

Approximate Two-dimensional Aerofoil Theory.
Part v. The Positions of Maximum Velocity and Theoretical C_{L} Ranges

${ }_{8 y}{ }^{-}$

S. Goldstein, F R.S

NATIONAL AERONAUTICAL ESTABLISHNE ETIII

Approximate Two-Di,ensional Aerofoil Theory, Part V. The Positions of Maximun Velocity and Theoretical C_{L}-Ranges

- By -
S. Goldstein, I.R.S.

24 th March, 1945

Surmaxy

1. We may find the positions of maximum velocity on the upper surface with sufficient precision for practic. 7 purposes by the following rules. When $\mid C_{L}-C_{\text {L }}$ opt \mid, is not large, soive the equation

$$
\begin{align*}
\mathrm{C}_{\mathrm{L}}= & \left\{2 \rho_{\mathrm{L}} \cot \theta+\sin ^{2} \theta\left[g_{\mathrm{s}}^{\prime}(\theta)+g_{I}^{\prime}(\hat{y})\right]\right. \\
& \left.+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) \mathrm{C}_{\mathrm{L} \text { opt }}(1+\cos \theta)\right\} /\left\{\frac{1}{a_{0}}+\frac{\cos \theta}{2 \pi}\right\} \tag{1}
\end{align*}
$$

by plotting the right-hand side against θ and reading off the values of θ for which it is equal to specified values of C_{I}; or, if $a_{0}=2 \pi$, solve the equation

$$
\begin{equation*}
\frac{C_{I}-C_{I} \text { opt }}{2 \pi}=2 C_{L} \frac{\cot O^{\prime}}{1+\cos \theta}+[1-\cos \theta]\left[g_{s}^{\prime}(\theta)+g_{i}^{\prime}(0)\right] \tag{2}
\end{equation*}
$$

similarly by plotting the right-hand side and reading off the values of θ for which it is equal to $\left(C_{L}-C_{L}\right.$ opt $) / 2 \pi$. If the right-hand side stays practically constant over a considerable range of values of θ, then for the corresponding value of C_{I} we have a 'flat' maximum, which we do not attempt to locate wath any precision. As C_{L} increases, after a certain stage Θ becomes smaller. When λ, defined by

$$
\lambda=\left(\begin{array}{cc}
1 & 1 \tag{3}\\
\frac{a_{\dot{0}}}{2 \pi} & \left.\frac{1}{2 \pi}\right)\left(C_{L}-C_{I} \text { opt }\right), ~
\end{array}\right.
$$

is large compared with' $2 \rho_{\mathrm{L}}$, and λ^{3} large compared with

$$
\begin{equation*}
\left(2 \rho_{I}\right)^{2}\left[g_{S}^{\prime}\left(\frac{2 \rho_{I}}{\lambda}\right)+g_{I}^{\prime}\left(\frac{2 \rho_{I}}{\lambda}\right)\right] \tag{4}
\end{equation*}
$$

0 is given simply by

$$
\begin{equation*}
\theta=2 \rho_{I} / \lambda . \tag{5}
\end{equation*}
$$

If, however, we proceed to vory large values of $C_{L}-C_{L}$ opt and very small values of θ, we must change the definition of λ^{L} to

$$
\lambda=C_{I}\left\{1-\frac{C_{L}^{2}}{a_{0}^{2}}\right\}^{\frac{1}{2}}\left\{\begin{array}{c}
1 \tag{6}\\
- \\
a_{0} \\
2 \pi c_{0}
\end{array}\right\}-C_{L} \text { opt }\left(\begin{array}{cc}
1 \\
- & 1 \\
a_{0} & 2 \pi
\end{array}\right) ;
$$

for centre lines without singularities at $G=0\left(g_{i}(0)=0\right), \theta$ is then given by

$$
\begin{equation*}
0=2 \rho_{I} / \lambda-N\left(2 \rho_{L}\right) \psi^{\prime}(0) ; \tag{7}
\end{equation*}
$$

for centre Iines with singularities at $\theta=0\left(g_{i}(0) \neq 0\right) \quad \theta$ is given by substituting $2 \rho_{I} / \lambda$ for θ in the right-hand side of the equation

$$
\begin{equation*}
\theta=\frac{\psi^{2}(\theta)-\lambda \psi(\theta) \psi^{\prime}(\theta)}{\lambda+\psi(\theta) \psi^{\prime}(\theta)} \tag{8}
\end{equation*}
$$

and then procecding by successive approximation if necessary. In these last cascs, however, unless boundary layor suction is employed, restricted boundary layer separation will probably modify the theoretical pressure distribution very considerably oven if the aerofoil is not stallod, so the results will not have much practical significance at present.

The equations above also apply to the lower surface if we remember that θ is negative, $g_{s}, \psi_{s}, g_{1}^{1}, \psi_{c}^{\prime} \quad$ cven functions of θ, and $g_{s}^{\prime}, \psi_{s}^{\prime}, g_{j}$, $\Psi \mathrm{c}$ odd functions of θ It is, however, conveniont aiways to consider these functions in the range $0 \leqslant \theta \leqslant \pi$, and wo may do so if we make the following changes in the equations. In (1) change the signs of $2 \rho_{\mathrm{L}} \cot \theta$ and $\sin ^{2} 0 g_{\mathrm{s}}^{\prime}(\theta)$ In (2) change the signs of $C_{L}-C_{I}$ opt and of $g_{1}(\theta)$. Change the sign of $C_{L}-C_{L \text { opt }}$ in the dofinition of λ in (3) and the sign of g_{j}^{1} in (4). Then (5) is unolterod. Change the sign of the right-hand side of equation (6), defining λ; then (7) and (8) are unaltered, but, whereas on the upper surface,

$$
\begin{equation*}
\psi=\psi_{s}(\epsilon)+\psi_{c}(\theta), \quad \psi^{\prime}=\psi_{s}^{\prime}(0)+\psi_{o}^{\prime}(\theta), \tag{9}
\end{equation*}
$$

for the lower surface we must take

$$
\begin{equation*}
\psi=\psi_{s}(\theta)-\psi_{0}(\theta), \quad \psi^{\prime}=\psi_{s}^{\prime}(\theta)-\psi_{c}^{\prime}(\theta) . \tag{10}
\end{equation*}
$$

Those approximate methods have been tested by Mr. E. J. Richards ${ }^{4}$, who has applicd them to N.A.C.A. 16 serics and Clark Y aerofoils, with satisfactory results for practical purposes.
2. A discussion is given of possiblo definitions of C_{L}-ranges for low-drag aerofoils. The "theoretical" C_{L}-range is defined as the range of values of C_{L} for which the velocity continually increases, on both the upper and lower surface, from the stagnation point to the designed position of maximum velocity at the design C_{L}. (This definition applies strictly only when the slopes of the graphs of $g_{s} \pm g_{i}$ are discontinuous at the design position of maximum velocity, which is the case for low-drag aerofoils as now dosigned; if the graphs of $g_{s} \pm g_{i}$ are rounded off, we should require the velocity to increase only up to the beginning the rounding-off).

To obtain a CL-range of any practicnlly significant size, $g_{g}^{\prime}(\xi)$, which is small compared with 1, must be positive and large compared with $2 \rho I$, except perhans for smn I valucs of θ. For $a_{o}=2 \pi$, best rosults are obtained by taking $g!(\theta)=0$, and for practical values of a_{0}, this thcorem remains practically correct.

If, at the relcvant value of $0, g_{g}^{\prime}(\theta) \pm g_{1}^{\prime}(\theta)$ are large enough compared with $2 \rho_{I}$ for

$$
\frac{2 e_{I}}{\theta_{1}}+e^{2}\left(g_{s}^{1} \pm g_{1}^{\prime}\right)
$$

to have minima for small valuos of θ, then the $C_{\text {- }}$-range is given, quite gencrally, by

$$
\begin{gather*}
\operatorname{Max}\left\{-\frac{2 \varepsilon_{I}}{\theta}-\theta^{2},\left(g_{s}^{\prime}-g_{i}^{\prime}\right)\right\} \leqslant\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(c_{L}-c_{L} \text { opt }\right) \\
\leqslant \operatorname{Min}\left\{\frac{2 \rho_{I}}{\theta}+\theta^{2}\left(g_{s}^{\prime}+g_{I}^{\prime}\right)\right\}, \tag{11}
\end{gather*}
$$

except that, for highly cambered thin aerofoils it seems worth while, having found the positions of the maximum and minimum of the expressions above, to substatute the vajues of. ψ^{2} at those positions for 2 f L in order to find the values. More generally; and with no very. great accuracy, if $a_{0}=2 \pi$ wo have the conditions that $\pm \frac{1}{2 \pi}\left(C_{L}-C_{I}\right.$ opt $)$ nust not excced the minimum values of

$$
\begin{equation*}
2 \rho_{I} \frac{\cot \theta}{1+\cos \theta}+(1-\cos \theta)\left(g_{S}^{\prime} \pm g_{i}^{\prime}\right) \tag{12}
\end{equation*}
$$

respectively; for $a_{0} \neq 2 \pi$, wo have the more elaborate conditions (15) of the text.

If $\mathrm{g}_{\mathrm{i}} \neq 0$, the midale of the $\mathrm{C}_{\mathrm{L}}-$ range is displaced from $C_{L}=G_{L}$ opt.

For the 'roof-top' acrofoils of 1866 and 7 of Ref. 5 ($\mathrm{dg}_{\mathrm{g}} / \mathrm{dx}=\mathrm{s}=$ constant for $0 \leqslant x \leqslant x$), with contro-lines designed for constant approximate londing for $0 \leqslant x \leqslant X\left(\mathrm{Ag}_{\mathrm{j}} / \mathrm{dx}=0\right.$ for $\left.0 \leqslant x \leqslant X\right)$, the C_{L}-range is given by

$$
\begin{equation*}
\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left|C_{L}-C_{L} o_{0 p t}\right| \leqslant 1.4756\left(2 \rho_{L}\right)^{\frac{3}{4}} s^{\frac{1}{4}} \tag{13}
\end{equation*}
$$

Wic suppose the position of maximum velocity, X, fixed, and also $N\left(2 \rho_{T}\right)$ fixed. [For a cusped aerofoil] $N\left(2 \rho_{T}\right)=0$; it will in any case be smoil $; 0.0_{4}$ would be a large value.] If in addition the maximum velocity is given (theoretical critical, linch numbor given), or the thickness for a given value of x, or the maximum thickness, then there is a value of s which makes the C_{I}-range a maximum. (For the cases when the maximum velocity is given, or the thicknoss for a given x, sce the exarples in the text.) In particular, when the maximum thickmoss-chord ratio, t, is given, the value of s may be found from the formulao

$$
\left.\begin{array}{rl}
s=1.25 t-0.25 \sqrt{ }\left(2 \rho_{T}\right) & \text { for } x=0.4 \\
= & 0.9818 t-0.251 . \sqrt{ }\left(2 \rho_{T}\right) \\
\text { for } x=0.5 \\
=0.8095 t-0.172 \sqrt{ }\left(2 \rho_{T}\right) & \text { for } x=0.6
\end{array}\right] \text { (14) }
$$

With normal values of t and $\sqrt{ }\left(2 \rho_{T}\right)$, the values of s so found are probably large enough for a stage to have been reached when any practicable increase in s would not, in any case, make any practical difference to the tolerance for waviness of the surface. (An increase of the velocity gradient by a large factor would probably make a difference, which is why ve expect the tolerance to be greater near the nose than elsewhere)

Corrcsponding to the above formulae for s, we have the following formulae for the parameters a, b, c needed to find the ordinates of the fairing5.

$$
\text { For } \begin{aligned}
& X=0.4, \\
& a=1.0125 t-0.3 \sqrt{ }\left(2 \mathbb{F}_{\mathrm{T}}\right), \quad b=1.5125 t-0.4 \sqrt{ }\left(2 \sum_{\mathrm{T}}\right) ; \\
&-0=0.9085 t-1.87 /\left(2 \mathcal{E}_{\mathrm{T}}\right) ;
\end{aligned}
$$

for $X=0.5$,
for $X=0.6$,

$$
\begin{aligned}
a=0.8908 t-0.156 \mathrm{~N}\left(2 p_{\mathrm{T}}\right), \mathrm{b} & =1.3765 t-0.259 \mathrm{~N}\left(\begin{array}{l}
2 \\
2
\end{array} \rho_{\mathrm{T}}\right), \\
-\mathrm{c} & =1.2121 t-2.170 \mathrm{PT})
\end{aligned}
$$

Tables of the maximum C_{L}-ranges of these aerofoils are given for thicknesses between 8 and 22 per cent, for $N\left(2 \rho_{T}\right)=0$ and 0.02 . For $N\left(2 \mu_{T}\right)=0$, the Ci-range is nearly proportional to $t^{7 / 4}$.

