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SUMNARY

Slender-body theory is used to calculate the effects on 1lift and moment
of mounting the wing of a wing-body combination above or below the body axis,
with and without wing-body angle. The wing must have a local span which
increases in the downstream direction, an unswept trailing edge and une
cambered cross-sections. The cross-sections of the body are assumed to be
circles of constant radius over the length of the winge.

It is found that the effects of the asymmetrical mounting are substantial
when the body diameter is more than half the wing span, but fall off as the
body shrinks. For a typical airoraft configuration, the pitching moment is
found to be more affected than the 1lift.

Replaces R.A.3. Tech. Note No. Aero 2950 - A.R.C. 25 965,
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1 INTRODUCTION

A possible shape for a supersonic aircraft or missile is basically a wing
of nearly triangular planform shape mounted on a body of almost circular cross-
section. In the case of the aircraft, the wing may well not be mounted symmet-
rically on the body for non-acrodynamic reasons. The present paper is intended
to help in the assessment of the effects on 1lift and, more significantly, on
pitching moment of asymmetric wing mounting, with and without wing-body angle.

The configuration studied comprises a wing with a swcpt-back leading edge,
a local span increasing in the stream dircction and an unswept trailing edge,
which is mounted on a body, possibly cambered, whose cross-sections arc circles
of constant diameter over the length of the wing. The wing may be curved in
the streamwise direction only; it may be set on the body at a wing-body angle
which varies along its length and any asymmetry in the mountlng of' the wing on
the bedy is taken into account in the theory.

The flow is assumed not to separate from the conliguration ashead of the
wing trailing edge and the effects of viscosity arc supposed to be confined to
thin boundary layers on the surface and to the wake. Disturbances arc assumed
to be small, thus allowing the use of the linearized approximation to the
equations of inviscid compressible flow, and the further assumption is made that
the velocities change slowly in the streamwise direction rclative to their rates
of change across the stream. Slender-body theory is then applicable and the
effects of cross-sectiongl shape can be brought in through the use of conformal
iransformation. The appropriate transformations have been used previously by
Peppcr1 in a Trefftz-nlanc study of minimum induced drag configurations at low
speeds. :

The theory expresses the 1lif't acting on that part of the configuration
ahead of a plane normal to the main stream (a 'cross flow' plane) in terms of
the shape and streamwise slope of the section of the configuration by this
plane. The pitching moment is readil: obtained {rom the gencral results for
the 1ift bg a single integration. Results have nreviously been given by Dugan
and Hikido® and by Stocker? for the case of the symnetrically mounted wing with
and without wing-body anglc, though the latter has a wrong sign in his formulae.
For the asymmetrical configuration at a common incidence we now obtain an
expression for the 1ift in closed form. When the wing and body ircidences
difler, we are unable to evaluate the integrel expression for the 1ift in terms
of familiar functions and resort to numerical integration. The 1lift is, of
course, linear in the wing-body an;le, but the coefficient depends on two
independent variables, a span to radius ratioc and & parameter measuring the
asymmetry. The dependence of the coefficient on these variables is displayed
graphically and in a table,

Unless the free-stream Mach number is close to one, when other effects
make the application of linearized theories like the present one doubtful, the
calculation of lifting effects by slender-body theory is adequate only for very
slender shapes, Very slender wings have highly swept leading edges with the
component of the free-stream velocity normal to them well subsonic, Under these
conditions the flow normally separates from the lecading =dges, and vortices arc
formed above and inboard of them. The omission of any representation of these
from the present theory makcs the direct application of it to very slender wings
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also unreliable, except at an incidence for which the flow is attached. Thus
for a plane wing or symmetrical wing-body combination, we should expect the
theory to provide the lift slope and aerodynamic centre at zero incidence if

the wing is very slender. If the wing is warped so that at somc incidence there
are attachment lines along the leading edges, the attached flow theery will be
adequate for the 1ift, centre of pressure, 1lift slope and aerodynamic centre at
.this incidence. Such warp generally includes camber of the wing cross-sections
and the present treatment makes no attempt to represent this. It could be
represented to the accuracy of slender thin-wing theory (which involves the
usual assumption of thin-wing theory that surface boundary conditions can be
applied on a mean plene) by use of the same conformal transformations as are
used here, but a treatment by slender-body theory would bc much more compli-
cated. Hence, except in the trivial case of the symmetrical configurations, or
the very special case in which the singularities in the load at the wing leading
' edge produced by wing incidence and by body incidencc of the opposite sign just
cancel, the present model of the flow is not adequate.

On the other hand, in circumstances in which we are prepared to accept
that small corrcctions are additive, the present results can be used to estimate
the correctiohs due to wing-body asymmetry. Such an assumption has alrcady been
made by Pitts, Nielsen and Kaattari® in an attempt to account for the effects of
a symmetrically mounted body on the 1lift and moment of a wing. They use slender-
body theory for the symmetrical wing-body combination in conjunction with super-
gonic thin-wing theory for the wing alone to obtain results for wing-body
combinations to which the ummodified slender-body theory could not fruitfully
be applied. OSince they obtain satisfactory agreement with experiment, we may
expect the present results to be usable in the same way. Apart then from the
intrinsic interest of the present results, and their value in indicating the
orders of the effects involved, their utility is expected to lie in providing
data for the evaluation of the effects of wing asymmetry along the lines of
Refsls Since even in the symmetrical case, for which quasi-cylinder theory
has been formulated, resort to slender-body theory has been found necessary in
practice, we may suppose that any more elaborate approach to the cffects of
asymmetry would be impracticable.

As an example, a configuration somewhat resembling a supersonic transport
aircraf't is treatcd by the present method and the shifts in the centre of
pressure and acrodynamic centre positions from the wing alone values owing to
the addition of the body are found, both including and disregarding the
asymmetry of the mounting. The effects of asymmetry are found to be small,
but significant for a slender aircraft. ‘

2 FORMULATION OF THE PROBLEM

We consider a configuration consisting of a wing without thickness mountecd
on a fuselage in a supcrsonic strcam. The wing planform has a straight unswept
trailing edge, its lcading edge is swcpt back so that the componcnt of the free
stream normal to it is subsonic and the local span increascs monotonically in
the streamwise direction. The wing is allowed to have lengthwisc camber, that
is, its surface slope is a function of the strcamwise co-ordinate only. The
" fuselage is slender end smooth, with a pointed apex somewherc upstream of the
wing root and circular cross-sections over the length of the wing. The fuselage
is also allowcd to have lengthwisc camber, which may be different from that of
the wing.
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We introduce right-handed rectangular axes with origin O at the fuselage
nose, Ox in the stream direction and Oy to starboard.

The local incidences of the wing and fuselage are assumed to be small so
that the disturbances of the uniform stream arc also small. Then a disturbance
velocity potcntial, ¢, exists and satisfies the equation

(=W g+ 8 +9, = O . (1)

Undcg the additional assumption of the slender body theory of Munk, Jones and
Ward”, that the streamwise rates of change of velocity are small oompared to
varlatlons in the cross~flow plane, equation (1) reduces to Laplace's equation
in plancs normal to the stream:

b+ = O . (2)

The distiurbancc potential near the body can be expressed as the mean of
two terms

$(x,5,2) = 8,(y,25%) + ¢,(x)

of which the seccond vanishes identically for those values of x for which the
cross~sectional area of the configuration is constant. In the present case we
are not conccrned with thc properties of the nose of the configuration ahead of
the wing root or of any afterbody behind the wing trailing edge, and ¢2 is zero

for the lcngth of the wing. The disturbance poteutial then tends to zero as the
distance from thc body increases laterally and, in combination with the
undisturbed stream, satisfies thc usual condition of no flow through the surface
of the configuration. This condition can be expressed as

(U+¢)F, + B, T 4+, F, =0 (3)

where F(x,y,z) = 0 is the equation of the surface of the configuration.

Suppose the cquation of the wing and fusclage surfaces are respectively

z + g(x) =0, for -8(x) €y < -R(x) and R(x) sy < 8(x)
and

y2 + [z + h(x)]2 -8 = 0

wherce g(x) and h(x) arc the distances of the wing and the centrc line of the
iusulage below the x axis, S(x) is the scmispan of the wing and y = +R(x),
= -g(x) defines the wing fuselage function (see blg.1A).
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It is consistent with the assumption of small disturbances to neglect ¢x

in comparison with U, so that the boundary conditions on the surface become

on the wing: U g'(x) + ¢, = O

(L)

on the fuselage: U(z + h) h'(x) + y ¢y + (z + H) ¢, = 0 .

