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Slender-body theory is used to calculate the effects on lift and moment 
of mounting the wing of a wing-body combination above or below the body axis, 
with and without wing-body angle. The wing must have a local span which 
increases in the downstream direction, an unswept trailing edge and un- 
cambered cross-sections. The cross-sections of the body are assumed to be 
circles of constant radius over the length of the wing. 

It is found that the effects of the asymmetrical mounting are substantial 
when the body diameter is more than half the wing span, but fall off as the 
body shrinks. For a typical airoraft configuration, the pitching moment is 
found to be more affected than the lift. 

--- 
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-l INTRODUCTION 

z 

r 

A possible shape for a supersonic aircraft or missile is basically a wing 
of nearly triangular planform shape mounted on a body of almost circular cross- 
section. In the case of the aircraft, the wing may well not be mounted symmet- 
rically on the body for non-aerodynamic reasons. The present paper is intended 
to help in the assessment of the effects on lift and, more significantly, on 
pitching moment of asymmetric wing mounting, with and without iving-body angle. 

The configuration studied comprises a wing with a swept-back leading edge, 
a local span increasing in the stream direction and an unswept trailing edge, 
which is mounted on a body, possibly cambered, whose cross-sections are circles 
of constant diameter over the len&h of the win2:. The wing may be curved in 
the streamwise direction onl:/; it may be set on the body at a wing-body angle 
which varies along its length and any asymmetry in the mounting of the wing on 
the body is taken into account in the theory. 

The flow is assumed not to separate from the configuration ahead of the 
wing trailing edge and the effect3 of viscosity are supposed to be confined to 
thin boundary layers on the surface and to the wake. Disturbances are assumed 
to be small, thus allowing the use of the linearized approximation to the 
equations of inviscid compressible flow, ,and the further assumption is made that 
the velocities change slowly in the streamwise direction relative to their rates 
of change across the stream. Slender-body theory is then applicable and the 
effects of cross-sectional shape can be brought in through the use of conformal 
transformation. 
Pepper' 

The appropriate transformations have been used previously by 
in a Trefftz-n1ai-x study of minimum induced drag configurations at low 

speeds. 

The theory e,xpresses the lift acting on that part of the configuration 
ahead of a plane normal to the main stream (a 'cross flow' plane) in terms of 
the shape and streamwise slope of the section of the configuration by this 
plane. The pitching moment is resdil;T obtained from the general results for 
the lift b 
and Hikido 3 

a single integration. Results have previously been given by Dugan 
and by Stocke, n3 for the case of the symmetrically mounted wing with 

and without wing-body angle, though the latter has a wrong sign in his formula. 
For the as:mmetricnl configuration at a common incidence we now obtain an 
expression for the lift in closed form. X'hen the wing and body ircidences 
differ, we are unable to evaluate the integral expression for the lift in terms 
of familiar functions and resort to numerical integration. The lift is, of 
course, linear in the wing-body an$e, Lut the coefficient depends on two 
independent variables, a si)an to radius ratio and a parameter measuring the 
asymmetr:l. The dependence of the coefficient on these variables is displayed 
graphically and in a table. 

Unless the free-stream Mach number is close to one, when other effeots 
make the application of linearized theories l<ke the present one doubtful, the 
calculation of lifting effects by slender-body theory is adequate only for very 
slender shape3. Very slender wings have highly swept leading edges with the 
component of the free-stream velocity normal to them well subsonic. Under these 
conditions the flow normally separates from the leading edges, and vortices are 
formed above and inboard of thorn. The omission of any representation of these 
from the present theory makes the direct application of it to very slender wings 
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also unreliable, except at an incidence for which the flow is attached. Thus 
for a plane wing or symmetrical wing-body combination, we should expeot the 
theory to provide the lift slope and aerodynamic centre at zero incidence if 
the wing is very slender. If the wing is warped so that at some incidence there 
are attachment lines along the leading edges, the attached flow theory will be 
adequate for the lift, centre of pressure, lift slope and aerodynamic centre at 

,this incidence. Such warp generally includes camber of the wing cross-sections 
and the present treatment makes no attempt to represent this. It could be 
represented to the accuracy of slender thin-wing theory (which involves the 
usual assumption of thin-wing theory that surface boundary conditions can be 
applied on a mean plane) by use of the same conformal transformations as are 
used here, but a treatment by slender-bo&d theory would bc much more compli- 
cated. Hence, except in the trivial case of the symmetrical configurations, or 
the very special case in which the singularities in the load at the wing leading 

' edge produced by wing incidence and by body incidence of the opposite sign just - 
cancel, the present model of the flow is not adequate. 

On the other hand, in circumstances in which we are prepared to accept 
that small corrections are additive, the present results can be used to estimate 
the correctiohs due to wing-body as 

r- 
metry. Such an assumption has already been 

made by Pitts, Nielsen and Kaattari In an attempt to account for the effects of 
a symmetrically mounted body on the lift and moment of a wing. They use slender- 
body theory for the symmetrical wing-body combination in conjunction with super- 
sonic thin-wing theory for the wing alone to obtain results for wing-body % 
combinations to which the unmodified slender-body theory could not fruitfully 
be applied. Since they obtain satisfactory agreement with experiment, we may 
expect the present results to be usable in the same way* Apart then from the . 
intrinsic interest of the present results, and their value in indicating the 

I orders of the effects involved, their utility is expected to lie in providing 
data for the evaluation of the effects of wing asymmetry along the lines of 
Ref.4. Since even in the symmetrical case, for which quasi-cylinder theory 
has been formulated, resort to slender-body theory has been found necessary in 
practice, we may suppose that any more elaborate approach to the effects of 
asymmetry mould be impracticable. 

As an example, a configuration somewhat resembling a supersonic transport 
aircraft is treated by the present method and the shifts in the centre of 
pressure and aerodynamic centre positions from the wing alone values owing to 
the addition of the body are fo-dnd, both including and disregarding the 
asymmetry of the mounting. The effects of asymmetry are found to be small, 
but significant for a slender aircraft. 

2 PORAULATIOIV OF TEE PROBLEM 

We consider a configuration consisting of a wing without thickness mounted 
on a fuselage in a supersonic stream. The wing planform has a straight unswept 
trailing edge, its leading edge is swept back so that the component of the free 
stream normal to it is subsonic and the local span increases monotonioally in 
the streamwise direction. The wing is allowed to have lengthwise camber, that 
is, its surface slope is a function of the strcamwise co-ordinate only. The 

'fuselage is slender and smooth, with a pointed apex somewhere upstream of the 
wing root and circular cross-sections over the length of the w&g. The fuselage 
is also allow& to have lengthwise camber, which may be different from that of 
the wing, 
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We introduce right-handed rectangular axes with origin 0 at the fuselage 
nose, Ox in the stream direction and Oy to starboard. 

The local incidences of the wing and fuselage are assumed to be small SO 

that the disturbances of the uniform stream arc also small. Then a disturbance 
velocity potential, #, exists and satisfies the equation 

(1) 

Undc 
5 

the additional assumption of the slender body theory of Murk, Jones and 
Ward, that the streanwise rites of change of velocity are small compared to 
variations in the cross-flow plane, equation (-I) reduces to Laplace's equation 
in planes normal to the stream: 

9& + $& = 0 l (2) 

The disturbance potential near the body can be expressed as the mean of 
two terms 

. of which the second vanishes identically for those values of x for which the 
cross-sectional area of the configuration is constant. In the present case we 
are not concerned with the properties of the nose of the configuration ahead of 
the wing root or of any ,afterbody behind the wing trailing edge, and Q12 is zero 
for the length of the wing. The disturbance potential then tends to zero as the 
distance from the body hcreases laterally and, in combination with the 
undisturbed stream, satisfies the usual condition of no flow through the surface 
of the configuration. This condition can be expressed as 

OJ f #,> Fx + @y Fy + 9, Fz = 0 (3) 

where F(x,y,x) = 0 is the equation of the surface of the configuration. 