1. Introduction

To calculate the theoretzcal critical compressibility speed for a given aurofoil section af a given C_{L} we first compute the greatest volocity on tho acrofoil contour. This greatest velocity may be found by graphical or numerical methods from a graph or table of the velocity distribution, but when we require the answers for a number of aurofoils ovcr a range of C_{L}-values, such a method is long and laborious, and has been found in practice in somo cases to be prohibitively long. Some simpleficaition is, therefore, necessary. It appears that it is possible to find simple formulae for the positions of the velocity maxima; such formulae, though raihicr crude, scem to be sufficiently accurate for practical; purposes. The actral maximum values of the velocity are then easily computed, by Approxamation II:, for the values of, x and i 0 so found, and for those values only. If there are tro maxima for any C_{I}, both must be computed and the larger chosen (unless we know beforehand which will be the lasger).

To compate the maximum values of the velocity no great accuracy is necessary in calculating their positions, since a small orror in the position produces a seconi-order crror in the value. As $\left|\mathrm{C}_{\mathrm{J}}\right|$ increases, however, a peak in the velocity graph develops near the loading cage of the aerofoil - on the upper surface for C_{L} positive and on the lower surface for C_{L} negative - and the absolute error in the calculated valuc of θ at the maxinum must be smail if we are to avoid the possibility of falrly large crrors in the calculated maximum value. (The porcentago orror need not be very small, since C i.tself is small). In other words, special attontion must be paid to the nose of the aerofoil (

The/

[^0]The positions of the maxima being calculated from an approximate formula, if $d q / d \theta$ (where q is the velocity) remains small over a large range of θ in the neighbourhood of the maximum, our determnation of its position will be subject to quite considerablc error. This error, however, will not be important in the calculation of the maximum value of q, since the graph of. q will vary slowly over the whole range of O in question.

The determination of the posation of the maximum velocity may also be considered to give some information on the probable position of transution to turbulence in the boundary layer. Care will be needed, however, in using this information. Other factors in addition to the velocjty distribution (waviness and roughness of the surface, turbulence in the air, Reynolds number) affect the position of transition, and the effect of the velocity distribution, and its interaction with the other factors, do not depend solely on the position of the maximum velocity. We do know that if the velocity falls off steadily and not too slowly after the maximum, then in practice, at high Reynolds numbers, transition will not be delayed to any appreciable extent beyond the maximum. Whether transition will occur before the maximum will dopend on the velocity gradient, the state of the surface, the turbulence in the air and the Reynolds number In certain circumstances, also, transition may occur woll after the velocity maximum - for example, with a good surfacc and low turbulence in the air, if the maximum is followed by a small fall in velocity and the volocity begins to rise again (Fig.1), or, at Reynolds numbors which are not too large (10^{6} to 2.10^{6}), if the maximum is very "flat". The former state of affairs (Fig.1) applies near the nose of a good many acrofoils at certain values of C_{L}. To sum up we may say that, for the purposes of discussing the probable position of transition, a rough

colculation of the positions of maximum velocity may be of some restricted use for a preliminary "sorting-out", but much more will be necessary for an aerofoil which it is proposed to study in any detail, so only very rough calculations of the positions of the maxima will be needed; in particular, if q is varying very slowly, then that is itself probably all we need to know - the oxact position of the maximum in a "flat" portion of the graph of q is not of any practical interest.

Closely connected with the question of the positions of the velocity maxima is the discussion of the "theoretical" C_{L}-ranges for lowmarag acrofoils according to a definition we have used for some time now, the "theoretical" C_{I}-range being dofined as the range of values of C_{I} for which the velocity continually increases, on both surfaces, from the stagnation point to the designed position of maximum volocity at the design $C_{L^{*}}^{* *}$ A slight extension of the

> analysis/
*For some further remarks on this subject, see 16 .
**As low-drag acrofoils are designed at present, the slopes of the graphs of the velocity on Approximation I (i.e. the slopes of the graphs of $\mathrm{gs}_{\mathrm{s}} \pm \mathrm{g}_{\mathrm{f}}$) are discontinuous at the design position of maximum velocity, and the definition given applies strictly only to such cases. If the graphs of $\mathrm{g}_{\mathrm{s}} \pm \mathrm{gi}_{\mathrm{i}}$ are rounded off, we should require the velocity to increase only up to the beginnirg of the rounding off.
analysis for finding the positions of the velocity maxima enables us to discuss these "theoretical" $C_{\text {L-ranges, }}$ but before we proceed to the analysis, a short discussion of definitions of C_{L}-range may not be out of place. The general notion is that the C_{I}-range is the range of values of C_{L} for which the aerofeil drag stays low and practically constant. Such a statement is, however, too vague to serve as a definition until the circumstances are specified in whioh the drag is to be determined, One such definition is the range of values of CI for which the drag stays low and constant when measured on models made as carefully as possible and testod in a low-turbulence wind-tunnel at a given Reynolds number, say 30×106.* This "windmtunnel" definition would certainly be useful if a suitable tunncl and model-making facilitics were available. The third definition - the "practical" definition - is the most probable range under practical conditions of manufacture, flight and maintonance; values according to this definition are the values we should all like to be able to give but none of us can. It is probable that in future all three definitions will be used. our "theoretical" definition will be of use Iwr, a preliminary "sorting-out". Its main disadvantage is that it takes no accuunt of the nature of the velocity curve after the maximum; if, for example, there is only a small fall in velooity after the maximum (Fig.1), it does not take into account the magnitude of the velocity gradient thereafter, which may be fairly large in some cases and practically zero in others. As soon as really good surfaces become practicable, and a small velocity followed by a rise does not necessarily lead to transition, this point will have to be borme in mind. Meanvhile, it is doubtful if, at presont, it would be possible in practice to delay transition in this way, so aerofoils may porhaps be expected to be in the same "order of merit" as regards C_{I}-ranges whether arranged according to the "theoretical" or "practical" definition. In fact, with present surfaccs, the "theoretical" dofinition may be nearer to the "practical" one than the "wind-tunnel" definition would be**

2. The Approximate Calculation of the Positions of Maximum Velocity on the Upper Surface

We wish to use the simplest possible method to calculate the position (or positions) of maximum velocsty. The crude, linear Approximation I cannot be used; q / U is infinite at $\quad A=0$ except for $C_{L}=C_{L}$ opt according to Approximation I. We therefore use Approxamation II, accordung to which3, on the upper surface,

$$
\begin{array}{r}
\frac{q}{U}=\frac{1+\frac{1}{2} C_{0}^{2}}{\left(\psi^{2}+\sin ^{2} \theta\right)^{\frac{1}{2}}}\left\{\left(1+g_{s}+g_{i}\right) \sin \theta+c_{L}\left(\frac{1}{2 \pi}+\frac{\cos \theta}{a_{0}}\right)\right. \\
\left.-\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) c_{J_{\mu} \text { opt }}(1+\cos \theta)\right\},
\end{array}
$$

*This "windmtumnel" definition may be that adopted by American workers on the subject, though, if so, it is not clear which Reynolds number, if any, they adopt as standard. Jacobs, Abbott and Davidson ${ }^{1}$, however, write of the C_{L}-range as the range "over which the pressure distribution romains favorabje", which suggests that they adopt the definition of what we call the "theoretical" $C_{\text {L-range, }}$ though no exact definition is given of when a pressure distribution is favourable. It is of interest that irs. Moore, in working out ${ }^{2}$ the velocity distribution on N.A.C.A.66, 2-015, also worked out the theoretical $\mathrm{C}_{\text {I-range }}$, and found it to be ± 0.166 (Fig.2), in place of the ± 0.2 indrcatod ir the title of the aerofoll. This acrofoil is one of an older semes; it has now been replaced by N.A.C.A. 662 - 015, and it would be of interest to repeat the calculations on the now aerofoil.
**A fourth possible definition, namely the range of valucs of C_{L} for which transition stays at or bchind the designed position of the maximum velocity, has not been included, since it is still not possible to calculate the position of transition, and the drag is casier to measure.
so

$$
\begin{aligned}
\frac{a}{d \theta}\left(\frac{q}{U}\right)= & \frac{1+\frac{1}{2} c_{0}^{2}}{\left(\psi^{2}+\sin ^{2} \theta\right)^{3 / 2}\left\{\sin \vartheta\left(\psi^{2}+\sin ^{2} \theta\right)\left(g_{s}^{\prime}+g_{i}^{j}\right)\right.} \\
& +\left(\psi^{2} \cos \theta-\psi \psi^{\prime} \sin \theta\right)\left(1+g_{s}+g_{i}\right)-c_{L}\left[\sin \theta\left(\frac{1+\psi^{2}}{a_{0}}+\frac{\cos \theta}{2 \pi}\right)\right. \\
& \left.+\psi \psi^{\prime}\left(\frac{\cos \theta}{a_{0}}+\frac{1}{2 \pi}\right)\right] . \\
& \left.+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{L \text { opt }}\left[\sin \theta\left(\uparrow+\psi^{2}+\cos \xi\right)+\psi \psi^{\prime}(1+\cos \theta)\right]\right\}
\end{aligned}
$$

where the dash denotes differentiation with respect to 0 . This expression is too complicated to be of practical use; it must bo simplified by approximation. Except for very large values of C_{L} wo ray say that the terms of the first order

$$
\begin{aligned}
& \operatorname{in}\} \text { are } \\
& \sin ^{3} \theta\left(g_{s}^{\prime}+g_{1}\right)-C_{L} \sin \theta\left(\frac{1}{a_{0}}+\frac{\cos \theta}{2 \pi}\right)+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{L \text { opt }} \sin \theta(1+\cos \theta) ;
\end{aligned}
$$

those of the second order are

$$
\psi^{2} \cos \theta-\psi \psi^{\prime} \sin \theta ;
$$

and those of the third order are

$$
\begin{aligned}
\psi^{2}\left(g_{s}^{\prime}+g_{i}^{\prime}\right) & \sin \theta+\left(\psi^{2} \cos \theta-\psi \psi^{\prime} \sin \theta\right)\left(g_{s}+g_{i}\right)-\frac{c_{L}}{a_{0}} \psi^{2} \sin \theta \\
& +\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 M}\right) c_{L \text { opt }} \psi^{2} \sin \theta-c_{L}\left(\frac{\cos \theta}{a_{0}}+\frac{1}{2 \pi}\right) \psi \psi^{\prime} \\
& +\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{L \text { opt }}(1+\cos \theta) \psi \psi^{\prime} .
\end{aligned}
$$

The terms of the first order are all small when θ is small, whereas those of the second and third orders are rot, so it is immediately clear, as explained in the introduction, that we may not simply neglect the terms of the second and third orders if incorrect results are to be avoided for small values of θ. on the other hand, as we also explained in the introduction, we abandon the requirement of even fair accuracy in the case of a very 'flat' maximum, and then tho neglect of the first four terms of the third order would appear to be always justifiable. For $\psi 2\left(g_{s}^{1}+g_{1}^{1}\right) \sin \theta$ will always be small either compared with $\sin ^{3} \theta\left(g_{s}^{i}+g_{1}\right)$ or compared with ψ^{2} cos $\theta^{\prime}-\psi \psi^{\prime} \sin \theta ; g_{s}+g_{i}$ will be small compared with 1; and ψ^{2} certainly small compared with 1. It is equally clear that, at any rate for small θ, the first term of the second order may not bo neglected; when $\theta=0$ this term is simply 2 eL , where Q_{L} is the radius of curvature of the aerofoil section at the leading edge. To what extent the influence
of the second term of the second order, and of the last two terms of the third order, may be neglected, is a more difficult question to decide; it seems probable that the former, since it is of the second order and is, moreover, small when θ is small, may always be neglected, and that the last two terms of the third order may be neglected except when C_{I} is vory large and Θ very small. We shall presently give some numerical examples and shall see that the above statements are correct.

