$\stackrel{\sim}{\infty}$ C.P. No.

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL CURRENT PAPERS

A Digital Recording System for Structural Research

by

D. Purslow

```
U.D.C.No. 53.087.45:621.317.3:620.17
```

C.P. ITO. 825
August 1964

A DIGITAL RECORDING SYSTEM FOR STRUCTURAL RESEARCH by
D. Purslow

SUMMARI

The recording system described measures the output of strain gauge bridges, displacements by determining the position of potentiometer wipers, temperature by use of chromel-alumel thermocouples and the millivolt output of any D.C. transducer. The measurements are recorded on punched cards and in typescript.

The methods used to measure the different types of transducer signal are surveyed and detailed operating procedures are given in Appendices.

Page

1 INTRODUCTION 5
2 SPECIFICATION 5
3 GENERAL DESCRIPTION 7
4 STRAIN MEASUREMENT 8
4.1 General 8
4.2 Strain Gauge Terminal Unit 8
4.3 Strain Gauge and Potentiometer Selector Unit 8
4.4 Selector Routing Unit 9
5 DEFLECTION MEASUREMENT 9
6 THLRMOCOUPLI THERMOMETRY 9
6.1 General 9
6.2 Thermocouple and Radiometer Terminal Units 9
6.3 Thermocouple Terminal Units 10
6.4 Thermocouple and Voltage Selector Units 10
6.5 Selector Routing Unit 10
7 VOLTAGT MEASURTMENT 10
8 ELEVATED TEMPERATURE STPENGIH TESTING 10
(STRAIN GAUGES WITH TIERMOCOUPLE THMPERATURE CORRECTION)
8.1 General 10
8.2 Terminal Units 10
8.3 Strain Gauge and Thermocouple Selector Unit 11
9 CONCLUDING REMARKS 11
REFERTNCES 11
APPENDICES 1-7$12-41$
TABIE 1 Use of redundant coding to incroase amplifier tolerance
TULUSTRATTONS - Figs.1-45
DETACHABLA ABSTRACT CARDS

APPETDICES

Page Appendix
13
1 - Detailed Recorder operation
2 - Lead length compensation 22
3 - Scale linearisation - Strain gauges and potentiometers 27
4 - Scale linearisation - Millivolts and thermocouples 30
5 - Setting up and calibration procedure 33
6 - Operating the Recorder 36
7 - Fault finding 40
ILLUSTRATIONS
Fig.
Bank of Five Recorders 1
Recording Room 2
Card punches and typewriters 3
Earth connections 4
Tailplane installation 5
Strain Gauge Terminal Unit 6
Strain Gauge and Potentiometer Selector Unit 7
Selector Routing Unit 8
Thermocouple and Radiometer Terminal Unit and Cold Junction Oven 9
Thermocouple Terminal Unit 10
Thermocouple and Voltage Selector Unit 11
Strain Gauge and Thermocouple Selector Unit 12
Strain Gauge and Potentiometer Simulator 13
Temperature Simulator 14
Functional Diagram of Strain Gauge Installation 15
Block Diagram showing chassis interconnections 16
Circuit Diagrams
Power unit 17
Standby Power Unit 18
Digitising Amplifier Unit 19
Digitising Amplifier Schematic 20
ILLUSTRATIONS (Conta) Fig.
Decade Selector Sub Unit 21
Balancing and Memory Sub Unit 22
Decoder Sub Unit 23
Card punch 24
Auto plug Unit 25
Typewriter 26
Strain Gauge Terminal Unit 27
Thermocouple Terminal Unit 28
Strain Gauge and Potentiometer Selector Unit 29
Thermocouple and Voltage Selector Unit 30
Strain Gauge and Thermocouple Selector Unit 31
Selector Routing Unit 32
Strain Gauge and Potentiometer Simulator 33
Temperature Sinulator 34
Timing Sub Unit 35
Timing Sequence 3 Digit Cycle 36
Timing Sequence 4 Digit Cycle 37
Strain Gauge Bridge with lead resistances 38
Linearised Strain Gauge Bridge 39
Millivolt Balancing Circuit 40
Equivalent Millivolt Circuit 41
T_{1} / T_{2} Thermocouple Scale 42
Equivalent Thermocouple Circuit 43
Recorder T_{1} / T_{2} Therinocouple Scale Error Curve 44
Scale of Digitiser Input Meter M1 45

INTRODUCTION

The number of transducers used in a structural research test may be a few of similar type, or as many as several thousand of various types. Measurements of mechanical strain, displacement and temperature are frequently required during one test. Manually operated instruments are still acoeptable for small tests. Fast automatic recorders, requiring elaborate đata processing, and recording the information in binary code on punched or magnetic tape, are suitable for very large installations.

The Recorder described here bridges the gap between these extremes and satisfies the basic requiroments of economical connection of a large number of transducers and accurate measurements of low voltage signols in the presence of considerable interference. Recording in decimal on punched cards and typescript, the data may be analysed manually or automatically as desired. Several alternative functions may be performed; the transducer may form part of a Theatstone Bridge circuit, e.g. strain gauge or potentiometer, or produce a small steady voltage e.g. thermocouple. The Recorder is a null balance instrument and if a balance is not obtained the measurement is not printed, but replaced by a series of dashes. Primarily a 'static' Recorder, it will, however, record signals that vary moderately with time. Nine Recorders have been installed in the Measurement Room of the Structures Research Laboratory. Figs. 1 and 2.

The description given in the main text is elaborated in Appendices, which also contain operating procedures.

2 SPECIFICATION

2.1 Strain Gauges and Potentiometers

Soale $-4^{1 / 3 \%}$ change oî resistance $=865$ or 8665 digits. Gauge resistance 50 - 5000Ω
Terminal Unit - 12 or 18 gauges
Selector Unit - up to 12 Terminal Units
Maximum Capacity - 216 gauges per Selector Unit

2.2 Thermocouples

Scale $-865^{\circ} \mathrm{C}=865$ or 8665 digits for chromel/alumel thermocouples

$$
\begin{aligned}
& \left(1 \text { or } 0 \cdot 1^{\circ} \mathrm{C}\right. \text { per digit) } \\
& \text { (cold junction tomperature } 0^{\circ} \text { to } 50^{\circ} \mathrm{C} \text {) }
\end{aligned}
$$

Terminal Unit - 12 thermocouples in const. temp. cold junction
Selector Unit - up to 12 Terminal Units
Maximum Capacity - 144 thermocouples per Selector Unit

2.3 Voltages

Scale $-86.5 \mathrm{mV}=865$ digits or $86.65 \mathrm{mV}=8665$ digits. (100 or $10 \mu \mathrm{~V}$ per digit)
Terminal Unit - 12 transducers
Selector Unit - up to 12 Terminal Units
Maximum Capacity - 144 transducers per Selector Unit

2.4 Routing Unit

1-5 Selector Units of above types.
The Maximum capacity of a Recorder may thus be five times that shown above.

2.5 Elevated Temperature Strain Gauges

Scales - as above. Strain gauge and thermocouple recordings synchronised.
Strain Gauge Terminal Unit - 12 gauges
Thermocouple Terminal Unit - 12 thermocouples
Selector Unit - 2 or 4 Strain Gauge Terminal Units 2 or 4 Thermocouple Terminal Units
Maximum Capacity $\quad-48$ strain gauges and 48 thermocouples per pair of Recorders.

2.6 Output

Punched Card and Typescript
24 three digit measurements per card or
18 four digit measuroments per card
together with a minimum of 7 digits available for idontification.
Speed 10 digits/sec: 3 or 4 digits per measurement. Cycling time per card-approximately 9 socs. The reading cycle may be initiated oxternally at a prescribed time or made to cycle continuously.

2.7 Response

The Recorder will correctly measuro transient signals from a transducer varying at a rate of up to 10 digits per second. The measurement recorded is the output of the transducer 50 milliseconds before the first digit of that measurement is punched.

2.8 Filtering

Common modo (in-phase interference at input terminals) rejection greater then 100 db under operational conditions.

Antiphase interference or signal rejection at $50 \mathrm{c} / \mathrm{s}$ on 3 rd digit of measurement - 53 db

$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$
$"$	$"$	$"$	$"$

2.9 Accuracy

Strain Gauges better than $\pm 0 \cdot 5, \%$. Thermocouples $\pm 1 \%$ of measurement.

Stability

Strain Gauges ± 2 digits in the fourth decade. Thermocouples $\pm 1 \%$ of measurement.

3 GENERAL DESCRIFTION

Fach Recorder is a single channol instrument to which any number of similar transducers may be switched sequentially. The measurements are recorded as 3 or 4 digit numbers on punched cards, and in typescript simultaneously, at the rate of 10 digits per second. The measurements may thus be inspected visually without decoding. One punched card can record 80 decimal digits, at least 7 of which are available to identify the transducer, load increment, test number, etc. Card sorting machines can be used to present the data in a sequence suitable for subsequent analysis and graphs may be obtained from semi-automatic card-to-graph plotters or a digital computer, e.g. Deuce, can be programmed to carry out automatic analysis.

Several alternative functions may be performed by each Recorder. The transducer may form part of a D.C. Wheatstone Bridge circuit, e.g. strain gauge or potentiometer, or produce a snall steady voltage c.g. thermocouple. The Recorder is a null balance instrument with scale lengths of 8665 or 865 digits. If a balance is not obtained the measurement is not printed, but replaced by a series of dashes.

Transient signals varying at a rate of up to 10 digits per sec may be recorded, the measurements being accurate at a time 50 milliseconds before the first digit of the measuroment is printed.

Each cycle of measurement may be initiated at the Recorder, the Selector Unit, or by external manual or automatic control. The Recorder may also be made to record continuously.

Terminal Units, to which solder connections are made from several transducers, are located near the specimen. A short multicore cable connects each Terminal Unit to a Selector Unit which routes the transducers to the Recorder. The Seloctor Unit is situated close to the Terminal Units, but may be up to 100 yards from the Recordor (seo Appendix 2).

Large amounts of interference at $50 \mathrm{c} / \mathrm{s}$ and its harmonics may be produoed by the power wiring for kinctic heating ovens. Interference pick-up in the signal circuits is roduced by conneoting only one Torminal Unit at a time to the Recorder, thus reducing the effective sizo of the installation and further attenuation effeoted in the Recorder by common mode rojection and the use of a low pass filler. Since only one Terminal Unit is connected to the Recorder at a time, a faulty gauge can only affect the measurements of those gauges on the same Terminal Unit.

All signal cables are screened and run at a distance from the power wiring. The use of a d.c. system eliminates the need of trimming capacitors and individually screened leads.

The recording system is earthed at one point only. To minimise common mode interference, earthing points are provided on each Terminal Unit, Selector Unit and Simulator.

The earthing systom is shown in Fig. 4 and a typical installation in Fig. 5.

4 STRAIN MEASUREMENT

4.1 General

A change of strain in an olectrical conductor produces a proportional change in its resistance. Thus, if a wire, or foil 'gauge' is bonded to the specimen so that the change of strain in the gauge equals that in the specimen, the resulting percentago change of resistance of the gauge will be proportional to the change of strain in the specimen. The ratio of percentage change of strain in the specimen to the corresponding percentage change of resistance is know as the gauge factor, and is a measure of its sensitivity.

