

MINISTRY OF AVIATION
AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

Supersonic Wind Tunnel Tests on a I/I2th Scale Model of the Bristol Type 188 Research Aircraft

Part I: $M=1.4$ to 2.0
by
C. R. Taylor and T. A. Cook
$$
\text { Part II: } \quad M=2.0 \text { to } 2.7
$$
by
T. A. Cook

```
U.D.C. No. 533.652.1 : 533.6.011.5 : 533.6.013.12 :
533.6.013.412/413:533.694.23:533.695.3
```

C.P. No. 818

Soptomber 1961

SUPLRSONIC WIND TUNNEL TESTS ON A $1 / 12 T \mathrm{TH}$ SCALE MODEL OT THE BRISTOL TYPE 188 RESEARCH ATRCRAFT,

PART I; $M=1.4 \mathrm{TO} 2.0$
by
C. R. Taylor
and
T. A. Cook

SUMMARY

Six component force tests at lach numbers $1.1,1.6,1.8$ and 2.0 have been made on a $1 / 12$ th scale model of the Bristol Iype 133 in the 8 ft tunnel at Bedford. The results are analysed to give drag, longitudinal and lateral stability data, and to show the effects of control movements, dive brakes, and nacelle spillage.

Some comparisons are made with the results of carlicr tests on a $1 / 36$ th scale model.
LIST OF CONTENTS
Page
1 INIRODUCTION 5
2 DESCRIPTION OF THE MODEL AND BALANCE 5
3 DETAILS OF THE TESTS 6
4 PRESENTATION AND DISCUSGION OF THE RESULIS 8
4.1 Longitudinal stability 8
4.2 Lateral stability 9
4.3 Drag 9
4.4 Eifect of the rudder 9
4.5 Effect of ailerons 10
4.0 Effect of airbrakes 10
4.7 Effect of spill vents 11
5 MODEL COMPARISON TESTS 11
6 CONCLUSION 12
LIST OF SYMBOLS 12
LIST OF REFERENCES 13
TABLES 1-3 15-17
ILLUSTRATIONS - Figs.1-53 -
DETACHABLE ABSTRACT CARDS
LIST OF TABLES
Table
1 - Principal details of the model 15
2 - List of configurations tested 17
3 - Model attitude ranges 17
IIST OF IILUSTEATIONS
General arrangement of model and support system 1Fig.
Photograph of the model in the wind tunnel 2
General arrangement of nacelle 3
Spill vent arrangement 4
Air brake arrangement (fully-open position) 5
Arrangement of model with distorted rear fuselage and dummy central sting 6

LIST OF ILLUSTRATIONS (CONPD.)

Variation of C_{I} with a at constant liach number: $\eta=-4^{\circ}$
Fig.
Variation of C_{m} with C_{L} at constant Mach number 11
Variation of $\partial C_{L} / \partial a$ at zero incidence with Wach number 12
Variation of $-\partial C_{m} / \partial C_{L}$ at zero lift with hach number 13
Variation of $-\partial C_{m} / \partial C_{L}$ with C_{L} 14
Variation of tailplane power with model incidence 15
Variation of downwash at position of tailplane with model incidence 16
Schlieron photographs: $W=1.40: \alpha=\beta=0$: tailplane -10° 17

- do - $\quad: M=1.60: \alpha=\beta=0:$ tailolane -10° 18
- do - $\quad: M=1.80: a=\beta=0:$ tailplane -10° 19
- do - $\quad: \quad 3.00: a=\beta=0:$ tailplane -10° 20
Estimated variation of filight incidence with Wach number for undistorted full-scale aircraft 21
Estimated variation of tailplane angle to trim with Mach number for undistorted full-scale aircraft 22
Variation of C_{Y} with β at constant Mach number: $\eta=-4{ }^{\circ}: \alpha=+4^{\circ}$ 23
Variation of C_{n} with β at constant inach number: $\eta=-4^{\circ}: \alpha=+4^{\circ}$ 24
Variation of C_{ℓ} with β at constant Nach number: $\eta=-4^{\circ}: \alpha=+4^{\circ}$ 25
Variation of y_{v} with incidence 26
Variation of n_{v} with incidence 27
variation of ℓ_{v} with incidence 28
Variation of n_{v} with incidence for trimmed configuration 29
Variation of C_{D} with C_{L} at constant Mach number: $\eta=-4^{\circ}$ 30
- do - $\quad \eta=-10^{\circ}$ 31
- do $\quad: \eta=-14^{\circ}$ 32
- do - : tailplane and fin off 33
Variation of minimum drag coefficient with Mach number 34
LIST OF ILIUSTRATTONS (CONTD.)
Variation of induced drag factor with Mach number 35
Variation of yawing moment due to rudder with incidence 36
Variation of side force due to rudder with incidence 37
Variation of aileron power with incidence 38
Variation of aileron power with Mach number 39
Variation of C_{Y} with a at zero sideslip for various aileron settings 40
Variation of C_{n} with a at zero sideslip for various aileron settings 41
Rudder angle to correct yawing moment induced by -20° ailerons, ($\beta=0$) 42
Effect of aileron setting on variation of y_{v} with $a: \eta=-4^{\circ}$ 43
Effect of aileron setting on variation of n_{v} with a : $\eta=-4^{\circ}$ 4
Effect of air-brakes on minimum drag coefficient: $\eta=-4^{\circ}$ 45
Effect of air-brakes on induced drag faotor: $\eta=-4 .^{\circ}$ 46
Eifect of air-brakes on lonǧitudinal stability: $\eta=-4^{\circ}{ }^{\circ}$ 47
Effect of air-brakes on variation of n_{v} with $a: \eta=-4^{\circ}$ 48
Variation of y_{v} with a: model comparison 49
Variation of n_{v} with a : model comparison 50
Variation of C_{m} with C_{N} at constant Mach number: model comparison 51
Variation of downwash at position of tailplane with incidence: model comparison 52
Variation of tailplane power with Mach number: model comparison 53

INTPODUCTION

The Bristol Type 188 is a twin-engined research aircraft of all-steel construction, designed, to Specification E.R.134, to fly at speeds up to ifach 2.5 and altitudes up to 60,000 feet, though it will initially be limited to Mach 2. A survey of constructional details and development is made in Ref.1.

The tests reported here were made on a $1 / 12$ th scale model of the aircraft in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ high speed wind tunnel at the Royal Aircraf't Establishment, Bedford. This model has also been tested at transonic speeds in the $9 \mathrm{ft} \times 8 \mathrm{ft}$ wind tunnel of the Aircraft Research Association Ltd ${ }^{2}$. Low speed tests on a $1 / 10$ th scale model are reported in Ref. 3

Five component (i.e. normal force, pitching moment, side force, yawing moment, and rolling moment) tests at transonic and supersonic speeds up to liach 2 have previously been made on a $1 / 36$ th scale model in the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel at R.A.E. Bedford ${ }^{4}$. This model had a distorted rear fuselage to allow a single sting support system to be used. Tests on a larger model, supported on a twin-sting system, and having a representative fuselage, were required to provide more lateral stability data, to measure drag forces, and to make more accurate measurements of the effectiveness of control surfaces. A test was made with modifications to the fuselage, simulating the $1 / 36$ th scale model, to obtain a comparison between the results from the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel and those from the $8 \mathrm{ft} \times 8 \mathrm{ft}$ tunnel. This demonstrated the effects of (a) the rear fuselage distortion on the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel model, and (b) the twinsting support system of the present model.

The tests described in this paper cover the Mach number range 1.4 to 2.0 . Tests covering the range 2.0 to 2.7 are reported in Part 2.

2 DESCRTPTION OF THE MODEL AND BALANCE

The general arrangement of the model and its twin-sting support system is shown in Figs. 1 and 2. The principal dimensions and other model data are listed in Table 1.

The model was made of steel with a high accuracy of finish. It was a true reproduction of the full-scale aircraft, except for small changes in the shape of the engine nacelles. A small distortion of the nacelle tailpipes was found to be necessary in order to accommodate the sting supports, and to permit the estimation of the internal drag due to flow through the ducts. The layout of a nacelle depicting this distortion is shown in Fig.3. It was thought that constrictions inside the ducts (which could not be avoided on the model) would limit the intake mass flows, and some minor changes in the intake geometry were made in order to allow the intakes to run critically at the intake design liach number (viz. ii = 2.1) with the smaller mass flows expected in the tunnel.

The tailplane pivoted about an axis 37.5% of the root chord forward of the trailing edge, the range of settings available was from $+4^{\circ}$ to -14° (relative to the nacelle centre lines) in 2° steps. The complete tailplane and fin assembly could be removed and replaced by a blanking piece which preserved the fuselage lines. Aileron and rudder settings could be varied over the ranges $-25^{\circ} \leqslant \xi \leqslant 0$ and $-5^{\circ} \leqslant \zeta \leqslant 2.5^{\circ}$ respectively, using interchangeable hinge plates.

The forward nacelle cowlings were interchangeable with cowlings having spill vents (Fig.4) representing the fully-open position proposed for the aircraft. In tests with the spill vents open, the flow through the rear ducts was restricted by fitting throttling blocks to the stings at the duct exits.

The arrangement of the air-brakes in the fully-open position is shown in Fig. 5; their position on the fuselage is shown in Fig.1. Other details are included in Table 1.

To enable a comparison to be made between the results on this twins ting model and those obtained on the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel single-sting model with a distorted rear fuselage, an alternative rear fuselage representative of the distortion was used. For tests with this configuration, a dummy central sting (not in contaot with the model) was fitted to the yoke of the twin-sting support. This configuration is shown in Fig.6.

The strain-gauge balance system consisted of two four-component (viz. normal foroe, side foroe, axial foroe, and pitching moment) balances, one in each nacelle (see Fig.3)." The eight apparent loads (i.e. loads uncorreoted for balance interactions) obtained from a set of readings were reduced to the usual six components as follows. Normal force, pitching moment, side foroe, and axial force, on the model were obtained by adding corresponding loads on each balance. Yawing moment and rolling moment were obtained by assuming them to be proportional to the differences in axial force and normal force between the two balances. The constants of proportionality were evaluated in the course of calibration. The six components thus formed were correoted for first order and seoond order balance interactions, as determined from the calibration, using the method of Ref.5.

The model was designed by the Aircraft Research Association Ltd., and manufactured by Test Equipment (Models) Ltd.

3 DETAILS OF THE TESTS

The tests were made at Mach numbers $1.4,1.6,1.8$ and 2.0. The Reynolds number, based on the standard mean chord, was constant at 2.5×10^{6}. The different configurations tested, and the ranges of inoidence and sideslip angles covered, are listed in Tables 2 and 3 respectively.

All the results presented in the next section of this Report refer to stability axes with their origin at a point in the plane of the nacelle centre lines, 3.75 in. aft of the leading edge of the inboard wing (i.e. at $0.18 \overline{\mathrm{c}}$). Incidence was measured with respeot to the nacelle centre lines.** The angles of incidence and sideslip are defined as in current aircraft practice, (i.e. the tangent definition of incidence and the sine definition of sideslip ${ }^{\text {are }}$ used). The incidence and sideslip angles were corrected for sting and balance deflections.

[^0]* The wing-nacelle angle is 2°.