The second and third order terms are of most importance whon Q is small, so wo carry the analysis further for small G, noglecting completely the first four terms of the third order. In the terms of the first and second orders we write 1 for $\cos \theta$ and θ for $\sin \theta$; for ψ^{2} we write

$$
\psi^{2}(0)+2 \theta \psi(0) \psi^{\prime}(0)
$$

and for $\psi \psi^{\prime}$ we write $\psi(0) \psi^{\prime}(0)$. In other words we expand the first and second order torms in powers of 9 , and keep only the terms in 00 and θ^{1}. In the last two third order terms we keep only the term in 0.0 . Also, on the upper surface,

$$
\psi=\psi_{s}\left(\theta_{0}\right)+\psi_{0}(E),
$$

and

$$
\psi_{0}(0)=0, \quad \psi_{s}(0)=\sqrt{ }\left(2 \rho_{L}\right) .
$$

Hence $d g / \alpha G=0$ on the upper surface for small θ whon, approximatcly,

$$
2 \varphi_{L}+\theta V\left(2 \rho_{L}\right) \psi^{\prime}(0)-\lambda\left[\theta+V\left(2 \rho_{L}\right) \psi^{\prime}(0)\right]=0
$$

where

$$
\begin{equation*}
\lambda=\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(C_{I}-C_{L} u p t\right) ; \tag{2}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\theta=\frac{2 \rho_{I}-\lambda_{N}\left(2 \wp_{I}\right) \psi^{\prime}(0)}{\lambda-\sqrt{\left(2 \rho_{I}\right) \psi^{\prime}(0)} .} \tag{3}
\end{equation*}
$$

In order that θ should bo small, the denominator must be large compared with the numorator, i.e.

$$
\lambda-N\left(2 \rho_{L}\right) \psi^{\prime}(0) \geqslant 2 \xi_{L}-\lambda N\left(2 \rho_{L}\right) \psi^{\prime}(0),
$$

i.e.

$$
\lambda\left[1+N\left(2 \rho_{L}\right) \psi^{\prime}(0)\right] \geqslant 2 p_{L}+\sqrt{ }\left(2 \rho_{I}\right) \psi^{\prime}(0),
$$

i.e., since $\sqrt{ }\left(2 \rho_{L}\right) \psi^{\prime}(0)$ is small compared with 1 ,

$$
\lambda \geqslant 2 p_{\mathrm{L}}+\sqrt{ }\left(2 p_{\mathrm{L}}\right) \psi^{\prime}(0)
$$

Hence certainly

$$
\lambda \geqslant>/\left(2 P_{L}\right) \psi^{\prime}(0)
$$

the second term in the denominator may be neglectod, and approximatoly

$$
\begin{equation*}
\theta=\frac{2 \rho_{I}}{\lambda}-N\left(2 \rho_{L}\right) \psi^{\prime}(0) \tag{4}
\end{equation*}
$$

Thus/

Thus of the terms of the second order in in (1), the second could have been neglected and the first replaced by its valuc at $\theta=0$.

Before wo proceed to numorical illustrations we must remark that the last stop in our analysis is anvalid if thero is a singularity at $\theta=0$ in the equation of the centre line; such singularitios occur in cortain modern contro lines, for which $g_{i}(0) \neq 0$, the approximate loading beng taken as constant from $x=0$ either over the whole chord or over some fraction of it from the leading edgc. As a result both $d y d \partial x$ and the approximate value of $\psi^{\prime} c(\theta)$ arc Iogarithmically infinite at $\theta=0$, and we may not substitute ψ^{\prime} (0) for $\psi:(\theta)$, no matior how small θ may be, nor $\psi^{2}(0)+2 \theta \psi(0) \psi^{1}(0)$ ror $\psi^{2}(\theta)$ 。 In place of (2) we have then, to bogin with,

$$
\begin{equation*}
\theta=\frac{\psi^{2}(\theta)-\lambda \psi(\theta) \psi^{\prime}(\theta)}{\lambda+\psi(\theta) \psi^{\prime}(\theta)} \tag{5}
\end{equation*}
$$

If $\theta=\theta_{0}$ is the relevant (small) root of this equation, $\psi_{0}\left(\Theta_{0}\right)$ will be small comparce with $\psi_{s}\left(\theta_{0}\right)$, as we shall see later in numerical examples, and $\psi_{s}\left(\theta_{0}\right)$, will be nearly equal to $\psi_{s}(0)$, i.c. to $N\left(2 \rho_{I}\right)$, so $\psi\left(\theta_{0}\right)$ will be of the same order of magnitude as $\sqrt{\left(2 \rho_{I}\right)}$. We shall also show later, by numerical examples, that, although $\psi^{\prime}(\theta)$ is logarithmically infinite at $\theta=0$, yet, for quite small values of $\theta_{0}, \psi^{\prime}\left(\theta_{0}\right)$ for centre lines with singularatios is of obout the same ordor of magnitude as $\psi^{\prime}(0)$ for contre lines with no singularitics. It rollows thet, just as wo could noglcot $N\left(20_{J}\right) \psi^{\prime}(0)$ in the denomanator in (3), so ve may noglect $\psi(\theta) \psi^{\prime \prime}(\Leftrightarrow)$ in the denomunator in (5): Because of the singularity, however, the order of magnitude of $\left|\psi^{2}(\theta)-2 P_{L}\right| / \theta$ is unccrtain, so $1 t$ is difificult to forctoll how large a percontage orror wall be anvolvod in substituting $2 p_{\text {f }}$ for $\psi^{2}(\theta)$ in the numerator of (5). If we do makc this substitution, (5) roducos to

$$
\begin{equation*}
\theta=\frac{2 \rho_{I}}{\lambda}-\sqrt{ }\left(2 \rho_{\mathrm{L}}\right) \psi^{\prime}(\theta) . \tag{6}
\end{equation*}
$$

This equation may be solved by successive approximation; for the first approximation wo put $\theta=2 \rho_{I} / \lambda$ in $\psi^{\prime}(\theta)$, so that

$$
\begin{equation*}
\theta=\frac{2 P_{I}}{\lambda}-j\left(2 P_{I}\right) \psi^{\prime}\left(\frac{2 \rho_{I}}{\lambda}\right) ; \tag{7}
\end{equation*}
$$

for the socond amproximation wo substatuto from (7) anto $\psi^{\prime}(\theta)$ in (6), and so on. The first inproximation (7) will usunlly bo sufficiontly accurato; in this foim the cquation as equally applicable if there is no singularity in U'(ब) at $\theta=0$, sancc in such cases, in foct, the difference betrecn (4) and (7) is nogligible. Moreover, on the upper surfince,

$$
\psi^{\prime}(\theta)=\psi_{s}^{\prime}(0)+\psi_{c}^{\prime}(\theta),
$$

and, unless $\psi^{\prime}(\theta)$ is discontinuous at $\theta=0$ as a consequence of singularitios in the cquation of the acrofoil contour, $\psi_{5}^{\prime}(0)=0$ and $\psi_{s}^{\prime}\left(2 p_{\text {I }} / \lambda\right)$ vill bc nogligibly small, so tre mey replace ψ^{\prime} by ${ }^{s} \psi_{c}^{\prime}$ in (4), (6) and (7). Such ciscontinuitics occur on N.A.C.A. 00 acrofoils. ${ }^{C}$ On N.A.C.A. 0012 , for exanple, the approximate value of ψ^{\prime} at $\theta=0$ changes discontinuously from +0.0378 to -0.0378 as wo pass from the lower to the upper surface. For such aorofoils, $\psi^{\text {' }}$ should not be replacod by ψ_{c}^{\prime} in (4), (6) and (7)*

Sance/
*On N.A.C.A. 0012 , the accurate value of ψ^{\prime} zs zero at $\theta=0$, but rises very rapzally to approximato agrocment with the values colculated on the approximato theory.
We should montion that the sangularaty in the equation of the acrofocil contour which produces a discontinuaty in $\psi{ }_{s}^{\prime}(\theta)$ at $\theta=0$, also makes g_{g} logarithmically infinite at $\theta=0$. But for N.A.C.A. 0012, g_{S} is only 0.3245 then $\theta=0 . \alpha_{4}$ and 0.3574 when $\theta=0.02$, compared vith 0.1933 at $\theta=\frac{1}{4} \pi$.

Since, for small values of $\theta, \psi^{\prime}(\theta)$ is larger and $\psi(\theta)$ varies more rapidly for N.A.C.A. foumfigure acrofoils than for any other common symmetrical types, for our numerical examples we shall suppose the aerofoil fairing to have the shape of N.A.C.A. 0012 ; and we shall consider two centre lines, one math, and one without, a singularity at $0=0$. For the former we take the parabolic centre-line

$$
y_{c}=0.08 x(1-x)
$$

which corresponds to 2 per cent camber and a C_{L} opt roughly 0.25 ; for the latter the centre-line for constant approximate loading,

$$
y_{0}=-\frac{1}{16 M}\{x \ln x+(1-x) \ln (1-x)\}
$$

which corresponds to a C_{L} opt of 0.25 and a camber of roughly 1.4 per cent. For the former

$$
\psi_{c}=0.0 \alpha_{4} \sin \theta, \psi_{c}^{\prime}=0.04 \cos \theta ;
$$

for the latter

$$
\begin{aligned}
& \psi_{c}=-\frac{1}{8 \pi}\left\{\tan \frac{1}{2} \theta \ln \sin \frac{1}{2} \theta+-\cot \frac{1}{2} \theta \ln \cos \frac{1}{2} \theta\right\} \\
& \psi_{\mathrm{c}}^{\mathrm{t}}=-\frac{1}{16 \pi}\left\{\sec ^{2} \frac{1}{2} \theta \ln \sin \frac{1}{2} \theta-\operatorname{cosscc} 2 \frac{1}{2} \theta \ln \cos \frac{1}{2} \theta\right\}
\end{aligned}
$$

