

MINISTRY OF AVIATION

AERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Low-speed Wind-tunnel Measurements of the Lift, Drag and Pitching Moment on Three Symmetrical Ogee-Wing Models and on a Symmetrical Slender Wing-body Model

by
D. A. Kirby, B.Sc. A.C G.I., D.I.C.

```
U.D.G. NO. 533.6.013.13 : 533.6.013.12 : 533.6.013.152 :
    533.655.12 : 533.693.4
```

C.P. NO. 846

November 1963

LOW-SPEED MIND-TUNGL MBASUREINNS OR THE LIFT, DRAG AND PITCHING WOMANT ON mPRe SYMMERRICAL OGEE-MLIGG MODELS AND ON A SYMIETRICAL SLENDER VIIG-BODY MODEL

by
D. A. Kiruy, B.Sc., A.C.G.I., D.I.C.

SUMAERY

Measuremonts have been made of the lift, drag and pitching moment of three ogee models and a wing-body model, all having a slendemess ratio (semispan/root chord) of 0.209 . The associated surface flow patterns were al:so obsurved.

Although the models were symmetrical and did not represent strictly comparable fully optimised designs of possible layouts for a supersonic transport, sone useful low-specd acrodynamic comperisons between the integrated or ogce models and the wing-body model were obtained. The results show:-
(i) very similar lift characteristios,
(ii) a slightly smeller arag for tho wing body model,
(iii) better static longituainal stability characteristics for the wingbody model, especially whon the wing planform was not faired smoothly into the body.

Attempts to improve the longitudinal stability of one of the ogee wings, by minor planform modifications at the rear of the wing intended to reduce the foward movement of acrodynamic centre with incidence, were largely unsuccessful, but provided some useful deta on the effect of trailing-edge shape. For the wing-body model, drooping the nose was a successful modification and it is suggested that a drooped nose version of the wing-body model (without any planfom filict) would havo gooc statio longiludinal stability.

CONTENTS

Page
1 INTRODUCTION
2 DETATLS OF NODELS AND TESTS4
3 REGULTS AND DISCUSSION 5
3.1 Flow visualization5
3.2 Lift, drag and pitching moment of the basic shapes 6
3.3 Aerodynamic centre position and attompts to improve static longitudinal stability 7
3.4 Contribution of the vody and fillet to the lift and pitching moment of the wing-body model 8
4 CONCLUSIONS 9
SYRTOLS 10
REPERENCES 11
TABLES 1-712-25
IILUSTMATIONS - Fige.1-20
DLPACHABTR ABSTRACT CADDS
TABLES
lable
1 - Details of models (a) Main dimensions 12
(b) Planform and centre-line thickness of ogee models 13
(o) Planform and centre-line thickness of wing-body models 14
2 - Details of trailing-edge extensions to ogee model, $p=0.430$ 14
3 - Lift, arag; and pitching moment coofficients of the ogee models 15
4 - Lirt, drag and pitching moment cocfficients of tho ogee model, $p=0.430$, with trailing-edge extensions 17
5 - Lift, drag and pitehing moment coefficients of the wing-body model with and without fillets 21
6 - Effect of nose droop on the lift, drag and pitching momunt cocfficients of tho wing-body model 23
7 - Iift, dras and pitchine moment coefficients of the wing alone 25

ILLUSTRATIONS

Fig.
Ogee models 1
Wing-body model, with rillet 2
Planforn comparison of $p=0.450$ ogee model and the wing-body model with and without fillet 3
Trailing-edge extensions to ogee model, $p=0.430$ 4(a)
Nose droop on wing-body model, with fillet 4(b)
Lif't coefficients of the ogee models 5
Drag characteristios of the ogee models 6
Pitching monent cocfficients, ogce models 7
Effect of planform changes on the pitching moments of the $p=0.430$ ogce model 8
Liff coefficients oi the wing-body model with nose droop, model with fillet 9
Drag characteristics of the wing-body modcl with and without fillet, no nose droop 10
Pitching moment coefficients, winE-body model wi.th and without fillct, no nose droop 11
Effect of nose droop on the pitching moments of the winc-body model, with fillet 12
Aerodynamic contre position 13
Comparison of pitching momont curves with ncutral static stability at $C_{L}=0.5$ 14
Aerodynamic centre position at $C_{L}=0.5$ 15
Effect of body and fillet on lifft coefficient 16
Effect of body and fillct on pitching moment coefficient 17
Effect of body and fillet on the position of the centro of pressure 18
Upper surface flow patterns for the ogec models, $a=15^{\circ}$ 19
Upper surface flow patterns for the wing-body modcl, with fillet 20

TNTRODUGTION

This Note gives the results of $4 \mathrm{ft} \times 3 \mathrm{ft}$ low-speed tunnel tests made as part of a general experimental investigation of the characteristics of various layouts for supersonic transport aircraft intended to cruise at Mach numbers in the region of 2.0. These layouts have included some configurations where the body is completely integrated with the wing and the resulting planform is ogee in shape, and others where the combination or a wing and body is more easily identifiable. The investigations reported here were concerned with the flow properties and the static longitudinal characteristics of four symmetrical models, namoly three wings with ogec planforms and integrated bodies and one wine body comination.

For all four models the slenderness ratio $\mathrm{s} / \mathrm{c}_{\mathrm{o}}$ was 0.209 while the planform area ratio $p(=S /$ bo $)$ was $0.430,0.450$ and 0.467 for the ogee wings, and 0.455 for the wing-body combination. Allied stuaies of the effects of lengthwise and spanwise camber on the longitudinal characteristics of the $p=0.450$ ogee planform are reported elsewhere.

In addition to the measurements on the four basic models, some attempts to alleviate the forward movement of aerodynamic contre with increase of lift were made on the $p=0.430$ ogee wiing and on the wing-body combination. The nature of these modifications is described in sectior 2 and the results discusped in section 3.3. A simplified wing-body model was also tested to find the contributions of the body and the planform fillets to the stability of the complete model, and an analysis of these tests is presented in section 3.4.

Studies of the flow over and around these models were made using surface flow and smoke techniques to see if the changes in sweep-back along the leadingGdge and/or the presence of a body destroyed the unified flow originally aimed at in these slendur shapes. The results of these observations are discussed in section 3.1.

2 DETATLS OF MODELS ATD TESTS

The roin dimensions of all the models are given in Tlable 1. The $p=0.430$ ogec planform was taken from a project study by Hawker Siddeley Aviation, whilst the other tro (with $p=0.450$ and 0.467) were designed by Dr. J. Weber of RoA.E. to give more gradual changes of smoep-back along the leading-edge (Fig.1). The cross sections of all three models werc simplified versions of the firms proposed "intecrated" layout (laible 1 and $\mathrm{Fig} \cdot 1$).

The wint-body model ($p=0.455$) was made to a planform and sections obtained from an early Bristol Aircraft design by whearing the cambered sections of that desien to oive a symmetrical model. The planform of the wing blended via a fillet into a narrow strake on cach side of tho body (Figs. 2 and 3). A furthor model ($r=0.450$) was made with a detachable body and without fillets or strekes in order to investigato their effocta* . The planform of this model

* Since one model had fillets and strakes and the other had neithor, the terms "with fillet" and "without fillet" will be used in referring to these models in the test and figures.
is compared with that of the $p=0.450$ ogee in Fig. 3 . All the models were made of wood.