Now, in the notation of Fig.1B,

¢y cos 6 - ¢Z sin 8 = ¢n

that is

(5)

yo,+ (z+0) ¢, = R¢

where n is the outward normal to the fuselage cross-section, so the boundary
conditions prescribe the normal derivative of ¢ on the cross-section of the
configuration (Fig.14),

Since ¢ is a solution of equation (2) it is the real part of an analytic
function W(x), where X = y + 1 z. If %' is an analytic function of %, then W
is also an analytic function of Y', so we can apply a conformal transformation
to the ¥ plane to obtain a simpler boundary in the %' plane. The normal
velocities at corresponding points of the boundaries will then be rclated by

S

t
ke

n

.
dy!

. (6)

It is convenient to simplify the fuselage boundary condition by the superposition
of a uniform cross flow parallel to the imaginary axis in the X plane. We
introduce

¢* = ¢+ U zh'(x) (7)
so that the equations (4) beocome
on the wing: Ulg'(x) - n'(x)] + ¢§ - 0

on the fuselage: y ¢§ + (z + h) ¢§ = 0

or, in virtue of equation (5),



O on the fuselage

hoN
<
1}

and (8)

8

. ?U[&W(x) - aB(x)] on the upper and lower surfaces of the wing

where Gy = g' is the wing incidence and Gy = h' is the fuselage incidence. We

now seek a complex function W* whose real part ¢* satisfies the equations (8) and
behaves like U Ay Z at large distances.

It will be seen to be sufficient to limit the investigation to positive
values of (h - g), since the expression for 1ift is an (implicit) even function
in (h - g) owing to the symmetry of the configuration and the linear dependence
of the lift on the wing and body incidences.

3 CONSTRUCTION OF THE COMPLEX POTENTIAL

In order to transform the contour of Fig.1A into a simpler form we first
observe that X + 1 g is real on the wing surfuces HAB and DEF and that the

argument of %ff}%ff?{%{% is constant on the fuselage surfaces BCD and FGH. Thus
if

¢ = logltigrR (9)
Yy +1g-R

the imaginsry part of Z takes a constant value on the parts of the contour
corresponding to the fuselage and zero on the parts corresponding to the wing.
The whole ¥-plane 1s mapped onto the strip of the Z-~plane given by:

- < Im(é) €+ .

_The resulting configuration is shown in Fig.2. For large values of ¥,
Z = %% + O(X-z) 80 the point at infinity in the y~plane becomes the origin of

the Z~plane and the uniform flow at infinity in the %-plane becomes a doublet
at the origin of the £-plane with its axis along the imaginary axis.

Since the contour in the Z-plane is polygonal, we can transform it into
the real axis (of a i~plane) by a Schwartz-Christoffel transformation. We can
choose 3 points arbitrarily and it is convenient to let the co-ordinates of the
points C and D be O and 1, and to meke G be the point at infinity in the t-plane,
as shown in Fig.3. Then if E and F become d and n, by symmetry H, A and B will
become -n, -d and -1. The exterior angles of the polygon at A, B, D, E, F and H
are -m, +R®, +%, -%, +% and +% respectively, where we describe the polygon with
the wall on the right. Hence



t
A+d) (A-d) &
<= Af TN O 6D o TP

Effecting the integration and expressing A and B in terms of n and d we find
that

Z = B log(ﬁ i :) + (1 -8) log(t i ,1|> (10)

’

where

& = nfn(1 -p) +p) np+1-p}" (11)

and

log@ i§> = B 1og<2 - §> + (1 -8) iog@ s 1) . (12)

Equations (9) and (10) determine the transformation of the exterior of the
contour in the y¥-plane onto the upper half of a t-plane, with indicated corres-
ponding points and the transforuwation parameters n and d can be determined from
equations (11) and (12). This transtormation wes used by Pepper1. The point
at infinity in the ¥-plane is mapped into the point Z = O, and finally into the
point t = i S1 where

+18, i S, + 1
0 = B 10g<;-§—;_——i—§7>+ (1 -8) 10g<-i—§1-—_—1—> (134)

or, in real terms,

B tan™! éi) = (1 -B) ot 8, - (13B)

For large values of ¥ we have -

- ) -
a, R a. R a, R

t = i S1 b oy 2 . - + O(X—A) (14)
% X2 X3

where the coefficients a1 8y and a3 are evaluated in Appendix 2. TFor large %

the complex potential behaves like .
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. . -2
_1UG,BX=-F—':—i-§1—Y+O((t—lS1) )

and so the flow at infinity in the ¥-plane is represented by a doublet at

t =1 51 with its axis along the imaginary axis.

The normal velocity on the whole contour can now be made to vanish by the
introduction of another doublet, oppositely oriented, at t = -i 81. Thus the

complex potential

2U a, S R
: = 1 1 _ % %
10Uy 8 R<} T =18 TTTs s_> = 5 (15)
] 1 t o+ S1

N

satisfies the boundary condition imposed on W* at infinity and on the fuselage.
The boundary condition on the wing can be satisfied by a distribution of sources
and sinks along the appropriate parts of the real axis in the t-plane without
upsetting the conditions on the fuselage and at infinity. By equatious (6) and
(8) we require normal velooities in the L-plaue of nragnitude

on HA and EF

Uay - o) | $

and

u(ay - ag) '%% on AB and DE .

These are produced by source strengths per unit length of twice these values,
making a contribution to the complex potential of

A B E F

%ﬂ%ﬁﬁ{+£_/°-/+£ Hﬂﬂlhdt-ﬂdﬂ}

J
A D

where £(t) has been written for %% .

By equations {9), (10) and (11)

_2nps1-p) (o) BP - (x(8) s @)’ . (1
£(t) = oD (D o (17)
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For points on the wing this is real; it is negative on HA and EF and positive
on AB and DE; and it is an even function of t. Hence, by simplifying equation
(16) and combining it with equation (15) we obtain

20 a &, S, B Ulay, - o) [
;T i g (q’”ﬂ B>/ £() 1og(t® - 2%) &

t + S1 /

w* =

N

eeee(18)

and, by equation (7),

Wo= WEaiUogx . (19)

b LIFT AND MOMENT ON THE CONFIGURATION

The 1ift force, L, acting on that part of a slender-body forward of a
given cross-flow plane is given by the result of Ward, rederived in Appendix 1:

F o= 1iL(x) = p Uz[%ﬂ b, + %; [ty () S(x){]

where b1 is the coefficient of % in the expansion of g

oomplex ocoordinate of the centre of area of the cross-section of the body and

for large ¥; Xg is the

S is its area. In the present application, S == R2 and Xg = =i h(x) with the
result that

L(x) = =-xp U2(21 b, + R aB) . (20)

Combining the results of eguations (18) and (19), we have

=i B

2. a, S, R (o, - ) "
i B -awﬂ%/f(l)log(tz-)\z)dk.
t o+ S1 )

eeeo(21)

The first term makes no contribution to b1. Using equation (14) we find that

the second term contributes

a a? a2
B a 2 2
1 2y AS1

[¢:



Appendix 4

1)
0
d = =+ 01
2+ 0(1)
vo
31 =-§-+O(1)
1 Ao+ U
where A=y cot L s Bo=2 (1 +2)2 and 2% R log{ == 2) . 2. « The
o) o v, o 0 0 S ko = M My
last of these can be written in terms of vo as
1 1
149y cot = + 1 211 +v cot =
R o) vo o) vo
27\:-S==log + 3 R
1 +v cot a - vo cot ;—
o} vo o

The expressions for a1, a‘ and a}, given in Appendix 2, beconme

3

A -1 -
a1'=<202+"1§> 7% + o(p™)
o} (o} Q

and

o
(N e
1
i
N
<
o N
>
o o
+ | >
el
<
o

+ 1 xo +_;L_ - B—4
2 T 2 2 2
vo [o] + o] vO

3
37\ V =4
1 1 —l -3
-3 + = +0(p™") .
(7\. + v2)3 ] [} 5 vi__,

The expression for 1lift, equation (25), becomes in the limit as B -0
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The integral I<%, g> s eguation (22), cannot, apparently, be expressed in

terms of familiar functions for general values of B. For B = %, the mounting
is symmetrical and the result of Dugan and Hikido can be recovered, as in
Appendix 3. When B is zero or unity the integral is no longer defined.
Attempts were made to find the form of the integral in the limit B ~ O, but
these were unsuccessful. It was decided that it would be more convenient to
evaluate the corresponding integral which arises from an independent trans-
formation of the limiting configuration, as described in Appendix 4, and to
check its value against that extrapolated from values for non-zero values of
B. For this purpose, and for the convenient presentation of the results, we

define the {unction J<B, %— :

L<%; 0, ay - ap, B 3>
J< ’ %> 3o U7 8%(x) (0:, - a:)

16(%—)2 a.,l(n B+ 1 ~B) I@, §‘> . (24)

For a typical value of % , three values of J<é, %) are given in the table

below:

B J@, -})

Ok | 5.00414
0.2 | 5.46813
0.1 | 5.52769
0 6.22982
6.22917

The assumption that the function J(é, %> satisfies a second order polynomial in
\

sin Bm, exact for B = 0.1, 0.2 and O, leads to the first value for J<é, %)

given above. This is very close to the other value given, differing by only

0.01%. The second value is that calculated directly from the indepecndent
transformation mentioned above,

-13 =



For the case of zero wing-body anglc, the independently derived result for
B = O agrees with the limit of the expression in equation (22) as B -+ O and
G = Gp, &8 is shown in Appendix b,

For valucs of B other than O and 1, IGL g) can be evaluated numerically.