To accord with the practice of Bristol Aircraft Itd., the pitching moment cocfficients quoted here aro basud on tho standard mean chord, and the lateral stability derivatives are derined as follows:-

$$
y_{v}=\frac{1}{2} \frac{\partial C_{y}}{\partial \beta}, \quad n_{v}=\frac{\partial C_{n}}{\partial \beta}, \quad e_{v}=\frac{\partial C_{e}}{\partial \beta},
$$

(β being in radians).
Axial force results were corrcoted for base pressures at the balance units and for the inturnal drag of the nacelles ${ }^{7}$. Prior to the tunnel tests the nacelles were comected to a high-prossure air supply and complete pitot and static pressure surveys madic for a range of mass flows. The nacelle mass flow and the momentum flux at the measuring station were thus calibrated against the roadings of one fjxed pitot and one rixed static tube in each half duct (see Tig.3). This calioration was uscd, together with the pitot and stetic measurcmonts obtaince in the wind tunncl tests, to calculate the inturnal drag.

The mass flow measurements showed that the ratio $A_{0} / A_{\text {ENN }}$ (where A_{0} is the cross sectional arca of the stream tube which enters the duct and $A_{E N}$ is the ares contained by the cowl lip) varied linearly with liach number from 0.60 at $\mathrm{M}=1.4$ to 0.86 at $M=2.0$.

The deflections under load of the rudder and ailcrons were calculated using measured hinge stiffnesses, and either measurcd ${ }^{8}$ or estimated hinge moments. For the rudder, the deflection was less than 1,6 of the control settins and for the ailerons less than 2% These derluctions wero ignored in calculating the control powbr.

Estimates of the accuracy of the results shown tnat the probable errors in the force and moment coofficients are as follows:-

$$
\begin{aligned}
& C_{L}: \pm 0.003 \pm 0.004 C_{L} \\
& C_{Y}: \pm 0.002 \pm 0.002 \mathrm{C}_{\mathrm{Y}} \\
& C_{D}: \pm 0.004 \pm 0.007 \mathrm{C}_{\mathrm{D}} \\
& \mathrm{C}_{\mathrm{m}}: \pm 0.0005 \pm 0.003 \mathrm{C}_{\mathrm{m}} \\
& \mathrm{C}_{l}: \pm 0.0007 \pm 0.004 \mathrm{C}_{l} \\
& C_{n}: \pm 0.0007 \pm 0.007 \mathrm{C}_{\mathrm{n}}
\end{aligned}
$$

The first term in each exprossion for the orror is due to balance hysteresis and other resolution errors. The second term is based on estimates of the accuracy of the balance calibration. An additional crror in the absolute value of tho drag coefficient may exist, due to inaccuracies in the calculation of the intornal drag of the ducts. This error is estimated to be smaller than ± 0.003.

The random urrors in angles of incidence and sideslip are less than 0.01°; howevor, local deviations of the air flow may have been as large as 0.20°.

In order to fix the position of boundary layer transition, the following roughness bands were painted on the model, using a mixture of grade 100 carborundum (i.c. particles about $0.008^{\prime \prime}$ in size) in aluminium paint:-

Fuselage: $\frac{1}{2}$ " band, commencing $1^{\prime \prime}$ from nose.
Wings: from $2 \frac{1}{2} \%$ to $7 \frac{1}{2} \%$ chord.
Aileron horns: $\frac{1}{4 \%}$ band commoncing $\frac{1}{4}$ from leading edge.
Fin: $\frac{1}{2}$ " band commenoing at leading edge.
Tailplane: $\frac{1}{2} "$ band commencing $\frac{" 1 "}{4}$ from leading edge.
Nacelle cowls: $\frac{1}{2}$ " band commenoing $\pi_{4}^{\prime \prime \prime}$ from lip.
Nacelle contre bodies: $\frac{1}{2}$ " band commencing $\frac{1}{4}$ from apex.

4 FRESENTATION ARD DISCUSSION OT THE RESUITS

The results of the tests are presented graphically in the accompanying figures. Tables of results have been omitted in order to limit the size of this Report but the numerical data are stored at R.A.E., Bedford and are available on request.

4.1 Longitudinal stability

Plots of those results pertaining to longitudinal stability are presented in Figs. 7 to 16. The curves of C_{L} against a (Figs. 7 to 10) and C_{m} against C_{L} (Fig.11) require little comment. The variation of lift coefficient with incidence is linear up to $C_{L} \simeq 0.5$; at hisher lift coefficients there are gradual decreases in slope. There are small decreases in $\left(\partial C_{I} / \partial a\right)_{a=0}$ with increasing negative tail setting (Fig.12). Except between $M=1.4$ and 1.6 there is little variation of $\left(\partial C_{m} / \partial C_{L}\right)_{C_{L}}=0$ with Mach number (Fig.13), but as is shown in Fig. 14 thore are significant decreases in static stability margin with increasing lift coefficient at all Mach numbers. These decreases in stability are due to losses in tail effectiveness.

The variation of tailplanc power (i.e. $\partial C_{m} / \partial \eta$ at constant incidences) with incidence is shown in Fig.15, where the measured values are compared with theoretical estimates based on the charts of Ref. 9. Theoretical values do not take into account effects due to other components of the model and the discrepancies between the measured and the theoretical values are due, at least partially, to changes in dynamic pressure at the tailplane, caused by the shock system ahead of the tailplane.

The measured tailplane powers were used in conjunction with the measured variations in pitching moment with incidence to calculate the effective downwash at the tailplane. This is plotted in Fig.16. Schlieren photographs (Figs.17-20) illustrate the shock system on the model at each Mach number. These indicate the complex nature of the flow in the neighbourhood of the tailplane which may account for the observed non-linearities in downwash.

To assist discussion of the lateral stability in section 4.2 and to give some idea of the r equirements of the full-scale aircraft, graphs of the trimmed flight incidence and tail setting for a rigid aircraft are presented in Figs. 21 and 22 respectively. It has boen assumed that the aircraft weight is $32,000 \mathrm{lb}$, and that the centre of gravity coincides with the model moment reference point.

4.2 Lateral stability

Typical plots of the variations of the lateral coefficionts C_{y}, C_{n} and C_{l} with angle of sideslip are presented in Figs. 23 to 25 , and the variations with incidence of the derivatives y_{v}, n_{v} and l_{v} are shown in Figs. 26 to 28.

An unusual feature of these results is the increasc in directional stability for the 'complete aircraft' configurations at constant tail setting with increasing incidence up to approximately 6°; above 6° incidence n_{v} decreases, (Fio.27). Comparison of the 'complete aircraft' valuos of n_{v} with those for the 'fin and tail off' case shows that these variations of directional stability with incidence are due mainly to changus in the empennage effectiveness. At all incidences the empennage offectiveness decreases with incroasing negative tail setting, with the result that thore is a much more pronounced loss of n_{v} with increasing incidence for the trimed configuration than for the constant tail setting cases, (Fig. 29).

4.3 Drag

Drag polars for the threc tailplane settings tested, viz. $-4^{\circ},-10^{\circ}$, -14°, and for the tailplane and fin-off case are shown in Figs. 30 to 33. Parabolae of the form $C_{D}=C_{D_{0}}+\frac{K}{\pi A}\left(C_{I}-C_{I_{0}}\right)^{2}$, where A is the aspect ratio of the wing, have been fitted to these ourves up to a lift cocfficient of 0.5 , (above this value the polars cuase to be parabolic). The variations with Mach number of the rusulting values of minimum drag coefficicnt, $C_{D_{0}}$, and of induced drag factor, K, are plotted in Figs. 34 and 35 respectivoly. The lift coefficient at minimum drag, $C_{L_{0}}$, does not appear to vary with Mach number, and the values obtained by fitting the parabolae are as follows:-

η	-4°	-10°	-14°	Tailplanc and fin off
$\mathrm{C}_{\mathrm{L}_{0}}$	0.015	0.003	0	0.023

4.4 Effect of the rudder

Ruddor power (Figs. 36 and 37) was determined from a comparison of results with nominal rudder settings of 0 , and -5°, for a tailplane setting of -4°. The rolling moment derivative due to rudder $-e_{\zeta}$, was too small to be measured. The plotted values of $-n_{\zeta}$ and y_{ζ} refer to zoro angle of sideslip; the variations with sideslip angle were found to be negligible.

Rudder deflections had no significant effect on stability derivatives, and a comparison of the results from an additional test with a rudder setting of -2.5° and a tailplane setting of -14° with those for a tailplane setting of -4° indicated that rudder power was not measurably affected by tail setting.

4.5 Effect of ailerons

Tests to determine the effects of aileron movement were made with aileron settings $0,-10^{\circ}$, and -20°, $*$ at a tail setting of -4°. The measured values of aileron power at zero sideslip are show in Figs. 38 and 39. The rate of change of rolling moment with aileron angle was found to be independent of aileron setting, and sideslip angle, within the test range; (i.e. for $0 \leqslant \xi \leqslant 20^{\circ}$ and $-6^{\circ} \leqslant \beta \leqslant 6^{\circ}$).

Movement of the ailerons produces significant side forces and yawing moments, which vary with incidence. These are plotted in Figs. 40 and 41 respectively, Also shown in Figs. 40 and 41 are the aileron indured side forces and yawing moments measured by Sutton, Hutton and Squire ${ }^{10}$ in tests in the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel at R.A.E. Bedford. They used a model with Type 188 wings and nacelles mounted on an ogive cylinder body without a fin. The results quoted were obtained with an aileron setting of -10° at Nach numbers 1.42 and 1.82. A comparison of the results of the two sets of tests suggests that the side force and yawing moment at zero incidence are due mainly to an induced sidewash at the fin, while the major part of the variation with incidence is due to other causes, such as differential aileron drag and cross-flows on the wings. The rudder angles needed to correct the yawing moment induced by -20° aileron movement at Mach numbers 1.4 and 2.0 have been estimated and are plotted against incidence in Fig. 42.

The tests also showed that, except at $M=1.4$, large aileron angles resulted in appreciable losses in n_{v}, but only small losses in y_{v} (Figs. 43 and 44). Other derivatives were found to be virtually unaffected by ailerons.

4.6 Effect of air-brakes

Results of the tests with fully-open air-brakes were compared with those for the clean aircraft configuration with a tailplane setting of -4°.

The effect of the air-brakes on minimum drag coefficient is shown in Fig. 45 and the effect on induced drag factor in Fig. 46. Unlike the clean aircraft case, values of lift coefficient at minimum drag were not the same for each kach number. Values obtained are as follows:

M	1.4	1.6	1.8	2.0
$C_{L_{0}}$	0.015	0.020	0.025	0.030

With the air-brakes extended there were significant reductions in longitudinal stability (Fig.47), and lateral stability (Fig.48).

[^1]
4.7 Erfect of spill vents

Tests were made with the nacelle spill-vents fully open and each nacelle exit mass flow reduced by about 50%. With the exception of drag, the results were compared with those for the clean aircraft (tailplane setting -4°). No significant effect of spill-vents was observed. Since the internal drag of the ducts with spill vents open could not be calculated, it was not possible to determine the change in drag due to opening the spill vents.