Measurements of the lift, drag and pitching moment of the models were made in the $4 \mathrm{ft} \times 3 \mathrm{ft}$ low-speed tunnel during 1960 , using the normal wire rig and overhead balance. Most of the tests were made at a tunnel speed of $200 \mathrm{ft} / \mathrm{sec}$, but, because of model vibration, for the ogee models at incidence above 20° the speed was reduced to $100 \mathrm{ft} / \mathrm{sec}$. The incidence range was from -4^{0} to 26°. The Rernolds based on the overall model lengths and a speed of $200 \mathrm{ft} / \mathrm{sec}$ ranged between 2.6 and 2.9×10^{6}. Except for a few surface flow tests, the transition was left free.

Since the tests showed a forvard movement of acrodynamic centre with increase of lift, methods of alleviating this mild "pitch-up" were sought. For the ogec models, the effoct of providing extra non-linear lift at the rear was investigated by attaching brass plates to the lower surface of the $p=0.430$ model to exterd the planform; six shapes were tried (Table 2 and jig. (a)). On the wing-body model, a decrease in the lift on the forebody was attempted, both by simple lincar droop at tho nose and by a parabolic droop (Table 2 and Fig. 4 (b)).

Visualization of the flow over the upper surface of all the models was obtained using lampblack suspended in paraffin ${ }^{2}$ at tunnel speeds of up to $180 \mathrm{ft} / \mathrm{sec}$. Some extra observations of the flow above the wing-body models were made at $10 \mathrm{ft} / \mathrm{sec}$ using liquid titanium tetrachloride which fumes in moist air. The models were transferred from the wire rig to a rear sting mounting for both these flow tests.

The results of all the balance measurements are presented in Tables 3-7 and discussed in section 3. The tunnel constraint corrections applied to the balance measurements include the effect of model length calculated by the method of Ref.3. Since breakdow of the leading-edge vortices did not occur for the range of incidence tested, there was only a small wake blockage correction.

3 RESUTTS ARD DISCUSSION

3.1 Flow visualization

From very low incidences the surface flow patterns on the ogee wings showed the presence of the leading-edge vortices which dominate the flow over slonder wings with sharp edges. These vortices were continuous for all the models over the whole range of incidence coverca; differences between the wings being limited to variations in the positions of the primary vortex. The spanwise looation of this vortex oan be conveniently specified by using the point of inflexion in the flow lines which aro produced in the upper surface flow pattorns. Tig. 19 shows such patterns for the three ogee wings at an incidenoe of 15°. At this incidence, at 50% root chord the spanvise positions of the primary vortex were as follows:-

$$
\begin{array}{llll}
\mathrm{p} \\
\mathrm{y} / \mathrm{s}, & 0.430 & 0.42 & 0.450 \\
0.53 & 0.467 \\
\hline
\end{array}
$$

whilst for all three wings the secondary separation ocurred at $\mathrm{y} / \mathrm{s}^{\prime} \bumpeq 0.7$.

At lower incidences, up to about 5°, there were some signs of further flow scparations inboard of the primary vortex attachment lines on the forward part of the wings. However, these wore considered to be an effect of the low Reynolds number of the tests and were eliminated when a transition wire was fixed round the nose.

For the complete wing-body modcl the flow was more complex. At 5° of incidence the flow was still attached on the body with the wing leading-edge separcition starting in the wing fillet region at about 30% of the body length. Separation of the flow from the upper surface of the body started just below 10° of incidence and by $a=15^{\circ}$ was clearly marked (Fig.20), resulting in the formation of body vortices which trailed back down the centre of the model. The scparation from the wing leading-edge started a little nearer the nose at the highor incidences but, because the strakes on the side of the body were small and not very sharp, the scparation over the range of incidence tested never began ahead of about 25% of the body length. As incidence was increased and the wing vortices grow in strength and moved inboard, they pulled the body vortices down towards the model, so that, Collowing the onset of body asymmetry at $a \bumpeq 20^{\circ}$, the body vortices wrapped in succession around the port wing vortex (Fie.20). This was clearly demonstrated by the smoke tests.

Similar results were obtained on the model without a fillet. In this configuration, the length of the body ovcrhang was greater and at full-scale the onsct of body-vortex asymmetry at zero sideslip might be expected to occur at a lower incidence than that for the layout with fillet. Some of the effects of vortcx asymnetry, and the limitations of the small-scale $4 \mathrm{ft} \times 3 \mathrm{ft}$ tunnel models in assessing the incidence at which asymmetry commences, are discussed in Rer.4.

A noticeable feature of these flow tests made on a sting rig was the steadinoss of the winc-body models compared with the ogee models. These latter were so unsteady at the higher incidences that the tunnel speed had to be roduced to $60 \mathrm{ft} / \mathrm{scc}$. Similar problcms worc experienced with the ogee models in the force tests; and furthermore, some comparative measurements of damping in yaw on a $p=0.150$ ogee modol and a wing-body model have, shown that the ogee alone experienced nogative daming in yaw at high incidence ${ }^{4}$.

3.2 Liftt drag and pitching momenty of the basic shapes

The lirt, drag and pitching moment coefficients of the four models are given in Tables 3 and 5. Theso cocficicients have been calculated using the arcas and acrodynamic meen chords of the whole planform in each case. Lif't curves are plotted in Fig. 5 for the three ogee wings and in Fig. 9 for the complete wing-body model. The lift coofficients for all these models, all having the same slenderness ratio are very similar, though Fig. 5 shows a slight tondency for lift at a given incidence to decrease with increasing value of p. At 15° of incidonco, the four molels havo lift coofficients some 6% higher than thoso from the mean curve drawn in Ref. 5 for gothics ($p=0.667$) and deltas $(p=0.5)$. These lattor were flat plate models and Ref. 5 shows that taking into account thickncss would widen the difforences in lift between the prosent shapes and the pure ε othics and doltas. Further systematic work on the effect of planform and thickness on lift is clcarly desirable. This is partially being covired by tests at prosont in progress on a series of wings spocially designed to investigate more systematically the effect of planform on aerodynamic centre position.

The lift-dependent drag factor and the lift/drag ratio plotted in Eig. 6 for the ogee models (transition free) show little effect on the approach drag within the range of p tested, the differcnce in lift-dependent drag factor arising mainly from the change in aspect ratio, i.e. K / A is nearly constant. Fig. 10 shows some advantage for the wing-body model.

The pitching moments plotted in Fig. 7 for the ogees, and in Fig. 11 for the wing-body configuration with and without fillets, show the vital importance of caref'ul choice of planform as regards the static longitudinal stability.

3.3 Aerodynamic centre position and attempts to improve the static ionkitudinal stability

For most of the expected subsonic range of lift coefficient 0.1 to 0.7^{*}, the positions of the acrodynamic contro moves forward with increasing lift coefficient (Fig.13). This forward movement is most marked for the ogee wings, particularly in the C_{L} range 0.1 to 0.5 . In Fig. 14 the pitching moment coefficients for the throc ogee models and the wing-body model with and without fillets havo been replotted about moment centres chosen to give ncutral static longitudinal stability at $C_{L}=0.5$. It is evident that for the three ogee wings tested the amount of elcvator needed to trim at low specd and the amount of camber needed to trim at high speed will be greater than that needed for the wing-body layout, assuming similar rearward movements of aerodynamic centre with Mach number, and no centre of gravity change through the specd range.