The range of integration is divided into the two intervals [1,d] and {d,n]. The
single singularity in each interval is then removed by the transformations

1
A= 1+ u1-6 and A = n-~yp

T —

respectively and the integrations are carricd out using a Gaussian proccss on
the Mercury computer. In the notation introduced above, we may write

2 sa a2 82 2
L(x) R 3 2 1 R R
< ws(E) (@30 ) n(d) - )
2 s
Fp I 5] \a, af 45? %s\§ “w "~ % S
veeo(25)
2 2
a a, 8y
where the value of (a -5+ ——§> has been evaluated in Appendix 2 as
1 a LS
1 1
2 2 2
a a a - 2 a
2 1 2 - 1
<§2 v "J§> B {3 - a# A s = 7+ 1 ; 3
1 ay bS] (n“ + 31) (1 + s1) 48,

(e Bl -38) (1-9) (1 - 3Sf>]
5 [_ (n® + 312)3 (1 + 512)3 }
eeee(26)

where

~1
a1 = <n2n B 5 + 1= Bz> .
+ S1 1 + S1

The pitching moment M(X), about an axis parallel to Oy and through x = X,
due to the 1lif't foroe on the configuration between the stations x = a and x = b

is given by
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b
W) = [ (x - %) & ax
b
= aL(a) - bL(b) + x(L(v) - L(a)) +f L(x) ax . (27)
5 RESULTS

5.1 General results for the 1lift

Since the part of the present work which is new is that which uses
slender-body theory to take into account the displacement cf the wing from the
centre-line of the fuselage, it is appropriate to look first at the predictions
of slender theory for the case where the displacement is zero. Let us write
the 1lift, L, in the form

L<°‘B’ % = Gps Bs %)

o 02 5

- ot E) oy + 9B §) (g - op) (29)

following the form of eguation (25). Then Gé% , §> and J<% s g) are the

previously known functions expressing the dependence of the 1lift on the body
incidence and the wing-body angle when the wing is mounted symmetrically on the
body. They are tabulated in Table 1 and shown in Fig.7 for 0 <R <8, the
range over which they are physically meaningful. As % tends to zero, they both
tend to 2%, the value for the wing alone; but, as R » 5 and the body covers the
entire wing, J tends to zero and G tends again to 27w, which is also the value

N 5
for the body alone. The minimum value of G<% s % occurs for % =2 2 and is
[w}

75% of the maximum.

S

Since G<j2- s E) is always non-zero, it is convenient to refer G<B, %) to
it in order to display the effects of f. Now G\?, %) is defined for

S >R =R sin Br, as is clear from Fig.1, so it is convenient to extend the
range of G(% s %) by defining it to be 2% for R > S. The function E(B, -g‘-) ’

©Y-eyley @

where

-
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then defines the change in the 1ift due to common incidence, Oy s of wing and

body caused by a departure from the symmetrical mounting. It can be expressed
in closed form from equations (25) and (26) in terms of the geometrical guanti-
ties determined by equations (11), (12) and (13). It is tabulated f'or several
values of B as a function of % in Table 2(a) and as a function of % in

Table 2(b). It is plotted against % and % for each of these ratios betwesn O

and 1 in the left and right halves of Fig.8. The curve for each value of B
terminates on the right with G = 1 where S = R = R sin Bx, corresponding 1o the
vanishing of the wing into the body. The effect of the asymmetry must obviously
tend to zero ag the exposed wing disappears. Again, each curve terminates on
the left with G = 1 where R = O and the effect of asymmetry is once more zero.
As would be expected, the value of ¢ for any given value of % increases as B
departs from 0.5 The maximum value of € for each value of B is attained at

some value of R between 0,80 and 0,86. The largest of these maxima, for B = O,

S
is E(O, 0.8558) = 1.3445. Since G is always at least one and G<% s §> is never

more than 2%, the effects which the presence of the body and the asymmetrical
mounting produce on the 1lift due to common incidence are in opposite senses and
1 R
2?8
is 2% and an increment of over 25% in 1ift is indicated by Fig.8 in the extreme
case § = O, compared with ?he maximum decrement from 2% of 25% remarked on

the maximum effects never reinforoe one another. However, with R =3, G

. . R - . .
earlier in the case 3= 2=, B = %. Tor some purposes it may be more convenient

to oconsider the dependence of E(%, §> on R s the proportion of the span actually

5

= Q provided g ¥ O

1021 |=oF

covered by the body, as in Table 2(b). It is unity for

and also for % =1, It is also unity for B = % and it tends to unity as 8 » O

for fixed, non-zero

*

72} =51

It is less straightforyard to relate the 1lift due to wing-body angle,

Gy = Sps expressed by J<%, % » to that acting in the symmetrical case, since

2’8

evaluated numerically, is itself considered and this is tabulated in Table 3

and plotted in Fig.,9 for various values of B. Note that Fig.9, like Fig.8, uses
% and % as variables in the same chart. Oncc again, for each value of % the
effect of asymmetry increases monotonically with . The effect is small until

the wing approaches the extreme position and would be smaller still in terms of

J(? B) tends to zero as R » S (Fig.7). Instead, the funotion J<?, %) ’

% , since the points where the curves of Fig.9 run into the axis on the right

- 16 -



are all at

B

= 1. As in the case of common incidence, the effect of asymmetry

vanishes as §-+ 0 and as % -+ 1, as would be expected. The significance of the

results shown in Fig.9 can be seen in the simple case of a slender wing at
incidence with a circular cylinder at zero incidence, with diameter equal to
the wing span, just maeking contact with the wing at the mid-point of its

trailing edge. This corresponds to B = O, % = 1 and it can be seen that the

body reduces the 1lift slgpe of the wing from 2m to 3.92, i.e. by 38%. By
contrast, Fig.8 shows that the 1ift slope of the combination, when the body
incidence changes with that of the wing, is 27% greater than that of the wing

alone. For values of % different from 1, Fig.8 shows the increase in the 1lift

slope of an asymmetrically mounted wing-body combination over that of a wing
and a symmetrically mounted body. For the same configuration as that just

considered, the effects of the asymmetry is still fairly substantial for an %
of 0.5, the increase in the 1lift slope being 10%. Its value continues to fall

as % gets smaller; in particular for an % of 0.25, it is only 1% greater than

N
for the symmetric configuratione.

5.2 Lift and moment in a particular case

Since the effects of asymmetry on pitching moment are likely to be more
significant than those on 1lift alone, it seems reasonable to ask how the calcu-
lated effect of the asymmetry would affect the design of a wing intended to
produce a given pitching moment, for instgnce, to trim a supersonic transport
aircraft. Consider a combination of a 60 delta wing and a body which, over
the length of the wing, is a circular cylinder of diameter equal to one-sixth
of the wing span. Suppose that the wing is to be mounted low on the body at
the trailing edge, perhaps to let the wing structure pass below the cabin floor.
Suppose that, at the cruising condition, a 1lift coefficient of 0.1, based on
gross wing area, is to be produced with the fuselage at zero incidence. Then
the present results yield at once the incidence of the wing, and so the wing
body angle, at the trailing edge. If in addition the configuration must produce
a pitching moment at zero 1lift, based on the centre-line chord of the gross wing,
of 0,014*, by means of parabolic lengthwise camber of the wing, the present
theory enables the amount of camber to be determined., The calculation is
described in Appendix 5. It emerges that the centre section of the gross wing
would need 1.05% of negative camber, bringing the apex of the gross wing to a
point 20.3% of the body radius below the centre-~line of the body. The aerodynamic
centre of the resulting configuration is 67.25% of the centre-line chord from the

* This is twice the moment needed to shift the centre of pressure at CL = 041

forward by 7% of the centre-line chord from the acrodynamic centre. 7% is a
typical shift of aerodynamic centre between the most forward position at the air-
field approach speed and its position at cruise at a Mach number near 2. Roughly
twice as much lengthwise camber is needed to produce a given zero-lif't pitching
moment at a Mach number of 2 as at a Mach number of 1, to which the slender-body
theory calculations can be taken to refer.,
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apex of the gross wing. For comparison, the properties of this same
configuration can be calculated by cruder approximations and the results used
to illustrate the effect of the asymmetrical mounting of the wing on the body.