Each electrical resistance strain gauge forms the active arm of a Wheatstone Bridge circuit. Two 100 ohm precision resistors form the fixed arms of the bridge; the remaining arm may be a dummy or active gauge used for temperature compensation.

It is common practice in strain gauge installations to obtain an approximate bridge balance at zero strain by the use of balancing potentiometers. The necessity for these potentiometers is eliminated in the Recorder by the provision of a long stable scale. Errors due to the poor contact of the potentiometer wipers are thus removed and the quantity of wiring reduced. The Recorder will not, however, mcasure strain directly, but the change of strain as the difference of two measurements. The bridge is balanced during measurements by automatically switching resistors in parallel with the fixed arms of the bridge.

4.2 Strain Gauge Terminal Unit Fig. 6

Up to 18 active strain gauges may be soldered to each Terminal Unit. Each gauge should be wired individually the leads being kept as short as possible. (See Appendix 2.) The active gauge is connected between a positive terminal and a numbered gauge point, and the dummy or second active gauge between a negative terminal and the same gauge point. Only one wire per gauge point and 6 supply wires common to all 18 gauges are thus taken to the Recorder. The two fixed arms of the bridge are situated in the Terminal Unit, and are shared by the 18 gauges there being therefore no plug and socket connections in the bridge circuit. The bridge supply is fused at 1 amp at the Terminal Unit, thus a short circuit will only render 18 gauges unserviceable.

4.3 Strain Gauge and Potentiometer Selector Unit Fig. 7

Up to 12 Strain Gauge Terminal Units may be connected to a Sclector
Unit. One Selector Unit may thus scan 216 strain gauges, and record them
as 4 digit nurabers, in approximately 100 seos. Each Terminal Unit and gauge is connected in sequence to the Recorder for measurement.

The 7 V bridge supply, stabilised at the Solector Unit, is known as the 'Test Supply' and is only connected to the one Terminal Unit being recorded. This ensures that a faulty gauge may only affect a maximum of 17 other gauges, and reduces the amount of interference pick-up coupled to the Recorder.

To maintain thermal stability, the remaining Torminal Units are connected to a Standby Supply, controlled at the same voltage as the Test Supply at the Selector Unit.

4.4 Selector Routing Unit Fig. 8

For large scale experiments, a Selector Routing Unit is available, which, in conjunction with five Solector Units, enables up to 1080 gauges to be measured sequentially by one Recorder. A Standby Power Unit is connected to each Selector Unit.

5 DEFLECTION REASURBMENT

By making the wiper of a resistance potentiometer follow the displacement of a specimen, that displacement may be measured and recorded as a fraction of the potentiometer stroke. The complete stroke is represented by 0 to 865 or 7 to 8658 digits.

Up to 18 potentiometers may be connected to a Strain Gauge Terminal Unit and 12 Torminal Units routed to the Recorder via a Strain Gauge and potentiometer Selector Unit as described above.

6 THERMOCOUPLE THERMOMEIRY

6.1 General

When a circuit is formed by two wircs of dissimilar metals, an emf is gencrated in the circuit proportional to the difference in temperature of the junctions. If one junction, known as the cold junction, is hold at a constant known temperature, the emf in the circuit may be used to determine the temperature of the hot junction.

A scale has been provided to rocord temperature, by use of chromel-alumel $\left(T_{1} / T_{2}\right)$ thermocouples, directly in degrees centigrade up to a maximum of $865^{\circ} \mathrm{C}$ for cold junction temperatures from 0° to $50^{\circ} \mathrm{C}$. The doviation of this scale from the T_{1} / T_{2} standard calibration ${ }^{3}$ is shown in Fig. 44 . When using other types of thermocouples, the measurements may be recorded directly in millivolts up to 86.5 mV on the millivolt scale of the Recorder and converted to temperature in analysis.

6.2 Thermocouple and Radiometor Terminal Units Fig. 9

Twelve pairs of terminals are provided on each Terminal Unit. These Terminal Units aro designed for use in a thormostatically controlled oven which
acts as a cold junction at a temperature of $45^{\circ} \mathrm{C}$ whon moasuring thermocouples. If a thermocouple is not earthed at the specimen, the positive wire must be connected to the Terminal Unit earth terminal.

6.3 Thermocouple Terminal Units Fig. 10

The wiring of these units is identical to that of the Thermocouple and Radiometer Terminal Units but are of similar mechanical design to the Strain Gauge and Potentiometer Terminal Units. These can be used if a controlled cold junction is not required or voltagos from other transducers aro to be measured.

6.4 Thermocouple and Voltage Sclector Unit Fig. 11

The Thermocouple and Voltage Sclector Unit routos twelve Terminal Units to the Recorder in sequence, thus handling 144 transducers. 144 three digit measurements or 108 four digit measurements may be made in less than 60 secs.

6.5 Selector Routing Unit Fig. 8

For large scale exporiments a Selector Routing Unit is available which, in conjunction with 5 Selector Units, enables 720 transducers to be measured sequentially by one Recorder.

7 VOLTAGE MEASUREMENT

The voltage from any d.c. transducer may be recorded on the millivolt range up to $86 \cdot 5 \mathrm{mV}$ with 10 or $100 \mu \mathrm{~V} /$ digit. A zero adjustment is provided.

Twelve transducers are connected to a Thermocouple Terminal Unit, Fig. 10 and coupled to the Recorder via a Thermocouple Selector Unit, thus enabling 144 transducers to be rocorded sequentially as 3 digit measurements by one Recorder in less than 60 secs.

8 EIEVATED TYMPIRATURE STRENGTH TESTTNG
(STRAIN GAUGES WITH THERMOCOUPIE TIEMPERAIURE CORRECTION)

8.1 General

Temperature compensation of an active strain gauge by use of a dumny gauge is inadequate in transient elevated temperature testing, since the active and dummy gauges are unlikely to be at the same temperature. The dumny gauges are therefore replaced by precision resistors held at a constant temperature if necessary, and the strain and temperature of the active gauge measured simultancously. For this purpose a thermocouple is located adjacent to the active strain gauge. I'wo Recorders are used, one to measure strain, the other to measure temperature, and aro coupled to onsuro synchronisation of the temperature and strain measurements.

8.2 Terminal Units

The standard Strain Gauge Terminal Units and Thermocouple Terminal Units are used. Only the first 12 positions, i.e. 1 to $9,11,12$ and 13, of the Strain Gauge Terminal Units are connected.

8.3 Strain Gauge and Thermocouple Selcctor Unit Fig. 12

Four Strain Gauge and four Thermocouple Torminal Units are routed by a dual purpose seleotor unit foeding a pair of Recorders. The two Recorders are synchronised in order that the temperature of the gauge is measured at the same time as the strain.

9 CONCLUDING REMARKS

Major strength tests, undor both 'cold' and 'hot' cases, have proved the accuracy and repeatability of the 3 digit measuremonts to be satisfactory for moderate sized installations. For 'cold' tests the time taken for several Recorders to cycle through a large installation may bo accoptable, but the speed of operation of each Recorder is insufficient for large scalo transient kinetic heating tests which must be recorded in 'real' tine.

For smallor tests, such as the load calibration on the ground of strain gauges for flight research, the long scale length afforded on 4 digit operation has been required and shown to give repeatable and accurate measurements. The design of the Recorder is ideally suited to such experiments.

Unreliability has been caused by faulty relays and uniselectors which could be replaced by transistor or reed relay switching as appropriate. The Card Punches are not suited to the long, continuous running required on a large scale test and have caused considerable unreliability undor such conditions. The typewriters, which are used mainly as monitors, have operatod more satisfactorily: a sequential typescript may, however, be obtained automatically from the punched cards.

To satisfy the requirements of the large scale major strength tests a faster Recorder, with slightly less resolution, is under dovelopment which will record on punched tape. It has also been found necessary to develop a tempereture controlled Strain Gauge Terminal Unit for use with elevated temperature strain gauges due to the appreciable temperature coefficient of precision resistors.

The facilities availablo with these Recorders provide a comprehensive recording system which should satisfy all the requirements envisaged.

REFERPMCES

INO.	Author	Title, ete
1	Sturgeon, J. R.	British Patent Application No. 17399, June, 1956.
2	Sturgeon, J. R.	A Multipoint digital strain gauge recorder. Trans. of Society of Instrument Technology Vol.II p.213, 1959.
3	-	Reforence Tables for Nickel/Chromium and Nickel/ Aluminium thermocouples. British Standards Institution B.S.1827: 1952. \qquad

APPENDIX 1

DETATIED RECORDER OPERATION

1 GENERAL DESCRIPTION

The Rocordor is a null balance instrument attaining a final balance in three or four decimal steps. A digitiser converts the amplified out-of-balance into a number $(0-15) \times 10^{n}$, where the decade, $n=3,2,1$ or 0 . At each decade the digitised output from the amplifier operates appropriate balancing relays which switch resistors to decrease tho out-of-balance. The value of n is changed at each decade to amplify the smaller unbalance romaining by changing the amplifier feedback resistors, thus altering its gain. A convenient scale length of 8665 is obtained by using a range of $0-7$, represonting $0-7000$ digits, on the first decade. 'lhis 15 bit digitiser output, in the binary form $8-1+-2-1$, provides a redundancy of digits in each decade. This redundancy makes possible the use of a mothod of successive approximations ${ }^{1}$ in the balancing technique, pormitting the low accuracy in the amplirier and digitiser. A low frequency galvanometer amplifier is used, and the increase in tolerance also enables the signal to bo digitised earlier in cach decade cycle, before the amplifier output has stabilised completely.

The use of this redundancy in the balancing technique is indicated in Table 12 . Also listod in Table 1 are the allowable amplifier errors at each docade of the measurement, if the final recording is requirod to $\pm 1 \frac{1}{2}$ digits. In praotice, corrections are made so that the allowable amplifier tolerances are symmetrical, and the probability of excecding these tolorances must be very small. Consider a balance at 4388; this balance can be obtained by two different digital combinations: $4000+300+80+8$ or $3000+1300+80+8$. Therefore at the first decado the null-detecting amplifier may moasure the unbalance as 3000 or 4000 and this ambiguity can be resolved at the next decade by digitising 3×10^{2} or 13×10^{2}. The ambiguity between 3000 and 4000 can be toleratod for any balance point betweon 3999 and 4665, as later decades will correct for it. The number 4333 is particularly interesting as an ambiguity arises at each decade and is resolvod by the succeeding one (Table 1).

Since the decision of the last docade may alter the first digit, the final answer is not available until the ond of the measurement cycle. This answer is thorefore memorised and printod out during the noxt measurement.

If at some docade, the romaining out-of-balance is outside the range 0-15, then a final balance cannot bo obtained. Under these conditions the galvanomoter is immediately disconnectod from tho circuit to prevent damago and a series of dashes is printed instead of a spurious roading. The galvanometer is re-connected as soon as the noxt transducer is coupled to tho Rocorder.

The component blocks of the Recorder and their interconnection are shown in Figs. 15 and 16 and their operation will be described under those headings.