Attempts to reduce the rate of forward movement of the aerodynanic centre with lift coefficient wore made for both ogec and wing-body layouts. Thus, for the ofce model $p=0.430$, six different shapes of extension to the rear of the plenform wore made, to see if more non-linear lift could bo obtained aft of the moment centro by adding to the area beneath the leading-edge vortices (Fig. 4 (a)). An analysis of the results given in Table 4 and plotted in Fig. 8 shows the following changes in static stability margin ($\Delta \mathrm{hn}$) vetween $\mathrm{C}_{\mathrm{L}}=0.1$ and 0.7 as comparea with the basic wing. Dhn is given as a fraction of the contre-line chord c_{0} which is the same for all seven configurations.

Basic wing	A	B	C	D	F	F
0.039	0.050	0.044	0.049	0.051	0.038	0.022

Only the large rectangular extension F yields any reduction in the rate of forward movement of the aorodynamic centre.

On the wing-body model the effect of reducing the non-linear lirt at the front was tried, the forebody being drooped to reduce the local angle of incidence. Such nosc droon is desirable for pilot's view in the approach and * Assuming an approach lift coefficient in the neighbourhood of 0.5 airworthiness requirements will demand that the aircraft be adequately cleared to $C_{L} \approx 0.7$.
to delay the onset of body vortca asymmetry ${ }^{4}$. Results with simple droop angles of 10° and 20°, as well as with a parabolic droop, are plotted in Figs. 9 and 12. For these models the changes in the static-stability margin $\Delta \mathrm{hn} / \mathrm{c}_{\mathrm{o}}$ between $C_{L}=0.1$ and 0.7 are listed below.

Basio model	Model cut for droop tests	10° droop	20° droop	Parabolio aro droop
0.015	0.014	0.009	0.008	0.006

The gains due to droop are not large, but are sufficient to ensure that the wing-body layout even with a fillct does have a nearly linear pitching moment v lift relationship.

For both integratod and wing-body layouts the forward movement of the aerodynamic centre with increase of lift will be greater when camber is applied to the wing, but there is somo evidence that for cambers producing the same pitching moment increment this change is smaller for the wing-body than the integrated layout ${ }^{6}$.

The positions of the aerodynamic centre at a lift coefficient of 0.5 for all the models tosted are shown in FiE.15, plotted against the position of the controid of area of their total planforms. The figure also shows the mean line taken from Ref. 7 for thick wings. Analysis of the results with trailing-edge extcnsions to the $p=0.430$ ogec model shows that if the length from the apex of the wing to tho centre on the treiling-edge of the extension is used as the referonce longth in defining the positions of the aerodynamic centre and centroid of area thon the corodynamic centre position of all the variants A-F correlate woll with the basic wing position along a line parallel to the line taken from Rer. 7.
3.4 Contribution oi the body and fillct to the lift and pitching moment of the winctony model

In Wigs.16 and 17 the lift and pitching moment cocfficients of the two wing-body models bascd on the area of tho wing alonc aro plotted together with the results for the wint alone. The effect of the body and fillet on the overall lirt of the wing is vory small and the lif't curve using the new roference area, i.e. that of a mild cethic wing is idention with that taken from Ref.5. A chordwise redistribution of lift is indicated by Figs. 16 and 17. This is shown most clacily by the position of the centre of pressure (Fig.18), and although the addition of the body to the wing gave a more constant centre of pressure position through the range of incidence, the subsequent addition of the fillet oaused a rapid forward movement of the centre of pressure at the higher incidences. The effect of this lattor addition on the aerodynamic centre position is shown in Fig.13.

Since the size of the strakes on the complete model was insufficient to fix the bogiming of the leading-cdge separation at one point for all incidences, while, with the mid-wing position the wing vortices failed to
oolleot the body vortices at the lower incidences and to prevent them trailing over the fin position, it is considered that fillets of this type serve no useful purpose.

4 CONCLTISIONS

The tests show the effect of a limited range of planform shape variation on the low-speed static longitudinal stability of slender supersonic transports and enable some low-speed aerodynemic comparisons to be made between the integrated and wing-body layouts.

For the three ogee planforms tested, the changes in leading-edge sweep were gradual enough not to impair continuous vortex development along the leading edge. With the wing-body arrangemont, flow separations from the body at modorate incidence gave rise to body vortices which trailed back down the centre of the modcl. At high incidences these body vortices became asymmetric and wrapped round the wing leading-edge vortices. The prosence of a plenform fillet in the wing-body junction, continued forward as small strakes on the side of the body, yiclded no improvements and introduced uncortainty in the position of the start or the wing leading-cage vortices. Iurthor work on other wingbody arrangements not reported hore has domonstrated the variations in wing and body vortex interaction which oan be obtaincd as the relative strengths and positions are changed.

All the models tested had the same slendurness ratio and showed virtually no change in lift coefficient, bascd on the totel planform area, within the small range of p testod. Thesc lift coefficionts were some 6% higher than those neasurud earlicr for gothic and delta mings of the same slenderness ratio but, assessing the lift cocfficient of the wing-body models on the area of the basic wing gave the same lilt as measurod on the ring alone and on the gothic and delta wings.

Analysis of the pitchine momonts showd a forward movement of aerodynamic contre with increase of lift on all the models, this boing more pronounced for the ogee planforms. Adding wing root planform fillets to the wing-body model increased the forvard movement of acrodynamic contrc. Attempts to reducc this movement on onc of the ogee models by trailing-edge extensions were not very successfful. Howcver, on the complete wing-body model drooping the forebody yielded some bencfit, and this improvemont taken in conjunction with the effect of the fillet indicates that a drooped nose version of the wing-body model without a fillet chould be virtually fres from forward movement of the aerodynamic contre with incidence.

STMEOLS

$\Lambda \quad$ aspect ratio $=b^{2} / s=b / p_{0}$
b span
oo centro-line chord of the ogee models and the bodies of the wing-body models
c_{o} centre-line chord of the wing of the wing body model
$\overline{\bar{c}} \quad$ acrodynamic mean chord
G_{D} drag coofficient
$C_{D} \quad z e r o-l i f t$ dres coeftiojent
$C_{L} \quad$ lift coerficient
S_{m} pitching moment coefficient
In Ioncituinal stotio stability margin
$p \quad$ Lantorm peranoter $=S / b c_{0}$
s somi-span
s! local semi-span
S plan area
V_{0} Sree stream tunnel speed
x chordidec cimunion
y nymatiso dimension
a inciderco (in degrees)

REPERENCES

No. Author Title, etc.

1 Earnshaw, P.B. Low-speed wind-tunnel tests on a series of cambered ogee wings. A,R.C. CP No. 775 Novumber 1963

2 Maltby, R.L., Flow visualization in low-specd wind-turnels, current Keating, R.F.A. British practice. R.A.D. Toch. Note Acro 2715, ARC 22,373, August 1960.

3 Burndt, S.B. Wind-tunncl intoreroroco due to lift for delta wings of small aspect ratio. K.T.H. Acro Tceh. Note 19, 1950.
4. Maltby, R.L., Spence, A.

Some low-speed asymnetry proliems on high-speed configurations.
Lecture to the Royal Aeronautical Society in February 1962.

