FIG.42. MANOEUVRE MARGIN (C.G AT-O.18 $\overline{\text { c }}$)

MEASUREMENTS OF DYNAMIC STABILITY FROM IHREE SIMPLIF FREE-FLIGHT MODELS OF A SUPERSONIC RESEARCH AIRCRAFT

Turner, K. J. March, 1961.
Values of the lateral stability derivatives
y_{v}, n_{v}, l_{v} and l_{p} have been measured on freemfight models of the Bristol ". ${ }^{\text {C }}$ for Mach numbers between 1.2 and 2.6. These show that the alrcraft should be laterally stable up smaller stability marg in than estimates or windetunnel measurements.

Some additional data on z_{w} and m_{w} have been derived from the longitudinal motion.

533.6 .013 .412 533.6.013.413

 533.6.011.5 :
.05

533.6.013.412 533.6.013.413 533.6.011.5 :

MEASUREMENTS OF DYNMMIC STABILITY FROM THREE SIMPLIFIED

 FREE-FLIGHT MODELS OF A SUPERSONIC RESEALCII AIRCRAFTBRISTOL - $6 E$, OVER THE MACH NUMBER RANGE 1.2 - 2.6
rurner, K. J. March, 1961.
values of the lateral stability derivatives y_{v}, n_{v}, l_{v} and l_{p} have been measured on free-flight models of the Bristol :."fs for Mach numbers between 1.2 and 2.6. These show that the aircraft should be laterally stable up to $M=2.6$, at least, al though the free flight results indicate a somewhat smaller stability margin than estimates or wind tunnel measurements,

Some additional data on z_{W} and m_{W} have been derived from the longitudinal motion.
arnoneru•8"r
533.6.013.412 :
533.6.013.413: 533.6 .011 .5 : 533.6.055:

MEASUREMENTS OF DYNAMIC STABILITY FROM THREE SIMPL IFIED
FREE-FLIGHT MODELS OF A SUPERSONIC RESEARCH AIRCRAFT FREE-FLIGHT MODELS OG A SUPERSOINIC RESEARCH AIRCRAFT
(BRISTOL Turner, K. J. March, 1961.

Values of the laterial stability derivatives y_{v}, n_{v}, l_{v} and i_{p} have been measured on free-filight codels of the Bristol \therefore is for Mach numbers between 1.2 and 2.6. These show chat the aircraft should be laterally stable up to $M=2.6$, at lcast, although the freemilight results indicate a somewhat
smaller stability margin rnan estimates or wind tunnel measurements.

Some additional data on z_{w} and m_{w} have been derived from the longitudinal motion.

C.P. No. 816

(C) Crown Copyright 1965

Published by

Her Manesty's Stationery Officz
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Stroot, Belfast 1
or through any booksoller