The $\pm 8 V$ supplies are producod from a 6 phase rectifier stack. From these supplies, stabilised $\pm 3 \cdot 5 \mathrm{~V}$ rails, known as the Test Supply, are derived. The electrical measuroment circuits aro earthed at one point only to minimiso common mode interference. For strain gauges and potentiometers the Recorder earth is at a potential of 0 volt to reduce errors due to low insulation resistance and is connected at the junction of two series resistors across tho Test Supply. For thermocouples and millivolts the Test Supply is earthed via the transducer. The earth connections are shown in Fig. 4 .

The Test Supply is stabilised at the Solector Unit for strain gauges and potentiomoters. Two wires fecd back the Tost Supply from tho Solector Unit to the Power Unit, where it is compared with the voltage set by the Test Voltage Adjustment. Stabilisation is at the Power Unit for thermocouples and millivolts.

The 24 volt and 48 volt supplics are produced, unsmoothed, from a 6 phase rectifier stack the common negativo rail being connected to the chassis in the Balancing and Print Out Unit.

3 STANDBY POVRR UNIT - Figs. 1 and 18

This unit provides a smoothed D.C. supply for strain gauges from a motor driven single phase variable transformer. Both Test and Standby Supplies aro fed back to the two coils of a detcotor relay. This relay operates the motor to reduce the voltage difference between Test and Standby Supplies at the Sclector Switch should it creced 0.1 volt. The Standby Supply is fusod at 10 amps and is isolated from the Test Supply.

4 DIGITISING AMPLIFIER UNIT - Figs. 1 and 19
The Digitising Amplifior is shown schomatically in Fig. 20. The image, reflected by the galvanometer mirror, of the vertical filamont of a high efficiency lamp is focussed on to a pair of photocells. These photovoltaic colls and arplifiers are in a scrics circuit across the 16 volts supply. The difforential voltage output from this circuit is amplified and fod back to the input of the galvanometer through precision resistors, thus approximately balancing out the signal. This amplified output is then a measure of the current, or number of digits, required to effect a balance, and is also fed, via a low pass filter, to the digitiser. By the use of relays, the signal circuits are isolated from the control circuits in the digitiser.

The transistor detector is set initially at the 8 transition and decides whethor the out-of-balance is greater or less than 8 digits. The transition is thon set to 12 or 4 , depending upon the 8 decision, by changing the resistors at tho detector input to decide whether the remaining unbalance is greater or less than 4 digits. The process is then continued until a 4 bit number is obtained. The 4 bit output is set up on the contacts of four relays. This binary output is then fed to the appropriate Balancing rolays via the Decade Selector, thus digitally reducing the signal received by the amplifice, and the Rocordor moves to the next decado. The gain of the
amplifier is increased by alteration of the feodback resistors and the cycle repeated. The digitising cyclc is initiated by a DIGITISING pulse generated in the Timing Sub Unit when the amplifier has elmost stabilised.

The unserviceable (U / S) circuit monitors the photocell amplifier current, so that when the light spot moves off the photocells due to an excess signal, the decrease in current is used to disconnect the galvenometer from the circuit and to return the amplifier to the least sensitive decade. The galvanometer may be manually reset by the switch on the Balancing and Print Out unit, but is automatically reset at the commencement of the next measuremont cycle.

Simulation of the input voltage to the digitiser is provided by a potentiometer to check the operation of the digitiser. By operation of the Test Amplifier switch the galvanometer is disconnocted from the circuit and can be adjustod to its mechanical zero. Adjustable zeros aro provided on the millivolt and T_{1} / T_{2} scales.

The Function Selector switch detcrmines which type of transducer may be recorded and connects the appropriato precision resistors in the balancing circuit. The null-balance is obtained by switching balancing resistors in the Balancing and Momory unit between the $+3 \cdot 5$ and $-3 \cdot 5 \mathrm{~V}$ rails. These resistors dotermine the voltage across a procision resistor to balanco out the signal $\theta . m$.f. when measuring thermocouples or voltages. When measuring strain gauges these balancing resistors are connected in parallel with the fixed arms of the strain gauge bridge in the Terminal Unit. When measuring potentiometers these resistors generate a voltage which is compared with the potentiometer wiper voltage.

5 DECADE SELECTOR SUB-UNIT - Fig. 21

This bank of relays routes information from the digitiser to the balancing relays and from the memory and caryy relays to the decoder. The relays are operated by Drive Decade Change pulses A and B. The routing is completed in the Balancing and Memory Sub-Unit.

6 BATAITCING ATD MBMORY SUB-UNIT -Fig. 22
A bank of relays, operated by the Drive Decade Change B pulso, fur ther route the incoming and outgoing binary information.

The balancing relays are closed by the Digitising Amplifier output, and are locked by the CANCEL rail voltage. These relays switch resistors, corresponding to the Digitising Amplifier output, to balance out the signal. The balancing resistors for the first decade are in the form $(2+2+2+1) \times 1000$ so that the Recorder accuracy is not degraded by relay contact resistance or resistor manufacturing tolerance. Since, on the first decado, the initial transition of the digitiser is 3 to 4 and not 7 to 8 , the $1000^{\prime \prime}$ s SHIFT line reduces the balance point of the Recordor by 278 digits to make the digitiser transition coincident with the Recorder balance point. To enable the Recorder to follow the $\mathrm{T}_{1} / \mathrm{T}_{2}$ thermocouple calibration, the scale has two slopes; $41 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ from 0 to $433^{\circ} \mathrm{C}$ and $42.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ from 433 to $865^{\circ} \mathrm{C}$. This change is effected by inserting a resistor in the balancing network, to reduce its sensitivity, above $433^{\circ} \mathrm{C}$.

At the end of each measurement cycle the TRANSAER rails are switched to zero volts causing the memory relays to register the condition of the balancing relays and lock on at the end of the TRANSFER pulse. As a number greater than 9 may be transforred in any decade the second set of contacts of the memory relays are used to compute carry digits and thus simplify the decoder. The information having been transferred to the memory, the balancing relays are reset by the CANCEL rail switching to zero volts.

7 DECODER SUB-UNIT - Fig. 23

The memorised binary information is fed, via the Decade Selector, to the Decoder Unit. This relay tree converts the $8-4-2-02-1$ binary code, from the memory unit, to decimal. For numbers greater than 9 the decoder ignores the 10's digit as the carry function has been performed in the Balancing and Memory Sub-Unit. The PRINI pulse is routed by the decoder to the appropriate decimal digit interposer of the Card Punch.

8 CARD PUNCH AND AUIOPLIJG UNIT - Figs. 24 and 25

Each card has 80 columns, up to 72 of which are used for recording measurements and may record one of 12 digits ($\mathrm{Y}, \mathrm{X}, 0$ to 9 sequentially from the top of the card) in each column. A space pulse column is required for starting the Recorder, the remaining 7 or more digits being available for identification. The Card Punch is operated automatically by the Recorder PRINT pulse when recording data and frec runs when recording identification columns. The Punch plug board controls identification, skip and spaco columns, so that it is possible to preset the position of recording the identification data on the card. Identification data can be preset on the Punch plug board or Autoplug Unit. The Autoplug Unit is connected to the Card Punch by means of a 12 core cable. The 12 sets of information selected by the Autoplug Unit switches may be connected to the appropriate column from positions 5/1-12 of the plug board. Fig. 24 gives the plug board layout. The Selector Unit, Terminal Unit and Reading numbers available as identification data may be connected to the Punch columns from positions 6/20, 7/20 and $8 / 20$ respectively on the plug board.

9 TYPEWRITER - Figs. 3 and 26

The Typewriter is slave to the Card Punch and prints in one line of typescript the information on one card, including identification. Y on the card is - on the typewriter and X is full stop. The carriage return contacts inhibit the commencement of the recording cycle.

10 STRAIN GAUGE TEPMINAL UNITS - Figs. 6 and 27
Up to 18 gauge pairs may be connected to one Terminal Unit. The active gauge is connected between the gauge point and the positive terminals, and the dummy or other active gauge between the negative terminals and the same gauge point. The positive and negative terminals are connected to the bridgo supply which is fused at 1 ANP. Two 100 ohm precision resistors form the fixed arms of the bridge, so that the complete bridge is at the Terminal Unit. The Recorder inserts precision resistors in parallel with the 100 ohm resistors
to obtain a null balance. This allows one wire per gauge and 6 supply and control wires per Terminal Unit only, to be taken to the Fecorder and enables compensation to be made for lead length. Either 12 or 18 gauge points may be used, any spare positions being paralleled to another gauge. An earth terminal is provided.

11 THERMOCOUPLE AND RADTOMETER TERMINAL UNTTS - Figs. 9 and 28 and THERMOCOUPLE TERMINAL UNTMS - Figs. 10 and 28

Twelve transducers may be connected to a Terminal Unit. Two wires are required from each transducer since on metal specimens the transducers may be connected electrically via the specimen at an indoterminate impedance. An earth terminal is provided. If a the mocouple is not earthed at the specimen, the positive wire must be connected to the earth terminal.

The Thermocouple and Radiometer Terminal Unit is designed for insertion in a Survic Controls Ltd. constant temperature oven acting as the cold junction at $45^{\circ} \mathrm{C}$. The Thermocouple Terminal Units are for use with transducers not requiring a controlled cold junction.

12 STRAIN GAUCE AID PORENTIOMETER SELEECTOR UNIT - Figs. 7 and 29

This unit can scan up to 12 Strain Gauge Terminal Units, denoted $\mathrm{Y}, \mathrm{X}, 0$ to 9 , the number scanned being selected by the switch labolled 'Number of Terminal Units'. Either 12 or 18 gauges per Terminal Unit may be scanned. An earth terminal is provided for connection of the Recorder chassis and screened cables to the laboratory earth.

The Selector Unit incorporates two uniselectors, the 'terminal unit selector' SW. 2 and the 'gauge selector' SW. 1 . Before the commencement of a reading cyole SW. 1 is at position 2 and SW. 2 at the neutral position. This is known as the Selector Unit 'neutral position' and there is therefore no signal output to the Recorder. On operating the START switch momentarily, either on the Recorder or the Selector Unit, SW. 2 moves to position 1 selecting Terminal Unit Y. SELECTOR DRIVE pulses from the Recorder stop SW. 1 through the 12 or 18 gauges of Terminal Unit Y. SVI. 1 then skips through its neutral position to return to position 2. As it passes through the noutral position SW. 1 steps SW. 2 to position X. When ST. 2 reaches the position selected by the 'Number of Torminal Units' switch it skips to its noutral position and the Recorder stops.

On position 2 of SW.1, a NOT PRINT pulse is fed to the Recorder while the first measurement is being takon. This measurement is then printed while on position 3. Hence on position 14 or 20 , a spurious measurement is taken but nevor recorded while gauge 12 or 18 is printed. When $S W .1$ reaches the end of a Terminal Unit and skips, a SKIP pulse jis fod, via the Recorder, to the Card Punch which ejects the punched card and resets. The measurement cycle is inhibited until the COMMENCE NEXT CARD line is connected to the Recorder i.e. until SW. 1 has returned to position 2.

Tho 12 Terminal Unit numbors, $Y, X, 0$ to 9, corresponding to the 12 digits of the Card Punch, are fed to the Card Punch on one column as Terminal Unit Identification. The last digit of the Selector Unit serial number is used as Selector Unit Identification.