5 Peckham, D.IF. Low-speed wind-tunnel tests on a series of uncambered slender pointod wings with sharp edges. A.R.C. R and M 3186, December 1953.

6 Spence, A., Smith, J.H.B.

Sone aspects of the low speed and supersonic aerodynamics of lifting slender wings. 3rd ICAS Congress Stockholm, August 1962.

7 Spence, A., Lean, D.

Some low-speed proulems of high-speed aircraft. Journal of the Royal Aeronautical Society, Volume 66, No.616, April 1962.

TABLE 1

Details of models
(a) Main dimensions

	Ogce			$\begin{aligned} & \text { Wing + body } \\ & + \text { fillet } \end{aligned}$	Wing + body	Wing
Centre-line chord (c_{0}) in.	24.67	24.67	24.67	27.75	27.00	19.71
Span (b) in.	10.29	10.29	10.29	11.58	11.27	11.27
Area (S) sq in.	109.2	114.2	118.5	14.6 .2	136.9	127.9
$p=S / b c_{0}$	0.430	0.450	0.467	0.455	0.450	0.576
$A=b^{2} / \mathrm{S}=\mathrm{b} / \mathrm{vc}_{0}$	0.970	0.927	0.392	0.917	0.927	0.993
^erodynamic mean ohord ($\overline{\bar{c}}$) in.	14.85	15.19	15.08	16.18	15.61	13.65
b / c 。	0.417	0.417	0.417	0.417	0.417	0.572
$\overline{\overline{0}} / \mathrm{c}$	0.602	0.616	0.611	0.583	0.578	0.6925
Disiarue oí moment centre behind apex/co	0.6755	0.676	0.6755	0.6595	0.670	0.548
Moment centre for neutral stability $a t C_{L}=0.5 / \mathrm{C}_{\mathrm{o}}$ (see Fig.14)	0.680	0.665	0.660	0.6765	0.683	
Distance of centre of area behind apex/c。	0.699	0.692	0.694 .5	0.7085	0.711	0.654

IABLI 1 (Continued)

(1) Planform and centre-line thickness of ogce models

Per cent of centreline chord	Distance from wing арсж (in.)	$\left\|\begin{array}{c} \text { Contre-line } \\ \text { i.e. maxinum } \\ \text { thiolness } \\ (i n .) \end{array}\right\|$	Centre radius of transverse section (in.)	$p=0.430$	Local span $p=0.450$	$\begin{gathered} \text { (in.) } \\ \mathrm{p}=0.467 \end{gathered}$
0	0	0	0	0	0	0
5	1.23	0.40	0.20	0.58	0.56	0.60
10	2.1+7	0.74.	0.37	1.00	1.01	1.01
15	3.70	1.01	0.505	1.34	1.39	1.32
20	4.93	1.19	0.595	1.57	1.70	1.57
25	6.17	1.30	0.65	1.62	1.99	1.83
30	7.40	1.33	0.70	2.08	2.27	2.12
35	8.63	1.33	0.74	2.37	2.57	2.47
1.0	9.87	1.33	0.78	2.66	2.91	2.91
4.5	11.10	1.33	0.78	2.99	3.32	3.44
50	12.33	1.33	0.78	3.39	3.80	4.05
55	13.57	1.33	0.78	3.92	4.36	4.75
60	14.80	1.33	0.78	1.54	5.01	5.50
65	16.03	1.33	0.78	5.26	5.74	6.30
70	17.27	1.33	0.78	6.08	6.53	7.12
75	18.50	1.25	0.86	7.01	7.36	7.91
80	19.73	1.10	1.04	7.07	8.20	8.66
85	20.97	0.90	1.27	8.83	8.98	9.31
90	22.20	0.68	1.66	9.62	9.64	9.83
95	23.15	0.150	-	10.09	10.11	10.17
100	21.67	0.15	-	10.29	10.29	10.29

All the transverse sections were formed by drawing tangents from the wing edges to the arcs given by the contre radius. The planform of the $p=0.430$ wing was taken from a project study by iluwher fidiacloy dviation Ltd and the obhers defined by the relationships

$$
\begin{gathered}
s(x)=1.2 x-2.4 x^{2}+2.2 x^{3}+3 x^{4}-3 x^{5} \\
\text { for } p=0.450
\end{gathered}
$$

and

$$
\begin{gathered}
s(x)=1.4 x-5.3 x^{2}+12.4 x^{3}-9.5 x^{4}+2 x^{5} \\
\text { for } p=0.467
\end{gathered}
$$

The leading edge radius was of the oraer of 0.01 in .

MABLE 1 (Continued).

(c) plonfora and contre-linc thicknoss of wing-body models

Per cerit o? total length	Distance fron nose of body (in.)	Local body dicmeter (in.)	$\begin{gathered} \text { Local } \\ \text { span } \\ \left(\mathrm{in}_{0}\right) \end{gathered}$	```Local span without fillet (in.)```	Tocal span of wing (in.)	```Centre-line thickness of wing (in.)```
0	0	0	0	0	0	0
5.41	1.5	0.43	0.54	0.49		
10.01	3.0	0.39	0.94	0.39		
16.22	1.5	1.215	1.26	1.215		
21.62	6.0	1.44	1.18	1.44		
27.03	7.5	1.63	1.67	1.63	0.005	
32.43	2.0	1.77	1.26	1.77	1.04	0.33
37.84	10.5	1.895	2.49	2.07	2.07	0.565
45.24	12.0	1.975	3.255	3.105	3.105	0.74
4.65	13.5	2.01	1.18	4.135	4.135	0.855
54.05	15.0	1.90	5.16	5.16	5.16	0.925
59.46	16.5	1.92	6.20	6.20	6.20	0.925
64.86	10.0	1.795	7.23	7.23	7.23	0.895
70.27	19.5	1.61	0.23	3.23	8.23	0.835
75.68	21.0	1.385	9.23	9.23	9.23	0.755
31.03	22.5	1.12	10.06	10.06	10.06	0.645
36.49	24.0	0.84	10.70	10.78	10.78	0.505
91.89	25.5	0.515	11.26	11.26	11.26	0.335
100.00	27.75	0	11.575	11.575	11.575	0.02

The above aimensions refor to the 37.7 in. long rodel. The planform and cross suctions for this model wero faken from a Bristol Aircraft Itd desien. Tlo dimensions of tho 27 in . long model wore scaled from the arove tajole. The leacing edge rudius wis of the order of 0.01 in .