Suppose the equation of the wing and fuselage surfaces are respectively 

z + g(x) = 0, for -S(x) Q y < -E(x) and F(x) < y Q S(x) 

and 

y2 + [z + h(x)12 - R2 = 0 

where g(x) and h(x) are the distances of the wing and the centre line of the 
fuselage below the x axis, S(x) is the semispan of the wing and y = kg(x), 
z = -g(x) defines the wing fuselage function (see Fig.lA). 
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It is consistent with the assumption of small disturbances to neglect $x 
in comparison with U, so that the boundary conditions on the surface become 

- on the wing: u g'(x) + q5, = 0 

(4) 
on the fuselage: U(z i- h) h'(x) + y #y + (z + h) $5, = 0 . 

Now, in the notation of Fig.lB, 

$Y 
00s 8 - # sin 8 

Z 
= #n 

that is 

Y #y + (z + h) $z = R $, (5) 

where n is the outward normal to the fuselage cross-section, so the boundary 
conditions prescribe the normal derivative of qi on the cross-section of the 
configuration (Fig.lA). 

Since 
f 

is a solution of equation (2) it is the real part of an analytio 
funotion W(x , where x = y + i z. If x' is an analytic function of x, then W 
is also an analytic function of x1, so we can apply a conformal transformation 
to the x plane to obtain a simpler boundary in the x' plane. The normal 
velocities at corresponding points of the boundaries will then be related by 

. (6) 

It is convenient to simplify the fuselage bol undary condition by the superposition 
of a uniform cross flow parallel to the imaginary axis in the x plane. We 
introduce 

$* = qt + U z h'(x) (7) 

so that the equations (4) become 

on the wing: u[g'(x) - h'(x)] + 'p; = 0 

on the fuselage: -y q5; + (z c h) $; = 0 

or9 in virtue of equation (5), 
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$E’; = 0 on the fuselage 
7 

and 03) 

c = wqx> - uB(x)l on the upper and lower surfaces of the 

where oW = g' is the wing incidence and uB = h' is the fuselage incidence. We 
now seek a complex function W* whose real part q5* satisfies the quations (8) and 
behaves like U uB Z at large distances. 

values 
It will be seen to be sufficient to limit the investigation to positive 

in (h - 
of (h - g), since the expression for lift is an (implicit) even function 
g) owing to the symmetry of the configuration and the linear dependence 

of the lift on the wing and body incidences. 

3 CONSTRUCTION OF THE COlIIPLEX POTENTIAL 

In order to transform the contour of Fig.lA into a simpler form we first 
observe that x. f i g is real on the wing sm~faces HAB and DEF and that the 
argument of X + 5 g + R 

x+1g-a 
is constant on the fuselage surfaces BCD and FGIT. Thus 

if 

(9) 

the imaginary part of c takes a constant value on the parts of the contour 
corresponding to the fuselage and zero on the parts corresponding to the wing. 
The whole X-plane is mapped onto the strip of the c-plane given by: 

-The resulting configuration is shown in Fig.2, For large values of x, 
g=$ + O(xw2) 30 the point at infinity in the x-plane becomes the origin of 
the g-plane and the uniform flow at infinity in the X-plane becomes a doublet 
at the origin of the z-plane with its axis along the imaginary axis. 

Since the contour in the c-plane is polygonal, we can transform it into 
the real axis (of a t-plane) by a Schwartz-Christof'fel transformation. We can 
choose 3 points arbitrarily and it is convenient to let the co-ordinates of the 
points C and D be 0 and I, 
as shown in Fig.3. 

and to make G be the point at infinity in the t-plane, 
Then if E and F become d and n, by symmetry H, A and B will 

become -n, -d and -1. The exterior angles of the polygon at A, B, D, E, F and H 
are 'X., +x, M, -x, +X and +X respectively, where we desoribe the polygon with 
the wall on the right. Hence 
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t 
;: = A i 1’ 

(h t d) (h - d) d7~ 
h t 1) (h - 1) (h t n) (A - n) tB . 

0 

Effecting the integration and expressing A and B in terms of n and d we find 
that 

c = p log 5 t (1 - p) log * 
( > ( > 

where 

d2 = nin(l - PI + PI In P + 1 - PI" 

m 

(10 

and 

lo@&) = P lo@+=+) t (1 - p) iog(f+) . (12) 

Equations (9) and (10) determine the transformation of the exterior of the 
contour in the x-pl-ane onto the upper half of a t-plane, with indioated corres- 
ponding points and the transfol*mation parameters n and d can be determined from 
equations (1-l) and (12). This transformation was used by Popper'. The point 
at infinity in the X-plane is mapped into the point 5 = 0, and finally into the 
point t = , i S where 

0 = p log(y~~~~)+(l -PI log&; '-:) 03A) 

or> in real terms, 

p tan -1 2 

e> n = (I - p) cot-' s, . 

For large values of x we have 

(13B) 

-+a2+ 
a, E ii2 

t = is,+ 
a3 ii3 

x x2 2c3 
+ a?+) (14) 

L 

where the coefficients a 
1’ &2 

and a 
3 

are evaluated in Appendix 2. For large x 

the complex potential behaves like I 
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-i U a 
iUoB &I R B x = - ct _ i s, ) + O((t - i S,lm2) 

and so the flow at infinity in the X-plane is represented by a doublet at 
t = i S, with its axis along the imaginary axis. 

The normal velocity on the whole contour can now be made to vanish by the 
introduction of another doublet, oppositely oriented, at t = -i S," Thus the 

complex potential 

iu~Ba,R-~ -( 1 
-iS 'I 

= 
2~ oB a, S, R 

t2 + sf 
05) 

satisfies the boundary condition imposed on W':' at infinity and on the fuselage. 
The boundary condition on the wing can be satisfied by a distribution of sources 
and sinks along the appropriate parts of the real axis in the t-plane without 
upsetting the conditions on the fuselage and at infinity. By eq~mti.ons (6) and 
(8) we require normal velocit:i~es in the L-p3 a.uc of magni.tude 

u(% - uB) 1% / on HA and EF 

and 

on AB and DE . 

These are produced by source strengths per unit length of twice these values, 
making a contribution to the complex potential of 

'("; uB) k f - f - / + / [If(h)] lo&t - h) dh]] 

H A D E 

id where f(t) has been written for dt . 

By equations {Y), (10) and (11) 

f(t) = u f3) (t 
2 

- d21 . R 
2 

(n* - 
- '"lk) + 6%) 

2 

t2) (t2 - 4) 
l (17) 
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For points on the wing this is real; it is negative on HA and EF and positive 
on AD and DE; and it is an even function of t. Hence, by simplifying equation 
(16) and combining it with equation (15) we obtain 

2U o+D a, S, B 
w* = --- 

t2 I- sl' 

and, by equation (7), 

w 

u(“w - yJ n 
7L s f(h) 1og(t2 - X2> dh 

1 
. . ..(18) 

= W*+iUaHX . 09) 

4 LIFT AND MOMENT ON THE CONFIGURATION 

The lift force, L, acting on that part of a slender-body forward of a 
given cross -flow plane is given by the result of Ward, rederived in Appendix 1: 

F = i L(x) = p U2 27~ b, + $ 
r Ixg(x) SW 11 

where b, is the coefficient of $ in the expansion of W c for large x; xg is the 

oomplex coordinate of the oentre of area of the cross-section of the body and 
S is its area. In the present application, S = 7~ R2 and x 

g 
= -i h(x) with the 

result that 

L(x) = -x p U2(2i b, + R2 uD) . (20) 

Combining the results of equations (18) and (19), we have 

- E = 2% &I sl R _ 
U -i aB x + 

t2 -I- s: 
(?J - "B) n f(h) 1og(t2 - 7c I 

x2> a . 
1 

. . ..(21) 

The first term makes no contribution to bj. Using equation (14) we find that 

the second term contributes 

2 2 

ia p2 zLs 
( 

&2+al . 
al a, 4s: > 
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a = po 
P 

+ 

Appendix 4 

v 

s1 = P 
O + o(1) 

where h = v 
0 0 cot " , p 

0 0 
= ho(l e ho) 4. and 2n g = S log The 

last of these can be written in terms of v. as 

2x; 
J---- 1 + v. cot $+I = log 1 0 1 +2J--ry=EqC 

. 