A bank of relays, operated in turn by SW. 2, connect the Test Supply to and disconnoct the Standby supply from the Terminal Unit selected.

A Manual Step switch is provided, stepuing the Terminal Unit Solector SW. 2.

13 THERMOCOUPLE AND VOLTAGE SRIECTOR UNIT - Figs. 11 and 30
This unit scans up to 12 Thermocouplo and Radiometor Terminal Units, denoted Y, X, O to 9 , the number connectod boing selectod by the switoh labelled 'Number of Terminal Units'. An earth terminal is provided for connection of the Recorder chassis and screened cables to the laboratory earth.

The Selector Unit incorporates two uniselectors, the 'Terminal Unit selector', SW.2, and the 'gauge selector', SW. 1 . SW. 1 scans the transducers from the two Terminal Units selected by SW.2. Dither 18 or 24 transducers per card may be recorded; using 18 transducers, only the first six of the second Terminal Unit are selected. Bofore the commencement of a reading cycle SW. 1 is at position 1 and SW. 2 at the neutral position. This is known as the Selector Unit 'neutral position' and there is therefore no signal output to the Recorder. On operating the START switch, either on the Recorder or the Selector Unit, SW. 2 will move to position 1, selecting Terminal Units Y and X. SELFCTOR DRIVE pulscs from the Recorder step SW. 1 through the 12, 18 or 24 gauges of Terminal Units Y and X, depending upon how many Terminal Units and how many gauges per card have been chosen. SW. 1 then skips through its neutral position to return to position 1. As it passes through the neutral position, SW. 1 steps SW. 2 to position 2, selecting Terminal Units 0 and 1. When SW. 2 reachos the position selectod by the 'Number of Terminal Units', it will skip to its neutral position.

On position 1 of SW.1, a NOT PRINT pulse is fed to the Recorder while the first measurement is being taken. The first measurement is then printed while in position 2. Hence on position 13, 19 or 25 a spurious measurement is taken while gauge 12, 18 or 24 is being printed. When SW. 1 reaches the end of one, or two, Terminel Units and skips, a SKIP pulse is fed via the Recorder, to the Card Punch which ejects the punched card and resets.

The measuremont cycle is inhibited until the COMMENCE NEXT CARD line is connected to the Recorder i.e., until SW. 1 has returned to position 1. The 12 Terminal Unit numbers, $Y, X, 0$ to 9 corresponding to the twelve digits of the Card Punch, are fed to one column of the Card Punch as Terminal Unit Identification. The last digit of the Solector Unit serial number is used as Selector Unit Identification. A Manual. Step switch is provided, stepping the Terminal Unit Sclector SW. 2.

14 STRAIN GAUGE AND THERMOCOUPLE SELECTOR UNIT - Figs. 12 and 31
This unit will scan 2 or 4 Strain Gauge Terminal Units and 2 or 4 Thermocouple Terminal Units. The selected Strain Gauges and Thermocouples are fed simultaneously to two Recorders, only the first 12 gaugos of the Strain Gauge Torminal Units being used. An carth terminal is provided for connection of the Recorder chassis and screened cables to the laboratory earth.

The Selector Unit incorporates two uniselectors, the gauge selector, SW. 1, and the Reading Number selector SW.2. By arranging pairs of wipers, A and $B, 180^{\circ}$ out-of-phase, $S W .1$ is converted to a 60 way selector and can route two sets of 24 gauges to one Rocorder.

The Selector Unit can be made to scan either 24 or 48 gauges by operation of the Channel Switoh.

The Rocordor measuring strain gauges is nominated Master Recorder. Before the commencement of a reading, SW. 1 is in the 'neutral position' and there is no output to the Recorders. On operating the Start switch, either on the Selector Unit or the Master Recorder, SW. 1 will move to position 1, routing the first Strain Gauge and first Thermocouple to the appropriate Recorder. When more than one pair of Recorders are required to be started simultaneously, an external Synchronising Unit is used.

SELECTOR DRIVE pulses from the Recorder step SW. 1 through the 24 gauges of the first two Torminal Units. SW. 1 will then skip through neutral position A to the first gauge of the third Terminal Unit, or to noutral position B if only 24 gauges are being recorded. As SW. 1 passes through its second neutral position, B, it stops SW. 2 on to change the Roading Number Identification. This is a 1 to 50 cyclic counter which automatically resets to 1 on first switching on. When SW. 1 skips, a SKIP pulse is fed via the Recorder to the Card Punch, which ejects the punched card and resets.

The measurement cycle cannot proceed on the next pair of Terminal Units until the COMMENCE NEXT CARD line is connected to the Recorder, i.e., until SW. 1 has returnod to position 1.

The two Strain Gauge punched cards are identified by numbers 5 and 7 and the two Thermocouple punched cards are identified by numbers 1 and 3. No Selector Unit identification is provided since not more than one Selector Unit is connected to one Rocorder.

15 SELECTOR ROUTING UNIT - Figs. 8 and 32

This unit will route the information from up to 5 Strain Gauge and Potentiometer or Thermocouple and Voltage Selector Units, numbered A to E, to one Recorder. A uniselector routes the control pulses from the Selector Units; the signal leads of the Selector Units are continually connected in parallel so that the Selector Units not connected to the Recorder must be in the noutral position, indicated by the green lights. The red lights show which unit is selected.

The Routing Unit is stepped manually by the Step switoh.
When the last Scloctor Unit has been read, stepping the Routing Unit will return it to position A. Selecting the 'Number of Selector Units' also varies the resistance of the Simulated Test Supply load so that a constant voltage is fed from the zener diode circuit to stabilise the Standby Supplies. The Standby Power Units, one for each Selector Unit, and an auxiliary 24 volt supply are also connected to the Selector Routing Unit.

This unit contains a complete wheatstone Bridge, fixed resistors being switched across two arms to provide an out-or-balance from -112 to +8000 digits. The simulation is only accurate for changes of out-of-balance. When simulating potentiometers, the fixed arms are open circuited. The Simulator is normally connected direct to the Recorder by the 8 core signal cable to the Digitising Amplifier and a 12 core cable to the Power Unit. The Test Supply is stabilised at the Simulator. An carth terminal is provided for connection of the Recorder chassis and screened cables to the laboratory earth.

17 TEMPERATURE SIMULATOR - Figs. 14 and 34

Outputs from 0 to $1100^{\circ} \mathrm{C}$ at a constant resistance of 100 ohm are provided in four scales:-

0 to $110^{\circ} \mathrm{C}, 0$ to $220^{\circ} \mathrm{C}, 0$ to $550^{\circ} \mathrm{C}$ and O to $1100^{\circ} \mathrm{C}$
each divided into 11 equal steps. The twelve outputs of any ono scale are available at a 25 pin unitor plug simulating a Thermocouple Terminal Unit and 12 thermocouples. Any step may also be routed to any channel of a galvanometer Recorder via two 12 pin unitor plugs or to a single channel recorder via an 8 pin unitor plug. A mercury coll provides the e.m.f., the meter reading full-scale when the battery is at full voltage. An earth terminal is provided for connection of the Recorder chassis and screened cables to the laboratory earth.

TTMING SUB-UNIT - Fig. 35

In the quiescent state the Selector Unit is in the noutral position and the READY (green) lamp is illuminated. The reading cyclo cannot commence until the SPACE STARI relays are operated. These relays are closed by the SPACE pulse from the Card Punch if the 'oarriage-return' contacts in the Iypewriter are closed, and lock in the closed position. On operation of the START switch, (see Appendix 6) the Selector Unit moves out of the neutral position and the COMMEN NEXT CARD line is fed to the Recorder. This closes the CONTROL relay, if the CONTROL switch is OFF, and the timing sequence commences. When synchronising two Recorders the CONTROL switch is $O N$ and the CONTROL relay does not close until the SPACE START rolays in the second Recorder have operated. Since the measurement of one gauge is memorised and printed out while the next gauge is being measured, a NOT PRINT pulse is fed to the Recorder to inhibit the Card Punch and Typewriter while the first gauge of each card is measured. Once started, the Recorder cycles until the Selector Unit has scanned the first one or two Torminal Units. The Selector Unit then feeds a SKIP pulse to the Recorder and Card Punch, which unlocks the SPACE START relays, shunts the galvanometer while the Selector Unit skips and resets the Card Punch and Typewriter. (The Card Punch may be skipped manually at the Recorder by operating the RESET ZERO button.) The Card Punch now prints the identification on the second card and feeds a SPACE pulse to the Recorder which re-starts when the COMMENCE NEXT CARD line is connected. This cycle of operations continues until all the gauges on all the Terminal Units have been scanned, when the Selector Unit returns to the neutral position.

If the START switch is permancntly operated the Selector Unit inmodiately initiates a further reajing cyclc.

Each measurement consists of a 3 or 4 digit cycle known as the measurement cycle. The description given belov is that of a four digit measurement cycle and is divided into four docade steps. The 3 digit cycie is similer, the pulses markod* in the text occurr ng ono decade earlior than in the 4 digit cycle. The sequences for 3 and 4 digit measurement cycles are shown diagrammatically in Figs. 36 and 37.

The four 100 m sec decinal decades of each measurement cycle are of decroasing significance, donoted $1000,100,10,1$ and commence on the 1000 position. Outputs are fod to the Digitising Amplifier to change its gain at oach decado and two DRIVE DICADE CHiANGE pulses (A and B) oporate the Decade Selector Sub-Unit. At each decade a DIGITISING pulse stimulates the Digitising Amplificr and a PRINT pulse is red to the Card Punch via the Memory and Decoder Sub-Units. During the last decade of cach cyelc the TRAVCFER*, SELECTOR DRIVR* and CAICRL* pulsos are generated, the SEIFCTOR DRIVE pulse also shunting the galvanometer while the Selector Unit moves.

A transistor multivibrator, locked to the mains frequency feeds a $50 \mathrm{c} / \mathrm{s}$ square wave to a dividing chain to obtain pulses with a 100 m sce period corrosponding to tho 10 decimal digits per socond operating speed of the Rocorder. A further $\div 3$ or $\div 4$ chain generates pulses with 500 or 400 m sec poriod corresponding to the tino of ono measurement cycle. The divider chains are used to drive the timing rolays. It is possible to drivo through the timing sequence manvelly in 20 msoc steps by operation of the Manual Step switch. When operating manually, to avoja goneratine a prolonged SEIECTOR DRIVE pulse, the timer should be pulsed straight through the last 20 m sec stop of each measurement cycle.

Similarly, caro must be taken not to burn out a Punch solenoid by genorating an extended PRINI pulso and for this reason the NOT PFTNT switch should be operated when stopping manually.

A DRIVE switeh disconnects the relay supply from the divider chain to ellow synchronous operation driven by a second Recordor.

Unitors are provided to allow for oxtomal starting and coupling of Recorder pairs. See the Plock Diagran Fig.16. The external synchronisation when using a pair of Reconders for elevatod tomperature testing must initiate reoding cycles at intervals of not loss than 10 secs for 24 gauges or 20 secs for 43 gaugos.