Then $\sqrt{ }\left(2 \hat{f}_{\mathrm{L}}\right)=0.1781$. Let us take $\lambda=1 / 6$ to start with, so that, for $a_{0}=2 \pi, C_{\bar{L}}-C_{L}$ opt $=\pi / 6$. Then $2 \rho_{I} / \lambda=0.1903$. For this value of $\theta, \psi_{s}(\theta)=0.1715, \psi_{s}^{\prime}(\theta)=-0.0324$, and, according to the formulae above, $\psi_{0}=0.0076, \psi_{c}^{:}=0.0393$ for the first centre line and $\Psi_{c}=0.0108, \psi_{c}^{\prime}=0.0373$ for the second. Hence, on the upper surface, for the first centre line

$$
\begin{aligned}
\dot{\psi}=0.1791, \quad \psi^{2}=0.03208, \quad \psi^{2} / \lambda & =0.1925, \quad \psi^{\prime}=0.0069, \\
\psi^{\prime} & =0.0012,
\end{aligned}
$$

and for the second

$$
\begin{aligned}
\psi=0.1823, \quad \psi^{2}=0.03323, \quad \psi^{2} / \lambda & =0.1994, \quad \psi^{\prime}=0.0049 \\
\psi \psi^{\prime} & =0.0009
\end{aligned}
$$

Thus in these cases not only may $\psi \psi^{\prime}$ be neglected in the denominator of (5), b ut also in the numerator, i.e. the second terms in (4.), (6) and (7) may be neglected. We shall, however, wish to make the same approximations for the lower as for the upper surface; for the lower surface,

$$
\psi=0.1639, \quad \psi^{2}=0.02686, \psi^{2} / \lambda=0.1612,\left|\psi^{\prime}\right|=0.0717,\left|\psi \psi^{\prime}\right|=0.0118
$$

[^1]for the first centreline, and
$\psi=0.1607, \psi^{2}=0.02 ヶ 8 z^{2} \psi^{2} / \lambda=0.1549,\left|\psi^{\prime}\right|=0.0697,\left|\psi \psi^{\prime}\right|=0.0112$,
for the sccond. Here both $\psi \psi^{\prime}$ and the difference of ψ^{2} from $2 \rho_{I}$ may not be completely negligible. We shall see, however, that the sign of $\psi \psi^{\prime}$ is to be taken as negative, and the effect of 'mncluding the $\psi \psi \psi^{\prime}$ terms in (5) is therefore opposite in sign from the offect of toining the above values of ψ^{2} in place of $2 \rho_{I}$. In fact, if we calculate a second approximation to θ from (5), we find $\theta^{=}=0.1860$ for the first centre line and $\theta=0.1781$ for the second;* even in the latter case the percentage difference from the first approximation 0.1903 (about $6 \frac{1}{2}$ per cent) is probably tolerable for the purposes we have in mind. That the effects tend to cancel is not fortuitous; the difference between $\psi^{2}(0)$ sind $2 \rho_{L}$ is clearly related to the sign and magnitude of $\psi \psi^{\prime}$.

As a second numerical example we consider the same aerofoil, but double the value of λ, so that the valuc of θ is halved. With $\lambda=1 / 3$, $C_{L}-C_{L \text { opt }}=\pi / 3$ for $a_{0}=\pi$. The first approximation to \hat{E} is $2 \rho_{I} / \lambda=0.0952$. For this value of $E, \psi_{S}(\theta)=0.1747$, $\psi_{s}^{\prime}(\theta)=-0.0344 ;$ for the first centre line $\psi_{c}=0.0038, \psi_{c}^{1}=0.0398$, and for the second $\psi_{0}=0.0068, \psi_{0}^{\prime}=0.0508^{+}$on the upper surface
$\psi=0.1785, \psi^{2}=0.03186, \psi^{2} / \lambda=0.0956, \psi^{\prime}=0.0054, \psi \psi^{\prime}=0.00096$
for the first centro line, and
$\psi=0.1815, \psi^{2}=0.03294, \psi^{2} / \lambda=0.0988, \psi^{\prime}=0.0164, \psi \psi^{2}=0.00298$ for the second; on the lower surface
$\psi^{\prime}=0.1709, \psi^{2}=0.02921, \psi^{2 / \lambda}=0.0876,\left|\psi^{\prime}\right|=0.0742,\left|\psi^{\prime}\right|=0.01268$ for the first centre line and
$\psi=0.1679, \quad \psi^{2}=0.02319, \quad \psi^{2} / \lambda=0.0846,\left|\psi^{\prime}\right|=0.0852,\left|\psi \psi^{2}\right|=0.01431$
for the sccond. The second approxamations to θ, according to eqn. (5), are now 0.0943 and 0.00950 for the upper surface for the first and second centre lines respectively, and 0,1043 and 0.1033 for the lower surface. The largest percentage error in the farst approxamation (about 9 per cent) is now on the lower surface for the first centre linc; if we include the second term in (7) this crror is reduced to less than half, and the error on the upper surface for the first contre lane is reduced almost to zero; moreovor, this term will clearly account for an increasing fraction of the error as λ increases. For the second centre line, however, computation shows that there is no substantial advantage to be gained by including the second term of (7) unless we also change the first torm to $\psi^{2}\left(2 \rho_{I} / \lambda\right)$, and then we may as well solve (5) by successive approximation.

Thus/
*For the upper surface these second approximations are 0.1898 for the first centre line and 0.1974 for the second.
tEven when θ is as small as $0.0_{4}, \psi_{c}^{\prime}$ is only 0.0679 . Eventually as $<\rightarrow 0$, the whole basis of our approximation to ψ^{\prime} will fail because of the singularyty, and we must use more nearly oxact va?uss in (5). But the numerical results above seem to show that such failure will not occur for any practical value of λ.

Thus we see that, when θ is small but not very small, a satisfactory approximation to the position of maximum velocity is given, quite simply, by

$$
\begin{equation*}
\theta=2 Q_{I} / \lambda \tag{8}
\end{equation*}
$$

in all cases. $\quad Q$ becomes very small when $\mid C_{L}-C_{I}$ opt \mid becomes very large; in such cases Approximation II itself may not be a satisfactory basis, and we shall briefly consjder the matter later on the basis of Approximation III (only briefly because the results are of no great practical interest); meanwhile we note only that for centre lines whthout singularities at $0=0\left(g_{j}(0)=0\right)$, eqn. (7) provides a better answer for very smali θ than eqn. (8), and for such very small values of θ we may as well use (4), which is easier, in place of (7); but for centre lines with singularities ($\left.g_{i}(0)=0\right)$ it is safer to solve (5) by successive approximation, using (8) for the farst trial value.

We seek next for the simplest equation to solve when θ is not small. The second and third order terms in $\}$ in (1) are now small corpared with the first order terms; in order, however, to ensure that the solution for θ should pass fairly smoothly into the value given by ${ }_{2}(8)$ as C_{I} increases and θ becomes small, we must include the term $\psi^{2} \cos \theta$ of the second order. For the purpose for which it is included, however, wo may approximate to it by $2 \rho_{I} \cos 0 ;$ i.e. we neglect terms

$$
\left(\psi^{2}-2\left(\psi^{\prime}\right) \cos \theta-\psi \psi^{\prime} \sin \theta\right.
$$

of the second order, and all terms of the third order. The equation $d q / d \theta=0$ then becomes, approximately

$$
\begin{gathered}
2 \ell_{I} \cos \theta+\sin ^{3} \theta\left[g_{S}^{\prime}(\theta)+g_{I}^{\prime}(\theta)\right] \\
+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{L \text { opt }} \sin \theta(1+\cos \theta) \\
-C_{I} \sin \theta\binom{1}{\left.a_{0}+\frac{\cos \theta}{2 \pi}\right)^{n}}^{\prime}=0 .
\end{gathered}
$$

Probably this equation will bo most often used when it is required to study the maxima of q over a range of values of C_{L}, and the simplest way to carry out the calculation would appear to be to write
$C_{L}=\left\{2 \rho_{L} \cot \theta+\sin ^{2} \theta\left[\operatorname{c}_{S}^{\prime}(\theta)+g_{I}(\theta)\right]+\frac{1}{2}\left(\frac{1}{1}+\frac{1}{2 \pi} \sigma_{I} \sigma_{0} t(1+\infty \quad \theta)\right\}\left(\left\{\begin{array}{l}1 \\ \frac{\cos }{}+\frac{\cos \theta}{2 \pi}\end{array}\right\}\right.\right.$,
plot the function on the right against θ, and read of x the values of θ for which it is equal to specified values of C_{I}. If the function stays practically constant over a considerable range of values of 0 , then for the corresponding C_{L} we have a 'flat' maximum.

We may note that for $a_{0}=2 \pi$, (9) becomes, more simply,
$\frac{C_{I}-C_{I \text { opt }}}{2 \pi}=2 \rho_{I} \frac{\cot \theta}{1+\cos \theta}+[1-\cos \theta]\left[g_{S}^{\prime}(\theta)+g_{I}^{\prime}(\theta)\right]$.

As C_{L} increases, after a certain stage θ beoomes smaller, and when λ (as given by cqn. (3)) is large compared with $2 \rho_{\mathrm{L}}, \theta$ is given approximately by (8) provided that λ^{3} is also large compared with

$$
\begin{equation*}
\left(2 \rho_{J}\right)^{2}\left[g_{S}^{\prime}\left(\frac{2 \rho_{I}}{\lambda}\right)+g_{j}^{\prime}\left(\frac{2 \rho_{I}}{\lambda}\right)\right] \tag{11}
\end{equation*}
$$

Finally, we return to the cons deration of very large values of $\mid C_{L}-C_{L}$ opt \mid and very small values of $\quad \theta$ for which it is advisable to use Approximation III. At these very large values of $\mid C_{L}-C_{L}$ opt \mid the velocity" graph will have a very sharp peak near the leading edge; if the aerofoil is not completely stalled, we should expect that at any rate a restricted boundary-layer separation will occur and appreciably modify tho high theoretical peak, unless such separation is prevented by suction. Consequently the theoreticel calculations cannot be expected to have much practical significanoe at present, and they have therefore been rolegated to an Appendix. It is there show that eqn. (5) still holds if the definition of $\bar{\lambda}$ in eqn. (2) is altered to
$\lambda=C_{I}\left\{1-\frac{C_{L}^{2}}{a_{0}^{2}}\right\}^{-\frac{1}{2}}\left\{\frac{1}{a_{0}}+\frac{1}{2 \pi e^{C_{0}}}\right\}-C_{L}$ opt $\left(\begin{array}{l}1 \\ a_{0}\end{array}+\frac{1}{2 \pi}\right) ;$
the mann effect is that in (2) C_{L} must be replaced by $c_{I}\left\{1-c_{I}^{2} / a_{0}^{2}\right\}^{-\frac{1}{2}}$ if C_{I} / a_{0} is comparable wath 1. Combining this result with those proviously deduced for eqn. (5), we have the following rules for determining tho positions of maximum velocity on the upper surface.

$$
\text { If }\left|C_{L}-C_{L \text { opt }}\right| \text { is not large, solve cqn. (9) by plotting the }
$$

rlght-hand side against 0 and reading off the values of θ for which it is equal to specifica values of σ_{L}; or, if $a_{0}=2 \pi$, solve eqn. (10) similarly by plotting the rightmand side and reading off the values of A for which it is equal to $\left(C_{L}-C_{I}\right.$ opt $) / 2 T$. If the right-hand side stays practically constant over a considerable range of values of θ, then for the corresponding value of $C L$ we have a 'flat' maximum, which we do not attempt to locate with any precision. As C_{L} increases, after a certain stage θ bocomes smaller. When λ (as dofined by eqn. (2)) is large compared with $2 \rho_{I}$, and λ^{3} large compared with (10), U is given simply by (8). If, however, we proced to very large values of C_{L} and very small values of θ, we must take the definition (12) of λ in place of (2); 9 is given by (4) for contre lines whout singularities at $\theta=0\left(g_{i}(0)=0\right)$, and by substituting $2 \rho_{I} / \lambda$ into the right-hand side of (5) [and then, if necessary, solving (5) by successive approximation] for contre lines with singtularities $\left(g_{j}(0) \neq 0\right)$.