J 
I + v. cot " - 1 v' 0 + oot 

0 0 

The expressions for a;, a; and a', given in Appendix 2, become 
3 

-1 
a; = ( hO I 

v2 p > 
-2 +- 

hZ+vZ o 
e ,o(p--') 

ai = -i v. 
c 

hO -3 

^E + vt)’ 
+$ 2xo2+$ IL p3 -I- o((r2) 

0 OSV 
1 

0 0 

and 

a1 = -2~: 1 &O 1 -5 3 hZ 

+ 

VZ,' + -4 #ho. 

v. 

6. ; v,' 

+ 

+A vz 1 g4 

1 AZ 
L 

- 3x0 v,' - ., h -4 
-- - 3 (At 

+ $3 
%I 1, z ," 

vz 
* 

v. 
& 1 6 + o(pW3) . 

c 

The expression for lift, equation (25), becomes in the limit as p + 0 
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The integral I p, i 
( > 

, equation (22), cannot, apparently, be expressed in 

terms of familiar functions for general values of p* For p = 5, the mounting 
is symmetrical and the result of Dugan and Hikido can be recovered, as in 
Appendix 3. When p is zero or unity the integral is no longer defined. 
Attempts were made to find the form of the integral in the limit /3 + 0, but 
these were unsuccessful. It was decided that it would be more convenient to 
evaluate the corresponding integral which arises from an independent trans- 
formation of the limiting configuration, as described in Appendix 4, and to 
check its value against that extrapolated from values for non-zero values of 
p. For this purpose, and for the convenient presentation of the results, we 

define the function J 

0, yy - ajp P, 

-$p u2 s2b) $7 - “B) 

a,(nP+l -PI (24) 

For a typical value of i , three values of J are given in the table 

below: 

P 

0.4 
0.2 ;*%.G; 
0.1 5:82769 

I I 0 
6.22982 
6.22917 

The assumption that the function J satisfies a second order polynomial in 

sin @7c, exact for p = 0.1, 0.2 and 0.4., leads to the first value for J 

given above. This is very close to the other value given, differing by only 
O.Ol$. The second value is that calculated directly from the independent 
transformation mentioned above. 
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For the case of zero wing-body angle, the independently derived result for 
p = 0 agrees with the limit of the expression in equation (22) as p + 0 and 
c$ = s, as is shown in Appendix 4. 

For values of /3 other than 0 and 1, I p, t 
( j 

oan be evaluated numerically. 

The range of integration is divided into the two intervals [l,d] and [d,n]. The 
single singularity in eaoh interval is then removed by the transformations 

1 
and h = n-p P 

respectively and the integrations are carried out using a Gaussian process on 
the Mercury oomputer. In the notation introduced above, we may write 

. . ..(25) 

where the value of has been evaluated in Appendix 2 as 

-7 

4 -n p(n2 - 3s;) (I -  p)  (1 -  3s; 
a- ---I_- 

3 
1 (n"+-&7-+ 

1 
(1 + sy ?I1 

. . ..(26) 

where 

d, LfL+l-p-’ , 
aI = -P+ s2 

I 1 e s: > 

The pitching moment M(z), about an axis parallel to Oy and through x = L, 
due to the lift foroe on the configuration between the stations x = a and x = b 
is given by 
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J 
a 

= aL(a) - bL(b ) + x(L(b) - L(a 

5 $ESULTS 

b 

b J> + s L(x) dx . (27) 

a 

5.1 General results for the lift 

Since the part of the present work which is new is that which uses 
slender-body theory to take into account the displacement cf the wing from the 
centre-line of the fuselage, it is appropriate to look first at the predictions 
of slender theory for the case where the displacement is zero. Let us write 
the lift, L, in the form 

yJ - ag> p, ; 
) 2 2-=--- 

qpu s 
= G($ ;) “B + J@ ;) (% - uB) (28) 

following the form of equation (25). Then G($ , $) and J($ , t) are the 

previously known functions expressing the dependence of the lift on the body 
incidence and the wing-body angle when the wing is mounted symmetrically on the 
body. They are tabulated in Table 1 and shovn in Fig.7 for 0 < R < S, the 

range over which they are physically meaningful, As s g tends to zero, they both 

tend to 27c, the value for the wing alone; but, as R + S and the body covers the 
entire wing, J tends to zero and G tends 27c, which is also the value 

R 
for the body alone. The minimum value of occurs for - = 2 -3 

S and is 

75% of the maximum. 

is always non-zero, it is convenient to refer G 

it in order to display the effects of pa Now G is defined for 

SBfi = R sin @t, as is clear from Fig.-l, so it is convenient to extend the 

by defining it to be 271 for R > S. The function E 

where 

(29) 

L 
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then defines the change in the lift due to common incidence, uR, of wing and 

body caused by a departure from the symmetrical mounting. It can be expressed 
in closed form from equations (25) and (26) in terms of the geometrical quanti- 
ties d.etermined by equations (II), (12) and (13), It is tabulated for several 

values R of /3 as a function of g ii in Table 2(a) and as a function of 5 in 

. Table Z(b). It is plotted against S g and i for each of these ratios between 0 

and 1 in the left and right hzlves of Fig.8. The curve for each value of p 
terminates on the right with G = I where S = E = R sin pn, corresponding to the 
vanishing of the wing into the body. The effect of the asymmetry must obviously 
tend to zero a% the exposed wing disappears. Again, eaoh curve terminates on 
the left with G = I where R = 0 and the effect of asymmetry is once more zero* 
As would be expected, the value of z for any given value of i increases a3 p 

departs from 0.5. The maximum value of c for each value of p is attained at 
some value of $ between 0.80 and 0.86. The largest of these maxima, for p = 0, 

is z(O, 0.8558) = 1.3445. Since z is always at least one and G i , E 
( > 

is never 

more than 2n, the effeots which the presence of the body and the asymmetrical 
mounting produce on the lift due to common incidence are in opposite senses and 

. the maximum effects never reinforoe one another. However, with R = S, G 5 , i 
( > 

is 277 and an increment of over 25% in lift is indioated by Fig.8 in the extreme 
c case (3 = 0, compared with the maximum decrement from 2n of 25% remarked on 

earlier in the case -g = 2-, /3 S 
=1 a. Par some purposes it may be more convenient 

to consider the dependence of E p, Q on 5 , 
0 - 

the proportion of the span actually 

covered by the body; aa in Table 2(b). ii It is unity for g = 0 provided p + 0 

and also for i= 1. It is alaa unity for p = & and it tends to unity as fi + 0 
ii for fixed, non-zero 5 . 

It is leas straightfor:ard to relate the lift due to wing-body angle, 

c$ - s, expressed by J to that aoting in the symmetrical case, since 

tends to zero as R + S (Fig.7). Instead, the funotion J 

evaluated numerioaliy, is itself considered and this is tabulated in Table 3 
and plotted in FigoY for various values of p. Note that Fig.9, like Fig.8, uses 
R - and i S 

as variables in the same chart. Once again, for each value of i the 

effect of asymmetry increases monotonically with p. The effect is small until 
the wing approaches the extreme position and would be smaller still in terms of 
B 
3' since the points where the curves of Fig.9 run into the axis on the right 
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ir' are all at 3 = 1. As in the case of common incidence, the effect of asymmetry 

vanishes as R 5 - + 0 and as - + 1, S S as would be expected. The significance of the 

results shown in Fig.9 can be seen in the simple case of a slender wing at 
incidence with a circular cylinder at zero incidence, with diameter equal to 
the wing span, J 'ust making contact with the wing at the mid-point of its 

trailing edge. 
R This corresponds to p = 0, 5 = 1 and it can be seen that the 

body reduces the lift slope of the wing from 2~ to 3.92, i.e. by 3%. By 
contrast, Fig.8 shows that the lift slope of the combination, when the body 
incidence changes with that of the wing, is 27% greater than that of the wing 
alone. For values of $J different from I, Fig.8 shows the increase in the lift 

slope of an asymmetrically mounted wing-body combination over that of a wing 
and a symmetrically mounted body. For the same configuration as that just 
considered, the effects of the asymmetry is still fairly substantial for an i 
of 0.5, the increase in the lift slope being I@. Its value continues to fall 
as t gets smaller; in particular for an # of 0.25, it is only 1% greater than 

\ 
for the symmetric configuration. 