APPENDIX 2

LEAD ITNGYH COMPENSATION

List of Symbols used in this Appendix

$R_{1} \quad$ Resistanco of active gauge
R_{2} Iiesistance of dunmy gauge
$R_{3} R_{4}$ Rosistancos of fixed arms of bridge
I Length of lead wires from Terminal Unit to gauge
T Temperature of wire ${ }^{\circ} \mathrm{C}$
a Temperature coefficiont of resistance of $14 / 0076$ lead wires $=50 \times 10^{-6} \Omega$ per ft per ${ }^{\circ} \mathrm{C}$
$\mathrm{P} \quad$ Rosistivity of $14 / 0076$ load wires $=14 \times 10^{-3} \Omega$ per ft at $20^{\circ} \mathrm{C}$
$\rho_{\mathrm{T}} \quad$ Iesistivity of $14 / 0076$ lead wires $=24 \times 10^{-3} \Omega$ per ft at $220^{\circ} \mathrm{C}$
Considor tho strain gauge bridge, for examplo, as show in Fig .38 . The theatstone Bridge is formed by rosistors R_{1}, R_{2}, R_{3} and $R_{4},\left(R_{1}\right.$ and R_{2} being the active and dummy gauges). The bridge is balanced by the digital potontiomoter operated by the balancing rolays. Spurious resistances R_{5} to R_{15} aro introduced by load, plug and socket rosistancos. Since R_{5} and R_{6} reduce tho voltage to the bridge, while R_{9} and R_{10} reduce the sensitivity of the galvanometer, without affocting the balance point of the bridgo, these four resistances may bo ignored providod that measurements aro not teisen with an unbalanced bridge and that the voltage drop in R_{5} and R_{6} is not excossivo.

The scaie factor of the digital potentiometor is reduced by tho resistors R_{11}, R_{12} and R_{13}. For a Rocordor which is 120 yards from the Tomminal Unit, $R_{11}=R_{12}=R_{13}=360 \rho=5 \Omega$, which will reduce the scale factor by 0.2% since the offective resistance of the digital potentiometer is greater than 5000Ω.

The Strain Gauge Terminal Unit, illustrated in Fig.6, is designed to ensure that $\mathrm{F}_{7}, \mathrm{R}_{8}, \mathrm{R}_{14}$ and R_{15} aro kopt to a minimum by mounting tho Terminal Unit in close proximity to the gauges being neasured. Wiring between the Terminal Units and the Recorder has thereforo a negligiblo effect on systom accuracy. All signal connectors are gold plated to a thickness of 0.0003 in. to reduce contact potentials, rosistance and corrosion and the uniselector contacts are of solid silver.

There are two methods, in current use, of wiring the gauges R_{1} and R_{2} to the Strain Gauge Terminal Unit, the ' 2 wire' and ' 3 wire' systems. The effect of variation of the four parameters L, T, a and ρ on these systems for room temperature and elevated temperature tests will be examined using 120Ω gauges wired with 14/0076 leads.

1 ROOM TEMPERATURE TESTING

It is required that any errors shall be less than 1 digit, i.e. 0.0005% change of resistance, and shall not alter the gauge factor by more than 0.1% i.e. $R_{7} \bumpeq 0.1 \% R_{1}=0.1 \Omega$.

We have, for 1 digit error,

$$
0.0005=\frac{\alpha \times L \times T \times 100}{R_{1}}
$$

or

$$
a \times L \times T=6 \times 10^{-4} \Omega
$$

Two wire system: This method requires two wires from the gauge R_{1} to the Terminal Unit and two separate wires from the dummy R_{2} to the Terminal Unit.

For R_{7} to equal 0.1Ω the total length of lead from the gauge must not be greater than 8 ft . Hence the gauge must not be more than 4 ft . from the Terminal Unit.
(a) Consider the two wires comprising R_{7}, matched in length and a with those of the dummy wires R_{8}, but differing in temperature by $\mathrm{T}^{\circ} \mathrm{C}$.

$$
T=\frac{6 \times 10^{-4}}{a \times L}=\frac{6 \times 10^{-4}}{50 \times 10^{-6} \times 8}=1.5^{\circ} \mathrm{C}
$$

Hence care must be taken to ensure that the wires are isothermal.
(b) Assume R_{7} and R_{8} differ in length by L and during a test both change temperature from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$.

$$
L=\frac{6 \times 10^{-4}}{a \times T}=\frac{6 \times 10^{-4}}{50 \times 10^{-6} \times 10}=1.2 \mathrm{ft}
$$

Under these conditions the length of wiring must be matched to within 1 ft .
(c) If the four 4 ft leads comprising R_{7} and R_{8} are matched in length and a, and vary from $15^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ during test, but differ in resistance due to unequal resistivities i.e. $R_{7}-R_{8}=2 \times 4\left(\rho_{7}-\rho_{8}\right)$ then
$\frac{8\left(p_{7}-p_{8}\right)}{p}=\frac{6 \times 10^{-4}}{\alpha \times T}, \quad \frac{\left(p_{7}-p_{8}\right) \times 100}{p}=\frac{6 \times 10^{-2}}{50 \times 10^{-6} \times 10 \times 8}=15 \%$

For a lead resistence of 0.1Ω a resistivity tolerance of 15,5 is required. Standard wire is normally within this tolerance.
(d) Similarly, if in the above case (c) instead of differing resistivities, a_{7} and a_{8} were unequal,

$$
\frac{a_{7}-a_{8}}{a}=\frac{6 \times 10^{-4}}{L \times T}, \quad \frac{\left(a_{7}-a_{8}\right) \times 100}{a}=15 \% .
$$

The temperature coefficient of resistance must also be matched to 15%.
Three Wire System: This method requires 3 wires from the gauge R_{1}. One wire ' A ' to the Terminal Unit positive terminal, one wire ' B ' to the Terminal Unit gauge point, and one wire ' C ' direct to the dumy R_{2} '

The dumy R_{2} should be situated at the Terminal Unit so that the wire ' D ' from R_{2} to the negative terminal is very short.

Leads ' A ' and ' C ' are now in opposite arms of the bridge and are represented by R_{7} and R_{8} in Fig. 38. Lead ' B ' is now included in R_{9} and merely reduces the galvanometer sensitivity as discussed above.

Wires ' A ' and ' C ' can now be run togethor and the tolerance on L and T is thus less exacting.

The effect of any variation of the parameters L, T, a, p will be similar to the above four cases (a) to (d).

2 BLEYATED TEMFERATURE TESTING

The desired measuring accuracy may be reduced in this case to 0.005% change of resistance and the gauge factor tolerance increased to tw i.e. $R_{7}=1 \% R_{1}=1 \Omega$. This is a meximum value for R_{7} and, since the temperature may change by $200^{\circ} \mathrm{C}$, the room temperature resistance R_{7} is given by:

$$
\begin{aligned}
& R_{7}\left[1+200 \frac{a}{p}\right]=1 \Omega \\
& R_{7}=0.6 \Omega \quad \text { and } \alpha \times L \times T=6 \times 10^{-3} \Omega .
\end{aligned}
$$

The high temperatures to which the leads may rise makes the use of the Three Wire System imperative, and for this system the gauge R_{1} may be 45 ft from the Terminal Unit before the gauge factor tolerance is exceeded.
(a) At approximately $220^{\circ} \mathrm{C}$ the leads $\mathrm{R}_{7}=\mathrm{R}_{8}=1 \Omega$, and assuming they are equal in length and matched in a and ρ, but differ in temperature by T,

$$
T=\frac{6 \times 10^{-3}}{\left(\frac{a}{p}\right) \times(1 \Omega)}=\frac{6 \times 10^{-3}}{\left(\frac{50 \times 10^{-6}}{14 \times 10^{-3}}\right) \times 1}=1.7^{\circ} \mathrm{C}
$$

hence the need to keep the wires at the same temperature is still stringent.
(b) If, in the hot area, the leads rise $200^{\circ} \mathrm{C}$ during test and differ in length by L (or a resistance of $L p_{T}$)

$$
\begin{aligned}
I P_{\mathrm{T}} & =\frac{6 \times 10^{-3}}{\left(\frac{a}{p}\right) \times T}=\frac{6 \times 10^{-3}}{\left(\frac{50 \times 10^{-6}}{14 \times 10^{-3}}\right) 200}=8.4 \times 10^{-3} \Omega \\
L & =\frac{8.4 \times 10^{-3}}{24 \times 10^{-3}}=0.35 \mathrm{ft}
\end{aligned}
$$

and thus the length of lead in the hot area must be matched to within 4 in.
(c) If in the above case (b) the difference in resistance $R_{7} \sim R_{8}=8.4 \times 10^{-3} \Omega$ was due to a difference of resistivity between leads.

$$
\frac{\rho_{7}-\rho_{8}}{P}=\frac{R_{7}-R_{8}}{R}=\frac{8.4 \times 10^{-3}}{1}=0.8 \times 10^{-2}
$$

The resistivity tolerance is 0.8% and probably means that with leads matched to $\%$ for resistivity the maximum length given by gauge factor considerations, must be reduced from 45 ft to 20 ft .
(d) Similarly if the difference of resistance at $220^{\circ} \mathrm{C}$ is due to difference in temperature coefficient of resistance.

$$
\frac{a_{7}-a_{8}}{a}=\frac{\mathrm{R}_{7}-R_{8}}{\mathrm{R}}=0.8 \times 10^{-2}
$$

and the tolerance of 0.8% also therefore applies to a.
The change in gauge factor under any of the above conditions may be allowed for in analysis if the lead resistance and its variation with temperature is known, but this is not the most stringent consideration in Elevated Temperature Testing.

The resistivity tolerance is 0.8% and probably means that with leads matched to 2% for resistivity the maximum length given by gauge factor oonsiderations, must be reduced from 45 ft to 20 ft .
(d) Similarly if the difference of resistance at $220^{\circ} \mathrm{C}$ is due to difference in temperature coefficient of resistance.

$$
\frac{a_{7}-a_{8}}{a}=\frac{R_{7}-R_{8}}{R}=0.8 \times 10^{-2}
$$

and the tolerance of 0.8% also therefore applies to a.
The change in gauge factor under any of the above conditions may be allowed for in analysis if the lead resistance and its variation with temperature is known, but this is not the most stringent consideration in Elevated Temperature Testing.