Suppose first that the asymmetry of the mounting is ignored, but the same
variation of wing-body angle along the length of the configuration is maintained.
Then the common incidence, oY) at which zero overall 1lift is reached is scmewhat

less negative in the approximation, since J % s %> is substantially less than

J<O.’I, %) , whereas G(Jé’ s -1=-> is very little less than G(O.‘I, l) , 45 can be seen

from Figs,8 and 9. Fig.11 shows the variation of the lift carried forward of a
certain lengthwise station with the distance, x, of that station from the apex
of the gross wing, at the attitude for which the overall 1ift is zero. The less
negative body incidence in the approximation is reflected in the less negative
fore-body 1lift in the figure. In spite of this greater fore-body 1lift, the
pitching moment at zero 1lift as calculated in Appendix 5 is 0.012, which is legs
than the value of 0.014 by the full present method., This is because the effects
of asymmetry in increasing the 1ift duc to wing-body angle in the full method as
compared with the approximation are greater over the forward part of the wing
where % is near to unity, in spite of the smaller displacement of the wing {rom
the mid-position there. The change in Cm is therefore a resultant of opposing
0
factors and is a typical change rather than a maximum. Ignoring the asymmetry
of the mounting also produces a small change in the position of the aerodynamic
centre, moving it 0.15% aft to 67.4% of the centre~line chord from the apex of
the gross wing., This i1s entirely duc to the change from G<é, g) to G<; §>

5°§)°
where P varies from 0.565% to 0.9 from the front to the rear of the gross wing,

while % falls to % at the trailing edge. Once again, it is over the forward

part of the exposed wing, where % is close to one, that the cffects of asymmetry

are most pronounced, in spite of the more symmetrical mounting there.

A further approximation is to ignorc the presence of the body entirely.
This leads, of course, to a very much larger pitching moment at zero 1lif't,
Cm = 0.0255, as would bc expected both from the effect of wing-body angle in
o _
reducing the local incidence cof the configuration below that of the wing which
it covers and from the reduced lifting efficiency of a wing-body combination at
a common incidence below that of a wing alone, shown in Fig.7. The aerodynamic

* For the particular case, the mid-point of the wing section is below the
corresponding point on the body centre-line, in a given cross-flow plane, which
corresponds to ncgative values of (h - g). However, sincec the lift is an even
function of (h - g) (Section 2), and since in addition, B = % cos™! thé~5z ,

we can use the relation L(1 - B) = L(B).
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centre of the wing alone is at % of the wing length from the apex, showing that
the addition of the body reduced the lifting efficiency rather more over the
forward part where % is near unity than over the rear where it is small. Sinoce

(}G% » %) is the same for %- zero and unity, this is again the resultant of

opposing tendencies.

When the configuration is reduced to the wing alone, the effects of Mach
number can be assessed by supersonic linearized theory, the calculations carried
out by slender-body theory then representing the situation at sonic specd. In
Appendix 5, the pitching moment of the wing alone at zero 1lift is calculated for
a Mach number of 2, at which the wing leading edges are Jjust sonic. The value
found is 0.0108. This is less than half that at a Mach number of 1, & change
which should cmphasize one of the obstacles mentioned in the introduction to the
indiscriminatc application of the 'present results, derived as they are by
slender-body theory. It is tempting to suppose that the reductions in Cm from

o
the wing alone value at M = 1 to the wing alone value at M = 2 and to the winge
body combination at M = 1 could be superimposed, giving an overall reduction
faotor of about 4 for the wing-body combination at M = 2. However it secms
likely that slender-body theory would tend to over-estimate somewhat the effects
of wing-body interference in inviscid flow and, in any case, there can be no
justification for superimposing such large corrections.

For uncambered configurations, the cerrections are much smaller, as can
be seen directly from l'igs.7, 8 and 9, so that an approach on the lines of
Ref,.k, as suggested in the introduction, would probably be successful for 1ift
slope and aerodynamic centre. For pitching moment and zero 1lift incidence of a
cambered configuration, more is probably required; if the symmetrical
configuration could be treated by the quasi-cylinder theory of supersonic flow,
enabling the influence of Mach number to be properly assessed, then the present
small corrcetion for the effect of asymmetrical mounting could be superimposed
with some degree of confidence.

6 CONCLUSIONS

(a) The 1ift force on a wing-body combination consisting of & slender
wing with uncambered cross-sections mounted on & body whose cross-sections are
circles of constant diameter over the length of the wing has been calculated by
slender-body theory. Both wing and body may have arbitrary lcngthwise camber.
The effects of asymmetry in the mounting of the wing on the body are taken into
accounte. The pitching moment follows by integration.

(b) The effcots of the asymmetrical mounting are substantial when the
body diameter is more than half of the wing span, but fall off as the body
shrinks. To illustrate this a configuration has becen considered consisting of a
slender wing at incidence, with a circular cylinder just making contact with it
at the mid-point of the trailing cdge. At constant wing-body angle, the 1lif't
slope of the configuration is greater than that of the wing and the same body
mounted symmetrically, by amounts 27%, 10%, and 1% for values of the ratio of
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body diameter to wing span of 1:1, 1:2 and 1:L4 respectively. The first of these
is an extreme case, but the sccond also shows the large effects of asymmetry.
For typical aircraft configurations the pitching moment is more affected than
the 1if't.

(¢) Various combinations of factors make the direct application of the
calculated results inadvisablc. On the other hand, they seem likely to be
uscful in providing corrcctions to experimental or other theoretical results;
for uncambered configurations they might yicld corrections to results for
isolated wings to make them applicable to asymmetrical wing-body combinations
and for cambered configurations they might yield corrections to results for
symmetrically mounted wings to allow for asymmetrical mounting.

SYMBOLS

ay transformation parametcr (Appendix A only)
&, coefficicnt of (¥ ﬁ)—r in the expansion of t (Section 3)
a; coefficient of ([y - i g]ﬁ)—r in the expansion of t (Appendix 2)
b1 coefficient of % in the expansion of the complex potential w(x)
d transformation parameter

dx
£(t) =
g(x) distance of the wing below the x axis, at station x
h(x) distance of the body centre-linc below the x axis, at station x

G(, %) L<a.B, 0, B, §> + @- p 7 82(x) G.B} for R < 8; 2n for R > S
R\ . oA E

R

7 B_ . 16R(X)2'( 1 )
» §)F "S‘GJ a1nB+ -8
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L<x3 G'B’ GW - CLB’ B, 'S'>

SYMBOLS (Continued)

L<o, ay = g B g‘-> + {% o U2 8%(x) (o = aB)}

N\

> 1ift force acting forward of the station x. Shorter

R
];G%V % = g’ B S> versions used where no ambiguity exists

L(x)
7

n

)%

J

centre-line chord of gross wing (Appendix 5)
transformation parameter

outward drawn normal (Appendix 1 and Section 2)
complex veriable in transformed flane

fuselage radius at station x ’

R(x) sin B=x

area of wing (Appendix 5)

length along contour (Appendix 1)

wing semi-span at station x

transformation parameter

complex variable function in the second transformed plane - general
case

free stream velocity

velocity components normal to the boundary in X, X' planes

complex potential in the cross-flow plane

right handed Cartesian co-ordinates; origin at body nose, Ox in
stream direction, Oy to starboard

local wing or fuselage incidence

wing height parameter (Fig.1)
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SYMBOLS (Continued)

e variable used in Appendix 2
Ny, M integration variables
A /p v functions of z (Appendix k)
o’ Yo’ o S
p density
Z complex variable function in first transformed plane
¢ velocity potential
s stream function
Y complex variable in the cross-flow plane
Suffices
B body
G body centre
T trailing edge
w wing
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APPENDIX 1

THE LATERAL FORCE ON A SLENDER BODY EXPRESSED
IN TERMS OF THE COMPLEX POTENTIAL

The relation (35) derived in this Appendix has been given by Ward?,
equation (9.7.11). The present amplification of his analysis is thought to be
useful in view of the importance of the result and the difficulty experienoed
in following the steps of the argument.