5.2 Lift and moment in a particular case . 

. 
Since the effects of asymmetry on pitching moment are likely to be more 

signifioant than those on lift alone, it seems reasonable to ask how the calcu- 
lated effect of the asymmetry would affect the design of a wing intended to 
produce a given pitching moment, for instgnce, to trim a supersonic transport 
aircraft. Consider a combination of a 60 delta wing and a body which, over 
the length of the wing, is a ciroular cylinder of diameter equal to one-sixth 
of the wing span. Suppose that the wing is to be mounted low on the body at 
the trailing edge, perhaps to let the wing structure pass below the cabin floor. 
Suppose that, at the cruising condition, a lift coefficient of 0.1, based on 
gross wing area, is to be produced with the fuselage at zero incidence. Then 
the present results yield at once the incidence of the wing, and so the wing 
body angle, at the trailing edge. If in addition the configuration must produce 
a pitching moment at zero lift, based on the centre-line chord of the gross wing, 
of 0.0148, by means of parabolic lengthwise camber of the wing, the present 
theory enables the amount of camber to be determined. The calculation is 
described in Appendix 5. It emerges that the centre section of the gross wing 
would need 1.05% of negative camber, bringing the apex of the gross wing to a 
point 20.3% of the body radiu s below the centre-line of the body. The aerodynamic 
centre of the resulting configuration is 67.25% of the centre--line chord from the 

* This is twice the moment needed to shift the centre of pressure at CL = 0.1 * 
forward by 7% of the centre-line chord from the aerodynamic centre. 7% is a 
typical shift of aerodynamic centre between the most forward position at the air- 
field approach speed and its position at cruise at a Mach number near 2. Roughly - 
twioe as much lengthwise camber is needed to produce a given zero-lift pitching 
moment at a Mach number of 2 as at a Mach number of 1, to which the slender-body 
theory calculations can be taken to refer. 
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apex of the gross wing. For comparison, the properties of this same 
configuration can be calculated by cruder approximations and the results used 
to illustrate the effect of the asymmetrical mounting of the wing on the body. 

Suppose first that the asymmetry of the mounting is ignored, but the same 
variation of wing-body angle along the length of the configuration is maintained. 
Then the common incidence, ag, at which zero overall lift is reached is somewhat 

less negative in the approximation, since J is substantially less than 

, as oan be seen 

from Figs.8 and 9. Fig.11 shows the variation of the lift carried forward of a 
certain lengthwise station with the distance, x, of that station from the apex 
of the gross wing, at the attitude for which the overall lift is zero. The less 
negative body incidence in the approximation is reflected in the less negative 
fore-body lift in the figure. In spite of this greater fore-body lift, the 
pitching moment at zero lift as calculated in Appendix 5 is 0.012-, which is less 
than the value of 0.014 by the full present method. This is because the effects 
of asymmetry in incre asing the lift due to wing-body angle in the full method as 
compared with the approxri.mat-ion are greater over the forward part of the wing 

R where - S is near to unity, in spite of tile smaller displacement of the wing from 
. the mid-position there. The change in Cm is therefore a resultant of opposing 

0 

factors and is a typical change rather than a maximum. Ignoring the asymmetry . of the mounting also produces a small change in the position of the aerodynamic 
oentre, moving it 0.15% aft to 67.4-s of the centre-line chord from the apex of 
the gross wing. This is entirely due to the change from G p (, i) to G@ , i$ > 

where /3 varies from 0.565* to 0.9 from the front to the rear of the gross wing, 
while 5 S falls to 6 1 at the trailing edge. Once again, it is over the forward 

R part of the exposed wing, where 5 is close to one, that the effects of asymmetry 

are most pronounoed, in spite of the more symmetrical mounting there. 

A further approximation is to ignore the presence of the body entirely. 
This leads, of course, to a very much larger pitching moment at zero lift, 
cm = 0.0255, as would be expected both from the effect of wing-body angle in 

0 

reducing the local incidence of the configuration below that of the wing which 
it covers and from the reduced lifting efficiency of a wing-body combination at 
a common incidence below that of a wing alone, shown in Fig.7. The aerodynamic 

. 
* For the particular case, the mid-point of the wing section is below the 
corresponding point on the body centre-line, in a given cross-flow plane, which 

c corresponds to negative values of (h - g). However, since the lift is an even 
function of (h - g) (Section 2), and since in addition, S = i cos 9 
we can use the relation L(1 - S)m L(p). 
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centre of the wing alone is at 2 of the wing length from the apex, 
3 

showing that 

the addition of the body reduced the lifting effioiency rather more over the 
forward part where g is near unity than over the rear where it is small. Sinoe 

IR 
GT,E 

( > 
is the same for i zero and unity, this is again the resultant of 

opposing tendenoies. 

Vhen the configuration is reduced to the wing alone, the effects of Mach 
number can be assessed by supersonic linearized theory, the calculations carried 
out by slender-body theory then representing the situation at sonic speed. In 
Appendix 5, the pitching moment of the wing alone at zero lift is calculated for 
a Mach number of 2, at which the wing leading edges are just sonic. The value 
found is 0.0108. This is less than half that at a Mach number of 1, a change 
which should cmphasize one of the obstacles mentioned in the introduction to the 
indiscriminate application of the 'present results, derived as they are by 
slender-body theory. It is tempting to suppose that the reductions in Cm from 

0 
the wing alone value at M = 1 to the wing alone value at M = 2 and to the wing- 
body combination at M = 1 could be superimposed, giving an overall reduction 
faotor of about 4 for the wing-body combination at M = 2. However it seems 
likely that slender-body theory would tend to over-estimate somewhat tho effects 
of wing-body interference in invisoid flow and, in any oase, there oan be no 
justification for superimposing such large corrections. 

For uncambered configurations, the corrections are much smaller, as can 
be seen directly from Yigs.7, 8 and 9, so that an approach on the lines of 
Ref,4, as suggested in the introduction, would probably be successful for lift 
slope and aerodynamic centre. For pitching moment and zero lift incidence of a 
cambered configuration, more is probably required; if the symmetrical 
configuration could be treated by the quasi-cylinder theory of supersonic flow, 
enabling the influence of Mach number to be properly assessed, then the iresent 
small correction for the effect of asymmetrical mounting could be superimposed 
with some degree of confidence. 

6 COMCLUSIOIVS 

(a) The lift force on a wing-body combination consisting of a slender 
wing with uncambered cross-sections mounted on a body mhose oross-sections are 
circles of constant diameter over the length of the wing has been calculated by 
slender-body theory. Both wing and body may have arbitrary lengthwise camber. 
The effects of asymmetry in the mounting of the ning on the body are taken into 
aocount . The pitching moment follows by integration, 

(b) The effects of the asymmetrical mounting are substantial when the 
body diameter is more than half of the wing span, but fall off as the body 
shrinks. To illustrate this a configuration has been considered consisting of a 
slender wing at incidence, with a circular cylinder just making contact with it 
at the 'mid-point of the trailing edge, At constant wing-body angle, the lift 
slope of the configuration is greater than that of the wing and the same body 
mounted symmetrically, by amounts 278, I@, and 1% for values of the ratio of 
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body diameter to wing span of l:l, I:2 and I:4 respectively. The first of these 
is an extreme case, but the second also shows the large effects of asymmetry. 
For typical aircraft configurations the pitching moment is more affected than 
the lift. 