APPENDIX 3

$$
\text { SCALE LINEARISATION - STRAIN GAUGES AND POTENTIOMETERS }{ }^{2}
$$

List of Symbols used in this Appendix

a \quad Scale constant $=2 \times 10^{5}$ digits
b Minimum Value of R_{1} / R_{2}
c Unit digital resistor 39.54×10^{6} ohm
a Resistor constant for bridge balance at 4333 when $R_{1}=R_{2}$
G Galvanometer
m Maximum value of numerical balance of Recorder $=8665$
n Numerical balance point of the Recorder
$\mathrm{R}_{1} \quad$ Resistance of active gauge
$R_{2} \quad$ Resistance of dumny gauge
$R_{3} R_{4}$ Resistances of fixed arms of bridge
V Energising voltage at strain gauge bridge
$V_{1} \quad$ Voltage across R_{1}
V_{2} Voltage across R_{3}
Since the Recorder is roquired to balance bridges containing gauge pairs the resistances of which may be between 50 and 5000 and in which the initial out-of-balance may oxceed that due to strain, a given small change in strain at the gauge R_{1} must produce the same change in the reading whatever the initial values of R_{1} and R_{2}. If $d n$ is the change in the reading, this means that for a fixed value of R_{2} we must have

$$
d n \propto \operatorname{strain} \propto a R_{1} / R_{1} \propto a\left(\ln R_{1}\right) .
$$

The resistance of the unstrained gauge is such that R_{1} / R_{2} is independent of temperature. Thus the following equation must hold for varying temperature,

$$
d n=a d\left\{\ln \left(R_{1} / R_{2}\right)\right\}
$$

giving

$$
\begin{equation*}
\frac{R_{1}}{R_{2}}=b \exp \left(\frac{n}{a}\right) \tag{1}
\end{equation*}
$$

as the required scale slope for the Recorder.
With the notation of Fig. 39 we have

$$
\begin{aligned}
\frac{V_{1}}{V} & =\frac{R_{1}}{R_{1}+R_{2}} \\
& =\left\{1+\frac{1}{b} \exp \left(-\frac{n}{a}\right)\right\}^{-1} \quad \text { from (1) }
\end{aligned}
$$

Expanding the exponential powers of n / a (assumed small) gives:

$$
\frac{V_{1}}{V}=\frac{b}{1+b}\left\{1-\frac{n}{a(1+b)}+\frac{n^{2}}{2 a^{2} b(1+b)} \cdots\right\}^{-1}
$$

and using the binomial expansion of $(1+x)^{-1}$ where $x=\frac{-n}{a(1+b)}+\ldots$ gives

$$
\frac{V_{1}}{V}=\frac{b}{1+b}\left\{1+\frac{n}{a(1+b)}-\frac{n^{2}}{2 a^{2} b(1+b)}+\frac{n^{2}}{a^{2}(1+b)^{2}} \cdots\right\}
$$

If ($b-1$) is a small quantity of order n / a (as it must bo from (1), if $R_{1}=R_{2}$ at some point within the scale), the coefficient of n^{2} / a is zero and

$$
\begin{equation*}
\frac{v_{1}}{V}=\frac{b}{1+b}\left\{1+\frac{n}{a(1+b)}+\text { terms in } \frac{n^{3}}{a^{3}}\right\} \tag{2}
\end{equation*}
$$

The resistance network in Fig. 39 gives

$$
\begin{equation*}
\frac{V_{2}}{V}=\frac{c+100(d+n)}{2 c+100(d+m)} \tag{3}
\end{equation*}
$$

The balance condition $V_{1}=V_{2}$ therefore leads to a value of n linearly related to strain if c and d are given values which make the right hand sides of (2) and (3) equivalent.

The equations to be satisfied are:

$$
\frac{c+100 d}{2 c+100(d+m)}=\frac{b}{1+b} \text { and } \frac{100}{2 c+100(d+m)}=\frac{b}{a(1+b)^{2}}
$$

giving

$$
\begin{equation*}
c=100\left\{a\left(1+\frac{1}{b}\right)-m\right\} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a=a\left(b-\frac{1}{b}\right)+m \tag{5}
\end{equation*}
$$

We require that $m=8665, a=2 \times 10^{5}$ and that $n=4333$ when $R_{1}=R_{2}$. Hence
from (1)

$$
b=\exp -\frac{4333}{2 \times 10^{5}}=e^{-0.02}=0.9802
$$

and the condition that $b \bumpeq 1$ is satisfied. (4) and (5) now give

$$
\begin{aligned}
& c=100\left(2 \times 10^{5} \times 2.0202-8665\right)=39.54 \times 10^{6} \\
& d=2 \times 10^{5} \times(-0.04000)+8665=665
\end{aligned}
$$

-

s
+

APPENDIX 4

SCALE LINEARISATION - MILLIVOLTS AND THERMOCOUPLES

List of Symbols used in this Appendix

$b_{1} \quad$ Scale constant for millivolts - $100 \mu \mathrm{~V} /$ digit
$\mathrm{b}_{2} \quad$ Scale constant for thermocouples $0-433^{\circ} \mathrm{C}, 41 \mu \mathrm{~V} /$ digit
b_{3} Scale constant for thermocouples $433-865^{\circ} \mathrm{C}, 42 \cdot 6 \mu /$ digit
c Unit digital resistor 3.954×10^{6} ohms
m Maximum value of numerical balance of Recorder $=865$
n Numerical balance point of the Recorder
r_{1} Precision Resistor determining balanco voltage for millivolts
r_{2} Precision Resistor determining balance voltage for thermocouples
R Matched resistor pair
$R_{c} \quad$ Linearising resistor for T_{1} / T_{2} thermocouples
V Stabilised voltage supply
$v_{r} \quad$ Voltage generated to balance transducer input
y Finge point of T_{1} / T_{2} thermocouple scale

Millivolts

The basic circuit given in Fig. 40 may be redraw, using Thevenin's theorem, as in Fig. 41 since the stabilised voltage supply V is of negligible impedance. From the latter diagram, using Kirckoff's laws, we obtain the voltage $v_{r_{1}}$ developed across r_{1} to balance the transducer input voltage.

$$
\begin{equation*}
v_{r_{1}}=\frac{v r_{1}\left(\frac{c}{m}\right)}{c\left(\frac{c}{m}+R+2 r_{1}\right)} n \tag{1}
\end{equation*}
$$

Thus $\mathrm{v}_{r_{1}}$ is proportional to n and the scale slope b_{1} is given by

$$
\begin{gather*}
b_{1}=\frac{V r_{1}\left(\frac{c}{m}\right)}{c\left(\frac{c}{m}+R+2 r_{1}\right)} \tag{2}\\
-29-
\end{gather*}
$$

Hence the value of r_{1} is obtained.

$\mathrm{T}_{1} / \mathrm{T}_{2}$ Thermocouple

The T_{1} / T_{2} scale has two slopes b_{2} and b_{3} hinged at the point y as shown in Fig.42. Consider the cold junction to be at $0^{\circ} \mathrm{C}$. For temperatures from $0^{\circ} \mathrm{C}$ up to $\mathrm{n}=\mathrm{y}$, the circuit, Fig. $43 a$ is similar to that in Fig. 41 for millivolts, and we obtain:

$$
\begin{equation*}
v_{r_{2}}=\frac{V r_{2}\left(\frac{c}{m}\right) n}{c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]} \tag{3}
\end{equation*}
$$

Thus $\mathrm{v}_{\mathrm{r}_{2}}$ is proportional to n and the scale slope b_{2} is given by

$$
\begin{equation*}
b_{2}=\frac{v\left(\frac{0}{m}\right)}{c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]} \tag{4}
\end{equation*}
$$

From $n=y$ to $n=m$ the circuit is modified to that shown in Fig.43b. Again applying Kickoff's Laws we obtain an expression for the balance voltage across r_{2},

$$
v_{r_{2}}=\frac{V r_{2}\left(\frac{c}{m}+R_{c}\right) n-v \frac{m r_{2}}{2} R_{c}}{\left[c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]+\frac{R_{c}}{2}\left(R+2 r_{2}\right)\right]}
$$

Since

$$
\begin{align*}
0\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right] \gg \frac{R_{0}}{2}\left(R+2 r_{2}\right), \quad v_{r_{2}} \bumpeq & \frac{V r_{2}\left(\frac{c}{m}+R_{c}\right) n}{c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]}- \\
& -\frac{V m r_{2} R_{c}}{2 c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]} \tag{5}
\end{align*}
$$

hence

$$
\begin{equation*}
b_{3}=\frac{V r_{2}\left(\frac{c}{m}+R_{c}\right)}{c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
y=\frac{1}{\left(b_{3}-b_{2}\right)} \frac{V m r_{2} R_{c}}{2 c\left[\left(\frac{c}{m}+R_{c}\right)+R+2 r_{2}\right]} \tag{7}
\end{equation*}
$$

From equations (4) and (6)

$$
\begin{equation*}
R_{c}=\frac{\left(b_{3}-b_{2}\right)}{b_{2}} \frac{c}{m} \tag{8}
\end{equation*}
$$

and substituting for R_{c} in equation (6) the value of R_{2} is obtained. From equation (4) and (7) and substituting for R_{c} from equation (8) the value of y is given as $\frac{m}{2}$. Hence the hinge point from b_{2} to b_{3} is at $433^{\circ} \mathrm{C}$.

The full scale of the millivolt and thermocouple zero adjustments alter the scale slopes by less than 0.05%.

The deviation of the Recorder thermocouple scale from the true T_{1} / T_{2} calibration ${ }^{3}$ is shown in Fig. 44 .

APPENDIX 5

SETTING UP ARD CALIBRATION PROCEDURE

1 SETTING-UP PROCEDURE FOR DIGITISTING AMPLIFIER
1.1 Adjustment of resistors.
(a) Insert simulator, and earth.
(b) Set mechanical zero of DIGITISER INPUT meter (M1).
(c) Switch on and leave for 1 minute.
(d) Set 7 volt IEST SUPPLY in power unit to $7 \mathrm{~V} \pm 0.01 \mathrm{~V}$.
(o) Adjust R11 to give full swing from -ve to +ve rail on M1, using SIMULATE DIGITISER INPUT potentiometer.
(f) Adjust DIGITISER ZERO SET FOR $12 / 13$ transition as indicated on M1.
(g) Aảjust SENSITIVITY control for $2 / 3$ transition to occur as indicated on M1.
(h) If necessary, repoat (e) and (f).
(i) Check all transitions to occur at positions indicated on $M 1$.
1.2 Check procedure (to be performed at regular intervals).
(a) Depress Test Amplifier switch to SIMULATE DIGITISER INPUT and set to read 1 on 0-15 digital scale of meter (see Fig.46).
(b) Operate Start switch and, at the end of each card, increase simulation by one digit, up to 15 .
(c) Switch TTMER off during ejection of the 15 th card and check the cards read as follows:-

3 digits/measurement
$\begin{array}{llllllllllllllll}\text { Card } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

- $011,122,133,244,255,366,377,488,499,610,621,732,743,854,865$

4 digits/measurement
$\begin{array}{llllllllllllllll}\text { Card } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

- $\quad 0111,1222,1333,244,2555,3666,3777,4888,4999,6110,6221,7332,7443,8554,8665$
(d) Raise to TEST AMPLIFIER and adjust mechanical zero of galvanometer (fine adjustment made by moving lamp).
(e) Return TEST AMPLIFIER switch to mid position and START switch to mid position.
(f) Switch TIMER on and run until the Selector Unit reaches the neutral position.

2
 CALIBRATION PROCEDURE

2.1 Digitising Amplifier (A) Fig. 19
(a) Set FUNC'TION SELECTOR to STRAIN GAUGES and plug in Strain Gauge Simulator.
(b) Set Timing Unit to 1 's position by operating MANUAL STEP switch. Adjust FEEDBACK potentiometer till a change of 10 digits (1 on X10 range of Simulator) produces a digital change of 10 ± 1 on meter M1.
(c) Set Timing Unit to 1000 's position.

Measure the number of digits change on Simulator required to produce 6 digits change on M1. Adjust R56 till number is 6000 ± 60.
(d) Set Timing Unit to 100's position.