We start with his expression (9.7.1) for the vectorial lateral foroce
acting on that point of a slender body forward of a cross-flow plane:

_F_=9§A/¢d§. (30)
c

where C i1s the contour bounding the basc of the body in the cross-~flow plane and
the contour is described in the clockwise sense while looking upstream. The
sense of description of the contour follows from the derivation of (9.7.1) in
(4.6415). Writing the vectors in their Cartesian components, we have

JF +kF = pU[ o(k dy - § dz)
c
with the same sense of description. Hence for the complex lateral force,
F = Fy+iFZ = -ipU/ ¢(dy + i dz)
C

where the contour is now in the conventional positive sense of complex variable
theory, that is anti-clockwise while looking upstream. Then, in terms of the
complex variable %, = y + 1 2z, and the complex potential W = ¢ + 1 ¥

F:-iprde-prﬂfdx. (31)

¢ C

Now, W has no singularities outside ¢ and it can be made single-valued by
introducing a cut extending from C to the point at infinity. For large values
of % it can be expanded in the form

b b
LA A, 2
T = o S (x) log X +b0 -+ X + X2 + ovesse
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Appendix 1

where S(x) is the cross=-sectional area of the slender body. This expansion
converges for all points y which are further from the origin than the further-
most singularity of W and therefore it converges for at least one point, Xo?

of G, Choose the cut in the Y plane to Jjoin X to infinity., Consider another
contour 01 which passes through %o and surrounds C and is so chosen that the

expansion of W converges on its whole length. Then W is analytic and one
valued between C and G, and so

1
/, wd-x

c C

]
—
=
<%
=

1]

§1 b1 ’2 !

—_— gt —_— ==

U ]l 5 S (x) log ¥ + bo + T eecsee dy,
X

64

U g ; :
27ts(x) 2mi x + 2mi b, U .

We can write ¥ = %% S'(x) & + a single-valued function, where 6 = arg X. Hence,

using the Cauchy-Riemanu relations,

[\lfdx
c

[\lfx]o—f x-g-‘g-ds

c

U St(x) Xy " /‘ X %% as (33)
o

where n is the outward normal to C. The last integral is reduced by using the
body boundary condition:

B . yRgng - yRpE
on U ox 1 ¢ = U dx R ds
where R = R(x, 8) = lx] on G and ¢ is the angle between the tangent and the

radius vector. Consider the streamwise rate of change of the first moment of
the area S(x) about the real and imaginary axis, i.e.
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L (x () 5(x) = %x_{/Zﬂ /R(x,e) y v ar de}
27
- ]’ R %% ao
- %f x £2 as (34)

where Xg is the position of the centre of area of the cross-section bounded by

C. Substitution of equation (34) into (33), and of equations (33) and (32)
into (31) leads to the result that

F = -ip U<§; S*(x) 2ni Yo + 27 D, é) -p U{? S'(x) % = U %; (xg(x) S(x))}
that is
P o= op U2[27ti s L ) s@);] : (35)
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APPENDIX 2

EVALUATION OF THE COEFFICIENTS ays 2y AND a3, IN THE EXPANSION OF THE

COMPLEX VARIABLE t FOR LARGE VALUES OF x

We write equation (14) in the form

oo
t = 1 S1 + e, e = ji:

. R 2 2
Log S 1 n + i S1 . on & . 2in S1 (> . 2n(n 381 . 0(34)
n=-=t n - i S1 n2 + SZ (n2 + 32)2 (n2 + 52)3
1 1

t + 1
log<t = 1>

Using equation (13A), we find equation (10) becomes

Z = 2<;2n B 5+ 1= g> e + 2i 81< 2n £ 5=5 + 1=z g 2> 52
+ S1 1 + S1 (n“ + S1) (1 + S1)

18, + 1 oe 21 8, 2 201 - 38
log(. - > + + +
18, - 148 (1+8%9)7° (1 + 522

1 1

+

(n2 + 812)3 (1 + 32)3

P <n p(n® - 385) (1 -8) (1 - 3812)> 5oy
’ 1

Expanding the value of Z in equation (9) for large values of ¥, we have:

= . 5 o3l 2
éz%_21§R+2R(R -33g)+o(x-¢+)
X 5%

We now equate the coefficients of powers of %X in the two expressions for Z.

-~27 =
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1 = <n2nﬁ2+1~ﬁ2>a1
+ S1 1 + S1

ig _ np 1—B> : < n B 1-@)2
-==R = + a, + i 8 + a
R <n2 +82 148% 2 1 (n2 + S?)2 (1 + 82)2 !

1 1 !
and
1 263 n B 1 -8 nf 1 -8
- - = + a, +2i S + a, a
3< ﬁ2> <n2+sf 1+s12> 3 1<(n2+8f)2 (1 +S$>2> T2

, mB® =38 (1 -p) (1 - 3sf)> 5
+ 7 + a
5 (n2 + S?)3 (1 + 812)5

These three equations can be solved in turn for ays @ and a,, The

2 )

combination of 845 8y and a, which is required to determine the 1ift is

3
(equation (25))

a a2 az
1 a, 481

Since this is the coefficient of % in the expansion of an analytioc function of

%, regular at infinity, it has the same value as the coefficient of %,, in the

expansion in powers of X'(: ¥+ 1 g). Therefore it is identical to

where a;, aé and a% are the solutions of the above equations with g put equal

to zero., They are
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-1
B np 1 -8
a1'*<2 5+ 2)
n + S 1 + S

3
a'=—is< np .\ 1-g>/<nns +1—B>
2 N(n? + sf)2 (1 + 52)? 2,.8° 1458°

-

-1 2 5
1 - ) - -
a3_3<n2n62+1 Bz) ‘231< sy = gz) <2nﬁz+1 Bz)
+8 148 (n" + 31) (1 + s1) n” + 8y 1+8

2 2
_l{nﬁ(n -BSi)F('l‘ﬁ) (1-355)}/<n6 +1_B>4 .
5 (n2 + 812)3 (1 + 312)3 S 812 1 + 312

We have, therefore,

1 4 !
s R N I
a!l *

_\Q’ E\NQ’
i
|
+

ey

o

|
}
i

%)

1 2[ np N 1-5]2Lne +1-B:]"L*
2L e P (e8P ‘a8t 148l

2 2 2
_1[nrs<n -381)+(1-e) (1—381)]Ln6 L1877
3 2

> 2\ 3 NG 2 2
(n +s1) (1+S1) + 8, 1+5;
1 n B 4 -2
Rl 5+ 2 .
48, + 8 1+ks1
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APPENDIX 3

REDUCTION OF THE GENERAL EXPRESSION FOR LIFT TO A KNOWN
FORM FOR THE SYMMETRICAL MOUNTING

When thce wing is mounted symmetrically on the fuselage we have

We can deduce the value of the parameters d, n and S1 from equations (11), (12)

2
and (13), namely d = <§> ;, nho= <§> and S1 = <§> . TFrom Appendix 2 we can

show that

and
A
a2 2 > <§> + 1
A R R - w3
a, a2 482 2n S 2
1 1 2 R

The corresponding expression for 1ift is obtained from equation (23):

gt - =00 ot

where
2 22
1 B\ _ gE S A R
Gy -GGl ey o
Since 5, = d and n = dz, equation (22) can be written in this particular case
as

~ 30 =
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I@. ’ %) _ f 2a(a® - %) a
y @) 1) - J(@2=2) (-1)]2 J@ =% 6F-1) 6%+ dD)

which reduces to

a2 a2
1R\ . 2 (a° - 2%) A ax a(a® - 2%) an
Iz >3 = a(t + a%) + 5 33
/ J@ 23 02 - 1) @ ea®P 1 (@)
where d = % .

The second integral is evaluated by splitting the interval [1, d2] into

the two intervals, [1, d] and [4, d°], and by substituting u = S in the

gsecond. This integral then becomes

d
(d2~u2)2du_1f{_j;<1 1 >+1[: 1 . 1
2 2 hand . —-

i .iz_d[(“ -1:'ui)3 i (u +1id){|} W

d

Its value is

z (-
.1_<£_tan-“‘ 5>__.1_.g_2__ i 1(3) (. = san™] 3_>+1<11>3 N
AV 5) " a1 + )2 2 \s) \& S)*Z\s 1[(11)2 ]2
3) * 1
eees(37)
, > 3% g
In the first integral we substitute x™ = T which reduces it to the
form " -2
oo
1 a(a® - 1) (1 -3d%3%) (1 +x°) ax
2 ;.2 2 2 23 ’
(a© + 1) 2 (1 + a° x%)
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Consider the contour integral
_ (1 - a2 z2) (1 + z2) dz

I =
(R) L a2 %)
¢(2) (1 +a° 2%)

/A

where the contour C(R) is the part of the real axis z = x for which -R < x < +R

and the semiocircle gz = Rele, 0 <6 < m.

A

We notice that the only pole within the contour lie at the point z =

The residue of the integrand at this point is -~ éﬁ (1 - 4§> . Moreover the
d

integrand is of order (R_2> for z = Re™, s0

[
-
—~
[oY)
N
V)
1
——
~r
(&)
2
1
ol
A
TN
{
Qaml_;
~_
—/

111%00{1 (R>]

00 b2

Combining the results of equations (26), (27) and this contour integral the
expression for the 1lift reduces to

sz o @ @l [ @00 -6
fr e (@) ) ] (58)

This is the expression given by Dugan and Hikido,
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APPENDIX 4

THE LIMITING CASE B8 = O BY AN INDEPENDENT TRANSFORMATION

When the wing-body angle is non-zero it has not proved possible to
evaluate the apprcpriate limit of the expression for 1lift as g » O. However,

this limiting configuration can be treated by an independent transformation, as
follows.

Fig.4 shows the contour in the cross flow plane ¥ = y + iz. The function

R2

X = iR

Z =

has zero imaginary part on the wing and constant imaginary part on the fuselage,
so this relation transforms the right-hand half of the y-plane outside the
contour of Fig.4 onto the Z-plane inside the polygonal contour of Fige5. The
appropriate Schwartz-Christoffel transfermation of the interior of this polygon
onto the upper half of the p~plane (Fig.6) is given by:

1 3
-1
%z. = Xk(p - %)2 (p - a3)2 (p-a) (p-2a) .

The three arbitrary constants introduced by the transformation are determined

by making.A5 become the point at infinity and by setting a3 = =1 and ah = +1,
The conditions that the required points should correspond give the relations

-1 2
2, cos  a, NN a,
a, = —
cos—1 a, + J: - a2
1 1
and
x = 274 ]
-1
R{cos a, + 1 ~ &
The transformation is then given by
2 . a, p =1 e
R - = Z = %E cos 1‘-1=-=- - =1 cos 1 a
X = iR 2 p-a p+1 1

eeee(39)
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R

where 8, is related to g by
o 1
-1 1 a, 1 1 - &, -1 2 =
2rn gz = cosh {1 + |se—————cos g, )+ {{1+ cos  a -1 .
3 1 ay 1 1 + ay 1

..'.(AO)
Equations (39) and (40) determine the transformation of the right-hand half of
the ¥-plane outside the contour of Fig.4k onto the upper half of the p-plane of
Fig.6, with corrcsponding points as shown.

As in Section 2, we simplify the fuselage boundary condition by super-
imposing a uniform cross-flow parallel to the imaginary axis. Let

¢* = ¢+ U z h'(x)

80 that the boundary conditions become

¢§ = O on the fuselage
g% = IU(QW(X) - aB(x)) on the upper and lower surfaces of the wing

and

¢* ~ U z h'(x) at infinity .
As before, we introduce the complex potentials W and W¥, related by
We = W=Uixh'(x)

so that ¢ and ¢* are the real parts of W and W¥, and we construct W* in the
p-plane., For large p, ¥ is large and so0

W ~-U4ixh'(x) = —Uiqu(x).

By expanding the expressions in equation (39) for large p and ¥, we have:
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-1 2y,
p = 2%R (cos™ a, +\1 - a1) « + constant
(a \‘ - ol a, ) - 2(cos” a +J1—a )<oos a,+ ,I —a§[1+2a§]>
+ '2-’11 iR
(cos_1 a +\f1 - a2)2
1 1
-2
+0(x™) (1)

and so for large p

2R U a,(x)
W~ o *B .
-1 7

co8 a1 + y1 - a1

On the real axis in the p-plene the normal velocity is zero except on}LSAZ and

A2A1, where it takes the values $U(QW - aB) I%%I respectively. Hence we can
write the complex potential at a point p, @s

2@ U “B

wi(p)) = - . > P U(GW—G {f f {:l llog(p -p) dp:”
a, + {1~

1 &

since the first tcrm produces no normal velocity on the real axis and second
term produces no flow at infinity.

R AP
Since ap is given by

-1 >
ax _ 4x g _ RB (P - az) (COS a1 +,’1 - a1)

- .d_ - ‘2 . .
dp de ~ dp o . =
: (p=-g) (p+1)° (1 -p)
We have, for -1 < p < &y
&)oL K
dp dp



and for a, < p € a

2 1

5
dp

since Z 18 real for -1 € p € ay .

27IR U
w(p,) + T
-1

[YoF:] a1+ 1—&1

Y
dp

Appendix

Hence we can write

Uy =) 1 g
—_— f 3% log(p, - p) dp
-1
Ua, - a_) M
%y B R dp
7c [ g(p, - )

-1

on integrating by parts and substituting for y in terms of Z. Now, for

-1 < p € a,, equation (39) becomes

1

It follows that

we(p) = - Py

p~1
P8y

R -1/
Z = —zﬂ{cosh <

-;‘-—:-Bcos_1a} .
+p 1

dp -

-ZRU(OW—GB) f

P,

_4 /2 p -1
-1 [oosh1(—1————

N

— + O(p,
>+Jl—:—2 cos-1 a]
14+ D 1

Hence, using equation (41), we find the coefficient of -;-( in the expansion of

W* W
T and therefore of g to be:

- 36 =
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2 ™
4mi R (qW - aB) dp
b ) -1 + \/1 - az / Qosh-1 ili:—-l + 1—:—2 cos—1 a
cos &y 7 = P - e, 1+p 1

2, R2
e ) -1 2
- (a1 1 - a, - cos a1)

-1 2\
(cos ay + J1 - a1)

- 2./ - '
- 2(cos 1 &, + J1 - a;) Kcos ! a, + 1 - af (1 + 2af]> } .

eeee(k2)

1
3

By Ward's result, eguation (20), the 1ift on the configuration is given at once.
If the incidences of wing and fuselage are the same, the rcsult can be written
in closed form:

R
L<%B’ G, O, §>

2

zp U

3 .2
1 i = {2(003 L a, * J1 - af) <cos 1 a, + % V1 - af [1 + 2af]>
(cos a, + J1 - 31)

2 - 2 2
- (a1J1 - a; - cos 1\a1) } - 2xR ay . (43)

This last expression can be confirmed by taking the limit as B » O of the
expression (25) found in the main text for the 1ift on the general configuration
when the wing and fuselage are at the same incidence. The steps of the reduction
now follow,

The assumption that f is small leads to the result, using equations (11),
(12) and (13), that

>\O
n = T3-+O(I)
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1)
0
d = =+ 01
2+ 0(1)
vo
31 =-§-+O(1)
1 Ao+ U
where A=y cot L s Bo=2 (1 +2)2 and 2% R log{ == 2) . 2. « The
o) o v, o 0 0 S ko = M My
last of these can be written in terms of vo as
1 1
149y cot = + 1 211 +v cot =
R o) vo o) vo
27\:-S==log + 3 R
1 +v cot a - vo cot ;—
o} vo o

The expressions for a1, a‘ and a}, given in Appendix 2, beconme

3

A -1 -
a1'=<202+"1§> 7% + o(p™)
o} (o} Q

and

o
(N e
1
i
N
<
o N
>
o o
+ | >
el
<
o

+ 1 xo +_;L_ - B—4
2 T 2 2 2
vo [o] + o] vO

3
37\ V =4
1 1 —l -3
-3 + = +0(p™") .
(7\. + v2)3 ] [} 5 vi__,

The expression for 1lift, equation (25), becomes in the limit as B -0
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2 2 - A 2
L{x R E 2 o 1 )
e - 4"7’%@ {_2‘%{72_—'2—2'*‘1] :
Q }\0 * vO) vO

3 2
_1g *_o__flg_"g_g_]}_m(a)z%
3 (Xz + v2)3 vh S
(o] (o] Q

ko 1 -4
where & = <}3r-——~§ + °§> o
A+ v v
o} o}

On substitution of the value Ko =V cot 5— into this expression we obtain

2
5 (Bvi cosec2 e 12v§<} cot g— + coseoh l~>

L(x) 13 <R> 5 0 i v
= = N .| == -
v st 2 B8 i E° El;

<

2
Ly . 2
[e] 31 ; 1 6 1 R
- ——— — b — — - &
E3 <vo cot v 3v0 cot 3 3 coseo " > 2% QB<%>

o o) o 0.

eooo(ld)
where E_ = <v cot L + cosec2 J{) R
o} o} y y
o} 0
. R .
The equation relating v, in terms of 5 1is, as before,
7 - T
1 4+ vV CcOt === 4+ 1 211 + Vv cot ==
R o vo o] Vo
27 3 = log + 7 .
1 +v cot L. 1 vo oot ;“
o y e}
; Q

0000(1-1-5)

Comparison of equations (45) and (40) produces the following relationship
between the parameters vy and a1:
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1 + a
1 _ 2 1
Yo cot v - -1 1 -a
0 cos a
1
which reduces to
v = 2
° cos'—1 a1

By substituting this value for v _ into equation (44+), we can rederive

the expression for 1ift given in equation (43), thereby establishing the
equivalence of the two methods.
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APPENDIX 5

APPLICATION OF THE METIIOD TO A TYPICAL
SUPERSONIC TRANSPORT CONFIGURATION

We compare the results obtained from the present method with those
obtained using the previously available formulae, for example, with the
expression given by Stocker” for a symmetrically mounted wing. The use of his
formulae is only strictly justified if the wing-body angle is sufficiently
small for the departure from symmetrical mounting to be ignored. We compare
the chordwise distributicns of 1lift, that is, of the 1lif't acting ahead of the

aC
chordwise station considered, and the values of St and CM . Similar results
L o
are included for the wing alone to see what effect the body has. The contri-
bution of the forebody is included in the calculation of overall 1lif't, but not
for overall moments, since this would involve assuming its shape and length.