(c) Various combinations of factors make the direct application of the 
calculated results inadvisable. On the other hand, they seem likely to be 
useful in providing corrections to experimental or other theoretical results; 
for unoambered configurations they might yield corrections to results for 
isolated wings to make them applicable to asymmetrical wing-body combinations 
and for oambered configurations they might yield corrections to results for 
symmetrically mounted wings to allow for asymmetrical mounting. 

&I 

a r 

a’ r 

bl 

d 

G P, ; ( > 

SYM3OLS 

transformation parameter (ApFcndix 4 only) 

coefficient of (x ii)" in the expansion of t (Section 3) 

coefficient of ([x - i glE)'r in the expansion of t (Appendix 2) 

oocfficicnt of ,E in the expansion of the complex potential W(x) 

transformation parameter 

&x 
dt 

distance of the wing below the x axis, at station x 

distance of the body centre-line below the x axis, at station x 

$ p U2 S*(x) s 
3 

for B < S; 271 for R > S 
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SYMBOLS (Continued1 

lift force acting forward of the station x. Shorter 
versions used where no ambiguity exists 

L(x) 
e 

n 

n 

P 

R(x) 

fw 

S 

S 

s(x) 

% 

t 

centre-line chord of gross wing (Appendix 5) 

transformation parameter 

outward drawn normal (Appendix 1 and Section 2) 

complex variable in transformed plane 

fuselage radius at station x 

R(x) sin SX 

area of wing (Appendix 5) 

length along contour (Appendix 1) 

wing semi-span at station x 

transformation parameter 

complex variable function in the second transformed plane - general 
case 

free stream velocity 

velocity components normal to the boundary in x, x' planes 

complex potential in the cross-flow plane 

right handed Cartesian co-ordinates; origin at body nose, Ox in 
stream direction, Oy to starboard 

local wing or fuselage incidence 

wing height parameter (Fig.1) 
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SYhQ3OLS (Continued) 

E variable used in Appendix 2 

A, P integration variables 

h / o' PO' v,- functions of E (Appendix 4) 

P 

5 

$ 

4 

x 

Suffices 

B 

G 

T 

w 

” a 

density 

complex variable function in first transformed plane 

velocity potential 

stream function 

complex variable in the cross-flow plane 

body 

body centre 

trailing edge 

wing 
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APPEBDIX 1 

THE LATEML FORCE ON A SLENDER BODY EXPRESSED 

The relation (35) d erived 
equation (9.7.11). 

in this Appendix has been given by Wards, 
The present amplifioation of his analysis is thought to be 

useful in view of the importanoe of the result and the difficulty experienoed 
in following the steps of the argument. 

We start with his expression (9.7.1) f or the vectorial lateral foroe 
acting on that point of a slender body forward of a cross-flow plane: 

where C is the contour bounding the base of the body in the cross-flow plane and 
the c,ontour is described in the clockwise sense while looking upstream. The 
sense of description of the oontour follows from the derivation of (9.7.1) in 
(4.6.15). W 't' ri ing the vectors in their Cartesian components, we have 

jF +&FZ = pU 
- Y I 

4(& dy - 2 dZ> 
C 

with the same sense of description. Hence for the complex lateral force, 

F = Fy+ iFZ = -i p U 
I 

$(dy + i dz) 
C 

where the contour is now in the conventional positive sense of complex variable 
theory, that is anti-clockwise while looking upstream. Then, in terms of the 
complex variable x = y + i z, and the complex potential W = $ + i jr 

F = -ipU Wdx-pU llrdx . (31) 
C C 

Now, W has no singularities outside (; and it can be made single-valued by 
introducing a cut extending from C to the point at infinity. For large values 
of x it can be expanded in the form 

ILL bl b2 
U 2n S'(x) log x + b. + - + - + . . . . . . 

x x2 

- 24 - 



Appendix 1 

where S(x) is the cros s-sectional area of the slender body. This expansion 
converges for all points ');. which are further from the origin than the further- 
most singularity of W and therefore it converges for at least one point, x0, 
of c. Choose the cut in the x plane to join x0 to infinity. Consider another 
contour C, which passes through x0 and surrounds C and is so chosen that the 
expansion of W converges on its whole length. Then W is analytic and one 
valued between C and C, and SO 

= u L 
SC 

bl b2 2xS'(x)log~+b~+~+~+ . . . . . . 
3 

dx 

5 
x 

U = z St(x) 2xi x0 + 276-b, U . 

We oan write $ = & S'(x) 0 + a single-valIled. i'unct%on, where 8 = arg x. Hence, 

using the Cauchy-Riemann ~*el.atidns, 

$ d x. = bk xl, - x 2 ds 

C C 

= u SW x0 - s x $$ ds (33) 
c 

where n is the outward normal to C. The last integral is reduced by using the 
body boundary condition: 

. 

where R = R(x, 8) = 1x1 on C and $6 is the angle between the tangent and the 
radius vector. Consider the streamwise rate of change of the first moment of 
the area S(x) about the real and imaginary axis, i.e. 

. 

- 25 - 



Appendix 1 

27~ R(x,e) 

$ (x,(x) s(x)) = j-g 
cs s 

xrdrd0 
3 0 0 

2X 
= XRzi 'Ii de 

0 

I 
= E x2 ds 

c 

(34) 

where xg is the position of the centre of area of the cross-section bounded by 

C. Subs%itution of equation (34) into (33), and of equations (33) and (32) 
into (31) leads to the result that 

F = S'(x) 2ni x0 + 2ni b, U 
> c 

- p U U S'(x) x0 - U $ (x,(x) S(x)) 

that is 

+ $ Ixg(x) S(x)] 1 , (35) 

- 
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EVALlJATION OF THE COEFFICIENTS a,, a2 AND a , IN THE EXPANSION OF THE 

We write equation (14) in the form 

co 

t = iS,+E, E = a 9 

r (1 
nx l 

We can expand the terms on the right hand side of equation (IO) as follows: 

Using equation (13A), we find equation (10) becomes 

hi 

2 +- 
3 

n p(n2 - 3s:) 

( (n2 1 + s2j3 
(1 - P> (1 - 3s;) 

+ 
(1 + sf)5 > 

E3 e O(E4) . 

Expanding the value of z in equation (9) for large values of ?c, we have: 

-- 2 
c = fi - scz+ii + 211(B2g ) $ o(x-4) . 

x 3x3 

We now equate the coefficients of powers of x in the two expressions for c. 
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Appendix 2 

I = 
6 

*+q a, 
i-s 

1 1 + s, > 

and 

5 (1 - $) = k-s+ + %) “3 + 2i s4;2y$2 

c1 
Pb2 - 3s:) +- ; (n2 f S:)’ 

(1 - PI (1 - 3s:) 

+ (&7y--- I > 

These three equations can be solved in turn for a,, 
"2 

and a 
3’ 

The 

1 -p 

+ (I + q2 > a-l a2 

3 
& I  l 

combination of a 
I' "2 

and a 
3 

Which is required to determine the lift is 

(equation (23)) 

Since this is the coefficient of t in the expansion of an analytic function of 

x, regular at infinity, it has the same value as the coeffioient of i, , in the 
expansion in powers of x'(= x + i g). Therefore it is identical to 

a; as2 a;2 

q- -+- 
aA 45: 

where at 
1' a; and a' are the solutions of the above equations with g put equal 

3 
to zero. They are 
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&; = 
( 
*+L+' 
n i-S 

1 
1 + s, > 

ai = -1 S, 
( 

P 
(n2: S:)2 

+1'- 
(1 e s;)2 j/d 

.$LL+q3 
+ s, I + s, > 

a; = + -$LlL+x 
d, +s 

1 
1 + S$' - 2s:((n2:l?S:)2 + (11+w:)2)z/(* + 3) 

c 

n j3(n2 - 3s:) 
.m- 

' (n2 + s2)3 1 

we have, therefore, 

2 
y$+a' = 52E 
'1 a, 4s: “; ai 

(1 - P> (1 - 3s;) 

(I + q3 l/C 

& -M-M..- --- 
, _ p 4 n p 

2 ---T+ '1 +s 1 1 + ST > 
. 