Measure number of digits change on Simulator required to produce 14 digits change on M1. Adjust R57 till number is 1400 ± 14.
(e) Set Tiraing Unit to 10 's position. Measure number of digits change on Simulator required to produce 14 digits change on M1. Adjust R58 till number is 140 ± 2.

2.2 Balancing and Memory Unit

(a) With analogue scale of M1 at 1, digitise - check M1 now reads 9

(b)	$"$	$"$	$"$	$"$	$" 13$,	$"$	$"$	$"$	$"$
(c)	$"$	$"$	$"$	$"$	$" 11$,	$"$	$"$	$"$	$"$
(d)	$"$	$"$	$"$	$"$	$" 10$,	$"$	$"$	$"$	$"$

The above procedure should be carried out on 1000 's, 100 's and $10^{\prime} \mathrm{s}$ position.
(d) is not used on 1000 's position.
2.3 Digitising Amplifier ($B-T_{1} / T_{2}$ scale) (3 digits/measuroment)
(a) Disconnect feedback wire from emitter VT2 and set to STMULATE DIGITISER INPUT.
(b) Set FUNCTION SELECTOR to $\mathrm{T}_{1} / \mathrm{T}_{2}$ Thermocouple.
(c) Set T_{1} / T_{2} ZERO potentiometer to mid position.
(d) Check that approximately $42 \cdot 6 \mu \mathrm{~V} /$ digit are produced across R 62
from 433 to 865 digits by changing balancing relays from $4000+300+30$ to $7000+1500+150$. If necessery adjust R62.
(e) Check that with the bolancing relays at 0 (4000, 800 and 80 relays operated), approximately $1 \mathrm{mV}\left(25^{\circ} \mathrm{C}\right)$ is produced across R 62 .
Adjust T_{1} / T_{2} ZERO, and if the above condition is not fulfilled with the potentiometer near its mid position, adjust R7O.
(f) Repeat (d) to within $\pm 0.1 \%$.
(g) Adjust R13 (in Balancing and Print Out Unit) to give $41 \mu \mathrm{~V} /$ digit from 0 to $432(3000+1200+120)$ to $\pm 0 \cdot 1 \%)$.
N.B. on T_{1} / T_{2} scale $V_{T}=41 \times T \mu V \quad u p$ to $433^{\circ} \mathrm{C}$

$$
V_{T}=(42.6 \times T-693) \mu V \text { above } 433^{\circ} \mathrm{C}
$$

(h) Reconnect feedback wire to VT2 emitter.
2.4 Digitising Amplifier ($C-m V$ scale) (3 digits/measurement)
(a) Disconnect feedback wire from emitter VT2 and set to SIMULATE DIGITISER INPUT.
(b) Set FUNCTION SELECTOR to MILLIVOLTAGE.
(c) Set M.VOLT ZERO potentiometer to mid position.
(d) Cheok that approximately $100 \mu \mathrm{~V} /$ digit are produced across R61 from 0 to 865 by changing balancing relays from $0(4000,800$ and 80 operated) to $7000+1500+15$. Adjust R61 if necessary.
(e) Check that with the balancing relays at 0 , no voltage is produced across R61. Adjust M.VOLT ZERO and if this condition is not fulfilled with the potentiometer near its mid position, adjust R67.
(f) Repeat (d) to within $\pm 0 \cdot 1 \%$.

APPENDIX 6

OPERATING THE RECORDER

The universal nature of the Recorder necessitates a minimum setting-up procedure for each type of measurement. A listed outline of the initial switch settings is given, followed by a detailed explanation of the identification facilities and operating procedure.

1 INITIAL SWITCH SETTITNGS
Recorder. Function Selector: Strain Gauges, Potentiometers, Millivolts,
T_{1} / T_{2} Thermocouples
Digits: 3 or 4 digits per measurement cycle
Control: OFF
Timer: OFF
Drive: ON
Start Switch: OFF
Selector Unit. Number of Terminal Units $1,2,3 \ldots \ldots 10$ or 12 . Number of Gauges per Terminal Unit: 12 or 18. Start switch OFF

Card punch. Plug board Auto plug identification. (For method of setting up this information see note below.)

For elevated temperature testing, connect up Recorder pairs and switch Control ON on all Recorders.
N.B. The Recorder power supplies should be switched on at least 1 min. before measuring thermocouples and voltages, or 1 hour before measuring strain gauges.
1.1 Card Punch Identification See Figs. 3 and 24

Definitions
(a) a 'measurement' or 'measurement cycle' consists of the 3 or 4 digits corresponding to one transducer,
(b) a 'set of measurements' is the block of 12, 18 or 24 'measurements' punched on one card,
(c) a 'reading' or 'reading cycle' is the complete scanning and recording of all the transducers connected to one Selector Unit.

Information which will not change during test may be automatically punched by using link plugs to connect the desired digit to the appropriate column, on the plug board. The plug board is situated at the top of the card punch.

Frequently changing information is selected by use of the auto plug unit. The appropriate column is connected to one of the 12 auto plug points on the plug board and the required digit selected on the corresponding switch on the auto plug unit.

Identification information may be positioned in any column preceding or following the set of measurements. It is essential that a space pulse be plugged in the column immediately preceding the first measurement. The space pulse initiates the reading cycle and can be used as a master switch at the auto plug unit if required. The transducer measurements must be in 36,48 , 54 or 72 sequential columns.
'Cancel skip' if used, should always be called one column earlier than required and any number (not space) be plugged in the following column. This is a safeguard against the Punch carriage over-running the cancel call.

1.1.1 Strain Gauge and Potentiometer Selector Units or Thermocouple and Voltage Selector Units

These are identified by the last digit of their serial number. This will be automatically punched if position $7 / 20$ is connected to the required column on the plug board. Identification of the Terminal Unit being measured may be similarly connected to the appropriate column from position 6/20.

1.1.2 Strain Gauge and Thermocouple Selector Units

The Strain Gauge and Thermocouple Selector Unit provides a Terminal Unit Identification on position $6 / 20$ of the plug board. A $1-50$ counter steps on at the end of every set of readings and provides a serial identification of the Reading Number on positions $7 / 20$ and $8 / 20$.

1.2 Operating Procedure

This procedure should be followed in detail when commencing a series of recordings, but may be considerably reduced on subsequent operation.

Starting: The reading cycle may be initiated at the Recorder, Selector Unit or the Card punch. Each operation is in itself simple, but because of the different modes some explanation is necessary. The START switch ' A ' on the Selector Unit is an ON/OFF switch connected in parallel with the START ON/OFF switch ' B ' at the Recorder. When one of the START switches A or B is switched $O N$ the reading cycle commences as soon as a SPACE is received from the Card Punch. A 4 pin unitor plug is wired in parallel with the Recorder START switch ' B ', to facilitate remote control.

Operating from the Recorder. Set switch 'A.' OFF, switch ' B ' to OFF and plug SPACE in the appropriate position on the Card Punch. To start, switch ' B ' ON momentarily and the Recorder proceeds through one reading cycle. For continuous cycling, switch ' B ' is left ON .

Operating from the Selector Unit. Set switch ' A ' OFF, switch 'B' OFF and plug SPACE in the appropriate position on the Card Punch. To start, switch 'A' ON momentarily and the Recorder proceeds through one reading cycle. For continuous cycling, switch 'A' is left ON. Operation from the Selector Unit is not possible when using the Selector Routing Unit.

Operating from Card Punch. Switch ' A ' or ' B ' is switched ON and the SPACE pulse is connected via the Autoplug unit and the channel switch used is set to the blank position. To start, set the Autoplug switch to SPACE and the Recorder will continuously cycle until the Autoplug switch is returned to the blank position.

In the following sections it is assumed, for sake of clarity, that the reading cycle is started at the Recorder.

Recorder: Switch power supplies ON and check voltages.

Test Voltage Adjustment

Set the Test Supply by depressing the push switch and adjusting the potentiometer until the meter deflection is zero.

Selector Check the READY (green) lights on all units are illuminated, Unit: and the START switch is in the OFF position.

Selector Check the READY (green) lights, corresponding to those Selector Routing Units in use, are illuminated.
Unit: Check that the Routing Unit is in the 1st position (red light).

Card Insert a card stack and inspect them for bent or snagged edges.
Punch: Switch ON and call skip (Blank button on punch control unit). If there was no card in the punch previously, operate the card eject lever. Check identification on the card in the punch. After changing the card identification, skip a card through the punch before commencing a reading cycle. (This is not necessary if the identification is positioned after the set of measurements on the card.)

Typewriter: Insert double or extra thick paper at least $8^{\prime \prime}$ wide. Switch ON.

1.2.1 When using one selector unit

Switch TIMER ON.
Operate the START switch on the Recorder momentarily. The Recorder will scan all the gauges once and stop.

If continuous cycling is required, leave the START switch in the ON position.
1.2.2 When using the selector routing unit

Switch TIMER ON.
Operate the START switch on the Recorder. The Recorder will scan all the gauges in the first Selector Unit.

On completion of the first Selector Unit, the green light will reappear on position 1 of the Routing Unit.

Step the Routing Unit to the next Selector Unit 2. The red light on the Routing Unit will move to the next position 2.

Skip a card through the Punch by operating the RESET ZERO button on the Recorder or the blank (SKIP) button on the card punch. (This is not necessary if the identification is positioned after the set of measurements on a card.) Operate the START switch on the Recorder.

Repeat the above procedure for the remaining Selector Units and return the Routing Unit to position 1. Skip a card through the Punch.

1.2.3 Then elevated temperature strength testing

Couple up the pair of Recorders and switch DRIVE off on Recorder measuring thermocouples.

Switch TIMER on at both Recorders.
Start reading cycle either by an external synchronising unit, or by switching ON the START switches on both Recorders and initiating the cycle by switching the SPACE pulse on one Card Punch.

At regular intervals the mechanical zero of the galvanometer should be adjusted and the Setting Up Procedure given in Appendix 5.1.2 carried out.

APPENDIX 7

FAULT FINDING

1. U/S Measurements

Unit	Check	Correct Operation	Possible Faults
	Earth connections		
Digitising Amplifier	1. Mechanical Zero of galvanome ter	± 2 Digits of indicated position on M1	
	2. Setting of U / S circuit, by rotating galvanometer	Relay R.I. 16 opens when INPUT meter exceeds range 0-16	Transistors VT. 3 and VT. 4
Terminal Unit	3. Cables, by interchanging		Fuse blown or faulty cable
Selector Unit	4. Cables, by interchanging		
	5. Clean uniselector contacts		
	6. Adjustment of uniselector motor	Wipers in mid position of segments	
Digitising Amplifier	7. Digitising of simulated input, 0-15. Plot input voltage at SW $1 \mathrm{~A} / 2$ against transition	Digital output lights correspond to digital scale of meter	$\begin{aligned} & \text { Relays R.L. } 1 \text { - R.L. } \\ & 15 \end{aligned}$
	of digital output lights	Straight line	Transition points off the line indicate faulty digitising
	8. Balancing and Memory subunit Operation of Balancing relays	As given in Appendix V 2.2	Relays R.L. 29 - R.L. 40, decade selector or Digitising Amplifier feed diodes.
Timing sub-unit	9. Timing of Cancel rail	As given in Figs. 36 and 37	Relay R.L. 75

2. Misprints Correctly Digitised Information

Unit Check Correct Operation Possible Faults

Balancing and Memory sub-unit	1. Operation of Memory relays	Operate during Mransfer pulse	Feed diodes MR. 7 - MR. 17, decade selector. Relays R.L. 12 -R.I. 27
Timing sub-unit	2. Timing of Cancel and Transfer rails	As given in Figs. 36 and 37	Relays R.L. 75 and R.I. 76
Decoder sub-unit	3. Operation of Decoder	Relays must stabilise before PRINI pulse	Slow operation of relays R.L. 1 -R.L. 9
Card Punch	4. Obtain services of punch engineer		
PUNCH FAILS TO FEED CARD			
Card punch $\begin{aligned} & \text { Cards } \\ & \\ & \text { SKIP }\end{aligned}$	Cards warped or badly stacked, Switch off typewriter, Remove bottom 3 cards from stack, SKIP and manually operate card lever. Switch typewriter on.		