TABT. 2

Erecnsion	Extra J.ength in inches	$\begin{gathered} \% \text { of wing } \\ \text { span } \\ \text { oxtended } \end{gathered}$	污 Ancrease of area	$\frac{\overline{\bar{o}}_{\text {with oxtersions }}}{\mathrm{E}_{\text {basic }}}$
A	0.91	100	4.29	0.999
B	1.37	100	8.80	1.000
C	0.92	66 2	2.88	0.991
D	1.98	66 ?	6.22	0.983
$\underline{1}$	0.92	66 ?	5.77	0.997
F	1.98	$66 \frac{3}{3}$	12.44	1.000

TABLE 3

Lifte aroan pitching moment coerficients of the ogee models

a°	${ }^{\text {c }}$ L	${ }^{\text {c }}$ D	$\mathrm{C}_{\text {m }}$	$\frac{C_{D}-C_{D}}{C_{L}^{2} / \pi A}$	L/D
$\mathrm{p}=0.430$ (moment contre at $0.6755 \mathrm{c}_{0}$)					
$\mathrm{V}_{0}=200.2 \mathrm{ft} / \mathrm{sec}$					
-3.95	-0.096	0.0142	0.0060	2.18	-6.76
-1. 25	-0.046	0.00914	0.0026	2.59	-4.89
+0.2	$+0.004$	0.0076	-0.0002	-	+0.53
2.25	0.051	0.0101	-0.0027	2.93	5.05
4.3	0.110	0.0150	-0.0065	2.06	6.96
6.25	0.171	0.0254	-0.0101	1.86	6.73
8.35	0.240	0.0406	-0.0135	1.75	5.91
10.3	0.312	0.0506	-0.0165	1.66	5.15
12.45	0.394	0.0097	-0.0186	1.61	4.39
14.35	0.474	0.1232	-0.0202	1.57	3.85
16.5	0.559	0.1650	-0.0209	1.54	3.37
18.45	0.641	0.2135	-0.0203	1.53	3.00
20.55	0.725	0.2709	-0.0191	1.53	2.68
$\mathrm{V}_{0}=100.5 \mathrm{ft} / \mathrm{sec}$					
18.6	0.64 .7	0.2162	-0.0213	1.52	2.99
20.6	0.750	0.2712	-0.0202	1.51	2.69
22.55	0.314	0.334	~ 0.0198	1.50	2.4.4
24.6	0.391	0.3905	-0.0190	1.50	2.24
26.65	0.972	0.4795	-0.0133	1.52	2.03
$p=0.450$ (moment centre at $0.676 \mathrm{c}_{0}$)					
$\mathrm{V}_{0}=200.2 \mathrm{rt} / \mathrm{sco}$					
-3.75	-0.090	0.0141	0.0030	2.19	-6.57
-1.7	-0.030	0.0097	0.0010	3.54	-4.09
+0.25	$+0.004$	0.0080	0.0002	-	+0.53
2.25	0.051	0.0102	-0.0015	2.46	5.20
4.3	0.107	0.0161	-0.0034	2.06	6.32
6.35	0.169	0.0256	-0.00.5	1.79	6.71
8.4	0.238	0.0407	-0.0059	1.68	5.91
10.45	0.313	0.0619	-0.0063	1.60	5.09
12.45	0.393	0.0901	-0.0061	1.55	4.38
14.55	0.477	0.1258	-0.0049	1.51	3.80
16.65	0.559	0.1667	-0.0033	1.15	3.36
18.6	0.61 .3	0.2151	-0.0008	1.46	2.99
20.65	0.726	0.2714	+0.0031	1.46	2.68

MABIE 2 (Continued)

α°	C_{L}	${ }^{\text {c }}$ D	C_{m}	$\frac{C_{D}-C_{D_{O}}}{C_{L}^{2} / \pi A}$	I/D
$V_{0}=100.5 \mathrm{rt} / \mathrm{sec}$					
10.5	0.316	0.0629	-0.0062	1.60	5.06
14.6	0.481	0.1298	-0.0042	1.53	3.72
10.7	0.650	0.2188	-0.0003	1.45	2.98
20.65	0.735	0.2737	+0.0008	1.43	2.69
22.75	0.82 .4	0.3385	0.0067	1.42	2.44
24.75	0.901	0.4055	0.0077	1.43	2.22
26.85	0.985	0.1865	0.0125	1.44	2.03
$\mathrm{p}=0.467$ (moment centre at $0.6755 \mathrm{c}_{0}$)					
$V_{0}=200.2 \mathrm{ft} / \mathrm{sec}$					
-4.05	-0.096	0.0136	0.0011	1.83	-7.06
-2.0	-0.044.	0.0092	0.0001	2.32	-4.78
0	0	0.0076	0	-	0
+2.0	+0.04.3	0.0098	-0.0001	3.34	+4.39
4.05	0.058	0.0150	-0.0010	2.16	6.53
6.0	0.156	0.0232	-0.0015	1.80	6.72
3.15	0.225	0.0374	-0.0013	1.65	6.02
10.15	0.297	0.0568	-0.0019	1.57	5.23
12.25	0.377	0.0036	-0.0004	1.50	4.51
14.3	0.460	0.1173	+0.0015	1.46	3.92
16.3	0.540	0.155	0.0034	1.42	3.48
10.4	0.636	0.2032	0.0062	1.39	3.05
20.35	0.719	0.2617	0.0103	1.38	2.75
$\mathrm{V}_{0}=100.5 \mathrm{ft} / \mathrm{sec}$					
10.25	0.302	0.0590	-0.0029	1.58	5.12
14.35	0.4 .61	0.1196	+0.0021	1.46	3.88
13.45	0.642	0.2130	0.0072	1.40	3.01
20.5	0.734	0.2696	0.0097	1.37	2.72
22.5	0.322	0.334	0.0158	1.36	2.46
24.55	0.914	0.4085	0.0191	1.35	2.24
26.7	0.990	0.487	0.024 .0	1.35	2.05

* Note C_{D} was reducod by 0.0004 in determining L / D for the $P=0.450$ ogee because the C_{D} for this wine was 0.0080 compared with 0.0076 for the two others.

TABLE 4
Lift, drag and pitching moment coefficients of the ogee model $p=0.430$ with trailing-edge extensions
(Moment centre at $0.6755 \mathrm{c}_{0}$. Total areas used to non-dimensionalize results, see Table 2)

α°	L		C_{m}
Extension A$V_{0}=200.2 \mathrm{ft} / \mathrm{sec}$			
-3.85	-0.090	0.0119	+0.0062
-1.8	-0.038	0.0090	+0.0027
+0.2	+0.005	$0.00{ }_{4}$	-0.0002
2.3	0.052	0.0114	-0.0037
4.3	0.109	0.0172	-0.0090
6.35	0.179	0.0286	-0.0150
8.4	0.24 .9	0.0417	-0.0199
10.45	0.328	0.0682	-0.0249
12.5	0.406	0.0972	-0.020'5
14.55	0.488	0.1329	-0.0313
16.6	0.568	$0.171+3$	-0.0332
18.6	0.655	0.2274	-0.0343
20.7	0.742	0.2375	-0.0347
$\mathrm{V}_{0}=100.5 \mathrm{rt} / \mathrm{sec}$			
18.65	0.660	0.2296	-0.0341
20.65	0.730	0.2795	-0.0348
22.75	0.814	0.3445	-0.0365
24.85	0.901	0.4 .19	-0.0393
26.85	0.986	0.501	-0.0402
Extension B			
$\mathrm{V}_{0}=200.2 \mathrm{ft} / \mathrm{sec}$			
-3.8	-0.0y0	0.0126	+0.0083
-1.75	-0.038	0.0089	+0.0029
+0.25	+0.005	0.0080	-0.0004
2.3	0.052	0.0105	-0.004.2
4.25	0.108	0.0159	-0.0100
6.35	0.179	0.0267	-0.0171
8.45	0.250	0.0427	-0.0236
10.45	0.330	0.0649	-0.0299
12.5	0.402	0.0922	-0.0347
14.55	0.486	0.1279	-0.0398
16.6	0.572	0.1714	-0.0440
18.6	0.655	0.2210	-0.0469
20.7	0.74 i	0.2794	-0.04.97