ELi2 
4-- 

4s; 

I 

= -- 3 s: [ 
-P+a2 
(n2: St)2 (1 f q2 IL .=+A.-+- -4 

+S 
1 

1 + s, 1 
/ 2 

I n Pin 

[ 

- 3s;) 
-- 

3 (n2 + S;)3 + 

(1 - P> 0 - 3s;) 

(1 f s2)3 
.+fL+.L+ O3 

1 IL +s 
I I + s, 1 

+-1 *+q 
4s: 6, 

-2. 
-I- s, I +s 

' 1 

- 
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APPENDIX 3 

REDUCTION OF THE GENERAL EXPRESSION FOR LIFT TO A KNOE 
FORM FOR THE CYMMETRIQL MOUNTING 

When the wing is mounted symmetrically on the fuselage we have 

p=; and l?=R . 

We can deduce the value of the parameters d, n and S, from equations (II), (12) 

and (13), namely d = $ , n = (!)2 and S, = (z) . From Appendix 2 we can 

show that 

s 
0 

2 
"I = n-t1 = R -I- 1 

and 

4 
2 

2/j+% = n22;1 = 0 g +I 
R 

al a, 4s: s2 l 

2iiT 0 

The corresponding expression for lift is obtained from equation (23): 

where 

J(; , $) = o(j)2 [1 + ([)2-j' I($ , $) . (36) 

Since S, = d and n = d2, equation (22) can be written in this particular case 

as 
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Appendix 3 

2d(d2 - X2) dh 

which reduces to 

14 J ;) =’ f d(l + d2, 
1 

where d = p , 

The second integral is evaluated by splitting the interval [I, d2] into 

the two intervals, [1, d] and [d, d2], 
2 

and by substituting p = h a in the 

second. This integral then becomes 

d 
id2 - u2)2 d@ 

d 
I I 

1 
d(d2 + p2)3 

= z 
1 

(p + id)2 + (p -'id)2 

id +- 
2 (p -‘-jd)3 -  (p +‘id)’ II dp l 

Its value is 

+ 1 - d2 
2d(l + a2)2 

.*..(37) 
2 

In the first integral we substitute x2 = 1-2 which reduces it to the 

form d'-h 
. 

l d(d2 - 1) 
co 

(I - a2 x2) (I -k x2) ax 
2 (d2 + 1)2 (1 + d2 x2)3 l 
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Appendix 3 

Consider the contour integral 

(I - d2 z2) (1 + z2) dz 

(1 + d2 s2)3 

. 

. 

where the contour C(R) is the part of the real axis z = x for which -R S x < +R 
and the semioircle z = Be i0 ) 0 c 8 6 K. 

We notice that the only pole within the oontour lie at the point z = 2 . 

The residue of the integrand at this point is - & 1 - L . 
'( > d* 

Moreover the 

integrand is of order (Rm2) for z = Re i0 
J so 

= x R2 
8 s 0 

. 

Combining the results of equations (26), (27) and this contour integral the 
expression for the lift reduces to 

(38) 

This is the expression given by Dugan and Hikido, 
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APPENDIX 4 

THE LIMITING CASE p = 0 BY AN INDEPENDENT TRANSFORMATION 

When the wing-body angle is non-zero it has not proved possible to 
evaluate the apprcpriate limit of the expression for lift as p + 0, However, 
this limiting configuration can be treated by an independent transformation, as 
follows. 

Fig.4 shows the contour in the cross flow plane x = y + iz. The function 

z = x R2 
- iR 

has zero imaginary part on the wing and constant imaginary part on the fuselage, 
so this relation transforms the right-hand half of the x-plane outside the 
contour of Fig.4 onto the c-plane inside the polygonal contour of Fig.5. The 
appropriate Schwartz-Christ offel transformation of the interior of this polygon 
onto the upper half of the p-plane (Fig.6) is given by: 

L 3 
22 = k(p - a4)* (p - a3)’ (p - it2)-’ (P - a,> l 

d;= 

i 

The three arbitrary constants introduced by the transformation are determined 
by making A5 become the point at infinity and by setting a 3 = -1 and al'lc = +I. 

The conditions that the required points should correspond give the relations 

-1 I---- 1 
T 

“1 
cos 

9 - ’ - &I 
a2 = 

J 
I---- 

-1 2 cos a, + 1 - a, 

and 

k = 
R(oos 

The transformation is then given by 

B? 
X - iR 

. . ..(39) 
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where a 
1 

is related to i by 

Appendix 4 

. . ..(40) 

Equations (39) and (40) determine the transformation of the right-hand half of 
the X-plane outside the contour of Fig.4 onto the upper half of the p-plane of 
Fig.6, with corresponding points as shown. 

As in Section 2, we simplify the fuselage boundary condition by super- 
imposing a uniform oross-flow parallel to the imaginary axis. Let 

$” = $ + U z h'(x) 

so that the boundary conditions become 

$; = 0 on the fuselage 

$; = wJ&> - aB(x) > on the upper and lower surfaces of the wing 

and 

#" m U z h'(x) at infinity . 

As before, we introduce the complex potentials W and W*, related by 

w* = W - U i x h'(x) 

so that $ and $* are the real parts of W and W:t, and we construct W* in the 
p-plane. For large p, x is large and so 

W” - - U i x h'(x) -= -U i x ag(x). 

By expanding the expressions in equation (39) f'or large p and x, we have: 
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p = & (00s -' a, + /G) ;c + constant 

Appendix 4 

+ ini.R 
(a,J~-oos-1a,)2-2(cos-'a,+ 

( cos 
. 

f o(x-2> 

and so for large p 

l/p a - 
2* u y&x) 

-1 00s a,+~~p l 

(41) 

On the real axis in the p-plane the normal velocity is zero exoept onAf2 and 

A2A,,, where it takes the values TU(yV - an> 121 respectively. Hence we can 

write the complex potential at a point p, as 

W"(p,) = - 
27B. u "B uhf- "n) 

-4 
i--=--- 

2 po -t K 
co9 a -b 1-a 

1 1 

[ i' - f [I$ ~w(P~-P) dp]) 
-1 

since the first term produces no normal velocity on the real axic and second 
term produoes no flow at infinity. 

dx 
Since XP 

is given by 

&g = rj; . g = R' . (p - "2) ('OS 
-7 

' - $' . al + J 
dp 27c c2 2 

(P - 
z . a,) (P + q12 (1 - P> 

We have, for -1 < p S a2 

I%1 = % 
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and for a 
2 

bp<a 1 

since c is real for -1 < p 6 a,. 

W"(Po) + 
27IRu % 

-1 co9 a , + J, 

Hence we can write 

ublg - “B) &I 

P, = 71. s 
$ log(po - P) dp 

-1 

on integrating by parts and substituting for x in terms of z. Now, for 
-1 < p d a,, equation (39) becomes 

G = - k [cash-'ca "_ :,I)+ 4% oos-l a,] . 

It follows that 

w*(p,) = - -, 
27cRuag 

- PO 2 
00s a, + I - a, r- 

2% U(% - “B) 
-PO 

al 

J [oosh"'(ai " ;,;ft JE cos-' a,]' o(p'2) 

Hence, using equation (&I), we find the coefficient of 3 in the expansion of 

W* W 
u 4 and therefore of E , to be: 

- 36 - 



Appendix 4 

b, = 
4ni R2(% - s) 

CO8 -' + 1 - a2 
"I J I 

&I 

I dP_- 
J [ COsh-’ (5 ” i,‘) + JE coa-’ a,] 

2 n i R2 % 

( 
-1 CO8 

J a2)4 [b,JI-f - 008~' a,)2 
a, + I- , 

-1 
- 2(cos a, + Jq) (~08~’ a, -b ?j /q [I + $1) ] l 

By Ward's result, 
If the incidence8 
in closed form: 

. . ..(42) 

equation (20), the lift on the configuration is given at once. 
of wing and fuselage are the same, the result can be written 

4x3 R2 "B aI + ~, _ a~,” c 2(008-’ 
( 

-1 
a, a, + \ 1 - a: > r( COS-’ 

CO8 
+ 1 JTZf [I f 2a:l) 

- (ali - a: - ~08~’ ,a, )2 

3 

- 2X R2 “B ~ (43) 

This last expression can be confirmed by taking the limit as p + 0 of the 
expression (25) found in the main text for the lift on the general configuration 
when the wing and fuselage are at the same incidence. The steps of the reduction 
nom follow, 

The assumption that p is small leads to the result, using equations (II), 
(12) and (.13), that 

n = 2 + o(1) 
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Appendix 4 

v 

s1 = P 
O + o(1) 

where h = v 
0 0 cot " , p 

0 0 
= ho(l e ho) 4. and 2n g = S log The 

last of these can be written in terms of v. as 

2x; 
J---- 1 + v. cot $+I = log 1 0 1 +2J--ry=EqC 

. 

J 
I + v. cot " - 1 v' 0 + oot 

0 0 

The expressions for a;, a; and a', given in Appendix 2, become 
3 

-1 
a; = ( hO I 

v2 p > 
-2 +- 

hZ+vZ o 
e ,o(p--') 

ai = -i v. 
c 

hO -3 

^E + vt)’ 
+$ 2xo2+$ IL p3 -I- o((r2) 

0 OSV 
1 

0 0 

and 

a1 = -2~: 1 &O 1 -5 3 hZ 

+ 

VZ,' + -4 #ho. 

v. 

6. ; v,' 

+ 

+A vz 1 g4 

1 AZ 
L 

- 3x0 v,' - ., h -4 
-- - 3 (At 

+ $3 
%I 1, z ," 

vz 
* 

v. 
& 1 6 + o(pW3) . 

c 

The expression for lift, equation (25), becomes in the limit as p + 0 
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_ l E3 ?? 0 - 3ho * . 
3 C 2j’-$]j-2x@~% (1; + vo) 

0 

where E = 

On substitution of the value ho = U cot 
0 

s into this e,xpression we obtain 
0 

v2 - c coseo4 A- 2 
v. ~‘2u~uoCot~o 

r 
,L(g) 2 = I&& 3 O, 

oosec2 J- 

01 

( v 
> 0 

$pu s 3 E2 
0 EO 

4vE 
- F v. ( 

cot3 A- - 3v‘ cot, i- - 3 coseo6 A- 
v. 0 v. v jl 0 OS 

-2X%i2 
0 

. . ..(44) 

where E = v + coseo2 L . 
0 ( 0 

cot +- 
V 

0 > 0 

R. 
The equation relating u. in terms of ;; is, as before, 3 

2 
R 

I + v. cot v -?-+I 1 + v. cot " 

2x 5 = log 1 

1 1 

J 

I 
Jr;-1 + v. oott O . 

w-.(45) 

Comparison of equations (45) and (40) produoes the following relationship 
between the parameters v. and a,: 
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2 
V 

0 
cot ” = 

-1 
J 

+23. 
-a 

0 cos 
“I 

I 

which reduces to 

2 
V = 

0 
y- . 
cos &I 

By substituting this value for v. into equation (a), we oan rederive 
the expression for lift given in equation (43), thereby establishing the 
equivalenoe of the two methods. 
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APPENDIX 5 -- 

APPLICATION 0%' THE METZOD TO A TYPIC& 
SUPERSONIC TRANSPORT CONFIGURATION M--I-- -a p-a----m 

. 
We compare the results obtained from the present method with those 

obtained using the previously available formulae, for example, with the 
expression given by Stocker 3 for a symmetrically mounted wing, The use of his 
formulae is only strictly justified if the wing-body angle is sufficiently 
small for the departure from symmetrical mounting to be ignored. We compare 
the chordwise distributicns of lift, that is, of the lift acting ahead of the 

chordwise station considered, and the values of acM - and 
acL 

C 
*0' 

Similar results 

are included for the wing alone to see what effect the body has. The contri- 
bution of the forebody is included in the calculation of overall lift, but not 
for overall moments, since this would involve assuming its shape and length. 

The wing was designed on the assumption of typical geometric and aero- 
dynamic characteristics as detailed below: 

(i) The wing is taken to be of delta planform, having a leading edge 
sweepback of 60’. 

(ii) The fuselage is taken to have circular cross-sections of constant 
radius, eq:-al to one sixth of the wing trailing edge semi-span+ It is not 
cambered. 

(iii) The wing is taken to have a low position on the fuselage at the 
trailing edge, with a wing-body angle chosen to give a CL, based on gross wing 
area, of 0.1 at zero body incidence. 

(id Ye assume no spanwise camber, but suitable parabolic longitudinal 
camber to give CF,lo = 0.014 (based on centre line chord). This is about twice 

thc 5~ that would be required for trim at M = 2 since there is some evidence 
0 

that the effectiveness of longitudinal camber is reduced by a factor of about 2 
between M = 1 and M = 2. 

The first step is to use the design value of the lift coefficient, CL, to 
calculate the trailing edge wing-body angle, h7 - %)TJ from the third con- 
dition. Secondly the wing camber can be determined from the design value of 
CM09 Condition (iv). 

1 zvaluation of the trailing ed&c$>Ekody angle 

When UD = 0, 
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It is straightforward to calculate the value of J 

from equation (24). We have 

, for p = 0.1 and i = $ , 

Jk, $ = ,662 sin2 px a,(n 0 + 1 - P) It, i) 

are given in Appendix 2 and equation (22), viz 

and 

produces the result that 

= 5.82769 . 

It follows from the definition of CL that (% - a~)~ is given by 

= 0.0297210 . 
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. 

f 

From these values of J and (yV - ag)T, we find the body incidence for 

zero overall lift from equation (25). It is 

% = -0.0282884 . 

2 Evaluation of the longitudinal carnbzx 

We obtain the following expression for the pitching moment, M, from 

equation (27): 

e 

M = -4 L(4) + 
s 

L(x) dx 
0 

where x is measured now from the apex of the g~qoss wing. Eq7.Livalentl.y, we have 

e 

C 
1 L!z.L L&L. 

Id =Fz 
ci 2-p u 

2dx-e- 
&p u 

2 . 

0 
3 

Two facts complioate the evaluation of the camber for the prescribed 
value of C 

MO’ 

The first of these arises from the fact that values of the lift 

force, L(x), are known only for a small but representative set of values of p 
K and - s ' whereas these two parameters vary continuously over the length of the 

wing. It will be noticed from Fig.10, which records the variation of G p, % 
( > 

and J P, i 
( > 

with sin /3n for a typioal value of f , R that the function J p, 5 
( > 

varies almost linearly with sin pn. It is concluded that it is sufficiently 

aocurate to replace the functions J P (, 5) and Gfh !j) by second and fifth order 

R polynomials in sin Px,respeotively, whose coefficients are funotions of 5 . 

B The dependence of the two functions upon ; is apparently not so simple, The 
integral in the expression for CliI was evaluated using integration formulae wh.ioh 
require the values of the functions at a number of discrete points. Expressions 

were found for CIvl using these approximations. 
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The second oomplioation in the analysis arises because the value of CM 

depends on the oamber in a complicated fashion, involving the angle p. In flat 
the calculation of the required oamber is easily programmed for a computer. The 
method adopted was to use the values of CM , oorresponding to two arbitrary 

0 

amounts of camber, as a basis for an iteration procedure to calculate the oamber 
required to give the presoribed value for CM . 