The approximate methods of this section have been tested by Mr. E. J. Richardst who has applicd them to N.A.C.A. 16 series and Clark Y acrofoils, with satisfactory results for practical purposes.
3. The Approximate Calculation of the Positions of Maximum Velocity on the Lower Surface.

Our previous equations apply on the lower surface if we remember that θ is negative, $g_{s}, \psi_{s}, g_{1}^{\prime}, \psi_{s}^{\prime}$ even functions of θ and $g_{S}^{\prime}, \psi_{s}^{\prime}, g_{j}$,
these functions in the range $0 \leqslant 0 \leqslant \pi$. If we do this, then the eqn. (9) which we solve when $\mid C_{I}-C_{L}$ opt \mid is not large, becomes

$$
\begin{align*}
& C_{I}=\left\{-2 \rho_{I} \cot \theta-\sin ^{2} \theta\left[g_{S}^{\prime}(\theta)-g_{L}^{\prime}(\theta)\right]+\cdots\left(\frac{1}{2}+\frac{1}{a_{0}}+2 \pi\right) C_{L \text { opt }}\right. \\
& (1+\cos \theta)\} /\left\{\frac{1}{a_{0}}+\frac{\cos \theta}{2 \pi}\right\}, \tag{9l}
\end{align*}
$$

and (10), which is the form taken by this equation when $a_{0}=2 \pi$, is
$\frac{C_{I \text { opt }}-C_{I}}{2 \pi}=2 Q_{I} \frac{\cot 9}{1+\cos \theta}+[1-\cos \theta]\left[g_{S}^{\prime}(\theta)-g_{i}^{\prime}(\theta)\right]$.
If the sign of λ is changed in the definition (2), so that

$$
\lambda=\left(\begin{array}{l}
1 \tag{2l}\\
\left.\frac{-}{a_{0}}+\frac{1}{2 \pi}\right)\left(C_{I ~ o p t}-C_{I}\right), ~
\end{array}\right.
$$

then when λ is large compared with $2 \rho_{I}$, and λ^{3} Iarge compared with

$$
\begin{equation*}
\left(2 \varphi_{L}\right)^{2}\left|g_{S}^{i}\left(\frac{2 \rho_{I}}{\lambda}\right)-g_{i}\left(\frac{2 \rho_{I}}{\lambda}\right)\right| \tag{11l}
\end{equation*}
$$

0 is given by

$$
\begin{equation*}
\theta=2 P_{I} / \lambda, \tag{8l}
\end{equation*}
$$

simply. For very large values of C_{L} opt $-C_{L}$, and very small values of θ, λ must be defined by (12) with the sign changed:
$\lambda=C_{L}$ opt $\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)-C_{L}\left\{1-\frac{C_{L}^{2}}{a_{C}^{2}}\right\}^{\frac{1}{E}}\left\{\begin{array}{c}1 \\ a_{0}+\frac{1}{2 \pi e_{0}}\end{array}\right\}$,
and then, for centre lines without singularities, θ is given by (4),

$$
\begin{equation*}
\theta=2 \theta_{I} / \lambda-N\left(2 \varphi_{I}\right) \psi^{\prime}(0), \tag{4l}
\end{equation*}
$$

and for centre lines with singularities we substitute $\theta=2 P_{I} / \lambda$ into the right-hand side of (5):

$$
\begin{equation*}
\theta=\frac{\psi^{2}(\theta)-\lambda \psi(\theta) \psi(\theta)}{\lambda+\psi(\theta) \psi^{2}(\theta)} \tag{5l}
\end{equation*}
$$

and proceed if necessary by successive approximation; but whereas on the upper surfaoe ψ, ' ψ ' are given by

$$
\begin{equation*}
\psi=\psi_{s}(\theta)+\psi_{c}(\theta), \quad \psi^{*}=\psi_{s}^{\prime}(\theta)+\psi_{o}^{i}(\theta) \tag{13}
\end{equation*}
$$

on the lower surface we must take

$$
\begin{equation*}
\psi=\psi_{s}(\theta)-\psi_{c}(\theta), \quad \psi^{\prime}=\psi_{s}^{\prime}(\theta)-\psi_{c}^{\prime}(\theta) . \tag{13i}
\end{equation*}
$$

4. The Theoretical CI-Range of a Low-Drag Aerofoil

We recall the definition of the theorctical C_{L}-range gaven in the antroduction, as the range of values of C_{L} for which the velocity continually increases, on both the upper and lower surface, from the stagnation point to the designed position of maximum velocity at the design C_{L} if, as is now usual, the slopes of the graphs of $g_{s} \pm g_{i}$ are discontinuous at that position; if. the graphs of $g_{s} \pm g_{j}$ are rounded of f in the future, we shall require the velocity to increase only to the beginning of the rounding off.

If ∂_{1} is the value of θ up to which the velocity is to increase, we may immediately write low "rom eqn. (1) the condition to be satisficd by $C_{\text {L }}$. The coefticient of -GL in the expression in in (1) is positive for $0<0 \leqslant \Theta_{1} ;$ so, in order that $d q / d C$ should $b c>0$ on the upper surface, ${ }^{C_{L}}$ must not exceed the minimum value of

$$
\begin{align*}
& \left\{\sin \theta\left(\psi^{2}+\sin ^{2} \theta\right)\left(g_{s}^{:}+g_{i}^{i}\right)+\left(\psi^{2} \cos \theta-\psi \psi^{\prime} \sin \theta\right)\left(1+g_{s}+g_{i}\right)\right. \\
& \left.+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) \mathrm{C}_{\mathrm{L} \text { opt }}\left[\sin \theta\left(1+\psi^{2}+\cos \theta\right)+\psi \psi^{\prime}(1+\cos \theta)\right]\right\} \div \\
& \left\{\sin \theta\left(\frac{1+\psi^{2}}{a_{0}}+\frac{\cos \theta}{2 \pi}\right)+\psi \psi \cdot\left(\frac{\cos \theta}{a_{0}}+\frac{1}{2 \pi}\right)\right\} \tag{14}
\end{align*}
$$

in the range $0<0<0_{1}$. Similarly in order that $d q / d \Theta$ should be >0 on the lower surface, $-_{\text {C }}$ must not exceed the minimum valuc of the exprossion obtained by changing the sagns of g_{i}^{1}, g_{i}, C_{I} opt in (14). On the upper surface ψ, ψ^{\prime} are given by (13), and on the lower surface by (13l).

The expression (14) is much too complicated to be of general use. Now as $\mid C_{L}-C_{L}$ opt \mid increases, when it reaches a certain value the position of maximum velocity may begin to move forward or a now maximum may make its appearance somewhere near the nose of the aerofoil. In cither casc, as wo sec from the discussion in K_{2}, we may expect the values of $|\lambda|$ (defincd by eqns. (2) and (2l)) at the und of the CI-range to be such that the assumptions leading to eqn. (9) [or cqn. (8) if θ-becomes small onough] will be sufficient to provide a fair approzimation to $\mathrm{dq} / \mathrm{d} O$. [We found this to be the case when $\mid C_{L}-C_{L}$ opt $\mid=\pi / 6$, and the error was not prohibitively large even when $\mid C_{L}-C_{L}$ opt $\left.\mid=\pi / 3\right]$. Consequently we have, approximatoly, that,C_{L} must not exceed the manimum value of

$$
\begin{gather*}
\left\{2 e_{I} \cos \theta+\sin 3 \theta\left(g_{s}^{\prime}+g_{i}^{*}\right)+\frac{1}{2}\binom{1}{a_{0}+\frac{1}{2 \pi}} c_{I \operatorname{opt} \sin \theta(1+\cos \theta)}\right\} \\
\div \sin \theta\left(\begin{array}{cc}
1 & \cos C \\
-\cdots+ & -\ldots \\
a_{0} & 2 \pi
\end{array}\right) \tag{15}
\end{gather*}
$$

in/

 negative or positive. No compaications are introtucod sunce we are not concorned with the range of 0 between the load̉n edge and the stagnation point.
in the range $0<\theta<D_{1}$; and similarly $-C_{I}$ must not exceod the minimum value of the expresszon derived from (i5) by changing the signs of g_{1} and C_{I} opt. The most important criteria for the validity of this approximation are that, on both the upper and the lower surfaces, $|\psi \psi!|$ should be small compared with $\sin 6$ at the position of the minimum, and ψ^{2} not too different from $2 P_{I}$; these criteria may be applied numerically after the values of E at the minima have been found, but the numerical values in ${ }^{2} 2$ are sufficient to show that we may expect them to be farrly well satisfied.

When $a_{0}=2 \pi$, our approximate conditions for C_{L} roduce to the simpler conditions that $\frac{1}{2 \pi}\left(C_{L}-C_{L}\right.$ opt $)$ and $\frac{1}{2 \pi}\left(C_{L}\right.$ opt $\left.-C_{L}\right)$ must not exceed the minimum values of

$$
\begin{equation*}
2 \epsilon_{L} \frac{\cot \theta}{1+\cos \theta}+(1-\cos \theta)\left(E_{s}^{: \pm} g_{i}^{\prime}\right), \tag{16}
\end{equation*}
$$

respectively.
Let us now consider the case in which, as $\mid C_{L}-C_{L}$ opt \mid is increasca, a maximum of q makes its appearance ncar the nose of the aerofoil before the maximum movos forward from $\hat{\theta}=\theta_{1}$. Then, if we suppose θ small in (15), we see that C_{L} and $-_{L}$ must not excced the minimum values of
$\left\{\frac{2 p_{L}}{0}+\theta^{2}\left(g_{s}^{t} \pm g_{i}^{\prime}\right) \pm\left(\frac{\vdots}{a_{0}}+\frac{1}{2 \pi t}\right) c_{L \text { opt }}\right\} /\left(\frac{1}{a_{0}}+\frac{1}{2 \tau}\right)$,
respoctively; i.c.
$\pm\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(C_{L}-C_{L}\right.$ opt $) \leqslant$ Minimum $\left.\left\{\frac{2 \rho}{\Gamma}+e^{2} i_{\left(g_{s}^{\prime}\right.}^{\prime} \pm g_{i}^{\prime}\right)\right\}$
respectively. Since $d x / d O=\frac{1}{2} \sin 3$, we may write (17) in the form
$\pm\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(C_{I}-C_{L ~ o p t}\right) \leqslant \operatorname{Minimum}\left\{\frac{2 \rho_{I}}{\theta}+\frac{\theta^{3}}{2}\left(\frac{d g_{s}}{d x} \pm \frac{d g_{i}}{d x}\right)\right\} .$.
In order that the right-hand side of (17) may have a minimum for a small value θ_{0} of $\Gamma, g_{S}^{\prime} \pm g_{j}^{\prime}$, which we suppose small compared with 1 , must be large compared with $2 P_{L}$ at $Q=\theta_{0}$. Moreover, if $g_{S}^{\prime} \pm g_{2}^{1}$ are large compared with $2 \rho_{L}$ for $C_{0} \leqslant \theta \leqslant \theta_{1}$, then the minima which occur when \hat{j} is small are cither the only minima, or are lower then othors which may occur when ρ is not small.