TABIE 4 (Continued)

a	C_{L}	${ }^{\text {c }}$ D	$\mathrm{C}_{\text {m }}$
$\mathrm{V}_{0}=100.5 \mathrm{tt} / \mathrm{sec}$			
18.65	0.663	0.2249	-0.0488
20.75	0.748	0.2829	-0.0503
22.75	0.834	0.349	-0.0539
24.8	0.926	0.4205	-0.0596
26.9	1.003	0.504	-0.0633
Extension C$V_{0}=200.2 \mathrm{ft} / \mathrm{sec}$			
-3.3	-0.090	0.0127	+0.0054
-1.75	-0.039	0.0097	+0.0025
+0.20	+0.005	0.0083	-0.0006
2.3	0.054	0.0118	-0.004,
4.25	0.112	0.0176	-0.0092
6.15	$0.18 i$	0.0208	-0.0147
8.35	0.248	0.044 .6	-0.0189
10.45	0.324	0.0673	-0.0223
12.5	0.403	0.0959	-0.0256
14.5	0.483	0.1312	-0.0278
16.6	0.566	0.1743	-0.0292
13.65	0.654	0.2282	-0.0292
20.3	0.734	0.253	-0.0292
$V_{0}=100.5 \mathrm{ft} / \mathrm{sec}$			
18.6	0.652	0.2254	-0.0302
20.75	0.734	0.2833	-0.0299
22.75	0.816	0.345	-0.0307
24.3	0.098	0.417	-0.0313
26.3	0.975	0.4925	-0.0323
$\begin{aligned} & \text { Extension D } \\ & V_{0}=200.2 \mathrm{st} / \mathrm{sec} \end{aligned}$			
-3.85	-0.095	0.0129	+0.0085
-1.0'5	-0.041	0.0097	+0.0031
+0.3	+0.006	0.0086	-0.0006
2.3	0.052	0.0117	-0.0044
+.0.25	0.112	0.0185	-0.0103
6.35	0.181	0.0286	-0.0170
8.4	0.252	$0.024+6$	-0.0229
10.1.5	0.332	0.0635	-0.0286
12.5	0.410	0.0974	-0.0323
14.5	0.192	0.1336	-0.0357
16.6	0.580	0.1795	-0.0382
18.7	0.664	0.2307	-0.0391
20.7	0.742	0.2843	-0.0401

TABLE 4 (Continued)

a^{0}	C_{L}	C	C_{m}
$\mathrm{V}_{0}=100.5 \mathrm{ft} / \mathrm{sec}$			
18.65	0.671	0.2321	-0.0408
20.7	0.748	0.2863	-0.0397
22.7	0.833	0.3505	-0.0433
24.75	0.925	0.423	-0.0466
26.8	0.997	0.5005	-0.04.89
Extension E$V_{0}=200.2 \mathrm{ft} / \mathrm{sec}$			
-3.75	-0.083	0.0125	+0.0077
-1.75	-0.037	0.0094	+0.0032
+0.3	+0.006	0.0083	-0.0004
2.3	0.053	0.0113	-0.0039
4.25	0.112	0.0170	-0.0094
6.3	0.175	0.0269	-0.0149
3.4	0.248	0.0434	-0.0202
10.45	0.322	0.0653	-0.0253
12.5	0.402	0.0939	-0.0300
14.55	0.188	0.1310	-0.0343
16.65	0.574	0.1756	-0.0379
18.6	0.650	0.2210	-0.0393
20.7	0.741	0.2803	-0.0419
$v_{0}=100.5 \mathrm{ft} / \mathrm{sec}$			
18.6	0.660	0.2261	-0.0407
20.75	0.757	0.2851	-0.0434
22.75	0.832	0.350	-0.0446
24.85	0.916	0.4225	-0.0473
26.85	0.290	0.5005	-0.0513
Extension $F$$V_{0}=200.2 \mathrm{ft} / \mathrm{sec}$			
-3.8	-0.038	0.0158	+0.0109
-1.75	-0.036	0.0100	$\div 0.0041$
+0.25	+0.007	0.0007	-0.0004
2.2	0.049	0.0100	-0.0014
4.25	0.104	0.014 .1	-0.0098
6.3	0.170	0.0232	-0.0163
8.4	0.24 .1	0.0379	-0.0227
10.45	0.323	0.0605	-0.0306
12.5	0.390	0.0063	-0.0364

TABLiT 4 (Continued)

a^{0}	C_{L}	C_{D}	C_{m}
14.55	0.476	0.1181	-0.0426
16.6	0.568	0.1628	-0.0494
13.7	0.662	0.2162	-0.0555
20.7	0.748	0.2733	-0.0605
$V_{0}=100.5 \mathrm{ft} / \mathrm{seo}$			
18.65	0.659	0.2130	-0.0583
20.65	0.742	0.2674	-0.0626
22.8	0.834	0.334	-0.0693
24.85	0.916	0.4035	-0.0740

TABLE 5
Lirt, drag and pitching moment coefricient of the wing-body model with and without fillets

a°	${ }^{\text {c }}$	${ }^{\text {c }}$ D	C_{m}	$\frac{C_{D}-C_{D_{O}}}{C_{L}^{2} / \pi A}$	L/D
(a) With fillet, $p=0.455$. Homent centre at 0.6595					
$\mathrm{V}_{0}=200.4 \mathrm{ft} / \mathrm{sec}$					
-3.95	-0.095	0.0134	0.0045	2.08	-7.09
-1.95	-0.044	0.0039	0.0019	2.98	-4.94
+0.1	+0.003	0.0069	-0.0002	- 76	+0.43
2.15	0.049	0.0092	-0.0018	2.76	5.33
4.2	0.108	0.0132	-0.0042	2.00	7.20
6.25	0.171	0.0249	-0.0073	1.77	6.87
8.3	0.243	0.0403	-0.0105	1.63	6.03
10.35	0.317	0.0611	-0.0130	1.55	5.19
12.4	0.396	0.0384	-0.0159	1.50	4.48
12.45	0.480	0.1230	-0.0192	1.45	3.90
16.55	0.568	0.1658	-0.0213	1.42	3.43
18.6	0.656	0.2162	-0.0240	1.40	3.03
20.65	0.743	0.2724	-0.0258	1.38	2.73
22.7	0.835	0.3395	-0.0273	1.37	2.46
24.3	0.923	0.416	-0.0270	1.38	2.22

TABIE 5 (Continued)

a^{0}	$\mathrm{C}_{\text {L }}$	${ }^{\text {c }}$ D	${ }^{\text {c }}$ m	$\frac{C_{D}-C_{D}}{C_{\mathrm{L} /}^{2} / \pi \mathrm{A}}$	\pm / D
(b) Without fillet, $p=0.450$. Moment centre at					
$V_{0}=200.5 \mathrm{rt} / \mathrm{sec}$					
-3.45	-0.080	0.0113	0.0021	3.09	-5.93
-1.3	-0.032	0.0082	0.0000	4.27	-3.90
-0.25	-0.006	0.0065	0.0001		-0.92
+0.65	+0.016	0.0071	-0.0006	4.55	+2.250
1.7	0.038	0.0080	-0.0008	2.62	4.75
2.8	0.066	0.0095	-0.0016	1.87	6.95
3.75	0.094	0.0119	-0.0026	1.71	7.90
4.8	0.128	0.0162	-0.0032	1.69	7.90
5.8	0.161	0.0217	-0.0039	1.68	7.42
6.05	0.192	0.0272	-0.0054	1.62	7.06
8.9	0.264	0.04 .38	-0.0032	1.55	6.03
10.95	$0.34+1$	0.0666	-0.0101	1.50	5.12
13.05	0.424	0.0975	-0.0126	1.48	4.35
15.1	0.510	0.1338	-0.0149	1.42	3.81
17.15	0.599	0.1801	-0.016\%	1.41	3.33
19.25	0.690	0.2326	-0.0182	1.38	2.97
21.25	0.779	0.2929	-0.0201	1.37	2.66
22.55	0.334	0.333	-0.0210	1.36	2.50
24.65	0.930	0.411	-0.0215	1.36	2.26

