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The theoretioal relationship between the spectral density function and 

the probability distribution of crossings for a stationary random function 

with Gaussian distribution has been used to calculate these distributions 

from spectra measured experimentally. The distributions so obtained are shown 

to compare well with distributions measured directly from the experimental 

data, the measured distributions being approximately Gaussian and the experi- 

mental data behaving approximately in the manner of a stationary random process. 
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1 INTRODUCTION 

In studies of the response of physical systems to random disturbanoes, 
a knowledge of the probability distribution of crossings of different output 
levels, and of the effects on this distribution of changing the system 
dynamics, is often required. The theoretical relationship between this dis- 
tribution and the spectral density function was derived by Rice' for a sta- 
tionary process with Gaussian distribution. Both of these quantities can be 
measured experimentally although for finite samples only, and since the theory 
considers infinite samples of stationary Gaussian processes, it is of interest 
to discover how well Rice's relationship accords with experiment, in which the 
process may be only approximately Gaussian, and for which the meaning of the 
theoretical concept of stationarity is not entirely clear. 

One aeronautical problem in which this relation is of interest is that 
of the fatigue loading of an aircraft flying through turbulent air where the 
statistical quantity concerned is essentially the number of crossings of dif- 
ferent normal acceleration levels. It should be noted however that the dis- 
tribution of crossings considered is not identical with either the distribution 
of acceleration peaks' 
load meter*,3. 

or the distribution'obtained from readings of a fatigue 
The results of the present study are likely to be of interest 

in many engineering applications of random process theory. The data used here 
are taken from measurements of the behaviour of an aircraft in turbulent air. 

2 THEORY 

The relation between the speotral density, +(f), of a stationary random 
function, a(t), and the average frequency, NnWX, with which a(t) crosses the 

value + or - (n-x) with positive (or negative) slope, 'ii being the mean value 
of a(t), was obtained by Riael and is given by 

' Nn-ii 
= Noexp [ - (n-5) */2u*] (‘1) 

where No is the average frequency of crossings of the mean level with positive 

(or negative) slope, aa 
00 

s 
f*$(f)df' 

N2=ow ' . 
0 

J 
$(f)df 

0 

Q is the r.m*s* value of a(t) relative to its mean level, so that 

(2) 
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The 

change of 

change of 

The 

numerator of the expression for Ng is the variance of the rate of 

a(+ No is therefore the ratio of the r.m.s. of the rate of 

a(t) to the r.m.s. of a(t) itself. 

effect of high frequencies on the distribution is of interest since 
some upper limit must exist in any experimental work. To determine the 
effects of the higher frequency components of the measured spectra on the 
resulting calculated distributions, these have been calculated neglecting the 
contribution of frequencies greater than a frequency which will be called the 
cut-off frequency, fc, for various values of fc. 

The contribution of all frequencies from zero to fc to the average 

frequency of crossings of the mean level, No(fc), is given by 

fC 

i 
f*$(f)df 

No(fc)* = 
0 

. (4) 

The denominator of this expression is the contribution of all frequencies 
between zero and fc to the variance of a(t), i.e. 

a(f,)* = 
fC 

I 
+(f)df . (5) 

0 

The contribution of all frequencies between zero and fc to the distribution 

of crossings is given by Nn,% (fc) where 

NnBz(f c) = No(fc> exp c - (n-Z)*/*o(f,)* 
3 

. (6) 

3 THE APPLICATION OF THE CONCEPT OF STATIONARITY To EXPERIMENTAL WORK 

The derivation of Rice's formula (equations (I), (2) and (3)) assumes 
that the random function is stationary. A function is said to be stationary 
if the statistical quantities which describe it, and which are based on the 
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behaviour of the function starting from some time, to, and continuing for all 

subsequent time, are independent of the time origin toa Alternatively, 

stationarity can be defined on the basis of an infinite number of samples of 
finite length, but the following remarks still apply. Stationarity is thus a 
property of the statistics which describe a random function and not direotly 
a property of the random function itself. This may be of some importance in 
applying theoretical results derived under the assumption of stationarity to 
engineering problems, since it cannot be assumed that if for some statistical 
quantity the agreement between theory and experiment is good, then the agree- 
ment will necessarily be equally good for other statistical quantities. Also, 
whether a random process can be considered, from an engineering point of view, 
to be stationary, may depend on the frequency range which it is required to 
cover, 

The concept of stationarity is very useful in theoretical work and little 
progress would have been made without it. It is, however, difficult to apply 
it to an experimental result, since this must be based on a finite amount of 
data. The concept does not involve the way in which a statistical quantity 
based on a sample extending from time to to time T converges as T tends to 

infinity, only the existence of a limit which is independent of to. Thus, 

from a practical point of view, before theoretical relations derived under the 
assumption of stationarity can be relied on, it is necessary to carry out two 
kinds of check. The first is that the value of any statistical quantity of 
interest can be defined within the required accuracy by a finite sample of 
practicable length, which can be done by considering samples of different 
lengths and/or samples taken at different times. The second is, that if 
theoretical relations between different statistical quantities are of interest, 
these relations can be checked by experimental measurements. The object of the 
work described here is to carry out the second kind of check. The first was 
carried out in Ref.4 on the spectral densities used here and these were shown 
to be reasonably consistent when based on different samples. 

It should also be remembered that the finite length of a sample acts, in 
the calculation of spectral density, like a filter. A knowledge that the pro- 
oess is stationary, or at least a knowledge of how the process behaves during 
the time that it has not been measured, is necessary to determine the proper- 
ties of this filter. This question is dealt with fully by Blackman and Tukey5 
and will not be discussed here. 

4 'THE MEASURED SPECTRAL DENSITIES USED 

The measured spectral densities used are taken from Ref.3 and were 
obtained from acceleration measurements on an aeroplane flying through turbulent 
air. Three spectra of accelerations at two different points on the aircraft are 
considered. Two are based on different samples of acceleration at the aircraft's 
centre of gravity, which give spectra which decay rapidly with frequency over 
almost the whole‘frequency range, and one of the acceleration at the wing tip, 
which gives a spectrum with a number of sharp peaks. The C.G, acceleration 
data are those for flights 7 run 2 and 18 run I of Ref.4 and will be referred 
to as samples A, and A2, while the wing tip acceleration data are for flight 18 

run 1 and will be referred to as sample B, 
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The spectra given in Ref.4 were obtained as described in Refs.6 and 7, 
the method being basically that described in8Ref.5 except that the effective 
bandwidth of the filter used (Tukey's No.41 , R.A.E. Programme Deuce 156 7, 
is wider than those recommended in Ref.5. This m&es no practical difference 
to the distributions obtained up to about half the Nyquist frequency, i.e. up 
to a quarter of the sampling frequency. At frequencies near the Nyquist fre- 
quency the methods of Refs.5, 6 and 7 all overestimate the spectral density 
by factors of two or more.. The spectra from Ref.4 used here have been 
corrected, for frequencies between half the Nyquist frequency and the Nyquist 
frequency, to remove this effeot. The spectra used are shown in Fig.1, the 
highest frequency shown being the Nyquist frequency. The C.G.. acceleration 
spectra, samples A, and A2, are from 80 second samples and the wing tip 

spectrum, sample B, from a 40 second sample, the former being read from con- 
tinuous trace records at 0.02 second intervals and the latter at O*Ol second 
intervals. 

5 THE CALCULATION OF THE 
MEASURED SPECTRX 

The measured spectra are not accurate at very low frequencies due to the 
sample length used and the spectral densities at these frequencies make a 
large contribution to the r.m.s ., particularly for samples A. It would there- 
fore be unwise to apply equation (5) d irectly to the measured spectra. 
However, the integral of the spectral density from zero to infinity* is the 
variance 02, of the quantity, and this may be obtained directly from the 
record as the average of the square of the difference between each data point 
and the mean, 

The value of the contribution of frequencies from zero to the cut-off 
frequency, fc, may thus be obtained more accurately by using the expression 

(7) 

where a2 is the variance, calculated as described above, and fN is the 

Nyquist frequency. The contributions of frequencies from zero to fc to the 

variance, calculated from the spectra shown in Fig.1 using equation (7), are 
shown in Fig.2. The validity, in this case, of re 

P 
lacing 

limit of integration by fN in deriving equation (7 
the infinite upper 

can be seen by the rapid 

convergence of o(fcj2 as fc increases. 

*Care is neoessary in choosing the sampling frequency, since if significant 
energy exists at frequencies greater than the Nyquist frequency (half the 
sampling frequency) quite large errors can be made, see Ref.5. If significant 
energy does not exist there, infinity can be taken to mean a very high frequency 
and, for practical purposes, the integration need only extent to the Nyquist 
frequency. 
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The numerator of the expression for No(fc)*, (equation (b)), 
J 

= 2 
f &9af, 

0 
is very much more dependent on the high frequency components and its values, 
calculated from the three spectra shown in Fig.?, are shown in Pig.3, plotted 
against the cut-off frequency, fc. 

The values obtained, using equations (4), (5) and (7), of the contribu- 
tions of frequencies from zero to the cut-off frequency to the zero crossing 
frequency, No(fc), are shown in Fig.& If the spectra used had been calculated 

according to the methods of Refs.5, 6 and 7 over the whole frequency range, 
the values of No(fc) would not have been noticeably affected up to about half 

the Nyquist frequency, and increasingly affected as the Nyquist frequency is 
approached. The values obtained at the Nyquist frequency would be increased 
by about lC$ for samples A, and A2 and 2% for sample B. 

The distributions of crossings of acceleration levels obtained from 
equation (6) are shown in Fig.5 for several cut-off frequencies. 

6 THE MEASURED PROBABILITY DISTRIBUTIONS 

6.1 Method of measurement 

The measured average numbers of crossings of several. acceleration levels 
for the three samples considered are also shown in Fig.5. These were deter- 
mined from continuous trace records of the measured quantities, the same 
records which were read at discrete time intervals to give the spectra. A 
transparent overlay with a number of parallel lines, ruled approximately 4 mm 
apart (the actual distance being equivalent to 0*125g) for the records of 
samples A, and A 

2 
and 2 mm apart for the record of sample B, was placed over 

the records and the number of crossings of each line with positive slope was 
counted. Sections of the records used are shown in Fig.6. 

Although the mean value of the acceleration was known for each record 
used, (it h aving been calculated as part of the computing procedure to deter- 
mine the spectra), this information was not used in determining the distribu- 
tions since it is frequently desirable to apply the technique of counting 
crossings to records the mean of which is not accurately known. The method 
used was to plot the distribution and determine, by eye, the value of the 
'mean' which gave the best straight line when the distribution was plotted as 
increment squared against log frequency, all frequencies corresponding to fewer 
than 10 crossings in the sample length being neglected. This, in effect, is a 
simple-minded way of finding the Gaussian distribution which is the best fit to 
the data. 

6.2 A further examinatipn of one'measured distribution 

The distribution obtained from sample A, shows poorest agreement with the 

distribution calculated from the measured spectrum so, to check the accuracy of 
the method of counting used and to look for possible reasons for the poorer 
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agreement, this distribution has been examined in more detail. For this pur- 
pose the digital readings, taken from the record (at 0.02 second intervals) 
in order to compute the spectra, were replotted on a much larger scale than 
the original record and the resulting points joined by straight lines. The 
numbers of crossings of several levels by the resulting curve were then 
determined and these are shown in Fig.-/a, plotted against the difference 
between the level and the calculated mean for all the data points. Since 
the points from the record were plotted from digital readings, some peaks 
were exactly on the levels at which crossings were counted. The frequencies 
obtained at some of the levels, when peaks exactly on those levels were 
counted as crossings, are also shown on Fig.7a. The distribution originally 
obtained is also shown in this Figure and in this case the mean used is that 
determined from the symmetry of the distribution, as described in Section 6.1 
above. The agreement between the frequencies obtained from the original 
record and those from the digital readings is good except for the point at 
n-5 = 0*275 and this point is farthest from the Gaussian distribution which 
the others fit fairly well. The data from Fig.7a are replotted in Fig.-(b on 
an increment squared scale and distributions calculated from the measured 
spectrum at two cut-off frequencies are shown for comparison. 

7 DISCUSSION -- 

The slope of a distribution, plotted as in Fig.5, is proportional to 
the variance (square of r.m.s.) and the agreement between the slopes 
measured from the records and those calculated from the spectra is quite 
good. If lines had been drawn through the points of the measured distribu- 
tions to determine the r.m.s., the values so obtained would have differed 
little from the calculated values, although the point on the far right in 
sample A, is quite a long way from the line. This point does not fit well 
with the more detailed count, see Fig.i'b, which is in fairly good agreement 
with the calculated slope. 

The zero crossing frequency is strongly dependent on the high frequency 
content of the time histories and it is necessary to enquire into possible 
errors in the measured spectral densities at high frequencies. A discussion 
of the effects of errors arising from inaccurate reading of the records is 
given in Ref. 9, where it was found that they caused an approximately uniform 
error over the frequency range (white noise) and that the r.m.s, reading 
error was 0*003 in.; this error is assumed to include also rounding off 
errors in the digitising process. Although the magnitude (r.m.s.) of the 
error may well be different in the present case since different reading equip- 
ment was used, it seems likely that the errors in the present ease a* also 
white noise. If this is so, and if the r.m.s. reading error of Ref. 9 is 
assumed, the speotrsl density at the Nyquist frequencies would, in the present 
spectra, be overestimated by about lO$$. For the whole of the spectral density 
at the Nyquist frequencies to be due to reading errors, these would need to 
have an r.m.s. value of about O*Ol in. on the record, which was read via a 
projector which magnified (linearly) about three times. Although an r.m.s. 
error of O*Ol in. in the present case would probably be an overestimate, the 
real r.m.s. error is not likely to be much less than 0*005 in. It is there- 
fore reasonable to suppose that the spectral densities at the Nyquist fre- 
quencies are overestimated, in the present spectra, by about 3% due to 
reading errors. 



Errors in the speotral density at high frequencies also arise due to 
aliasing effeotss, the spectral density from frequencies higher than the 
Nyquist frequency appearing spuriously in the calculated spectra. The samp- 
ling frequenoy used in reading the records was designed to out aliasing 
effects down to a praotioable minimum for frequencies up to 15 o/s for samples 
A, and A2 and 30 c/s for sample B, since these were the highest frequencies 

of interest for the purpose for which the spectra were intended (described in 
Ref.4). Whilst aliasing effects are considered to be negligible up to these 
frequencies, this may well not be the case when the spectra are calculated, 
as they are here, right up to the Nyquist frequency. 

The agreement between the measured values of the zero crossing frequency, 
N 

0' 
and those calculated from the measured spectra, see Figs.5 and 7, appears 

to be quite good, and adequate from an engineering point of view. The above 
argument that the calculated value of No at f. = 25 c/s in samples A is too 

large due to reading errors seems to be borne out by the values measured from 
the reoords. The value for the sample A, is overestimated by the calculation 

from the measured spectrum to a greater extent than the value for sample + 

This may be simply because the spectral density for sample A, is the more 

inaccurate due to reading errors etc. However, since the measured distribu- 
tions are obtained from finite samples, they would not be expected to be 
exaotly Gaussian even if they beosme better approximations to the Gaussian as 
the length of the sample was increased. The dif'ferenoes in agreement for 
samples A, and A2 may, in part, be due to the former being a poorer approxi- 

mation to a Gaussian distribution. 

In the case of sample B, the calculated value of No for fc = 50 c/s is 

slightly less than the measured value. Due to reading errors the value for 

rC 
= 30 c/s should be nearer to the value which would be obtained from a cor- 

rect spectrum, if this was zero at frequencies greater than 50 o/sa However, 
if some of the spectral density between 30 o/s and 50 o/s in sample B was due 
to aliasing effects, this oould lead to an underestimate of No, cancelling out 

the overestimate due to reading errors. To this extent, the apparently almost 
exaot agreement between the measured value of No for sample B and the oalou- 

lated value for f. = 50 o/s may be spurious, 

From an engineering point of view the above arguments are of only 
academic interest since in the present case the agreement between the measured 
and caloulated zero orossing frequencies shows that the agreement between the 
theory of Ref.1 and experimental data is adequate for practical purposes which 
oan be envisaged at the moment. There is no reasun to believe that the agree- 
ment would not be equally good for other random processes which give approxi- 
mately Gaussian distributions of crossings and which behave approximately in 
the manner of stationary random prooesses* It is, however, clear that in the 
use of the relations derived in Ref.1 to calculate the zero crossing frequenoy 
from measured or theoretically calculated spectra, great care must be taken in 
ensuring that the high frequency components of the spectra are sufficiently 
accurate. 
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8 CONCLUSIONS 

The theoretical relation between the probability distribution of 
crossings and the spectral density of a stationary random process with 
Gaussian distribution derived by Rice' has been applied to spectral densities 
obtained in measurements of the response of an aeroplane to turbulent air. 
The resulting probability distributions of crossings of acceleration levels 
have been compared with distributions obtained directly from records of the 
measured quantities by counting how often the traces crossed given levels. 
The distributions obtained by the two methods are in reasonable agreement. 
If the relation derived in Ref.1 is to be applied to spectral densities 
either obtained from experimental data or calculated theoretically, great 
care is necessary to ensure that the high frequency components of the spectra 
are known with sufficient accuracy. 

It is concluded that, for random processes in which the distribution of 
crossings is approximately Gaussian and which behave approximately in the 
manner of stationary rardom processes, the theoretical relation derived in 
Ref.1 can be considered, for engineering purposes, to be valid. It must, 
however, be remembered that this relation applies striotly only to the 
distribution of crossings and not distributions of other quantities, such 
as peak values and the readings of fatigue load meters, which are frequently 
used for similar purposes0 
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