If the conditions are not satisfied, and $g_{s}^{\prime} \pm g_{2}^{f}$ is not large compared with $2 \rho_{I}{ }^{*}(1 / 2 M)\left(C_{L}-C_{L}\right.$ opt $)$ in the former case (positive sign) or $(1 / 2 \pi)\left(\mathrm{C}_{\mathrm{L} \text { opt }}-\mathrm{C}_{\mathrm{L}}\right)$ in the latter case (negative sign) must not exceed a
quantity/
*Over the whole range of \uparrow up to $0=\theta_{1}$, except that very small values of θ are irrelevant, since for very small values of θ the term in $2 \rho_{I}$ in (15) or (16) clearly dominates; in other words the minima will not occur for very smoll values of 0 .
For $C_{L}=C_{I} o p t, d q / a \theta$ will be small, on the upper or the lower surface respectively, for all values of which are not too smali; our approximations wi. 11 be inadequate to provide results, of even fair percentage accuracy, but it will still be correct that, $\ddagger(1 / 2 \pi)\left(C_{I}-C_{I_{L}}\right.$ opt $)$ must be $0\left(2 \rho_{I}\right)$ or less.
quantity which is of order $2 \rho_{I}$, or less; whereas when $g_{s}^{\prime} \pm g_{1}^{1}$ is large compared with $2 \mathcal{E}_{I}$ in the relevant range of values of B, the right-hand side of (17) has a minimum of a somewhat higher order than $2 \rho_{L}$, the minimum occurring when the two terms in $\{$ in (17) are of the same order of magnitude.

We have so far considered $g_{s}^{i} \pm g_{i}^{j}$ to be positive, and we sholl now show it is advantageous that they should be so. It is probably sufficient to illustrate the argument by using (16); similar deductions may, in fact, be made from (15). Quite generally we may writc (16) in the form

$$
\begin{align*}
\text { Maximum } & \left\{-2 \hat{P}_{L} \frac{\cot \theta}{1+\cos \theta}-(1-\cos 0)\left(g_{s}^{\prime}-g_{1}^{\prime}\right)\right\} \\
& \leqslant \frac{1}{2 \pi}\left(c_{L}-C_{L} \text { opi }\right) \\
& \leqslant \text { Minimum }\left\{2 \epsilon_{L} \frac{\cot \theta}{1+\cos \theta}+(1-\cos \theta)\left(g_{s}^{\prime}+g_{i}^{\prime}\right)\right\} . \tag{19}
\end{align*}
$$

If $g_{s}^{\prime}-g_{1}^{1}$ is nogative and $g_{s}^{\prime}+g_{i}^{1}$ positive, and $g_{i}^{\prime} \pm g_{s}^{\prime}$ are large compared with 2ρ for all relevant values of θ, then the left-hand member of (19) is probably greater than the right-hand member, and there is no C_{L}-range at all. For whereas the right-hand momber has a minimum for some fairly small value of θ, when both its terms are of the same order of magnitude, the left-hand momber may either have no maximum at all and we may have to take simply the greatest value for $0<\theta \leqslant Q_{1}$, or a maxamum may occur when Θ is not small; in cither case the left-hand member will be greater than, or at least ncarly equal to, the right-hand member. Similar conclusions follow from (15); in fact, if $g_{i}^{1} \pm g_{s}^{\prime}$ are positive and large compared with $2 P_{L}$, $\left(\frac{1}{a_{0}}+\frac{1}{2 \pi i}\right)\left(C_{L}-C_{L}\right.$ opt $)$ must bo positive and of the order of magnitude of
$g_{i}^{\prime}-g_{s}^{\prime}$ in order that the velocity on the lower surface may be increasing; and then there is probably some range of (fairly small) values of G for which the velocity is decreasing on the upper surface.

Simplar statements may be made if $g_{S}^{1}+g_{i}^{1}$, or both $g_{s}^{\prime}+g_{1}^{1}$ and $g_{s}^{\prime}-g_{i}^{1}$ are negative. If thoy are large in absolute valuc compared with $2 \rho_{\mathrm{L}}$ over the relevant range of values on θ, then there is probably no C_{L}-range at all, and at best a very small range.

If $\left|g_{S}^{\prime} \pm g_{i}^{\prime}\right|$ is small, of order $2 \varrho_{I}$, thon, whether $g_{S}^{\prime} \pm g_{i}^{\prime}$ is positive or negative, it still rematns correct that $\pm(1 / 2 \pi)\left(\mathrm{s}_{\mathrm{L}}-\mathrm{C}_{\mathrm{L}}-\mathrm{opt}_{\mathrm{I}}\right)$ must
be $0\left(2 \rho_{\mathrm{L}}\right)$ is less.

It follows that to obtain a C_{L}-range of any practically significant size, $g_{s}^{:} \pm g_{i}^{1}$ should be positive and large compared with $2 \rho_{L}$, except perhaps for small values of \mathbb{G}. Hence g_{s}^{\prime} should be positive and large compared with $2 \rho_{\mathrm{L}}$, except perhaps for small valuos of θ.

It also appears that when $a_{0}=2 \pi 1$ best results are obtained by taking $g_{j}^{!}=0$. In (16) let us write temporarily

$$
\begin{aligned}
& F(C)=2 \rho_{L} \frac{\cot (}{1+\cos \theta}+(1-\cos \theta) g_{S}^{!} \\
& G(\theta)=(1-\cos \theta) g_{i}^{!}
\end{aligned}
$$

Let the least value of $F(\theta)$ occur when $\theta=\theta$ of of $F(\theta)+G(\theta)$ when $\theta=V_{2}$, and of $F(E)-G(O)$ when $0=00^{\circ}$ Then, in general,

$$
-F\left(\theta_{3}\right)+G\left(l_{3}\right) \leqslant \frac{1}{2 \pi}\left(C_{I}-C_{L} \operatorname{\rho pt}\right) \leqslant F\left(C_{2}\right)+G\left(O_{2}\right)
$$

and we require to show that

$$
\begin{equation*}
F\left(O_{2}\right)+F\left(\Theta_{3}\right)+G\left(\mathrm{C}_{2}\right)-G\left(\theta_{3}\right) \leqslant 2 F\left(G_{0}\right) \tag{20}
\end{equation*}
$$

Eut

$$
\begin{aligned}
& F\left(\mathrm{C}_{2}\right)+G\left({O_{2}}\right) \leqslant F\left(C_{0}\right)+G\left(\ni{ }_{0}\right) \\
& F\left(O_{3}\right)-G\left(\mathrm{O}_{3}\right) \leqslant F\left(G_{0}\right)-G\left(\theta_{0}\right),
\end{aligned}
$$

since $F \pm G$ is least when $O=\mathrm{C}_{2}$ or $\hat{\theta}_{3}$, respectively. Hence (20) follows by addition, and our theorem is proved.

Sumilarly from (15) we may shew that, when $a_{0} \neq 2 \pi$, best results are obtaincd by taking

$$
g_{1}=\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
-\cdots & -\infty \\
a_{0} & 2 \pi
\end{array}\right) C_{L \text { opt }} /(1+\cos \sigma)
$$

to compensate for the variation of

$$
\frac{1}{2}\left(\frac{1}{-}+\frac{1}{a_{0}}+\frac{2 \pi}{2 \pi}\right){C_{L} \text { opt }}(1+\cos \theta) /\left(\frac{1}{a_{0}}+\frac{\cos \theta}{2 \pi}\right)
$$

but usually, on modern low-drag aerofoils, a_{0} will be near enough to 2π for this suggested difference of g_{j} from zero to be negligible.

It should be made plain that, whereas the theorem on the best value of g_{i}^{\prime} may be ragerously proved on the basis of our initial approximations, the previous discussion of the order of magnitude of g_{S}^{l} is nejther rigorous nor corprehensive, since g^{i} may be of widely different orders of magnitude in different parts of the range $0 \leqslant \theta<\theta_{1}$, and it is not practicable to discuss rigorously all possible cases. In particular we did not discuss the case when g_{s}^{f} was sufficiently small over the relevant range of valucs of θ for the minimum of (17), for a falrly small value of G, to be avoided, but when $g g_{s}^{\prime}$ increased to a different order of magnitude as 0 increasod. All that we werc attempting was a preliminary general discussion of (1) the circumstances likely to arise for any given acrofoil; (2) the conditions necessary to obtain a C_{L}-range of some practical significance. We did not attempt to find a formula for g_{s} to make
the C_{L}-range as large as possible; to do this it would appear that the minimum (17) must be avoided, and then, as far as practicable, gi must be increased where it is least, and g_{s} incrcased, in particular for small values of θ, in order to increase $2 \rho_{\text {. }}$ Mathematically, for $a_{0}=2 \pi$, this problom may be defined as that of making the minimum of

$$
\begin{equation*}
2 \theta_{1} \frac{\cot \theta}{1+\cos \theta_{i}}+(1-\cos \theta) g_{s}^{1} \tag{21}
\end{equation*}
$$

for $0 \leqslant \vartheta \leqslant f_{1}$ as large as possible, where 5

$$
\begin{equation*}
V\left(2 p_{L}\right)=\frac{1}{\pi} \int_{0}^{\pi} g_{S}(\theta)(1+\cos \theta) d E \tag{22}
\end{equation*}
$$

a satisfactory solution for practical purposes has been found by Thwaites ${ }^{6}$, by considering variations, involving a small number of parametors, of the 'roof-top' acroforls discussed in Ref.5, $5 s_{6}$ and 7.

5. Displacement of the liadle of the $C_{\text {I }}$-Range from C_{I} opt.

We break off the discussion of C_{L}-ranges to refer braefly to a matter to which reforence had already bocn made in Ref.3, especially as the discussion therc was incomplete and misloading - namily, the shift of the middle of the C_{I} - range from C_{I} opt when $g_{j}^{\prime} \neq 0$. With $a_{0}=2 \pi$, in the notation of eqn. (20), the midale of the C_{L}-range is given by

$$
-\frac{1}{2 \pi}\left(C_{J}-C_{J} \text { opt }\right)=F\left(\theta_{2}\right)-F\left(\hat{O}_{3}\right)+G\left(\theta_{2}\right)+G\left(\theta_{3}\right)
$$

and the right-hand side will not be zero unless $g_{j}^{!}=0$.
As an example of both the diminution and the shift of the C_{L}-range when $g_{i}^{\prime} \neq 0$, wo mry consider the case when $d g_{S} / d x$ and $d g_{j} / d x$ are constant, and $\mathrm{dg}_{\mathrm{g}} / \mathrm{dx}$ is large compared wh th $2 f_{\mathrm{L}}$. Then the minimum of the expression. in $\}$ in (18) occurs when

$$
\begin{equation*}
6^{4}\left(\frac{d g_{S}}{d x} \pm \frac{d g_{j}}{d x}\right)=\frac{4}{3} \rho_{I} \tag{23}
\end{equation*}
$$

and, if we writc

$$
\begin{equation*}
\operatorname{dg}_{S} / d x=s, \quad d g_{\dot{j}} / d x=\lambda_{s} \quad(0 \leqslant \lambda<1), \tag{4}
\end{equation*}
$$

the C_{L}-range is given by

$$
\begin{gathered}
-2\left(\frac{2}{\frac{2}{3}}\right)^{\frac{3}{4}\left(2 \rho_{I}\right)^{3 / 4} s^{1 / 4}(1-\lambda)^{1 / 4} \leqslant\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(C_{I}-C_{I} \text { opt }\right)} \\
\leqslant 2\binom{2}{\frac{1}{3}}^{3 / 4}\left(2 \rho_{L}\right)^{3 / 4} s^{1 / 4}(1+\lambda)^{1 / 4}
\end{gathered}
$$

The totol range of $\left(\frac{1}{a_{0}}+\frac{1}{211}\right) \quad C_{L}$ is then

$$
2\left(\frac{2}{3}\right)^{3 / 4}\left(2 \varphi_{L}\right)^{3 / 4} s^{1 / 4}\left\{(1+\lambda)^{1 / 4}+(1-\lambda)^{1 / 4}\right\}
$$

which has its greatest value when $\lambda=0$, and the midale of the C_{L} range is at

$$
\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left(c_{L}-c_{L \text { opt }}\right)=2\left(\frac{2}{3}\right)^{3 / 4}\left(2 \rho_{I}\right)^{3 / 4} s^{1 / 4}\left[(1+\lambda)^{1 / 4}-(1-\lambda)^{1 / 4}\right\} .
$$

Hre refer also to the results for the aerofoil EQH 1250/4050
(Ref.3, Part II), a fairly thin aerofoil with a large canber (4 per cent). According to the accurate results reported in Part II, there is a small C_{I}-range, $0.63 \leqslant C_{L} \leqslant 0.66$, whercas C_{L} opt is 0.4354 . For this acrofoil, g_{S}^{\prime} is neglagibly small for small $\hat{\theta}$, and $g_{i}=0.16 \sin \left(3, g_{1}=0.16 \cos \theta\right.$, $N\left(2 \rho_{L}\right)=0.12$. According to our approximate results the minimum of the expression in $\}$ in (17) for the upper surface occurs when $\theta=0.3557$, and is 0.607 , which leads to the condition $C_{L} \leqslant 0.601$ (in place of the accurate result 0.66). On the lower surface, there is no minimura near the nose, and we fand from (15) that, very roughly, we must have $C L \leqslant 0.60$ for the lower surface. Thus on our epproximate theory we find that there is no C_{I}-range at all. For reasons given previously, we should not expect the result for the lowor surface to be more accurate than it is; the inaccuracy for the upper surface is, however, rather lorge. The reason lies in the large camber, and the consequent rapid variation of ψ. If we find the position of the minimum on the right in (17) in the same way as beforc, but substitute the value of ψ at the minimum (0.148) for $/\left(2 \rho_{L}\right)$ before finding its actual value, we obtain practically the accurate result, $C_{L} \leqslant 0.66$.

6. $\mathrm{C}_{\text {tr }}$-Rongos of 'Roof-Ton' Acrofoils

We have a very simplo formila for the $\mathrm{C}_{\text {L }}$-range of a 'roof-top' acrofoil, dosigned according to 186 and 7 of Ref.5, with centre lines designcd for constant approximate londang up to $x=X\left(\mathrm{~g}_{1}^{1}=0,0 \leqslant Q \leqslant Q_{1} ;\right.$ see Ref.7, 10). With $d g_{g} / d x=s$ for $0 \leqslant x \leqslant X$, as in eqn. (24), the application of eqn. (18) is irmediate; we have, in fact, only to put $\lambda=0$ in the results of the preceding section, and we find tiat the C_{I}-range is given by

$$
\begin{equation*}
\left.\left(\frac{1}{1}+\frac{1}{2 \pi}\right) \right\rvert\, c_{I}-c_{I} \text { opt } \left\lvert\, \leqslant 2\binom{2}{a_{0}}^{3 / 4}\left(2 \mathrm{e}_{\mathrm{L}}\right)^{3 / 4} \mathrm{~s}^{1 / 4}=1.1756\left(2 \rho_{\mathrm{I}}\right)^{3 / 4} \mathrm{~s}^{1 / 4}\right. \tag{25}
\end{equation*}
$$

This formula has proved renarkably accurate for acrofoils with roasonably large values of s and small camber. (It has not been testod on any acrofoll with larec caraber, since no practical necessity to do so has yet arisen.) The results obtained, all found in the course of investilations made for othor purposes, are tosted below.

No.	$\begin{gathered} 100 \mathrm{t} / \mathrm{c} \\ (\text { approx }) \end{gathered}$	Date for Foiring						Assumed ${ }^{\circ}$	$\begin{array}{\|l} \text { spprox. }_{C_{L}} \\ \text { Renge }_{\text {ane }} \end{array}$	Accurat $\mathrm{C}_{\mathrm{L}}{ }^{-}$ Range
		a	b	c	X	s	$v\left(20_{L}\right)$			
1	24	0.226	0.3	-0.193	0.5	0.16	0.1775	5	0.644	0.648
2	18	0.17	0.25	-0.145	0.5	0.213	0.2367	5	0.390	0.390
3	1012	0.1065	0.1392	-0.1125	0.6	0.0545	0.1072	5.5	0.147	0.145
4	$9{ }^{9 \frac{1}{4}}$	0.08135	0.1304	-0.1037_{5}	0.6	0.03175	0.0891	5.5	0.123	0.123
5	8	0.0562°	0.1216	-0.095 ${ }^{5}$	0.6	0.109	0.0711	5.5	0.0945	0.098

Aerofoils 1 and 2 were symmetrical; 3, 4 and 5 all had a centre line desinned for constant approximate loading for $0 \leqslant x \leqslant 0.6$, with the approximate loading decreasing linearly to zero for $0.6 \leqslant x \leqslant 1$, and
$\left(\pi / a_{0}+\frac{1}{2}\right) C_{L \text { opt }}=0.126$. With $a_{0}=5.5, C_{L}$ opt $=0.118$, but the middle of the C_{L}-range was, in fact, somewhat greater than 0.126 , being 0.130 , $0.1295,0.131$ for aerofoil's 3, 4 and 5, respectively. The results for aerofoils 1 and 2 are due to $\mathrm{Mr} . \mathrm{H} . \mathrm{C}$. Gamer, and those for aerofoils 3, 4 and 5 to Mes. Moore. It will be seen that the formula (25) gives a satisfactory result for a value of's as low as 0.0545 .

The shape of the farring depends on the four parameters, a, b, c, x. In place of a and c, we introduce the slope s of g_{s} and $\sqrt{ }\left(2 C_{T}\right)$, where ρ_{T} is the radius of curvature of the trailing edge. For a cusped aerofoil $N\left(2 \rho_{q_{1}}\right)=0$, and, more generally, the degree of the concavity of the aerofoil surface towards, the trailing cage is sensibly influenced by the value of $N\left(2 \mathcal{M}_{\mathrm{T}}\right)$. We suppose X and $N\left(2 \rho_{T}\right)$ 'have certain f 'rud chosen values. In addition we suppose the theoretical critical Mach number, or the aerofoil thickness at a given chordwase position, or the maximum thickness, is given. If the theorctical cratical Mach number is given, then whe a given contre line and dosign C_{I}, b will be fixed. If the theoretical critical Mach numbor, for example, is 0.68 , and the centre line is of the type previously mentioned (for acrofoils 3, 4 and 5 above) but with $X=0.5$, and the low speed equivalent of the top-sipecd C_{L} is 0.2 , then the maximum value of q / v on the surface must be 1.2525; with $a_{0}=2 \pi, g_{i}$ accounts for 0.0667 , so b is 0.1858 . In any casc, if X, $N\left(2 \rho_{\mathrm{T}}\right)$, and b , or the thickness for a given x, or the maximum thickness, are given, thore will be a value for s which makes the C_{L} range a maximum.

Consider, for example, the case $X=0.5$. Then

$$
\begin{aligned}
s=2(b-a), & N\left(2 \rho_{\mathrm{T}}\right)=0.06831 \mathrm{a}+0.36338 \mathrm{~b}+0.56831 \mathrm{o} \\
V\left(2 \rho_{\mathrm{L}}\right) & =0.56831 \mathrm{a}+0.36338 \mathrm{~b}+0.06831 \mathrm{o} \\
& =0.87980 \mathrm{~b}-0.28005 \mathrm{~s}+0.12020 \mathrm{~N}\left(2 \rho_{\mathrm{T}}\right)
\end{aligned}
$$

The C_{L}-range is proportional to $\left(N 2 \rho_{L}\right)^{3 / 2} \mathrm{~s}^{1 / 4}$; if $N\left(2 \rho_{\mathrm{T}}\right)$ and b are fixed, and s varies, this expression has a maximum when

$$
s=0.44880 \mathrm{~b}+0.0613 \mathrm{~N}\left(2 \rho_{\mathrm{T}}\right)
$$

If, howevcr, the thickness is given at a given x, for example $x=0, \dot{4}$, then from the tables of Ref. 5 ,

$$
0.10976 a+0.31036 b+0.06077 c=y_{1}
$$

where y_{1} is the half-thickness, as a fraction of the chord, at $x=0.4$. Hence

$$
0.38296 \mathrm{~b}-0.05123 \mathrm{~s}+0.10693 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right)=\mathrm{y}_{1}
$$

and

$$
N\left(2 \rho_{\mathrm{L}}\right)=2.29737 \mathrm{y}_{1}-0.16236 \mathrm{~s}-0.12546 N\left(2 \rho_{\mathrm{T}}\right)
$$

Again $\left(\sqrt{2} \rho_{L}\right)^{3 / 2} s^{1 / 4}$ has a maximum when s varics, tinis time when

$$
s=2.0214 y_{q}-0.11 \alpha_{4} \sqrt{ }\left(2 Q_{T}\right)
$$

When the maximum thickness is given, the matter is a little more complicated, since the position of the maximum thickness varies as s varies. The variation, however, is not large, ${ }^{8 *}$ and there is still a maximum $C_{\text {L }}$ range for which, if $N\left(2 \rho_{T}\right)$ and the thickness are given, the corresponding value of s may be computed; and hence the values of a, b, c may be found. For $X=0.5$ and 0.6 , these values were computed by Mr. H. C. Garner; I find that his values are satisfactorily reproduced by the formulae

$$
\begin{array}{ll}
a=0.9453 t-0.208 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right), & b=1.4362 t-0.335 \mathrm{~N}\left(2 \rho_{\mathrm{T}}\right), \\
-\mathrm{c}=1.0319 t-2.00 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right), & s=0.9818 t-0.254 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right) \\
\text { for } x=0.5, \text { and } & b=1.3765 t-0.259 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right), \\
a=0.8908 t-0.156 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right), & s=0.8095 t-0.172 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right)
\end{array}
$$

for $X=0.6$. In these formulae t reprosents the maximum thickness (not the half-thickness) as a fraction of the chord. Values have also boon roughly calculated for $X=0.4$ by Nr. E. J. Richards; his valucs are represented by
$a=1.0125 t-0.3 \mathrm{~N} /(2 \rho \mathrm{~T})$,
$-0=0.9085 t-1.87 \mathrm{~N}\left(2_{\mathrm{e} T}\right)$,

$$
\begin{aligned}
& \mathrm{b}=1.5125 t-0.4 \mathrm{~N}\left(2 \rho_{\mathrm{T}}\right) \\
& \mathrm{s}=1.25 t-0.25 \mathrm{~N}\left(2 \rho_{\mathrm{T}}\right) .
\end{aligned}
$$

For all normal thicknesses and values of $N\left(2 \rho_{\mathrm{p}}\right)$, the abovo formulac lead to very reasonable values of s. [For a cusped acrofoil $\sqrt{ }(2 p m)=0$, and values would not normally exceed $0.02 ; 0.04$ would be a very large value.] Experimental evidence of the effect of s on the tolerance that can be allowed for waviness of the surface is still rather scanty, and not at all systematic; but such evidence as we have indicates that once a frir value of s has been reached, nny furthur increases need to bo very large indeed to make any practical difference to the waviness, and the values obtained from the above formulac are, for all normil values of t and $\sqrt{\left(2 \theta_{T}\right)}$, large enough for this stage to have been reached. Thus once $s=0.1$, for example, it is very doubtful if it would make any practical difference to the tolerance if s were increased to 0.2. On the other hand, when the velocity gradient is made very much bigger indecd, for example multiplied by a factor of 10 , so thet instead of 0.1 it becomes 1.0 , then it seems that the tolerance on waviness may definitely bo increascd. Thus we may expect to be ablo to tolerate a larger wavinoss very near an aurofoil nose than elsewhere. Also if s is very much decreased the tolerance on waviness cortanly becomes less; but we have no exact quantitative knowledge, and systomatic experiments are certainly requircd. Rough values of the maximum C_{I} ranges for $a_{0}=2 \pi$ and for various values of t are given in the tables below. The figures give the complete C_{L}-range (2π times the right-hand side of (25)), not the half-range. For $X \cong 0.5$ and 0.6 they are dorived from Mr. Garner's results; for $X=0.4$ thoy havebeen computed from tine formulac given above as representang Mr. Richards' results.
$t 7 / 4$.
When $N\left(2 \rho_{T}\right)=C$, the C_{L} range is very nearly proportional to