0 

This results in the apex of the gross wing lying 20.3% of the body radius 
below the centre line or, equivalently, in the cross-section of the gross wing 
having 1.05% of negative oamber. 

acM 
/ 

For this configuration the values of Chl and r were also caloulated by 
0 L 

two simpler approximations. If the displacement of the wing from the body 
oentre-line is ignored, but the actual variation of wing-body angle is taken 
into account, the'lift and moment can be evaluated from the formulae of Ref.2, 
obtained by setting p = 2 in the present work. This provides the second row of 
the table below. The third row gives the values aocording to slender-body 
theory for the wing alone, obtained from the familiar results given by putting 
R - G 0 in the present work. 
S 

The final row is for the wing alone at a Mach 

number of 2, when the leading edge of the wing is sonic, aooording to linearised 
theory. The factor to be applied to the value of CIV1 at a Mach number of 1 to 

0 

give the Cl4 at a larger Mach number, M, for which the leading edge is not yet 
'0 

supersonic, oan be obtained from equation (13-39) of Ref.5 as 

1 - e2 
-2 8 K + (I - 2C2)E 

where e2 = (M2 - I) cot2 A, A = leading edge sweep and K and E are coyplete 

elliptic integrals of the first and second kind with modulus (1 - e2)z. As 
8 + I, the value corresponding to M = 2, the ratio tends to 4/37c. 

-- 
Present method 
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The lift acting forward of the lengthwise station distance x from the 
apex of the gross wing is plotted against x in Fig.11 for the attitude of zero 
overall lift. The results of the present calculations are compared with those 
of the two simplified calculations by slender-body theory mentioned above. FOI? 

the wing alone, the effect of Mach number is just that of a change of scale. 
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s 
R 

1 

1.05263 

1.125 

1.25 

I.375 

1.5 

1 .I111 

2 
3 

2 

2.5 

R .s.m 
s 

-- 

1 

0.95 

0.8889 

0.8 

0.72727 

0.6667 

0.9 

0.6 

0.5 ' 

0.4 

TABLE I 

The functions J(i , i) and G($ , !@ 

0 

0.145 

O-44-57 

0.7914 

I.1356 

2.2822 

3.0520 

2n 

5.7303 

5.2415 

4.8355 

4.718-I 

4.7317 

5.3'162 

4.8355 

5.1051 

5.4387 --- 

s 
R 

3.0 

3.5 

4 

4.5 

5.0 

5.5 

6 

!i 
S 

.I 
3 

0.2857 

0.25 

0.22222 

0.2 

Oe18182 

0.16667 

3.5868 

3.9733 

4.264.2 

4.4902 

4.6712 

4.8190 

4.9421 

5.4811 

5.8828 

5.6626 

5.8123 

5.9150 

5.9881 

6.0419 

6.0828 

6.1135 

6.2210 

6.2675 

6.2826 
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TABLE 2A 

for various values of p and i 

Values 
R of s 

-- 

Values 
s 

Of Ti 

0.1 
0.2, 
0.3 
0.4 
0.5 
0.6 
007 
0.8 
0.8558 
0.9 
1 .o 

0.98 
0.96 
0.95 
0.9 
0.85 
0.8 
0.75 
0.7 
0.65 
0.6 
0.55 
0.5 
0.45 
0.40 
0.35 
0.30 
0.20 

-. -- 

Values of p 

0 

1.0002 
1.0034 
lm63 
1.0473 
1.1029 
1.1822 
1.2698 
I.3334 
I.3445 

0.01 

1.0002 
1.3034 
1.0163 
d.0473 
1.1029 
1.1821 
1.2696 
I.3332 

1.3371 1.33G8 
I .2671 1.2669 

I  

1 .I765 

1.1086 

1.0610 

1.0304 

1.0128 

d.0043 

1 .OOlO 
1 .OOOl 

1.0034 1.0031 '1~0023 1.0012 
1.0159 1.0149 I.OIII 1.0061 
1.0463 1.0435 1.0327 1.0182 
1.1009 1.0950 -1.0724 1.0408 
1.1789 1.1687 1.1297 1.0739 
1.2649 1.2502 1.1934 1.1~02 
1.3273 1 -1.3089 -1.2371 1.1330 

(Max value attained for p = 0 
113304 
I .2607 

1.3104 
1.2414 

4.2323 
1.1670 

-- 

1 .I944 
1 .I535 
I . I I 85 
1.0891 
1.0650 
1.0456 
1.0306 
*I.0193 
1.0113 
1.0059 
1.0026 
1 roooy 
I .OOOl 

1.1245 
1.0888 
1.0598 
1.0372 
1.0205 
1.0091 
1.0026 

I .0376 
1.0156 
I.0031 

1.00002 
1.0004 
1.0017 
1.0052 
1 .Ol-19 
I .0217 
1.0324 
1.0379 

1.0310 
1.0077 

P-s 
1.0027 
1.0003 
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TABLE 2i3 

ii for various values of p and 5 

Values of p 

0.05 0.1 

1.2131 1 .0-i 99 

1.0940 1.2077 

1.0137 1.2603 

1.0030 1.0752 

1.0008 I.0230 

I .0003 1.0073 

1 .ooo-II 1.0022 

1 .oooog I .0006 

1.00006 I .OOOl 

-- 
0.2 

1.0012 

I .017g 

1.0776 

1.1814 

1.2421 

1.1488 

1.0.546 

1.0164 

I .0029 

003 
-- 

1.0002 

1.0028 

1.0137 

I.0392 

1.0806 

1.1226 

1.1307 

1.0770 

1.0152 

0.4 

1 .oooo 

1.0004 

1.0022 

1.0063 

1.0142 

1.0252 

1.0354 

I .0369 

1.0222 
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P 

\, 

0.1 

0.2 

0.3 

0.4 

0.5 
0.6 

0.7 
0.8 

0.9 

1 .o 

4/sin pn 
5/sin @x 
6/h px 

T/sin (3x 
8/sin p7c 

Y/sin pn 

I O/Y 

I,25 

5/3 
2.5 

5.0 
10 

TABLE 3 

for various values of p and i 

W-H 

0 

6.2702 

6.1952 

6.0361 

5.8008 

565106 

5.1893 
4.8571 
4.5289 
4.2145 
3.9193 

3.6172 

3.2785 

2.4941 

1.6029 

0.7119 

0.3198 
I_- 

0.1 

6.0254. 
5.7184 

5.3486 
4.9275 
4.4773 
4.0205 

3.5755 
3.1548 

2.7657 
2.4Al5 

1.5691 

0.9350 

0.5214 

0.2597 

0.1036 

0.0236 

0.2 o-3 

-5.8052 5.6310 

5.2923 4.9575 

4.7376 4.2609 

4.1539 3 05549 

305631 2.8609 

2 -9871~ 2;2027 

2.4456 1.6028 

1 a9508 I .0803 
1.5113 0.6503 

1.1308 0.3239 

100593 

O-5694 

0.2411 

0.0574 0.0893 

-- 

0.4 

-- 
5.5195 
4.7443 

3.9598 
301795 
2.4251 

1.7231 

~1026 

0.5936 

0.2256 

0.0272 
-8 

0.5 0.05 

5,481l 6,146l 

4.6712 5.955 

308570 5.6870 

3.0520 503573 

2.278-1 4.9862 

1.5633 4.5970‘ 

O-Y403 4.2087 

0 044.57 3.8347 

0.1185 3.4833 

0 3.1587 

-. 

2.8309 

2.4688 

lo6517 

007722 
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FIG. I.(a) SECTION OF THE CONFIGURATION 8Y A PLANE 
NORMAL TO THE FREE STREAM DIRECTION. 

FIG. l.(b) VELOCITY COMPONENTS IN THE PLANE OF FIG. I@). 
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FIG. 2. FIRST TRANSFORMED PLANE - GENERAL CASE 

0 t 

FIG.3 SECOND TRANSFORMED PLANE-GENERAL CASE 
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FIG. 4. SECTION OF THE CONFIGURATION BY A PLANE 
NORMAL TO’ FREE STREAM (CASE j8=0) 

0 3 

FIG. 5. FIRST TRANSFORMED PLANE (CASE p=o) 
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FIG.~. THE SECOND TRANSFORMED PLANE (CASE a:o) 
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FIG.10. GRAPH SHOWING CHARACTERISTIC VARIATION OF 

C @) % J (@,f) WITH SIN BI, FOR A TYPICAL 

VALUE OF $f=o -5) 
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FIG. II. CHORDWISE DISTRIBUTION OF LOCAL TOTAL 
LOAD FOR THREE CONFIGURATIONS EACH AT 

ZERO OVERALL LOAD. 
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