5 MODEL COMPARISON TESTS

In this section a comparison is made between results obtained on three configurations:-
(a) the clean configuration tested in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ tunnel, (i.e. twinsting support and undistorted fuselage);
(b) the model tested in the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunncl ${ }^{4}$ (i.e. a $1 / 36$ th scale single sting model with a distorted rear fuselage);
(c) the $8 \mathrm{ft} \times 8 \mathrm{ft}$ tunnel model fitted with a distorted rear fuselage and a dummy rear sting.

The object of this comparison is to examine the interference effects of (i) the twin-sting support system used in the present tests ((b) and (c)) and (ii) the enlarged rear fuselage of the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel model ((a) and (c)). The tests on (b) in the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel were made at a Reynolds number of 1.2×10^{6}, compared with 2.5×10^{6} for (a) and (c) in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ tunnel. As the $3 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel tests did not include measurements of axial force, normal force coefficients instead of lif't coefficients are used in this comparison.

Considering firstly the lateral stability, comparisons of the derivatives y_{v} and n for the three configurations are shown in Figs. 49 and 50. \% The $\eta=-40$ results show that the twin-sting support has little effect on the lateral derivatives, but the rear fuselage distortion increases both $-y_{v}$ and n_{v} considerably.

Since the twin-sting support has only a small effect on y_{v} and n_{v} the fin off values for configuration (c) will be close to those measured for configuration (b). Thus the fin-off comparison between (a) and (b) suggests that only a small part of the increased stability of configurations (b) and (c) is due to a side force on the enlarged rear fuselage, the major part being due to an increase in fin effectiveness.

The analysis of the effects of the changes in configuration on longitudinal stability is not so conclusive as that for lateral stability. This is due to the absence of results for configuration (c) with tail settings different from -4° and, in particular, to the absence of tail off results. A comparison of the available data, in the form of plots of pitching moment against normal force at constant ilach number, is shown in Fig. 51. It can be seen that, for the tail and fin of'r cases, configuration (b) is slightly more stable than (a); and that, with the tail and fin on, there is very little difference between the three configurations for $\eta=-4^{\circ}$, whereas, for $\eta=-10^{\circ}$,

[^2](b) is slightly less stable than (a). A more sensitive comparison between (a) and (b) is given by the plots of downwash at the tailplane position in Fig. 52 and of tailplane power in Fig. 53.

It is probable that the small dirferences between (a) and (b) tail off are due to the fuselage distortion and not the sting support. The differences in stability with the tail on are due to the change in tailplane power. It does not appear possible, from the evidence available, to decide whether the 10% greater tail effectiveness of the larger model is caused by the rear fuselage or the twin supports; however the results of the tests of Ref. 2. at $M=1.3$ suggest that the rear fusleage distortion does decrease the tail effectiveness by roughly this amount.

6 CONCLUSIONS

The tests over the Mach number range 1.4 to 2.0 have shown that, in general, with the moment reference point of the model at $0.18 \overline{0}:-$
(1) Longitudinal stability decreases with increasing incidence for lift coefficients greater than 0.2 approximately.
(2) The directional stability of the trimmed model decreases with increasing incidence, for incidenoes above 3°.
(3) Both longitudinal and lateral stability are decreased by extension of the air-brakes.
(4) Aileron movement results in significant variations of yawing moment and side force with incidence, and, at the higher luch numbers, large movements of the ailerons cause a decrease in directional stability.
(5) Nacelle spillage does not have any signiricant effect on stability.

IIST OF SYLBOLS

A wing aspect ratio
b wing span
$\overline{\mathrm{c}} \quad$ standard mean chord
S gross wing area
q free stream dymamic pressure
M free stream Mach number
$C_{L} \quad$ lift coefficient $=$ lift force $/ q S$
$C_{Y} \quad$ side force coefficient $=$ side force/qS
C_{D}
drag coefficient $=$ drag force $/ q S$

LTSI OT 3 YMBOLS (COITPD.).

$\mathrm{C}_{\text {II }}$	pitohing moment coefficient $=$ pitching moment/qs $\overline{\mathrm{o}}$
${ }^{\text {c }}$	rolling moment coefficient $=$ rolling moment/qS
${ }^{C} n$	yawing monent coefficient $=$ yawing moment/qs g
C_{N}	normal force coefficient $=$ normal force/q s
a	angle of inciderce of nacelle centre lines
β	angle or sideslip
η	tailplane angle, measured relative to nacelle centre lines
ζ	rudder angle
ξ	aileron angle
ε	downwash angle, measured relative to free stream
y_{V}	side force due to sideslip $=\frac{1}{2} \partial C_{Y} / \partial \beta, \quad \beta$ in radians
$\ell_{\text {v }}$	rolling moment due to sideslip $=\partial C_{\ell} / \partial \beta, \quad "$
n_{v}	yawing moment due to sideslip $=\partial \mathrm{C}_{\mathrm{n}} / \partial \beta$, "
Y_{ζ}	side rorce due to rudder $\quad=\partial \mathrm{C}_{Y} / \partial \zeta \zeta$ in radians
n_{ζ}	yawing moment due to rudder $\quad=\partial \mathrm{C}_{n} / \partial \zeta$ "
${ }^{\prime} \xi^{\prime}$	rolling moment due to aileron $=\partial \mathrm{C}_{\ell} / \partial \xi \quad \xi$ in radians
$C^{\text {d }}$	minimum drag coefficient
$C_{L_{0}}$	value of C_{L} for whioh $C_{D}=C_{D}$
K	$\text { induced draE factor }=\pi A \partial C_{D} / \partial\left(C_{L}-C_{L_{0}}\right)^{2}$

LIET OF RUPERECUS

Author

Stic, to.

A short review of research and development for the Bristol Type 188 supersonic research aircrait. Bristol Aircraft Ltd. PR/188/DIV/580. June, 1959.

LIST OF REFERENCES (CONTD.)

No.	Author	Title, etc.
2	Landon, R. H.	Longitudinal and lateral stability tests and effects of controls on a $1 / 12$ th soale model of the Bristol Type 188. Unpublished Aircraft Research Asscn. Report.
3	Leathers, J. W.	Low speed wind tunnel tests on a $1 / 10$ th scale model of a twin jet aircraft, Bristol Type 188. RAE Tech. Note No. Aero 2515. ARC 20047. July 1957.
4	Squire, L. C.	Wind tunnel tests up to $M=2.0$ on a model of the supersonic research aircraft ER 134 (Bristol 188). RAE Report No. Aero 2633. ARC 22064. December, 1959.
5	Cook, T. A.	A note on the calibration of strain gauge balances for wind tunnel models. RAE Tech. Note No. Aero 2631, Dec., 1959.
6	Warren, C. H. E.	The definitions of the angles of incidence and of sideslip. ARC C.P.124, August, 1952.
7	-	Report of the Definitions Panel on the definitions of the thrust of a jet engine and of the internal drag of a ducted body. ARC C.E.190. May, 1954.
8	Mabey, D. G. Arlott, G. P.	wieasurement of aileron hinge moment on a $1 / 15$ th scale half-model of the Bristol 188. Unpublished M.O.A. Report.
9	Stanbrook, A.	The lift-curve slope and aerodynamic centre position of wings at subsonic and supersonic speeds. RAE Tech. Note No. Aero 2328. ARC 17615, Nov., 1954.
10	Sutton, E. P. Hutton, P. G. Squire, I. C.	Wind tunnel tests at liach numbers up to 1.8 on a model with $1 / 36$ soale wings and nacelles of a twin engined supersonic airoraft, (Bristol 188). ARC C.P. 798, February, 1958.

THBLE 1

Principal details of the model

```
Scale: 1/12th
Wing:-
    Area S (gross):-
    Span b
    Aspect ratio A 3.108
    Standard mean chord \overline{c}}0.941\textrm{ft
    Aerodynamic mean chord \overline{\overline{c}}\quad1.025 ft
    Distance of leading edge of \overline{o aft of leading}
    edge of inboard wing
    Dihedral
    Wing-body angle
    Sweep back of leading tdge:
        Invoard of nacelles
        Outboard of nacelles
        38
    Gileron horn 65%
    Sveep forward of trailing edge }\mp@subsup{5}{}{\circ
    Section (excludinge aileron horns):
        Biconvex, circular arc, with sharp leading
        edge; t/c = 4%; maximum thickness at
        55% on inboard wing, and 51% outboard
    Section (aileron horns):f`aired from above
        to 8% RAE 104 at tip.
            Gap between wing and aileron horn 0.008 in.
Fuselage:- Length 5.917 ft
Fin:-
            Area
                0.528 ftt
            Sweepback of leading edge
                            64
    Section:
        Lodified RAE 104 with constant maximum
            thickness. 4% t/c at tip chord
```


TABIE 1 (CONTD.)

Tailplane:-

Area	$0.484 \mathrm{ft}^{2}$
Span	1.292 ft
Aspect ratio	3.4
Root chord	0.50 ft
Tip chord	0.25 ft
Section: 42, circular aro	
Height of tailplane pivot above nacelle datum Iines	0.682 ft

Nacelles:-
Distance outboard of fuselage centre line
0.625 ft

Air-brakes:-

Forward brakes:	gross area	$3.03 \mathrm{in}^{2}$
	open area	$0.89 \mathrm{in}^{2}$
Aft brakes:	gross area	$3.05 \mathrm{in}^{2}$
	open area	$0.79 \mathrm{in}^{2}$

TABLE 2

List of configurations tested

			Test range*
1	Clean aircraft	tailplane - 4°	A
2	" "	$11 \quad-10^{\circ}$	A
3	"	" -14°	B
4	" "	tailplane and fin off	A
5	Ailerons -10°	tailplane - 4°	C
6	" -20°	" -4°	C
7	Rudder -2.5 ${ }^{\circ}$	$1 \mathrm{l}-4^{\circ}$	C
8	$\prime \mathrm{l}-2.5^{\circ}$	" -14°	C
9	$11-5.0^{\circ}$	" -4°	C
10	Air-brakes extended	$3 \quad-4^{\circ}$	C
11	Spill vunts open	1104°	C
12	Distorted rear fuselage	" -4°	A.

\% See Table 3

TABIE 3

Model attitude ranges

Incidence (degrees)	Sideslip* (degrees)		
	Rarge A	Range B	Range C
-4	$0, \pm 2$	$0, \pm 2$	0
-2	$0, \pm 2$	$0, \pm 2$	0
0	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 2, \pm 4, \pm 6$
2	$0, \pm 2$	$0, \pm 2$	0
4	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 2, \pm 4, \pm 6$
6	$0, \pm 2$	$0, \pm 2$	0
8	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 1, \pm 2, \pm 4, \pm 6$	$0, \pm 2, \pm 4, \pm 6$
10	$0, \pm 2$	$0, \pm 2$	0
12	$0, \pm 2$	$0, \pm 2$	0
14	0	0	0
16		$0, \pm 2$	0
18			
20			

Nominal settings

FIG. I GENERAL ARRANGEMENT OF MODEL AND SUPPORT SYSTEM.

FIG.2. THE MODEL IN THE WIND TUNNEL

FIG. 3 GENERAL ARRANGEMENT OF NACELLE.

FIG.4. SPILL VENT ARRANGEMENT.

FIG.5. AIR BRAKE ARRANGEMENT.
(fully open position)

FIG.6. ARRANGEMENT OF MODEL WITH DISTORTED REAR FUSELAGE AND DUMMY CENTRAL STING.

FIG.7. VARIATION OF C_{L} WITH \propto AT CONSTANT MACH NUMBER: $\eta=-4^{\circ}$.

FIG.8. VARIATION OF CL WITH \propto AT CONSTANT MACH NUMBER: $\eta=-10^{\circ}$.

FIG.9. VARIATION OF C_{L} WITH α AT CONSTANT MACH NUMBER: $\eta=-14^{\circ}$.

FIG.IO. VARIATION OF CL WITH \& AT CONSTANT MACH NUMBER: TAILPLANE AND FIN OFF.

(a) $M=2.00$.

(b) $M=1.80$.

FIG. II. VARIATION OF C_{m} WITH C_{L} AT CONSTANT MACH NUMBER.

(c) $M=1.60$

(d) $M=1.40$

FIG.II. (cont.) VARIATION OF C_{m} WITH C_{L} at constant mach number.

FIG.I2.VARIATION $\partial C_{L} / \partial \alpha$ AT ZERO INCIDENCE WITH MACH NUMBER.

FIG.13. VARIATION OF - $\partial C_{m} / \partial C_{L}$ AT ZERO LIFT WITH MACH NUMBER.

(b) TAILPLANE -10°.

FIG. 14. VARIATION OF $-\partial C_{m} / \partial C_{L}$ WITH C_{L}.

(c) tailplane - 14°.

(d) TAIL AND FIN OFF.

FIG. 14 (CONT.). VARIATION OF $-\partial C_{m} / \partial C_{\llcorner }$WITH C_{L}.

FIG.I5. VARIATION OF TAILPLANE POWER WITH MODEL INCIDENCE.

FIG. IG.VARIATION OF DOWNWASH AT POSITION OF TAILPLANE WITH MODEL INCIDENCE.

a. PLAN VIEW

b. SIDE VIEW

FIG.17. SCHLIEREN PHOTOGRAPHS: $M=1.40$
$\alpha=\beta=0:$ Tailplane -10°

a. PLAN VIEW

b. SIDE VIEW

FIG.18. SCHLIEREN PHOTOGRAPHS: $M=1.60$

$$
\alpha=\beta=0: \text { Tailplane }-10^{\circ}
$$

a. PLAN VIEW

b. SIDE VIEW

FIG.19. SCHLIEREN PHOTOGRAPHS: $M=1.80$
$\alpha=\beta=0 ; \quad$ Taflplane -10°

a. PLAN VIEW

b. SIDE VIEW

FIG.20. SCHLIEREN PHOTOGRAPHS: $M=2.00$

$$
a=\beta=0: \text { Tailplane }-10^{\circ}
$$

A.U.W. 32,000LB.

FIG.2I.ESTIMATED VARIATION OF FLIGHT INCIDENCE WITH MACH NUMBER FOR UNDISTORTED FULL-SCALE AIRCRAFT.

FIG.22. ESTIMATED VARIATION OF TAILPLANE ANGLE TO TRIM WITH MACH NUMBER FOR UNDISTORTED FULL-SCALE AIRCRAFT.

FIG. 23. VARIATION OF CY WITH β AT CONSTANT MACH NUMBER: $\}=-4_{;}^{\circ} \alpha=+4^{\circ}$.

FIG.24. VARIATION OF C_{n} WITH β AT CONSTANT MACH NUMBER: $\eta=-4^{\circ} ; \alpha=+4^{\circ}$.

FIG.25. VARIATION OF C_{l} WITH β AT CONSTANT MACH NUMBER: $\eta=-4^{\circ} ; \alpha=+4^{\circ}$.
α (DEGREES)

α (DEGREES)

α (degrees)

FIG.26. VARIATION OF y_{v} WITH INCIDENCE.

FIG.27. VARIATION OF n_{v} WITH INCIDENCE.

FIG.28. VARIATION OF ℓ_{v} WITH INCIDENCE.

AU.W. 32,000 LB.
C.G. @ $0.18 \overline{\mathrm{C}}$

FIG.29. VARIATION OF n_{V} WITH INCIDENCE FOR TRIMMED CONFIGURATION.

FIG. 30. VARIATION OF C_{D} WITH C_{L} AT CONSTANT MACH NUMBER: $7=-4$?

FIG. 3I. VARIATION OF C_{D} WITH C_{L} AT
CONSTANT MACH NUMBER: $\boldsymbol{\eta}=-10^{\circ}$.

FIG.32. VARIATION OF C_{D} WITH C_{L} AT CONSTANT MACH NUMBER: $\eta=-14^{\circ}$.

FIG. 33 VARIATION OF C_{D} WITH C_{L} AT CONSTANT MACH NUMBER: TAILPLANE AND FIN OFF.

FIG. 34 VARIATION OF MINIMUM DRAG COEFFICIENT WITH MACH NUMBER.

FIG. 35 VARIATION OF INDUCED DRAG FACTOR WITH MACH NUMBER.

FIG. 36 VARIATION OF YAWING MOMENT DUE TO RUDDER WITH INCIDENCE.

FIG. 37 VARIATION OF SIDE-FORCE DUE TO RUDDER WITH INCIDENCE.

FIG. 38. VARIATION OF AILERON POWER WITH INCIDENCE.

FIG. 39. VARIATION OF AILERON POWER WITH MACH NUMBER.

$$
\begin{array}{cc}
\text { SYMBOL AILERON SETTING } \\
-\cdots-- & 0 \\
--10^{\circ} \\
-X- & -20^{\circ} \\
& -10^{\circ} \text { NO FIN } \\
\text { (RESULTS OF } \\
\text { REF. IO) }
\end{array}
$$

FIG.4O. VARIATION OF C_{Y} WITH \mathcal{L} AT ZERO SIDESLIP FOR VARIOUS AILERON SETTINGS.

FIG.4I. VARIATION OF C_{n} WITH \mathcal{L} at ZERO SIDESLIP FOR VARIOUS AILERON SETTINGS.

FIG.42.RUDDER ANGLE TO CORRECT YAWING MOMENT INDUCED BY - 20° AILERONS

FIG. 43 EFFECT OF AILERON SETTING ON VARIATION OF y_{v} WITH $\alpha: \eta=-4^{\circ}$.

FIG. 44 EFFECT OF AILERON SETTING ON VARIATION OF n_{v} WITH $\alpha: \eta=-4$.

FIG. 45. EFFECT OF AIRBRAKES ON MINIMUM DRAG COEFFICIENT: $\eta=-4^{\circ}$.

FIG.46. EFFECT OF AIRBRAKES ON INDUCED DRAG FACTOR: $\eta=-4^{\circ}$.

FIG.47. EFFECT OF AIRBRAKES ON LONGITUDINAL STABILITY: $\eta=-4^{\circ}$.

FIG.48. EFFECT OF AIRBRAKES ON VARIATION OF n_{v} WITH $\alpha: \eta=-4^{\circ}$.

FIG. 49. VARIATION OF y_{v} WITH α : MODEL COMPARISON.

FIG. 50. VARIATION OF n_{v} WITH α : MODEL COMPARISON.

$$
\begin{aligned}
& \begin{array}{llllll}
\square & A & \eta=-4^{\circ} & \circ & A & \eta=-10^{\circ} \\
& B & \eta=-4^{\circ} & \ldots & \\
C & \eta & =-4^{\circ}
\end{array} \\
& \left.\begin{array}{cc}
\boldsymbol{\sigma} & A \\
- & B
\end{array}\right\} \text { TAIL \& FIN OFF }
\end{aligned}
$$

FIG.5I. VARIATION OF C_{m} WITH C_{N} AT CONSTANT MACH NUMBER: MODEL COMPARISON.

FIG.52. VARIATION OF DOWNWASH AT POSITION OF TAILPLANE WITH INCIDENCE: MODEL COMPARISON.

FIG.53. VARIATION OF TAILPLANE POWER WITH MACH NUMBER: MODEL COMPARISON.

A.R.C. C.P. NO. 818	$533.652 .1:$	$533.6 .013 .412 / 413:$
September, 1961	$533.6 .011 .5:$	$533.694 .23:$
	$533.6 .013 .12:$	533.695 .3

SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF THE BRISTOL TYPE 188 RESEARCH AIRCRAFT, PART I: $M=1.4$ to 2.0. Taylor, C. R. and Cook, T. A.

Six component force tests at Mach numbers 1.4, 1.6, 1.8 and 2.0 have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the 8 ft tunnel at Bedford. The results are analysed to give drag; longitudinal and lateral stability data, and to show the effects of control movements, dive brakes, and nacelle spillage.

Some comparisons are made with the results of earlier tests on a 1/36th scale model

```
A.R.C. C.P. No. }81
September, 1961
```


SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF THE BRISTOL TYPE 188 RESEARCH AIRCRAFT, PART I: $M=1.4$ to 2.0. Taylor, C. R. and COok, T. A.

Six component force tests at Mach numbers $1.4,1.6,1.8$ and 2.0 have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the 8 it tunnel at Bedford. The results are analysed to give drag, longitudinal and lateral stability data, and to show the effects of control movements, dive brakes, and nacelle spillage.

Some comparisons are made with the results of earlier tests on a 1/36th scale model.
$\begin{array}{lll}\text { A.R.C. C.P. No. } 818 & 533.652 .1: & 533.6 .013 .412 / 413: \\ \text { September, } 1961 & 533.6 .011 .5: & 533.694 .23:\end{array}$

$$
\begin{array}{ll}
533.652 .1: & 533.6 .013 . \\
533.6 .011 .5: & 533.694 .23: \\
533.6 .013 .12: & 533.695 .3
\end{array}
$$

SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF THE BRISTOL TYPE 188 RESEARCH AIRCRAFT, PART I: $M=1.4$ to 2.0. Taylor, C. R. and Cook, T. A.

Six component force tests at Mach numbers 1.4, 1.6, 1.8 and 2.0 have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the 8 ft tunnel at Bedford. The results are analysed to give drag, longitudinal and lateral stability data, and to show the effects of control movements, dive brakes, and nacelle spillage.

Some comparisons are made with the results of earlier tests on a 1/36th scale model.
A.R.C. C.P. NO. 818

September, 1961

$$
\begin{array}{ll}
533.652 .1: & 533.6 .013 .412 / 413: \\
533.6 .011 .5: & 533.694 .23: \\
533.6 .013 .12: & 533.695 .3
\end{array}
$$

SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF THE BRISTOL TYPE 188 RESEARCH AIRCRAFT, PART I: $M=1.4$ to 2.0. Taylor, C. R. and Cook, T. A.

Six component force tests at Mach numbers $1.4,1.6,1.8$ and 2.0 have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the 8 It tunnel at Bedford. The results are analysed to give drag, longitudinal and lateral stability data, and to show the effects of control movements, dive brakes, and nacelle spillage.

Some comparisons are made with the results of earlier tests on a $1 / 36$ th scale model.
U.D.C. No. A.I(42)Bristol 188:533.652.1:533.6.011.5:533.6.013.1:533.6.013.4

C.F. No. 818

September, 1961

SUPERSONTC GIND TUNEL TESTS ON A $1 / 12$ THI SOLIT FODEL OF THE BRISTCL TYEE 188 RESEARMI ATRORAFT
 PARII TMO: $\mathrm{I}=2.0 \mathrm{H}=2.7$

by
T. A. Cooli, B.Sc.