CARD JAMS IN FUNCH
Switch off SPACE, typewriter and punch. Remove damaged card and switch on punch. SKIP and manually operate card lever. Switch typewriter and SPACE on.

Unit	Check	Correct Operation	Possible Faults
Timing sub-unit	1. TIMER switched on $50 \mathrm{c} / \mathrm{s}$ lock ON		
	2. $50 \mathrm{c} / \mathrm{s}$ output from multivibrator	square wave, 4 volt peak-to-peak	CONTROL circuit or R.L. 67 open.
	3. SPACE pulse supplied from punch	-150 volt applied across R. 98 and R.L. 65	Not plugged or switched at punch.
	4. Typewriter carriage return contacts (C.R.)	closed when C.R. not operating	adjustment of contacts in typewriter
	5. COMMENCE NEXT CARD input	+24 volt on 19/SK. 2	Selector Unit disconnected or in SKIP position
	6. Operation of relays R.L. 58 -R.L. 63	as given in Figs. 36 and 37	Binary units, transistors V.T. 3 - V.T. 13, relays R.L. 58 -R.L. 63
	7. Operation of relays R.L. 72 - R.I. 76	as given in Figs. 36 and 37	Relays R.L. 72 - R.L. 76
	4. Punch Fails to Print, or	Prints Erratically	
Unit	Check	Correct Operation	Possible Faults
	1. Punch and typewriter ON		
Timing sub-unit	2. Operation of RESET ZERO switch	Skips punch, indicating -150 V supplied	Fuses in punch blown.
	3. Operation of PRINT pulse	as given in Figs. 36 and 37	Relays R.L. 64, R.L. 68 and R.I. 69.
Decoder sub-unit	4. Operation of relay tree	relays must have stabilised before PRINT pulse	Slow operation of relays R.L. 1 -R.L. 9.
Balancing and Memory sub-unit	5. Timing of information input to Decoder	relays must have stabilised before PRINT pulse	Decade Selector or Memory relays.

TABLE I-Use of redundant coding to increase amplifier tolerance

Decade	The two ways of obtaining balance at 4388		Eight ways of obtaining balance at 4333								Digittzing-amplifier tolerance									
10^{n}			\% full scale	Digits																
$0-7$ thousands	4000	3000									4000	4000	4000	4000	3000	3000	3000	3000	$\begin{aligned} & +11.1 \\ & -\quad 0.033 \end{aligned}$	$\begin{aligned} & +667 \\ & -2 \end{aligned}$
0-15 hundreds	300	1300	300	300	200	200	1300	1300	1200	1200	$+\quad 4.8$ $+\quad 0.14$	$\begin{aligned} & +67 \\ & -2 \end{aligned}$								
0-15 tens	80	80	30	20	130	120	30	20	130	120	+5 -1.4	$\begin{array}{r} +7 \\ -2 \end{array}$								
$0-15$ units	8	8	3	13	3	13	3	13	3	13	$\begin{gathered} +11 \\ -11 \end{gathered}$	$\begin{aligned} & +1 \frac{1}{2} \\ & -1 \frac{1}{2} \end{aligned}$								
	4388	4388	4333	4333	4333	4333	4333	4333	4333	4333										

FIG. 2 RECORDING ROOM

FIG. 3 CARD PUNCHES AND TYPEWRITERS

FIG.4. EARTH CONNECTIONS

FIG. 5 TAIL PLANE INSTALLATION

NOTE: The Terminal Units(A) are located close to the gauges, and are connected by short multicore cables (B) to the Selector Unit. The control cables (C) from the Recorder $75 y d s$ away, are loomed well clear of the signal cables (D).

Precision Fixed Arms of Bridge
FIG. 6 STRAIN GAUGE TERMINAL UNIT
Terminal Unit Selector

Gaugé Selector
Test-Standby Supply Relays
FIG. 7 STRAIN GAUGE AND POTENTIOMETER SELECTOR UNIT

FIG. 8 SELECTOR ROUTING UNIT

FIG. 9 THERMOCOUPLE AND RADIOMETER TERMINAL UNIT AND COLD JUNCTION OVEN

FIG. 10 THERMOCOUPLE TERMINAL UNIT

FIG. 11 THERMOCOUPLE AND VOLTAGE SELECTOR UNIT

FIG. 12 STRAIN GAUGE AND THERMOCOUPLE SELECTOR UNIT

FIG. 13 STRAIN GAUGE AND POTENTIOMETER SIMULATOR

FIG. 14 TEMPERATURE SIMULATOR

Fig. I5. functional diagram of strain gauge installation

FIG.I6.BLOCK DIAGRAM SHOWING CHASSIS INTERCONNECTIONS.

FIG.I7. POWER UNIT.

(302) -

CIRC REF	DESCRIPTION	TYPE	SPEC	SERVICE REF ${ }^{\circ}$
PLI	3 PIN PlUG	-	-	BULGIN
SK 3	SOCKET FIXED SMALL 2 POLE	P4×F2 20	5321	0560230
ske	MuLTiPole gentral purpose 12 WAY socket	UNITOR NAIORA	OEF 5321	5035-99-056-2608
RLI	gelay carpenter coil 37	SIM.	-	TMC
RL2 \& RL3	Relay heavy outy 6V 45Ω	Sm5A-H77	RCL 165	5945-99-01-9884
MRI TOMR4	RECTIFIER FULL WAVE	$\begin{aligned} & 13 k 2 \\ & \text { vall } \end{aligned}$		ENGLISH ELECTRIC
T1	VARIAC TRANS FURMER ZENITH ELECTRIC 10	80-A5-350	-	-
MI	VOLTMETEL MOVING COIL IOVOC	-	-	-
LI	CHOKE OOIN ISA	-	-	-
CI	CAPACITOR ELECTROLYTIC $25 \mathrm{~V} 1000 \mu \mathrm{~F}$	CE4-U	RCLI 134 A	2145520
FS 1	FUSE is AMP	-	-	-
LP1	GV LAMP ANO HOLDER	-	-	THORN
RI\&RE	RESISTOR EFXED COMPOSITION $1 / 4 \mathrm{~W} 3.3 \mathrm{k} \Omega$	RCP-E	RCL 112	0215301

FIG.I8. STAND BY POWER UNIT

FIG. 2I. DECADE SELECTOR SUB UNIT.

FIG. 22. BALANCING AND MEMORY SUB UNIT.

FIG. 25. AUTO PLUG UNIT

CIREVIT	DESCRIPTION	TYPE
RLL 1	26 WAY FIXED PLUG - ON SERVOTYPER	ELECTRO METHODS
PL 2	50 WAY FIXED PLUG - ON SERVOTYPER	ELECTRO METHOOS
PL3	25 WAY FIXED PLUG - ON CARD PUNCH	BELLING - LEE

FIG.27. STRAIN GAUGE TERMINAL UNIT.

CIRC. REF.	DESCRIPTION	DEF. SPEC.	TYPE	SERVICE REF. NQ
PLI	MULTI POLE GENERAL PURPOSE PLUG FIXED 25 POLE (WITH GOLD PLATED PINS)		UNITORNOIOR (B)	BELLING AND LEE

FIG.28. THERMOCOUPLE TERMINAL UNIT.

gauge selector swi

						$\begin{gathered} \stackrel{a}{u} \\ \vec{u} \\ \stackrel{\rightharpoonup}{I} \end{gathered}$			$\begin{aligned} & \text { む } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{b} \\ & \hline \end{aligned}$		$\left\lvert\, \begin{aligned} & x \\ & b \\ & \hline \end{aligned}\right.$	年	$\begin{array}{\|l\|l} \frac{0}{0} \\ \frac{0}{2} \\ \hline \end{array}$	$\begin{array}{\|l} \frac{2}{0} \\ \frac{0}{8} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \mathbf{z} \\ 0 \\ \vdots \\ t \end{array} \right\rvert\,$	｜l｜l｜	彦	碳			cour
		产免							$\stackrel{\square}{\square}$	离			管	＋		三	三	害		三	¢
$\stackrel{\stackrel{\rightharpoonup}{a}}{\stackrel{a}{f}}$	2		58						9	$\stackrel{\square}{\square}$		¢				京	寿	令		\％	
					0 0 0 0							$\begin{aligned} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{aligned}$								$\left[\begin{array}{l} 3 \\ 3 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	
$\begin{array}{\|} \hline \stackrel{\rightharpoonup}{w} \\ \stackrel{\rightharpoonup}{w} \\ \stackrel{\underline{w}}{\tilde{u}} \\ \hline \end{array}$	$\left[\begin{array}{l} \frac{a}{a} \\ a \\ a \\ 0 \\ a \\ a \end{array}\right.$	$\stackrel{o}{a}$	$\stackrel{\rightharpoonup}{a}$	$\stackrel{\rightharpoonup}{\underline{u}}$		3			$\stackrel{3}{3}$	n	$\frac{8}{2}$		－	ง		$\bar{\alpha}$	\％	～		2	$\underset{\text { ¢ }}{ }$

FIG．30．THERMOCOUPLE AND VOLTAGE SELECTOR UNIT．

FIG.32. SELECTOR ROUTING UNIT.

FIG.37. TIMING SEQUENCE - 4 DIGIT CYCLE.

FIG.38. STRAIN GAUGE BRIDGE WITH LEAD RESISTANCES

FIG.39. LINEARIZED STRAIN GAUGE BRIDGE.

FIG.40. MILLIVOLT BALANCING CIRCUIT

FIG.4I. EQUIVALENT MILLIVOLT CIRCUIT

FIG. 42. TI/T2 THERMOCOUPLE SCALE.

(a) UP TO $n=y$

(b) ABOVE $n=y$

FIG.43. EQUIVALENT THERMOCOUPLE CIRCUIT.

FIG. 44. RECORDER T_{1} / T_{2} THERMOCOUPLE SCALE ERROR CURVE.

FIG. 45 SCALE OF DIGITISER INPUT METER M. 1

Printed in Eng land for Her Majesty's Stationery Office by
the Royal Aircraft Establishment, Farnborough. Wt 61 K4

C.P. No. 825

(C) Crown Copyright 1965
Published by
Her Manesty's Stationery Office
To be purchased from
York House, Kingsway, London w.c. 2
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
39 King Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichoster Street, Belfast 1
or through any bookseller

C.P. No. 825