The wing was designed on the assumption of typical geometric and aero-
dynamic characteristics as detailed below:

(i) Theowing is taken to be of delta planform, having a leading edge
sweepback of 60 .

(ii) The fuselage is taxen to have circular cross-sections of constant
radius, egval to one sixth of the wing treiling edge semi-span. It is not
cambered.,

(iii) The wing is taken to have a low position on the fuselage at the
trailing edge, with a wing-body angle chosen to give a CL’ based on gross wing

area, of 0,1 at zero body incidence.

(iv) We assume no spanwisc camber, but suitable parabolic longitudinal
camber to give CM = 0.014 (based on centre line chord). This is ebout twice

the CM that would be required for trim at M = 2 since there is some evidence

0
that the effectiveness of longitudinal camber is reduced by a factor of about 2
between M = 1 and M = 2.

The first step is to use the design value of the 1lift coefficient, C_, to

L’
calculate the trailing edge wing-body angle, (aw - aB)T’ from the third con-

dition. Secondly the wing camber can be determined from the design value of

C » Condition (iv).
o)
1 Evaluation of the trailing edge wing-body angle
When Oy = o,

-4 -
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L(O,“w :‘BZB s> ] J<B, 1;) o - o) -

-é—pU S

It is straightforward to calculate the value of J<B, g—) , for B = 0.1 and

i
I

from equation (24). We have

2
J(B, %) = 16<%> sin2 Bx a,‘(n B +1 =p) I(\B, -g-)

where a, and I<B, %) are given in Appendix 2 and equation (22), viz

'

-1

_ ng 1 -8 .

8y "‘2 7+ 02:‘
+S1 1 + 8

1

and

281(d2 -2 a

O\~

(.5 - | — - -

'8 | o MPO DT P = DR ) TR E D PO - 1)BR3 . s
Numerical evaluation of I<O.1, %—) produces the result that

J(O.’!, %—) = 5.82769 .

It follows from the definition of C, that (aW - aB)T is given by

c
L 2
(@ -a) = L
W BT Jion,%; 8

0.0297210

1
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, we find the body incidence for

R
From these values of J<O.1, S> and (aw - aB)T

zero overall 1lift from equation (25). It is

ag = =0.0282884 .

2 Evaluation of the longitudinal camber

We obtain the following expression for the pitching moment, M, from

equation (27):

£

M = -¢ L(6)+/ L(x) dx

o)
where x is measured now from the apex of the gross wing, Equivalently, we have

£

ST

C,, = =3
M Se %P U %P U
Two facts complicate the evaluation of the camber for the prescribed

value of CM . The first of these arises from the fact that values of the 1lift

force, L(x), are known only for a small but representative set of values of B

and % s whereas these two parameters vary continuously over the length of the

wing, It will be noticed from Fig.10, which records the variation of G<%, %)
R = 3 f' o~ : 1 l R . R.
and J(B, 3 with sin Bn for & typical value of =% , that the function J(B, 3

varies almost linearly with sin B®. It is concluded that it is sufficiently

aocurate to replace the functions J<é, g) and G(é, %) by second and fifth order

pelynomials in sin Bw,respectively, whose coefficients are funotions of % .

The dependence of the two functions upon % is apparently not so simple. The
integral in the expression for CM was evaluated using integration formulae which

require the values of the functions at a number of discrete points. Expressions
oC
were found for C,, and <=

o acL

using these approximations,
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The second complication in the analysis arises because the value of CM
o
depends on the camber in a complicated fashion, involving the angle B. In fact
the calculation of the required camber is easily programmed for a computere. The
method adopted was to use the values of CM , oorresponding to two arbitrary
o
amounts of camber, as a basis for an iteration procedure to calculate the ocamber
reguired to give the presoribed value for CM .
)

This results in the apex of the gross wing lying 20.3% of the body radius
below the centre line or, equivalently, in the cross-section of the gross wing
having 1.05% of negative ocamber.

' aC i

For this configuration the valuecs of CM and Sg- Vere also caloulated by

o) L
two simpler approximations, If the displacement of the wing from the body
centre-line is ignored, but the actual variation of wing-body angle is taken
into account, the' 1ift and moment can be evaluated from the formulae of Ref.2,
obtdined by setting § = % in the present work. This provides the second row of
the table below. The third row gives the values aocording to slender-body
theory for the wing alone, obtained from the familiar results given by putting
R
‘S‘“-—
number of 2, when the leading edge of the wing is sonic, according to linearised
theory. The factor to be applied to the value of CM at a Mach number of 1 to
)

0 in the present work. The final row is for the wing alone at a Mach

give the GM at a larger Mach number, M, for which the leading edge is not yet
)
supersonic, can be obtained from equation (13-39) of Ref.5 as

1 - 02
3

“ K+ (1 = 262)E

where 62 = (M2 - 1) cot2 A, A = leading edge sweep and K and E are cogplete

elliptic integrals of the first and second kind with modulus (1 - 62)51 As
& - 1, the value corresponding to M = 2, the ratio tends to 4/3m.

RNEE
M — oC oC
o oC Ly 'wing alone

L
Prescnt method 0.0140 | -0.67252 1.0088
Symmetrical mounting { 0.0120 | ~0.67407 1.0111
Wing alone (M = 1; 0.0255 | —0.66667 1
Wing alone (M = 2 0,0108 | =0.66667 1
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The 1ift acting forward of the lengthwise station distance x from the
apex of the gross wing is plotted against x in Fig.11 for the attitude of zero
overall 1lift. The results of the present calculations are compared with those
of the two simplified calculations by slender-body theory mentioned above.

For
the wing alone, the effect of Mach number is just that of a change of scale.
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The functions J<~1~

TABLE 1

2 2

S

R 1 R
>andG(2,S

)

S R 1 R 1 R S R 1 R 1 R
R S J<2’s> G(z’s) R S J<2’s> G<2’s>
4 1 0 on 3.0 % 3.5868 | 5.6626
1.05263 | 0.95 - 5.7303 3.5 (0.2857 | 3.9733 | 5.8123
1.125 |0.8889 | 0.145 5.2415 b | 0.25 42642 | 5.9150
1.25 0.8 04457 | L.48355 bo5 | 0.22222] 4.4902 | 5.9881
1.375 | 0.727271 0.7914 | K.7181 5.0 0.2 L6712 | 6.0419
1.5 0.6667 | 1.1356 | L.7317 5.5 | 0.18182| 4.8190 | 6.0828
1.4111 | 0.9 - 5.3162 6 |0.16667] L.ou21 | 6.1135
% 0.6 - 4.8355 10 | 0. 5.4811 | 6.2210
2 0.5 2,2822 | 5.,1051 20 | 0.05 5.8828 | 6.2675
2.5 0.k 3.0520 | 5.4387 ||100 | 0.01 - 6.2826
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The function E@ s %) for various values of

TABLE 2A

[\

=

(o)
| v

P

Values of B

0 0.01 0.05 0.1 0.2 0.3 0.k
0.1 1.,0002 {1,0002 | 1.0C02 { 1.0002 { 41,0001 |1.00007 |1.00002
0.2 1,003 | 1.0034 | 1.0034 | 1.0031 | 1.,0023 {1.0012 1 .0004
0.3 1.0163 | 1.0163 | 1.0159 | 1.0149 | 1.0111 | 1.,0061 1.0017
0.4 140473 | 10473 | 1.0463 | 1.0435] 1.0327 | 1.0182 11,0052
Values |'0.5 1.1029 | 41,1029 | 1.,1009 | 1.0950 | 1.0724 | 1.0408 1.0119
of R 0.6 1.1822 [ 1.1821 { 1.1789 { 1.1687 | 1.1297 { 1.0739 1.0217
S 0.7 142698 | 1.2696 | 1.2649 | 1.2502 | 1.,1931 {1,1102 1.0324
0.8 1e333L | 143332 1 1.3273 11,3089 ! 1.2371 1 1.1330 1.0379
0.8558 | 1.,3445 (Max value attained for B = O)
0,9 123371 | 1.3368 | 1.3304 | 1.310L | 1.2323 | 1.1222 1.0310
1.0 162671 | 1.2669 | 1.2607 | 1.2514 | 1.1670 | 1.0691 1.0077
0.98 - - - - - - 1.0027
0.96 - - - - - - 1 .0003
0.95 - - - 161904 | 1,125 | 1.0376
0.9 1.1765 - - 11535 | 1,0888 | 1.0156
0.85 - - - 1.1185 | 1.0598 | 1.0031
008 1.1086 - el 1.0891 1.0372
0.75 - - - 1.,0650 1 1.,0205
Values | 0.7 1.0610 - - 1.0456 | 1.0091
¢ S 0.65 - - - 1.,0306 | 1.,0026
07 ] 0.6 1.0304 - - 11.0193
0.55 - - - 1.0113
0.5 1.0128 - - 1.0059
0045 - - - 1.0026
0040 1.0043 - - 1‘0009
0.35 - - - 10001
0.30 1.0010 - -
0.20 1 .0001 - -
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The function E<%, g> for various values of B and 3

TABLE 2B

R

.

Values of B
0,01 0.05 Q.1 0.2 0.3 Oy
0,1 1.,0012 | 1.2131 1.0199 | 1.0012 { 1.0002 | 1.0000
0.2 | 1.,0000 | 1.0940 1.2077 | 1.0179 | 1.0028 | 1.0004
0.3 { 1.0000 | 1.0137 1,2683 | 1.0776 | 1.0137 | 1.,0022
Ouk | 1.0000 | 1,0030 1.0752 | 1.1814% | 1.0392 | 1.0063
Values
of B 0.5} 1.0000 | 1,0008 1.0230 | 1.2L21 1.0806 | 1.0142
0.6 { 1.0000 | 1.0003 1.0073 | 1.,1488 | 1.,1226 | 1.0252
07 1 1.0C00 | 1.00011 | 1.0022 | 1.,0546 | 1.1307 | 1.0354
0.8 1.0000 | 1.00009 | 1.0006 | 1,0164 | 1,0770 | 1.0369
0.9} 1.0000 | 1.00006 | 1.0001 | 1.0029 | 1.0152 | 1.0222
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The function J 63,

TABLE 3

for various values of B and R

S
B
R 0 0.1 0.2 0.3 Ol 0.5 0.05
S
0,1 6.2702 | 6.0254 | 5.8052 | 5.6310 | 5.5195 | 5.4811 | 6.1461
0.2 601952 | 5,718k | 542923 | 4.9575 | Lo7443 | 4.6712 | 5.955
0.3 6.0361 | 5.3486 | 47376 | 4.2609 | 3.9598 | 3.8570 | 5.6870
Ouls 5.8008 | 49275 | 41539 | 3.5549 | 3.1795 | 3.0520 | 5.3573
0.5 5.5106 | 44773 | 365631 | 2.8609 | 2.4251 | 2.2781 | 4.9862
0.6 5.1893 | 4.0205 | 2.987h | 2.2027 | 1.7231 | 1.5633 | 4.5970
0.7 4.8571 | 3.5755 | 2.4456 | 1.6028 | 1.1026 | 0.9403 | L.2087
0.8 4,5289 | 3.1548 | 1.9508 | 1.0803 | 0.5936 | 0.4457 | 3.8347
0.9 Le2145 | 2.7657 | 1.5113 | 0.6503 | 0.2256 | 0.1185 | 3.4833
1.0 3.9193 | 2.4115 | 1.1308 | 0.3239 | 0.0272 { O 3.1587
0.4/sin Bx - 1.5691 - - - - -
0.5/sin B - 0.9350 - - - - -
0.6/sin Bn - 0.5214 | 1.0593 - - - -
0.7/sin Bx - 0.2597 | 0.569L - - - -
0.8/sin Bx - 0.1036 | O.2411 - - - -
0.9/sin Bx - 0.0236 | 0,0574 | 0.0893 - - -
10/9 3.6172 - - - - - 2.8309
125 3.2785 - - - ~ - 2.4688
5/3 2. 49k - - - - - 1.6517
2.5 1.6029 - - - - - 0.7722
5.0 0.7119 - - - - - -
10 0.3198 - - - - - -
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FIG. ifa) SECTION OF THE CONFIGURATION BY A PLANE
NORMAL TO THE FREE STREAM DIRECTION.

24

«V

FIG. I1(b) VELOCITY COMPONENTS IN THE PLANE OF FIG. k).
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FIG. 1. CHORDWISE DISTRIBUTION OF LOCAL TOTAL
LOAD FOR THREE CONFIGURATIONS EACH AT
ZERO OVERALL LOAD.

Printed in England for Her Najesty's Stationery Office by
the Royal Aircraft Establishment, Parmborough. ¥.r.81. K.u.






A.Roc. COP. No-ajo 533.695.12 :

533060013.13 4
533,64013.15
SLENDER-BODY THEORY CALCULATIONS OF THE EFFECT ON LIFT AND
MOMENT OF MOUNTING THE WING OFF THE FUSELAGE CENTRE-LINE,
partlett, R,S, February 196,

Slender-body theory is used to calculate the effects on 1lift and
moment of mounting the wing of a wing~body combination above or below “he
body axis, with and without wing=body angle, The wing must have a local
span which increases in the downstream direction, an unswept tralling edge
and uneambered cross-sections, The cross-sections of the body are assumed
to be circles of constant radius over the length of the wing,

It 18 foun¢ that the effects of the agymmetrical mounting are sub-
stantial when the body diameter i3 more than half the wing span, but fall
off as the body shrinks, For a typlcal aircraft configuration, the pitching
moment 1s found to be more atfected than the 1lift,

A.R.C. C.P, No.830 533469512 ¢

53.6-013.‘3 H
53366601315
SLENDER-BODY THEORY CALCULATIONS OF THE EFFECT ON LIFT AND
MOMENT OF MOUNTING THE WING OFF THE FUSELAGE CENTRE-LINE,
Bartlett, R.S, February 1964,

Siender-body theory 18 used to calculate the effects on 1lift and
moment of mounting the wing of a wing-body combination above or below the
body axis, with and without wing=bedy angle,” The wing must have a-local
span which Increases in the downstream direction, an unswept tralling edge
and uncambered cross-sections, The cross-sections of the body are assumed
to be circles of constant radius over the length of the wing,

It is found that the effects of the asymeetrical mounting are sub-
stantial when the body diameter is more than half the wing span, but fall
off as the body shrinks, For a typical aircraft configuration, the pitching
moment is found to be more affected than the lift,

Bartlett, R.S.

A.R.C, C.P. No.830 5334695.12 3

533464013413 2

533'60013.15
SLENDER-BODY THEORY CALCULATIONS OF THE EFFECT ON LIFT AND

MMENT OF MOUNTING THE WING OFF THE FUSELAGE CENTRE~LINE,
February 1964,

Slender-body theory !s used to calculate the effects on lift and
mcment of mounting the wing, of a wing-body combination above or below the
body axis, with and without. wing=-body angle. The wing must have a local
span which increases in the downstream direction, an unswept tralling edge
and upecambered cross-sections, The cross-sections of the body are assumed
to be circles of constant rudius over the length of the wing,

It is found that the effects of the asymmetrical mounting are sub-
stantial when the body dianeter is more than half the wing span, but fall
off a8 the body shrinks, For a typical alrcraft configuration, the pitching
moment is found to be more affected than the lift,










C.P. No. 830

© Crown Copyright 1965

Published by
Her MAESTY’'S STATIONERY OFFICE

To be purchased from
York House, Kingsway, London w.c.2

423 Oxford Street, London w.!
13A Castle Street, Edinburgh 2

109 St. Mary Street, Cardiff
39 King Street, Manchester 2

50 Fairfax Street, Bristol 1

35 Smallbrook, Ringway, Birmingham £

80 Chichester Street, Belfast 1

or through any bookseller

C.P. No. 830
5.0. CODE No. 23-9016-30