TABLE 6
Effect of noge droop on the lift, dras and pitching moment cocfficients of the ming-vody model
(with fillet, moment centre at $0.6595 \mathrm{c}_{0}$)

α	$\mathrm{C}_{\text {L }}$	C_{D}	$\mathrm{C}_{\text {m }}$
$\begin{aligned} & \text { No droop } \\ & V_{0}=200.4 \mathrm{ft} / \mathrm{sec} \end{aligned}$			
-2.35	-0.067	0.0111	0.0028
-1.75	-0.039	0.0096	0.0011
-0.75	-0.017	0.0081	0.0007
+0.3	+0.006	0.0076	-0.0002
1.25	0.026	0.0088	-0.0007
2.3	0.052	0.0097	-0.0019
4.4	0.112	0.0157	-0.0049
6.4	0.174	0.0252	-0.0076
8.4 .5	0.241	0.04:00	-0.0104
10.5	0.315	0.0585	-0.0133
12.6	0.395	0.0883	-0.0165
14.65	0.432	0.1243	-0.0200
16.65	0.568	0.1669	-0.0223
13.3	0.660	0.2175	-0.0245
20.3	0.746	0.274 .0	-0.0267
22.85	0.833	0.3405	-0.0268
24.95	0.916	0.412	-0.0266
27.0	0.999	0.492	-0.0273
$\begin{aligned} & 10^{\circ} \text { aroop } \\ & V_{0}=200.4 \mathrm{ft} / \mathrm{sec} \end{aligned}$			
-2.75	-0.065	0.0125	0
-1.85	-0.042	0.0105	-0.0009
-0.75	-0.013	0.0090	-0.0016
+0.25	$+0.004$	0.0084	-0.0026
1.25	0.027	0.0095	-0.0033
2.35	0.054	0.0107	-0.0047
4.35	0.108	0.0458	-0.0067
6.45	0.172	0.0257	-0.0098
8.45	0.241	0.0400	-0.0133
10.5	0.316	0.0611	-0.0164
12.55	0.390	0.0365	-0.0197
14.6	0.478	0.1227	-0.0238
16.65	0.561	0.1656	-0.0269
18.75	0.653	0.2062	-0.0306
20.85	0.741	0.2655	-0.0337
22.85	0.830	0.329	-0.0362
24.95	0.920	0.393	-0.0395
27.0	1.004	0.459	-0.0418

PABLE 6 (Continued)

a^{0}	$\mathrm{C}_{\text {L }}$	C ${ }_{\text {d }}$	$\mathrm{C}_{\text {m }}$
$\begin{aligned} & 20^{\circ} \mathrm{droop} \\ & V_{0}=200 . \mathrm{dt} / \mathrm{sec} \end{aligned}$			
-2.8	-0.065	0.0153	-0.0061
-1.8	-0.04.3	0.0133	-0.0065
-0.75	-0.020	0.0117	-0.0061
+0.25	+0.001	0.0107	-0.0062
1.2	0.023	0.0112	-0.0063
2.3	0.051	0.0120	-0.0069
4.3	0.105	0.0161	-0.0091
6.45	0.171	0.0261	-0.0122
3.5	0.240	0.0410	-0.0159
10.45	0.303	0.0592	-0.0185
12.5	0.307	0.0859	-0.0220
14.6	0.467	0.1782	-0.0260
16.65	0.559	0.1623	-0.0295
10.75	0.646	0.2102	-0.0327
20.8	0.736	0.2674	-0.0363
22.85	0.026	0.333	-0.0393
24.95	0.914 .	0.102	-0.0420
25.5	0.979	0.467	-0.0449
Shaped droop$V_{0}=200.4 \mathrm{ft} / \mathrm{sec}$			
-2.65	-0.062	0.0122	0.0004
-1.65	-0.035	0.0103	-0.0006
-0.6	-0.014	0.0093	-0.0009
+0.4	+0.009	0.0007	-0.0019
1.4	0.031	0.0098	-0.0023
2.45	0.057	0.0111	-0.0032
4.5	0.114	0.0169	-0.0057
U. 55	0.178	0.0270	-0.0085
0.55	0.24 .7	0.0419	-0.0115
10.65	0.321	0.0626	-0.0145
12.7	$0.12{ }^{2}$	0.0916	-0.0179
14.75	0.403	0.1263	-0.0208
16.9	0.574	0.1695	-0.0242
18.9	0.662	0.2198	-0.0276
21.0	0.755	0.2787	-0.0309
23.0	0.840	0.342	-0.0338
25.1	0.928	0.4165	-0.0357
27.15	1.015	0.498	-0.0384

TABLE 7

Lift, drag and pitching moment coefficients of the wing alone (Moment centre at $0.540 \mathrm{c}_{\mathrm{o}}$ correspondine to $0.670 \mathrm{c}_{\mathrm{o}}$ of the wing + body models)

a^{0}	$\mathrm{C}_{\text {L }}$	$C_{\text {d }}$	C_{m}	$\frac{C_{D}-C_{D}}{\frac{C_{L}^{2}}{C_{L}^{2} / \pi A}}$	L/D
$V_{0}=200.5 \mathrm{ft} / \mathrm{sec}$					
-3.35	-0.084	0.0106	0.0017	2.034	-7.92
-2.0	-0.048	0.0079	0.0009	2.571	-6.08
-1.0	-0.024	0.0067	0.0005	3.791	-3.58
+0.05	0	0.0054	0	-	-
1.0	+0.028	0.0068	-0.0008	3.183	4.12
2.05	0.053	0.0080	-0.0014	2.221	6.62
3.0	0.080	0.0096	-0.0024	1.755	8.33
4.0	0.112	0.0128	-0.0037	1.691	8.75
5.1	0.149	0.0177	-0.0053	$1.64{ }^{\text {4 }}$	8.42
6.05	0.183	0.0231	-0.0064	1.593	7.92
8.1	0.259	0.0397	-0.0097	1.567	6.52
10.2	0.341	0.0624	-0.0120	1.513	5.46
12.3	0.429	0.0926	-0.0140	1.468	4.63
14.35	0.519	0.1305	-0.0159	1.442	3.98
16.35	0.506	0.1728	-0,0178	1.417	3.51
18.45	0.715	0.2334	-0.0192	1.388	3.06
20.45	0.804	0.2911	-0.0191	1.376	2.76
22.65	0.908	0.3675	-0.0790	1.368	2.47
24.7	1.005	0.446	-0.0188	1.358	2.25

$$
\begin{aligned}
p= & 0.430= \\
& 0.450= \\
& 0.467 \ldots-
\end{aligned}
$$

THE SAME \& SECTION WAS USED FOR ALL
THREE MODELS.