[^2]CT-ranges, $\quad a_{0}=2 \pi$

$\sqrt{\left(2 \rho_{T}\right)}=0$				$N\left(2 \rho_{\mathrm{T}}\right)=0.02$			
t	0.4	0.5	0.6	$100 t^{X}$	0.4	0.5	0.6
8	0.111	0.109	0.099	8	$0.1 \chi_{+}$	0.102	0.095
10	0.165	0.161	0.147	10	0.157	0.153	0.141
12	0.227	0.222	0.203	12	0.218	0.214	0.195
14	0.297	0.291	0.264	14	0.287	0.281	0.256
16	0.375	0.367	0.333	16	0.363	0.357	0.326
18	0.462	0.451	0.408	18	0.449	0.440	0.401
20	0.554	0.543	0.490	20	0.5420	0.532	0.482
22	0.655	x	x	22	0.640	x	x

7. Concluding Romarks
8. The 'roof-top' aerofoils, considered in the preceding section, are, of course, not the only ones for which the analysis can be fully carried out. We might, for example, take

$$
g_{s}=A+B \tan \frac{1}{2} \theta
$$

Then wo find (still with $g_{j}^{\prime}=0$) that the minimum of (17) occurs ajproximately when

$$
\therefore \theta^{3}=2 \rho_{I} / B
$$

and the C_{J}-range is given bv

$$
\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right)\left|c_{L}-c_{L \text { ont }}\right| \leqslant 1.5\left(2 P_{L}\right)^{2 / 3} B^{1 / 3}
$$

This form of g_{S} may lead to somewhat larger $C_{\text {L }}$ ronges than (25); but to pursue. the matter further, we should have to find and work out formulac for the fairing ordinates, and we leave the matter for the present.
2. In so far as we may neglect ψ^{\prime}, and replace ψ^{2} by $2 \rho_{I}$, 211 our work could have been based on a sirple form of Approximation II, which we may call Approximation IIa, and which is the simplest form necessary if wis arc to make any attompt at all at approximating to the velocity near the nose:

$$
\begin{aligned}
& \frac{1}{U}=\frac{\left(1+\frac{1}{2} C_{O}^{2}\right.}{\left(2 \theta_{L}+\sin ^{2} \theta\right)^{\frac{1}{2}}}\left\{\left(1+g_{S}+g_{i}\right)^{\prime} \sin \theta+C_{L}\left(\frac{1}{2 \pi}+\frac{\cos \theta}{a_{0}}\right)\right. \\
& \left.-\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{I \operatorname{opt}}(1+\cos \theta)\right\} \quad\left(0 \leqslant \theta \leqslant \theta_{1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where/ }
\end{aligned}
$$

where

$$
K=\frac{\left(1+\frac{1}{2} O_{0}^{2}\right) \sin O_{1}}{\left(2 e_{I}+\sin ^{2} \cdot 1\right)^{\frac{1}{2}}} .
$$

\qquad
APPENDIX
On Approximation III,

$$
\begin{aligned}
\frac{q}{U}=\frac{e^{\gamma_{0}}\left(1+\epsilon^{1}\right)}{\left(\psi^{2}+\sin ^{2} \theta\right)^{\frac{1}{2}}} & \left\{\left(1-\frac{c_{I}^{2}}{a_{0}^{2}}\right)^{\frac{1}{2}} \sin (\theta+\epsilon-\beta)+\frac{C_{I}}{a_{0}} \cos (\theta+\epsilon-\beta)\right. \\
& \left.+\frac{C_{L}}{2 \pi e^{C_{0}}}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
&\left(\psi^{2}+\sin ^{2} \theta\right)^{3 / 2} e^{\gamma} 0 \frac{a}{a \theta}\left(\frac{q}{U}\right)=\left\{1-\frac{C_{L}^{2}}{a_{0}^{2}}\right\}^{\frac{1}{2}}\left\{\left[\psi^{2}+\sin ^{2} \theta\right]\right. \\
& {\left[\left(1+\epsilon^{\prime}\right)^{2} \cos (\theta+\epsilon-\beta)+\epsilon^{\prime \prime} \sin (\theta+\epsilon-\beta)\right] } \\
&\left.-\left[\sin \theta \cos \theta+\psi^{\prime}\right]\left[1+\psi^{\prime}\right] \sin (0+\epsilon-\beta)\right\} \\
&-\frac{C_{L}}{a_{0}}\left\{[\psi ^ { 2 } + \operatorname { s i n } ^ { 2 } \theta] \left[\left(1+\epsilon^{\prime}\right)^{2} \sin (\theta+\epsilon-\beta)-\epsilon^{\prime \prime} \cos (\theta+\epsilon-\beta\right.\right. \\
&\left.+\left[\sin \theta \cos \theta+\psi^{\prime} \psi^{\prime}\right]\left[1+\epsilon^{\prime}\right] \cos (\theta+\epsilon-\beta)\right\} \\
&+\frac{C_{L}}{2 \pi e_{0}}\left\{\epsilon^{\prime \prime}\left[\psi^{2}+\sin ^{2} \theta\right]+\left[1+\epsilon^{\prime}\right]\left[\sin \theta \cos \theta+\psi \psi^{\prime}\right]\right\}
\end{aligned}
$$

We still suppose $\epsilon-\beta, \epsilon^{\prime}, \epsilon^{\prime \prime}, \psi, \psi^{\prime}$ small, but $C_{I} / a_{0}, C_{I} /\left(2 \pi e^{C_{0}}\right)$, though they are less than 1, may now be comparable in magnitude with 1 . We are concerned only with cases in which $\mathrm{C}_{\mathrm{I}} / a_{0}$ is large enough for θ to be small compared with unity; and in order to have a comparison with the results from Approximation II it will be convenient to introduce g_{s} and g_{j}. We have 3

$$
g_{s}+g_{i}=c_{0}+\epsilon^{2}+(\epsilon-\beta) \cot \theta+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) c_{I \operatorname{opt}} \cot \frac{1}{2} \theta,
$$

$$
\sin 3 \theta\left(\mathrm{~B}_{\mathrm{s}}^{8}+g \dot{I}\right)=\psi^{\prime \prime} \sin ^{3} \theta+\epsilon^{\prime} \cos \theta \sin ^{2} \theta-(\epsilon-\beta) \sin \theta
$$

$$
-\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) c_{I \text { opt }} \sin \theta(1+\cos \theta)
$$

If we retain only the most important terms the equation $\alpha q / d G$ simplafies to

$$
\begin{aligned}
\left\{1-\frac{C_{L}^{2}}{a_{0}^{2}}\right\}^{\frac{1}{2}} & \left\{\psi^{2} \cos \theta-\psi \psi^{\prime} \sin \theta+\sin 3 \theta\left(g_{s}^{\prime}+g_{I}^{\prime}\right)\right. \\
& \left.+\frac{1}{2}\left(\frac{1}{a_{0}}+\frac{1}{2 \pi}\right) C_{I ~ o p t} \sin \theta(1+\cos \theta)-\psi \psi^{\prime}(\epsilon-\beta) \cos \theta\right\} \\
& -C_{I} \sin 0\left(\frac{1}{a_{0}}+\frac{\cos \theta}{2 \pi e^{C o}}\right)-C_{L} \psi \psi^{\prime}\left(\frac{\cos \theta}{a_{0}}+\frac{1}{2 \pi e^{C o}}\right)=0,
\end{aligned}
$$

which, for small θ, becomes

$$
\psi^{2}-\psi \psi^{\prime} \theta-\lambda\left(\theta+\psi \psi^{\prime}\right)=0
$$

with

$$
\lambda=C_{I}\left\{1-\frac{C_{J}^{2}}{a_{0}^{2}}\right\}^{\frac{1}{2}}\left\{\begin{array}{l}
1 \\
--1 \\
a_{0}
\end{array} \frac{1}{2 \pi C_{0}}\right\}-C_{I \text { opt }}\left(\begin{array}{cc}
1 & 1 \\
-\infty & 2 \pi \\
a_{0} & 2 \pi
\end{array}\right)
$$

Apart from the olteredexpression for λ, this equation is the same as cquation (5).

1. Jacobs, J.N., Abbott, Ira H. and Davadson, Lillton. - Prclimanary Low-drag irrfoil and Fiap Data from Tests ot Laric Reynolds Nuriber and Low Turbulence. N. i..C.L. sdvonce Confidential Ruport. (IJarch, 1942). A.R.C. 5845.
2. Moore. - II. J. - A Comporison of the Velocaty Distribution over the Desimncd aerofoal wath that over a acasured iodel of No...C.a..66, 2-015. \therefore R.C. 7841 .
3. Goldstezn, S.- approximate Two Dimensional acrofozl Theory. Part I. Velocaty Distributions for Symatrical serofolls. (iay, 1942). Current Paper No. 68.
4. Goldstozn, S. - ipproxamato Two Dinonsional iorofozl Theoryo Part II. Velocaty Distributions for Carabored acrofoils. (Soptwinber, 194,2). Current Paper No. 69.

Richards, E. J. - Theoretical Craticol ITach Numbers for N.a.C.s. 16 Scrios scrofozl.
5. Goldstein, S. and Richerds, E. J.- approximatc Two Dimonsional acrofoll Theory. Part III. approximato Dosi, ins of Symatricnil acrofoils for Specificd Pressure Distributions. (October, 1942). Current Papur No. 70.
6. Thwaitos, B. - is Now Fonily of Low Drag Wings with Improved $C_{[}$Ranges. s.R.C. 8532.
7. Goldstein, S. - spproxirate Two Dhensionel worofoz Theory. Part IV. The Dasign of Contro Linos. (ifarch, 1945). Curront Popor No. 71.
3. Owen, Po Re- Goncralisod Curvos for Uso an Designing Low-Drag iang Soctions. A.R.C. 6353.

Fic 2

Velocity dishmibutions for NACA 66, 2-015 merofoil, to show C_{i} range when $a_{0}=2 \pi_{e} c_{0}$ (With a $0=2 \pi$ the graphs are indistinguishable)

CROWN COPYRIGHT RESERVED

PRINTED AND PUBLISHED BY HER MANESTY'S STATIONERY OFFICE

To be purchased trom
York House, Kingsway, london, w.c 2429 Oxford Street, london, w 1 P O ${ }^{\text {Box }} 569$, LONDON, Se 1
13a Castle Street, edinburgh, 2 ISt Andrew's Crescent, cardiff
39 King Street, manchester, 2 Tower Lane, bristol, 1
2 Edmund Street, birmingham, 380 Chichester Street, belpast
or from any Bookseller
1952
Price 5s. 6d.het
PRINTED IN GREAT BRITAIN

[^0]: * x is the distance, parallel to the chord, of a point on the acrofoil surface, measured as a fraction of the length of the chord, and $x=\frac{1}{2}(1-\cos \theta)$, $0 \leqslant \theta \leqslant \pi$ on the upper surface, $0 \geqslant \theta \geqslant-\pi$ on the lower surface.

[^1]: ${ }^{+}$In is used for $\log _{c}$.

[^2]: *For $X=0.5$, it appears that the position of tho maximum thickness is given quite closely by $x=0.3767+0.0576 \mathrm{~s} / \mathrm{b}+0.0899 \sqrt{ }\left(2 \rho_{\mathrm{T}}\right) / \mathrm{b}$. There are similar formulac for other values of X.