\qquad

STMARY

Six component force measuruments have been made on a $1 / 12$ th scale model of the Bristol lype 180 in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ wind tunncl at R.A. T., Bodford, at Wach numbers of $2.00,2.20,2.40$, and 2.70. The rosults of the:3 monsurements are presented graphically, with an analysis of the urfucis of tailplane movement, aileron and ruddor controls, and airbrakes on longitudinal and lateral stability, and arac.

IIST OF CONTENTS

Page
1 INTRODUCTION 5
2 TIE MODET 5
3 DETATLS OF THE TESTS 5
4 PRESENTITION AND DISCUSSION OF THE RESULTS 7
4.1 Lift and pitching moment 7
4.2 Lateral coefficients 8
4.3 Drag 9
4.4 Effect of the rudder 10
4.5 Effect of the ailerons 10
4.6 Effect of the airbrakes 11
5 CONCLUSIONS 11
ACKNOKLEDGGMENT 12
LIST OF SYMBOLS 12
LIST OF RETPERENCES 13
TABLES 1-3 $15-17$
IHLUSTRATIONS - Figs. 1 - 54 -
DETACHABLE ABSTRACI CARLE
LIST OF TABLES
Table No.
1 Prinoipal details of the model 15
2 List of configurations tested 16
3 Model attitude ranges 17
LTST OF ITLUSTTRATIONS
Gencral arrangement of modcl and support system 1Fig.
Fhotograph of the model in the wind tunnel 2
Duct mass flow 3
Variation of C_{L} with α at constant Mach number: $\eta=-4^{\circ}$ 4
Variation of C_{L} with α at constant Mach number: $\eta=-10^{\circ}$ 5
Variation of C_{L} with α at constont Liach number: $\eta=-14^{\circ}$ 6

IIST OF ILLUSTRATIONS (Contd.)

Variation of C_{L} with a at constant Nach number: tailplane and fin off 7
Variation of C_{m} with C_{L} at constant Mach number 8
Lift-curve slopes at zero inoidence 9
Longitudinal stability slopes at zero lift 10
Variation of $-\partial C_{n} / \partial C_{L}$ with C_{L} 11
Variation of mean tailplane power with model incidence 12
Variation of mean downwash at position of tailplane with model incidence 13
Schlieren photographs of clean model: $a=\beta=0$: $\eta=-4^{\circ}$: $\quad=2.00$ 14
Sohlieren photographs of clean model: $\quad a=\beta=0: \quad \eta=-4^{\circ}: \mathbb{M}=2.20$ 15
Schlieren photographs of clean model: $\alpha=\beta=0: \quad \eta=-4^{\circ}: \mathrm{M}=2.40$ 16
Schlieren photographs of clean model: $\quad \alpha=\beta=0: \quad \eta=-4^{\circ}: \quad M=2.70$ 17
Schlieren photographs of clean model: $N=2.70: \eta=-4^{\circ}$ 18
Explenation of Schlieren photographs of model at $h=2.70$ and $a=8^{\circ}$ 19
Trimmed lift ooeficieients 20
Tailplane angle to trim 21
Tailplane angle to trim for the full-scale aircraft 22
Incidence to trim for the full-scale aircraft 23
Variation of C_{Y} with β at constant wach numbor: $\eta=-4^{\circ} ; \quad a=+4^{\circ}$ 24
Variation of C_{n} with β at constant Mach number: $\eta=-4^{\circ} ; \quad \alpha=+4^{\circ}$ 25
Variation of C_{ℓ} with β at constant Nach number: $\eta=-4^{\circ} ; a=+4^{\circ}$ 26
Variation of n_{v} with incidence 27
Variation of n_{v} with incidence for trimned configuration 28
Variation of y_{v} with incidenoe 29
Variation of ℓ_{v} with incidence 30
Variation of C_{D} with C_{L} at oonstent Mach number: $n=-4^{\circ}$ 31
Variation of C_{D} with C_{L} at constant Mach number: $n=-10^{\circ}$ 32
Variation of C_{D} with C_{L} at oonstant Nach number: $\eta=-14^{\circ}$ 33
Variation of C_{D} with C_{L} at constant Mach number: tailplane and fin off

IIST OF ILLUSTRATIONS (Cortd.)

Fig.
Variation of C_{D} with $\left(C_{L}-C_{L_{O}}\right)^{2}: \eta=-4^{0} \quad 35$
Variation of minimum drag ooefficient with Mach number 36
Variation of induced drag factor with Mach number 37
Variation of yawing moment due to rudder with rudder setting 38
Variation of mean yawing moment due to rudder with incidence 39
Variation of rolling moment due to ailerons with aileron setting 40
Variation of mean rolling moment due to ailerons with incidence 41
Side force at zero sideslip due to -20° aileron setting 42
Yawing moment at zero sideslip due to -20° aileron setting 43
Effect of -20° ailcron setting on variation of n_{v} with a :
$\eta=-4^{\circ}$
Effect of -20° aileron setting on variation of y_{v} with a :
$\eta=-4^{\circ}$
Effect of -20° aileron setting on variation of ℓ_{v} with a :
$n=-4^{\circ}$ 46
Effect of -20° aileron setting on longitudinal stability: $\eta=-4^{\circ}$ 47
Effect of airbrakes on minimum drag coefficient: $\eta=-4^{\circ}$ 48
Effect of airbrakes on induced arag factor: $\eta=-4^{\circ}$ 49
Effect of airbrakes on longitudinal stability 50
Schlieren photographs of model with airbrakes open: $\alpha=\beta=0$ 51
Effect of airbrakes on tailplane power 52
Effect of airbrakes on variation of y_{v} with $a: \eta=-4^{\circ}$ 53
Effect of airbrakes on variation of n_{v} with $\alpha: \eta=-4^{\circ}$ 54

This paper describes further tests in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ high speed wind tunnel at R.A.E., Bedford, on a $1 / 12$ th scale model of the Bristol Type 188. Part 1 of this paper ${ }^{1}$ described tests and presented results for liach numbers of $1.40,1.60,1.80$ and 2.00 . In the present series the tests are continued to Liach numbers of $2.20,2.40$ and 2.70 . The tests were also repeated at a Mach number of 2.00 to provide continuity with the earlicr tests: the results for this repeat case agreed with those of Part 1 within the limits of the experimental errors. In general the programue of tests was the same as that for the earlier tests, though some changes were made as a consequence of results obtained at the lower liach numbers, (these changes are detailed in Scetion 3 below).

The principal references to other wind tunnel tests on models of the Bristol Type 188, already mentioned in Part 1, are included in the list of references appended to this report $2,3,4$.

2 THE MODEL

The rodel has been fully described in Part 1 ${ }^{1}$. The general arrangement is shown here in Fig. 1 and a photograph of the model mounted in the wind tunnel in Fige 2. The principal dimensions of the model with other essential model details ore listed in Trable 1.

For the purpose of the present sorios of tosts, the balance was completely recalibrated. Six-component force measurements were derivcd from the two four-component bolances mounted in the nocclles ${ }^{1}$ and were fully corrcoted for balance interactions.

3 DETATIS OR THE TESTS

The tests wore made in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ high speed wind tunnel at R.A.E., Bedford, at liach numbers of $2.00,2.20,2.40$ and 2.70. The Reynolds number, based on standard mean chord, was maintained constant at 2.5×10^{6}, except at $\mathrm{M}=2.70$ where tunnel power limited the Reynolds nurnber to 2.1×10^{6}.

The configurations of the model tosted are listed in Table 2. This list is not identical to that of Part 11. Tests with open spill vents were not continued since the spill vents were found to have negligible effects: likewise a test with a rudder setting of -2.5° and a tailplane setting of -14° was not made, since rudder power was found not to be significantly affected by tailplane setting. Some additions to the programme were also thought dosirablc. These included a tost with the fin on and the tailplane removed, to investigate the contribution of the tailplane to the fin effectiveness. A test with the ailerons deflectod and the tailplane and fin off was made to assist anclysis of the side forcos and yawing moments induced by aileron movement. Finally, a test with airbrokes open and a tailplane setting of -10° was included to cxamine possible effects of the airbrakes on tailplane power.

The results refer to stability axes with their origin (i.c. moment reference point) at 18% of the standard mean chord, in the plane of the nacelle centre lines. Incidences measured were those of the nacelle centre lines, (the wing-nacelle angle was $+2^{\circ}$). Angles of incidenco and sideslip were computed using the tangent and sinc definitions respectively and were corrected for bolance and sting deflcctions. Pitching moment ooefficients
have been bascd on the wing standord mean chord: forcc measurements were corrected for the differcnce between free-stream stitic pressure and the pressure at the balance axial force units. Allowance was also made for the internal drag of the nacelle ducts.

The mass flow through each naccile was calculated, using pitot and static pressure measurements near the exit, and expressed as the crosssectional area (A) of a free-stream tube. This area, in terms of the area enclosed by the cowl lip of each nacelle, $A_{\mathrm{F}_{\mathrm{N}}}$, is plotted in Fig. 3 . Two cases are shown, for angles of incidence of zero and 14° : the zero incidence case is compared with the calculated maximum intake mass-flow. The fact that the ratio $A / A_{\mathrm{E}_{\mathrm{N}}}$ exceeds unity for the zoro incidence case is due to errors in the determination of the effective mass flow area at each duct exit measuring station. Fig. 3 shows that maximum mass flow at zero incidence is reached at a Hach number of about 2.40. (This conclusion can be roughly verified by comparison of the plan view schlieron photographs in Figs. 14 to 17, from which it appears that the shock waves from the intake centre bodies lie just within the cowl lips at $\mathrm{in}=2.40$, though the prosence of the shock waves from the canopy of the model introduces a complication.)

The position of boundary-layer transition on the ivind-swept surfaces of the model was fixed using distributed roughness bands. These were formed by sprinkling grade 100 carborundum particlos on to an araldite base: the approximate maximum projection height of the particles above the model surface was 0.008 in. The locations and widths of thesc bands are included in the model details of Table 1. The effectiveness of the roughness bands in fixing transition on the wings was verified at $\mathrm{in}=2.70$ and zero incidence and sideslip using the azobenzenc technique.

Probable crrors in the coofficients durived from the balance measurements were estimatcd to be as follows:-

$$
\begin{array}{ll}
C_{L}: & \pm 0.003 \pm 0.004 C_{T} \\
C_{Y}: & \pm 0.002 \pm 0.002 C_{Y} \\
C_{D}: & \pm 0.007 \pm 0.007 C_{D} \\
C_{m}: & \pm 0.0005 \pm 0.003 C_{m} \\
C_{\ell}: & \pm 0.0007 \pm 0.004 C_{\ell} \\
C_{n}: & \pm 0.0007 \pm 0.007 C_{n}
\end{array}
$$

The first term in each error includes zero errors, resolution errors, balance hystercsis crrors, and, in the case of drag, uncertainty in the correction for the internal drag of the congine nacelles. The second term in each error is based on balance calibration crrors.

Angles of incidence and sideslip are accuratc to $\pm 0.01^{\circ}$ in resolution, but tunnol flow deflcotions at the position of the model may have been as lorge as 0.2°. Control plato deflections under load were less than 1% of the nominal setting for the rudder and 2% of the nominal setting for the ailerons.

4 PRESENTATION AND DISCUSSION OT TIE RESULTS

Results of the tests are presented graphically in Figs. 4 to 54. Included in the results are some ostimates of flight conditions for the full-scale aircraft, based on the assumption that the aircraft does not suffer any aeroelastic distortions.

4.1 Lift and pitching moment

The model was tested with tailplane scttings of $-4^{\circ},-10^{\circ}$ and -14°, relative to the nacelle centre-lines. Tests were also made with the tailplanc and f in off, and, except at $I=2.00$, with the tailplanc of f and the f in on. Differences in lift, pitching moment and drag between the latter two configurations were small and so only the results for the tailplane and fin off case have been plotted. The results for the tailplane off and f in on configuration have been used in the analysis to calculate downwash angles, (cxcept at $M=2.00$ wherc the tailplane and fin off results have had to be used).

Lift cocfficicnts are plottcd against incidence in Figs. 4 to 7 and pitching moment coefficionts against lift coofficiont in Fig. 8. Iift-curve slopes ore show in Fig. 9 (mean values for the complete model have beon plotted since the variation with tail setting was vory small), and longitudinal stability slopes as functions of liach number and lift coef'ficient are plotted in Figs. 10 and 11 respectively. Tailpianc power was calculated ns the change in pitching moment, per degree, between tailplanc setting of -4° and -14° and values are plotted against incidence in Fig. 12.

Fig. 11 shows a pronounced stability "pcok" at h $=2.70$ and a lift coefficient of about 0.4. This peak falls off as the tailplane angle becomes more negative, while, in the tailplone and fin off casc (Fig.11(d)), there is a small but significant stability maximum under the same conditions. Since there is a sma11, corresponding increase in C_{L} for these configurations (Figs. 4 to 7) this implies an increasc in tailplone lift with a small contribution from the rear fusclage.

Downwash angles at the position of the tailplane have beon estimated from the absolute values of the pitching moments produced by the tailplane and are plotted in Fig. 13. Between model incidences of approximately $4^{\circ}\left(\mathrm{C}_{\mathrm{L}} \simeq 0.2\right)$ and $12^{\circ}\left(\mathrm{C}_{\mathrm{L}} \bumpeq 0.5\right)$, there are rapid variations in mean downash angle at $M=2.70$, which correspond to the stability changes. Smallor, similar effeots are observed at $M=2.40$ and $M=2.20$.

The large variations in downwash are due to the change in position of the wing trailing edge shock wave relative to the tailplane of the model as incidence varies. From the schlieron Hotographs of Figs. 17 and 18 and the explanatory diagram of Fig.19, it is cvident that the wing trailing odge shock wove at $M=2.70$ must lic either bchind the tailplanc or across it at low incidences, and move towards the leading cage of the tailplone as incidence increases. Thus, at low incidences, the tailplane is in the flow field of the upper surface of the wing with associatod lorge flow angles, but, at higher incidences, it is in the wing wake with much smaller flow angles. Thus the fall in downwash angle, most pronounced at $M=2.70$, is due to the movement of the tailplane out of the wing pressure ficld into the wing wake. This effect falls off rapidly with decreasing hach number. It would appear that the wing trailing edge shock wave lies upstream of the tailplane at incidences greater than those corresponding to the minima of the dowwash curves in Fig. 13.

The slopes of plots of pitching moment due to the tailplone against tailplanc setting, at $N=2.70$, werc found to vary by up to 20% about the mean values over the range $-4^{\circ} \geqslant \eta \geqslant-14^{\circ}$ plotted in Fig. 12. This variation is
caused by the changes in downwash which can be expected over the region through which the tailplane sweeps when tailplane setting is varied at constant model incidence. This effect, together with that due to the change in model incidence (up to about 1.5°) requircd to keep C_{L} constant, explains the large variations in the longitudinal stability of the model at zero lift for different tail sottings at constont lach number (Fig. 10).

Figs. 20 and 21 show trimmed lift curves and tailplane settings to trim respectively. Since the moment reference point of the model was chosen to coincide with the estimated centre of gravity of the full-scale aircraft, these curves apply to the aircraft as well as to the model. Estimates of the tailplane setting required and the aircraft incidencc under a few flight conditions have been made, assuming an aircroft weight of $32,000 \mathrm{lb}$. These estimates are plotted in Figs. 22 and 23 respectively.

4.2 Lateral coefficients

Typioal plots of the lateral coofficients C_{Y}, C_{n} and C_{l} against angle of sideslip are show in Figs. 24 to 26. The variations of the lateral derivatives n_{V}, y_{V} and l_{V}, based on the changes in C_{n}, C_{Y}, C_{l} between $\beta=+2^{\circ}$ and $\beta=-2^{\circ}$, are shown against incidence in Figs. 27 to 30. In thesc figures the effocts of varying tailplane setting and the contributions to the lateral derivatives of the fin and tailplane are compared.

Fig. 27 shows an increase in n_{v} for the complete model up to an incidence in the region of 6° to 8°, excopt at $M=2.70$. Since there is a decrease in $n v$ above about 2° incidence for the tailplane off, fin on configuration, (i.c. a loss of fin effectiveness with the tailplane absent), it is apparent that the incroase for the complotc model is due to the influence of the tailplanc on f in effectiveness. At zero incidence the contribution of the tailplane to fin effectivencss is very small or negative, but this conts ibution increases with increasing incidence. The tailplane effect is the result of two influences, viz the roflection plate effect of the tailplanc on top of the fin, and the variation in dynamic pressure with incidence over part of the fin due to the tailplane lift. The latter effect is sensitive to downwash: both eifects decrease with increasing Wach number since the region of the fin influenced by the tailplone decreases, (this would explain why n does not increase with incidence at $M=2.70$). n_{V} is decreased by increasing negative tail setting, probably due mainly to the variation in dynamic pressure.

The loss of f in effectivencss in the absence of the tailplano above about 2° incidence, and, with the exception of $\overline{i n}=2.70$, with the tailplane present above about 8° is probably due to the destabilising offect of vortices from the fuselage. (These vortices are visible in Figs. 14 to 18.) The results for tailplane setting -14° at $M=2.40$ and 2.70 indicate, however, that this loss of fin effectiveness is only partial at these Mach numbers, in fact at $M=2.70$ there is a further increase in $n v$ above about 12° incidence. This latter effect is host probably a further consequence of the wing downwash field discussed in Scction 4.1. (Comparing Figs. 13 and 27, it will be noted that the downash minimum at $\alpha=12$ and $\mathrm{Fi}=2.70$ corresponds to the minimum of n_{v} for tailplane setting -14.)

The wariation of $n v$ with incidence for the trimed configuration is shown in Fig. 28. As a result of the loss of n with increasing negative tail-setting, $n v$ shows no increase with incidence: in fact, there is a
loss of n_{v} with increasing incidence over the whole range shown. Scme fullscale flight estimates are included in this figure.

The variations of y_{v} and ε_{v} (Figs. 29 and 30) show that, in both cases, there is a loss of fin effectivenoss with the tailplane removed above about 2° incidence. As in the case of n_{v}, this loss is alleviated by the presence of the tailplane. The results for l_{v} show that, although the contribution of the fin and tailplane becomes zoro at about 12° inciacnce, the complete modcl remains stable in roll as a result of the increase with incidence in the roll stability of the rest of the modcl.

4.3 Drag

Variations of drag coefficient with lirt cocfficient for the model with various tail settings and with the tailplane and tin of f are shown in Figs. 31 to 34. These results have beon analysod by assuming the curves to be of the form:

$$
C_{D}=C_{D_{0}}+\frac{K}{\pi A}\left(U_{I}-C_{L_{0}}\right)^{2}
$$

where $C_{D_{0}}$ is the minimum dreg coefficient, $C_{L_{0}}$ is the value of the lift coefficient at which $U_{D}=C_{D}$, A is the aspoct ratio of the wing, and K is a constant, the induccd drag factor.

The applicability of this equation is illustrated in Pig. 35 where C_{D} is plotted against $\left(C_{I}-C_{L_{0}}\right)^{2}$ for one configuration. C_{D} was found to be a linear function of $\left(C_{I}-C_{I_{0}}\right)^{2}$ up to a lift coefficient of approximately 0.5 for 2.11 Mach numbers.
$\mathrm{C}_{\mathrm{I}_{\mathrm{o}}}$ was found to vary little with Nach number for each configuration. The mean values of $\mathrm{C}_{\mathrm{I}_{0}}$ are given in the following table:

Tailplanc sctting	-4°	-10°	-14°	Tailplanc and fin off
$\mathrm{C}_{\mathrm{L}_{0}}$	-0.004	-0.009	-0.011	+0.006

Values of G_{D} and K are plottod in Figs. 36 and 37 respectively. Tailplane setting was found to have no signiricant erfuct on induced drag factor: consequently the mean values have beon plotted in Fig. 37.

It should be noted in connection with the drag results that the probable experimental errors were large, being $\geqslant 0.007$. Of this error ± 0.003 is ascribed to uncertainty in the correction for the internal drag of the
ducts which is a constant error for the whole series of tests, and exoept for a small allowance for scatter, the rest of the error is uncertainty due to balance hysteresis. Neither of these two sources of error affect the induced drag factors measured, and, while both apply to $C_{D_{0}}$, only the hysteresis and scatter error, i.e. ± 0.004, will apply to the differences between the C_{D} curves for different configurations. In Fig. 36 results
from Ref. 1 are included and 'trend lines' have been drawn through the mean values from Ref.1 and the present tests at $M=2.00$, and parallel to lines through the experimental points at Mach numbers above and below 2.00. This is thought to be the most suitable method of presenting the measured values of C_{D} but the difference at $M=2$ between the two sets of tests illustrates the poor accuracy of absolute drag obtainable on this model.

4.4 Effect of the rudder

The model was tested with rudder settings of $0,-2.5^{\circ}$ and -5°, at a fixed tailplanc setting of -4°. Results for the configuration with a rudder setting of -5° were not obtained for $M=2.20$.

Fig. 38 shows the variation of yawing moment due to rudder for several angles of incidence of the model. This shows that rudder power varies with rudder setting for most angles of incidence: mean values of rudder power, i. e. the change in yawing moment per degree for a rudder movement of -5 , are plotted against incidence in Fig. 39 .

Side forces due to rudder movement were found to be small, corresponding in magnitude for the -5° rudder case to a change in sideslip angle of the model of approximately 0.5°.

4.5 Effeot of the ailcrons

The model was tested with aileron settings of $0,-10^{\circ}$, and -20° at a constant tailplane settins of -4°. Results for the case of aileron setting -10° were not obtained for $M=2.20$. The model was also tested with an aileron setting of -20° and the tailplane and fin removed.

Fig. 40 shows the variation of rolling moment due to aileron with aileron setting for angles of incidence of 0 and 12°. The variations shown are non-linear, but with no consistent trends. There is cvidently very little variation of aileron power with model incidence: this is shown in Fig. 41, where ℓ_{ξ} has been calculated from the changes in rolling moment produced by -20° aileron movement.

Associated with aileron movement are large variations of side force and yawing moment with incidence. These are plotted in Figs. 42 and 43, where the side force and yawing moment changes induced by -20° ailerons are shown, with and without the tailplane and fin present. For the tailplane and fin off case, the variations of C_{Y} and C_{n} with incidence most
likely have independent cxplanations. The side force can probably be ascribed to sidewash on the wing and nacelle surfaces induced by the pressure difference across the gaps betwcen the aileron horns and the wings, while the yawing moment variations are due mainly to the differential drag of the two ailerons when the wing is at incidence. The latter explanation is supported by the fact that the induced yawing moments are zero at about -10 of incidence, which almost coincides with the attitude for zero wing incidence, viz -2° incidence, when the two ailerons should each have nearly the same drag.

The aileron-induced sidewashes produce an effect on the tailplane and fin which is approximately constant with incidence. This is surprising in view of the fact that the sidewash on the wing varies with incidence: it may be fortuitous in that, as incidence increases, the fin is moving out of the region influenced by the ailerons and that the reduction of side force expected for this reason cancels the increase due to the increase of sidewash with incidence. As Mach number increases, so the fin again moves out of the region of influence of the ailerons and the reduction in side force and yawing moment produced by the fin due to this cause is observed in the figures.

Aileron movement also results in significant changes in the lateral derivatives n_{v}, y_{v} and ℓ_{v}, (Figs.44 to 46). The variations of n_{v} with incidence (Fig. H_{4}) show a reversal of the effect of ailerons with increasing Mach number: at $M=2.00$ aileron movement results in a loss of n_{v} but by $M=2,70$ aileron movement causes an increase in $n_{v} . y_{v}$ variations (Fig.45) are similar, but much smaller in magnitude than those of n_{v}. Generally, aileron movement causes loss of $-\ell_{V}$ (Fig.46), but this effect is irregular.

The effect of the ailerons on longitudinal stability is shown in Fig.47: stability is increased as a result of aileron movement.

4.6 Effect of the airbrakes

Tests were made with the airbrakes in the fully-open position and tailplane settings of -4° and -10°. The results are compared with those for the model with the airbrakes closed.

The effect of the airbrakes on drag is shown in Figs. 48 and 49. The increment in minimum drag due to opening the airbrakes changed insignificantly with tailplane sctting and so only the case for a tailplane setting of -40 is shown in Fig.48. The mean value of $\mathrm{C}_{\mathrm{L}_{\mathrm{o}}}$ over all Mach numbers for the configuration with open airbrakes and tailplane setting -4° was found to be +0.001.

The airbrakes were found to affect both longitudinal and lateral stability. The effects of the airbrakes on longitudinal stability are shown in Fig. 50, from which it is seen that stability is reduced by opening the airbrakes at $M=2.00$ but is increased at the higher Mach numbers. However the change in stability shows an irregular variation with Mach number and tailplane setting, which is no doubt a result of the complications added by the wake from the airbrakes to the already-complex flow around the fin and tailplane. Some Schlieren photographs of the model with open airbrekes are shown in Fig. 51.

Tailplane powers, based on the differences in pitching moments between configurations with tailplane settings of -4° and -10°, are plotted in Fig.52. This shows some effect due to opening the airbrakes, but again the effect is irregular.

Opening the airbrakes generally results in small losses of $-y_{v}$ and n_{v}, (Figs. 53 and 54 respectively). No significant effects of airbrakes on l_{v} were observed.

5 CONCLUSIONS

Results of the tests for Mach numbers of $2.00,2.20,2.40$ and 2.70 described in this report show the following main conclusions:-

1 Longitudinal stability changes appreciably with changes in Mach number, incidence and tailplane setting at the highor lach numbers where the flow in the neighbourhood of the tailplane is strongly influenced by the position of the wing trailing cage shock pattern. Generally, longitudinal stability is increased by movement of the ailcrons and by opening the airbrakes.
about ${ }_{8}^{2}$ Yawing moment due to sideslip increases with incidence up to bation the influence of the tailplane but falls with increasing negative tail setting and with increasing incidence above 8. For the trinmed configuration $n q$ decreases with incidence for all positive incidences. Aileron movement rosults in a luss of n_{v} at the lower tost liach numbers and an increase of n_{v} at the higher hach numbers. Cpening the airbrakes results in a small loss of n_{v} at all liach nuribers.

3 Rolling momont duc to sideslip is decroased by increasing negative tail setting, but shows no regular variation with incidence, though the fin contribution decreases with increasins incidence. Gencrally, aileron novement results in a loss of $-\ell_{v}$.

4 Aileron movement produces large side forec and yawing moment variations with incidence.

ACKNOTHIEDGEMMENT

The author is grateful to Mr. C. F. Millard for his work in preparing most of the figures for this report.

IIST OF SYHBOLS

A Aspect ratio of noninal wing planform
b Wing span
\bar{c} Standard mean chord of wing
S Gross area of nominal wing planform
q Free-strcan dynamic prossure
14 Frec-stream Mach nuriber
$\mathrm{C}_{\mathrm{L}} \quad$ Lift coefficient $=$ Lift force/qS
$C_{Y} \quad$ Side force coefficient $=$ Side forcu/qS
C_{D} Drag coefficiont $=$ Drag force/qS
C_{n} Pitching moment coefficient $=$ Pitching monent/qS $\overline{\mathrm{c}}$
C_{ℓ} Rolling monent cocfficiont $=$ Rolling momont/qSb
$\mathrm{C}_{\mathrm{n}} \quad$ Yawing monent cocfficient $=$ Yawins moment/qSb

LIST OF SYMBOTS (Conta.)

人 Angle of inoidence of nacelle centre lines
$\beta \quad$ Angle of sideslip
η Tailplane angic relative to nacelle contre lines
ζ Rudder angle
$\xi \quad$ Ailcron angle
e Downwash angle relative to the free-stream direction
$y_{v} \quad$ Side force due to sideslip $=\frac{1}{2} \partial C_{Y} / \partial \beta, \beta$ in radians
$n_{v} \quad$ Yawing moment due to sideslip $=\partial C_{n} / \partial \beta, \beta$ in radians
ℓ_{v} Rolling moment due to sideslip $=\partial C_{\ell} / \partial \beta, \beta$ in radions
n_{ζ} Yawing moment duc to rudder $=\partial C_{n} / \partial \zeta$, ζ in radians
$\ell_{\xi} \quad$ Rolling moment duc to aileron $=\partial C_{0} / \partial \xi, \xi$ in radians
$C_{D} \quad$ Minimum arag coofficient
$\mathrm{C}_{\mathrm{I}_{0}}$ Lift coefficient corresponding to $C_{D}=C_{D_{0}}$
$K \quad$ Induced drag factor $=\pi A \cdot \quad \partial C_{D} / \partial\left(C_{L}-U_{L_{0}}\right)^{2}$
Ao Cross-sectional area of free-stricam tube swallowcd by cithor nacelle duct
$A_{\text {E }}$ Arca enclosed by cowl lip of either nacelle

LIST OF RMFRTINCES

Ref.No,

2 Leathors, J.W.

Title, ctc.
Supersonic wind tunnol tosts on a $1 / 12$ th scale model of the Bristol Type 188 resuarch aircraft, Fart 1, If $=1.4$ to 2.0 . Port 1 of this Current Poper.

Low spoed wind tunnel tests on a $1 / 10$ th scale model of a twin jot aincraft, Bristol 188. RAE Tech Note No. Acro 2515, ARC 20047 July 1957.

IIST OF REFPRRENCES (Contd)

Ref.No.
3
3 Squire, L.C.

4

Author
Title, etc.

Squire, L.C. Wind tunncl tests up to $M=2.0$ on a model of the supersonic resuarch aircraft ER134 (Bristol 188). RAR Report No. Aero 2633, ARC 22,064 December 1959.

Landon, R.H. Longitudinal and Lateral stability tests and effects of controls on a $1 / 12$ th soalc model of the Bristol Type 188.
Unpublished A:rcraft Research Assocn. Report.

PABIT 1
Principal details of the model
Scale: $1 / 12$ th

Wing:

Area S (gross) :-
Span b:-
Aspect ratio A:-
$2.75 \mathrm{ft}^{2}$

Standard mean chord \bar{c} :-
2.924 ft
3.108

Aerodynamic mean chord $\overline{\text { ō:- }}$
0.941 ft

Distance of leading edge of \bar{c}
aft of leading edge of inboard wing:-
Dihedral:-
Wing-body (and wing-nacelle) anglc
Sweep back of leading edge:-
Inboard of nacelles:-
Outboard of nacelles:-
Aileron horn:-
Sweep forward of trailing edge:-
1.025 ft
0.143 ft
2°
0
38°
65°
5^{6}

Section (excluding aileron horns):-
Biconvex, circular arc, with
sharp leading edge, $t / 0=4 \%$;
maximun thickness at 55% on
inboard wing, and 51% nutboard.
Section (aileron horns):- faircd from above to
8\% RAE 104 at tip
Gap between wing and aileron horn:-
0.008 in.

Fusclage:
Length:-
5.917 ft

Fin:

Area:-
Sweep back of leading edge:-
Section:-
inodified RAB 104 with constant maximum thickness. $4 \% \mathrm{t} / \mathrm{c}$ at tip chord

Tailplane:

Arca:-

Span:-
Aspect ratio:-
Root chord:-
Tip chord:-
Section:- $4 \frac{1}{2} \%$ circular arc.
Height of tailplane pivot above nacelle datum lines:-
$0.528 \mathrm{ft}^{2}$

Nacelles:

Distance of nacelle centre-lines outboard of fuselage centre-line:-

Airbrakes:
Forward brakces:
Gross area:-
Open aroa:-

TABLE 1 (CONTD.)

Airbrakes (Contd.) :-	
Aft brakes: gross area:open area:-	$\begin{aligned} & 3.05 \mathrm{in}^{2}{ }^{2} \\ & 0.79 \mathrm{in}^{2} \end{aligned}$
Roughness bands:	
Wings: band width:position of forward edge:-	5% of chord $2 \frac{1}{2} \%$ of chord
Aileron horns:- band width:position of forward edge:-	0.25 in. 0.25 in . aft of leading edge
Fuselage: band width:position of forward edge:-	$\begin{aligned} & 0.5 \text { in. } \\ & 1.0 \text { in. aft of nose } \end{aligned}$
Fin: band width:position of forward edge:-	0.5 in. at leading edge
Tailplane: band width:position of forward edge:-	$\begin{aligned} & 0.5 \text { in. } \\ & 0.25 \text { in. aft of } \\ & \text { leading cdge } \end{aligned}$
Nacclle cowls: bend width:position of forward edge:-	$\begin{aligned} & 0.5 \text { in. } \\ & 0.25 \text { in. aft of lips } \end{aligned}$
Nacelle centre bodies: band width position of forward edge:-	$\begin{aligned} & 0.5 \text { in. } \\ & 0.25 \text { in. aft of apex } \end{aligned}$

TABLE 2
List of configurations tested

	Configuration		$\begin{gathered} \text { Test range } \\ \text { (see } \\ \text { Table 3) } \end{gathered}$
1	Clean aircraft;	tailplane -4 ${ }^{\circ}$	A.
2	Clean aircraft;	tailplane -10°	A
3	Clcan aircraft;	tailplane -140	B
4	Clean airoraft;	tailplane off	A
5	Clean airoreft;	tailplane and fin off	A
6	Ailerons -10°;	tailplane -40	C
7	Ailerons -20°;	tailplane -4°	C
8	Ailerons -20°;	tailplane and fin off	C
9	Rudder -2.5 ${ }^{\circ}$;	tailplane -4. ${ }^{\circ}$	C
10	Rudder -5.0 ${ }^{\circ}$;	tailplane -4 ${ }^{\circ}$	C
11	Airbrakes open;	tailplane -4*	c
12	Airbrakes open;	tailplane -10°	C

TIBIE 3

Model attitude ranges

Incidence (degrees)	Sideslip (degrees)		
	Range A		Range B
-4	$0, \pm 2$	$0, \pm 2$	$0, \pm 2$
-2	$0, \pm 2$	$0, \pm 2$	0
0	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$
2	$0, \pm 2$	$0, \pm 2$	0
4	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$
6	$0, \pm 2$	$0, \pm 2$	0
8	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$	$0, \pm 1, \pm 2,+4,+6$
10	$0, \pm 2$	$0, \pm 2$	0
12	$0, \pm 2$	$0, \pm 2$	$0, \pm 2$
14	0	0	$0, \pm 2$
16	-	0	$0, \pm 2$
18	-	-	

FIG. I. GENERAL ARRANGEMENT OF MODEL AND SUPPORT SYSTEM

FIG.2. MODEL IN THE WIND TUNNEL

FIG. 3. DUCT MASS FLOW

FIG. 4 VARIATION OF CL WITH \propto AT CONSTANT MACH NUMBER : $\eta=-4^{\circ}$

FIG. 5. VARIATION OF CL WITH \propto AT CONSTANT MACH NUMBER : $\eta=-10^{\circ}$

FIG. 6. VARIATION OF CL WITH \propto AT CONSTANT MACH NUMBER : $\eta=-14^{\circ}$

FIG. 7. VARIATION OF CL WITH \propto AT CONSTANT MACH NUMBER:
TAILPLANE AND FIN OFF

(a) $M=2.70$

(b) $M=2.40$

FIG. 8. VARIATION OF Cm WITH Cl AT CONSTANT MACH NUMBER

(C) $M=2.20$

(d) $M=2.00$

FIG. 8. (concluded)

FIG. 9. LIFT-CURVE SLOPES AT ZERO INCIDENCE.

FIG. IO. LONGITUDINAL STABILITY SLOPES AT ZERO LIFT.

(a) TAILPLANE -40

FIG. II. VARIATION OF $-\partial C_{m} / \partial C_{L}$ WITH C_{L}

FIG. II. (conc.)

FIG. 12. VARIATION OF MEAN TAILPLANE POWER WITH MODEL INCIDENCE.

FIG. 13. VARIATION OF MEAN DOWNWASH AT POSITION OF TAILPLANE WITH MODEL INCIDENCE.

a. PLAN VIEW

b. SIDE VIEW

FIG.14. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL

$$
\begin{gathered}
\quad=\beta=0^{\circ} \quad \eta=-4^{\circ} \\
M=2,00
\end{gathered}
$$

a. PLAN VIEW

b. SIDE VIEW

FIG.15. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL

$$
a=\beta=0^{0} \quad \eta=-4^{\circ}
$$

$y=2,20$

a. PLAN VIEW

b. SIDE VIEW

FIG.16. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL

$$
a=\beta=0^{\circ} \quad n=-4^{\circ}
$$

$$
M=2,40
$$

a. PLAN VIEW

b. SIDE VIEW

FIG.17. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL

$$
\begin{aligned}
\alpha=\beta & =0^{\circ} \quad \eta=-4^{\circ} \\
M & =2.70
\end{aligned}
$$

FIG.18. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL

$$
M=2,70 \quad n=-4^{\circ}
$$

c. $=12^{\circ}$

D. $u=14^{\circ}$

FIG.18. SCHLIEREN PHOTOGRAPHS OF CLEAN MODEL
(concluded)

NACELLE EXIT, SHOCKS ETC.

FIG. 19. EXPLANATION OF SCHLIEREN PHOTOGRAPH OF MODEL AT $M=2.70$ AND $\alpha=8^{\circ}$.

FIG. 20. TRIMMED LIFT COEFFICIENTS.

FIG. 2I. TAILPLANE ANGLE TO TRIM.

FIG. 22. TAILPLANE ANGLE TO TRIM FOR THE FULL-SCALE AIRCRAFT.

FIG. 23. INCIDENCE TO TRIM FOR THE FULL-SCALE AIRCRAFT.

FIG. 24. VARIATION OF CY WITH β AT CONSTANT MACH NUMBER: $\eta=-4^{\circ} ; \alpha=+4^{\circ}$.

FIG. 25. VARIATION OF C_{n} WITH β AT CONSTANT MACH NUMBER: $\eta=-4^{\circ} ; \alpha=+4^{\circ}$.

FIG. 26. VARIATION OF C_{ℓ} WITH β at CONSTANT MACH NUMBER: $\eta=-4^{\circ} ; \alpha=+4^{\circ}$.

FIG. 27 VARIATION OF n_{v} WITH INCIDENCE

FIG. 28. VARIATION OF n_{v} WITH INCIDENCE FOR TRIMMED CONFIGURATION.

FIG. 29. VARIATION OF Yv WITH INCIDENCE.

FIG.30. VARIATION OF ℓ_{v} WITH INCIDENCE

FIG. 3I. VARIATION OF C_{D} WITH C_{L} AT CONSTANT MACH NUMBER $: \eta=-4^{\circ}$

FIG. 32. VARIATION OF C_{D} WITH C_{L} at CONSTANT MACH NUMBER : $\eta=-10^{\circ}$.

FIG. 33 VARIATION OF C_{D} WTH C_{L} AT CONSTANT MACH NUMBER: $\eta=-14^{\circ}$

FIG.34. VARIATION OF C_{D} WITH C_{L} AT CONSTANT MACH NUMBER: TAILPLANE AND FIN OFF.

FIG.35.VARIATION OF C_{D} WITH $\left(C_{L}-C_{L_{0}}\right)^{2}: \eta=-4^{\circ}$.

FIG.36. VARIATION OF MINIMUM DRAG COEFFICIENT WITH MACH NUMBER.

FIG.37. VARIATION OF INDUCED DRAG FACTOR WITH MACH NUMBER.

FIG 38.VARIATION OF YAWING MOMENT DUE TO RUDDER WITH RUDDER SETTING

FIG. 39. VARIATION OF MEAN YAWING MOMENT DUE TO RUDDER WITH INCIDENCE.

FIG. 40. VARIATION OF ROLLING MOMENT DUE TO AILERONS WITH AILERON SETTING.

FIG. 4I. VARIATION OF MEAN ROLLING MOMENT DUE TO AILERONS WITH INCIDENCE.

FIG 42. SIDE FORCE AT ZERO SIDESLIP DUE TO-20 AILERON SETTING

FIG.43. YAWING MOMENT AT ZERO SIDESLIP DUE TO -20° AILERON SETTING

FIG. 44. EFFECT OF -20° AILERON SETTING ON VARIATION OF nv WITH α $\eta=-4^{\circ}$

FIG.45. EFFECT OF -20° AILERON SETTING ON VARIATION OF Yo WITH α

$$
\eta=-4^{\circ}
$$

FIG. 46. EFFECT OF -20 ${ }^{\circ}$ AILERON SETTING ON VARIATION OF ℓ_{v} WITH \propto° $\eta=-4^{0}$

FIG.47. EFFECT OF -20° AILERON SETTING ON LONGITUDINAL STABILITY : $\eta=-4^{\circ}$

FIG. 48 EFFECT OF AIRBRAKES ON MINIMUM DRAG COEFFICIENT: $\eta=-4^{\circ}$

FIG. 49 EFFECT OF AIRBRAKES ON INDUCED DRAG FACTOR: $\eta=-4^{\circ}$

FIG. 50 EFFECT OF AIRBRAKES ON LONGITUDINAL STABILITY

A. $M=2.70$

B. $M=2,00$

FIG.51. SCHLIEREN PHOTOGRAPHS OF MODEL WITH AIRBRAKES OPEN

$$
\alpha=\beta=0
$$

FIG 52. EFFECT OF AIRBRAKES ON TAILPLANE POWER

α (Degrees)

FIG. 53. EFFECT OF AIRBRAKES ON VARIATION OF $y v$ WITH $\alpha ; \eta=-4^{\circ}$.

FIG. 54. EFFECT OF AIRBRAKES ON VARIATION OF n_{v} WITH $\alpha ; \eta=-4^{\circ}$.

```
A.R.C. C.P.NO. 818
September, 1961
```

SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 \mathrm{TH}$ SCALE

Six component force measurements have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ wind tunnel at R.A.E. Bediord, at Mach numbers of $2.00,2.20,2.40$, and 2.70 . The results of these measurements are presented graphically, with an analysis of the effects of tallplane movement, aileron and rudder controls, and airbrakes on longitudinal and lateral stability, and drag.

> A.I. (42) Bristol $188:$ $533.652 .2:$
> $533.6 .011 .5:$
> $533.6 .013 .1:$
> 533.6 .013 .4

$$
\begin{aligned}
& \text { MODEL OF THE BRISTOL TYPE } 188 \text { RESEARCH AIRCRAFT } \\
& \text { PART TWO: } M=2.0 \text { t. } 2.7 \text { COok, T. A. }
\end{aligned}
$$

A.R.O. C.P.NO. 818

September, 1961

SUPERSONIC WINL TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF THE BRISTOL TYPE 188 RESEARCH AIRCRAFT PART TWO: $M=2.0$ to 2.7 Cook, T. A.

Six component force measurements have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the $8 \mathrm{ft} x 8 \mathrm{ft}$ wind tunnel at R.A.E. Bedford, at Mach numbers of $2.00,2.20,2.40$ and 2.70 . The results of these measurements are presented graphically, with an analysis of the effects of tallplane movement, aileron and rudder controls, and airbrakes on longitudinal and lateral stability, and drag.
A.R.C. C. P. No. 818

September, 1961

SUPERSONIC WIND TUNNEL TESTS ON A $1 / 12 T H$ SCALE MODEL OF TEEBRISTOL TYPE 188 RESEARCH AIRCRAFT PART TWO: $M=2.0$ to 2.7. Cook, T. A.

Six component force measurements have been made on a $1 / 12$ th scale model of the Bristol Type 188 in the $8 \mathrm{ft} \times 8 \mathrm{ft}$ wind tunnel at R.A.E. Bedford, at Mach numbers of $2.00,2.20,2.40$ and 2.70 . The results of these measurements are presented graphically, with an analysis of the effects of tailplane movement, alleron and rudder controls, and airbrakes on longitudinal and lateral stability, and drag.
(C) Crown Copyright 1965

Published by

Her Manesty's Stationery Ofrices

To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2 50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5 80 Chichester Street, Belfast 1 or through any bookseller

[^0]: * As this type of belance is not commonly used attention is drawn to the fact that a closed mechanical loop was formed by the model, the stings and balanoes and the rear yoke, and that slipping under load at the joints of the loop resulted in some hysteresis in the indicated loads.

[^1]: * $\quad \xi=-10^{\circ}$ means port aileron 10° down starboard aileron 10° up.

[^2]: * Configuration (b) was not tested at $M=1.4$. At $M=1.8\left(\eta=-4^{\circ}\right)$ and $M=1.6,1.8$ and 2.0 (tailplane and fin off) lateral tests were made for $\alpha=0$ only.