FIG.I. OGEE MODELS.

FIG. 2. WING-BODY MODEL.
WITH FILLET.

FIG. 3 PLANFORM COMPARISON OF $p=0.450$ OGEE MODEL AND THE WING-BODY MODEL WITH AND WITHOUT FILLET.

FIG. 4.(a) TRAILING-EDGE EXTENSIONS TO OGEE MODEL, $p=0.430$.

SCALE $\begin{aligned} & 0 \\ & \underbrace{}_{1} \quad 2 \quad 3 \\ & 1\end{aligned}$
FIG. 4.(b) NOSE DROOP ON WING - BODY MODEL WITH FILLET.

FIG. 5. LIFT COEFFICIENTS OF THE OGEE MODELS.

(a) LIFT DEPENDENT DRAG FACTOR.

(b) LIFt/DRAG RATIO.

FIG. 6. DRAG CHARACTERISTICS OF THE OGEE MODELS.

FIG.7. PITCHING MOMENT COEFFICIENTS, OGEE MODELS

FIG. 8. EFFECT OF PLANFORM CHANGES ON THE PITCHING MOMENTS OF THE $P=0.430$ OGEE MODEL.

FIG. 9. LIFT COEFFICIENTS OF THE WING-BODY MODEL WITH NOSE DROOP MODEL WITH FILLET.

(b) LIFT/DRAG RATIO

FIG. IO. DRAG CHARACTERISTICS OF THE WING-BODY MODEL WITH AND WITHOUT FILLET, NO NOSE DROOP.

FIG. II. PITCHING MOMENT COEFFICIENTS, WING - BODY MODELS WITH AND WITHOUT FILLET, NO NOSE DROOP.

FIG. I2. EFFECT OF NOSE DROOP ON THE PITCHING MOMENTS OF THE WING-BODY MODEL. WITH FILLET.

FIG. I3. AERODYNAMIC CENTRE POSITION

FIG.14. COMPARISON OF PITCHING MOMENT CURVES WITH NEUTRAL STATIC STABILITY AT $C_{L}=0.5$ $x_{m}=$ DISTANCE OF MOMENT CENTRE BEHIND APEX.

FIG. I5. AERODYNAMIC CENTRE POSITION AT $C_{L}=0.5$

FIG.16. EFFECT OF BODY AND FILLET ON LIFT COEFFICIENT.
(BASED ON WING DIMENSIONS).

FIG. 17 EFFECT OF BODY AND FILLET ON PITCHING MOMENT COEFFICIENT (based on wing dimensions).

FIG. I8. EFFECT OF BODY AND FILLET ON The POSITION OF THE CENTRE OF PRESSURE.

A.R.C. CP NO. 846

LOW-SPEED WIND-TUNNEL MEASUREMENTS OF THE LIFT, DHAG AND PITCHING MOMENT ON THREE SYMMETRICAL OGEE-WING MODELS AND ON A SYMMETRICAL SLENDER WING-BODY MODEL. Kirby, D.A. November 1963.
533.6.013.13 : 533.6 .013 .12 : 533.6.013.152 : 533.695.12 : 533.693 .4

Measurements, have been made of the lift, drag and pitching moment of three ogee models ard a wing-body model, all having a slenderness ratio (semispan/root chord) of 0.209 . The associated surface flow patterns were also observed.

Although the models were symmetrical and did not represent strictly comparable fully optimised designs of possible layouts for a supersonic transport, some useful low-speed aerodynamic comparisons between the integrated or ogee models and the wing-body were obtained. The results show:-
(Over)

A.R.C. CP NO. 846

IOW-SPEED WIND-TUNNEL MEASUREMENTS OF THE LIFT, DRAC AND PITCHING MOMENT ON THREE SYMMETRICAL OGEE-WING MODELS AND ON A SYMMETRICAL SLENDER WING-BODY MODEL. Kirby, D.A. November 1963.

Measurements have been made of the lift, drag and pitching moment of three ogee models and a wing-body model, all having a slenderness ratio (semispan/root chord) of 0,209 . The associated surface flow patterns were also observed.

Although the models were symetrical and did not represent strictly comparable fully optimised designs of possible layouts for a supersonic trarsport, some useful lob,-speed aerodynamic comparisons between the integrated or ogee models and the wing-body were obtained. The results show:
(Over)

A.R.C. CP NO. 846

533.6.013.13 : 533.6.013.12 : 533.6 .013 .152 :
533.695 .12 : 533.693 .4
L.CV.-SPEED WIND-TUNNEL MEASUREMENTS OF THE LIFT, DRAO AND PITCHING MOMENT ON THREE SVINETRICAL OGEE-WING MODELS AND ON A SYMIETRICAL SLIENDER WING-BODY MODEL. Kirby, D.A. November 1963.

Measurements have been made of the lift, drag and pitching moment of three ogee models and a wing-body model, all having a slenderness ratio (semispan/root churd) of 0.209 . The associated surface flow patterns were also observed.

Although the models were symmetrical and did not represent strictly comparable fully optimised designs of possible layouts for a supersonic transport, some useful low-speed aerodynamic comparisons between the irtegrated or ogee models and the wing-body were obtained. The results show:-
(i) Very similar lift characteristics,
(ii) a slightly smaller drag for the wing-body model,
(iii) better static longitudinal stability characteristics for the wing-body model, especially when the wing planform was not faired smoothly into the body.

At,tempts to improve the longitudinal stablility of one or the ogee wirgs, by minor planform modifications at the rear of the wing intended to reduce the forward novement of aerodymamic centre with incidence, were largely unsuccessful, but provided some useful data on the effect of trailing-edge shape. For the wing-body model, drooping the nose was a successiul modification and it is suggested that a drooptc rose version of the wing-body model (without any planform fillet) would have good static longitudinal stability。
(i) very similar lift characteristics,
(ii) a slightly smaller drag for the wing-body model,
(1i1) better static longitudinal stability characterist ics for the wing-body model, especially when the wing planform was not faired smoothly into the body.

Attempts to improve the longizudinal stability of one of the oget wings, by minor planform modifications at the rear of the wing intended to reduce the forward movement of aerodynamic centre with incidence, were largely unsuccessful, but, provided some useful data on the effect of trailing-edge shape. For the wing-body model, drooping the nose was a successrul modification and it is suggested that a drooped nose version of the wing-body model (without any planform fillet) would have good static longitudinal stability.
(i) very similar lift characteristics,
(ii) a slightly smaller drag for the wing-budy model,
(ili) better static longitudinal stability charecteristics for the wing-body model, especially when the wing planform mas not faired smoothly into the body.

Attempts to improve the longitudinal stabllity of one of the ogee wings, by minor planform modirications at the rear of the wing intended to reduce the forward movement of aerodynamic centre with incidence, were largely unsuccessful, but provided some useful data on the effect of trailing-edge shape. For the wirg-body model, drooping the nose was a successful modification and it is suggested that a drocied nose version of the wing-body model (without any planform fillet) would have good static longitudinal stability.

C.P. No. 846

- Crown Copyright 1966

Published by

Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w.c. 1
423 Oxford Street, London W. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller

