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Hinged flaps on aerofoils fire of interest not only,66 
control surfaces, but-also as devices for introduoing-variable 
camber on low-dragJwings to extend the rangeqof lift,zoefficients .I 
at which low drag'is obtained and to decrease the m,oment'coe,fficient 
at high.epeeds. 

A usual notation in the aerodynamics of control surfaces'; 
namely CL = ao. * atat + wl, lends to confusion, sinoe in _ . ,I 
ordinary aerofoil'theory a0 a 

. the ,-(CL,cC) curve, 
is genernlly used for the slope of 

All confusion is avoided by writing 

% =t -co + c,cc +.c,q; we then have cX '= 'a~,; but there ScemS ,I 
no obJection to such n relntionship. 

. A sikplo ti~ooryIis.de?ielo~ed:for determining the velocity 
nt the.surfnce nnd other nerodynnmic ,propcrtics of U~~~eFi~)9ppil with 
n hinged flnp. Pormulnc nro obtninod for As/q, m = .-AC&/l), 
(-n/no + ljz) 

.) 
,ACL . c;dcl (h=.(9) - (ls), !50)) 

ond vnlucs'of theso qunntitica are tnbulntod in Toblo 1, 
(~opJq -for ao' = 2x only) for E =t p-.4-,0*3, 0*25,'0*~,~,0~15, 
O’l,.O’oB; q- islthe downward doflcction of the flnp:flnd- E the 
flnp chord ns n frnction of the ncrofoil chord. The reduction of 
'MO by the.uso of n flap on a low-drag wing is discussed. If the 
wing is ori&innlly cambered for a high design XL, &noted by 

CLoPt9 
with n qen$re line for which -Cnl,/CL .i -7 K (for vnlues 

opt 
of K for modern con&o lines, see Rof.4, $10 and Tnbla l), nnd if, 
at high speeds, the flnp is raised so that. CL + ACL 1 :beoomes 

opt opt '. 
the,lpw-speed~equivnlent of the top-speed' CL, thon - (CM0 + ACti;) 
is loss than GM0 . 
cami+rc< forV CL 

would have been 'if thc'wing had'bcen originally 
" + ACL without‘n flnp by -(6 - $E -K)AC . 

(Not? ,th& 
opt . opt =opt 

ACI is ncgntive.) 
.opt . / Of/ 

'Of the AerodynamicsDivision, N.P.L. This paper is published with the 
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Of the quantities required to find the velocity at the 
surface of the aerofoil by the methods of Ref. 2, CT,, $81 Es' E;s 
CO are unaltered by the deflectLon of the flsp; fo&ulae are 
found for Agi/n (ean. 31), and for r, 8 and t, where A+c ~: rr), 

A(&, - p) = sq, AC; = tn, (eqns. (36) - (38)); these quantities 
are tabulated against x in Table 2 for the same values of .E 89 
before. Explicit formulae are set out for the than e in the velocity 
due to the deflection of the flap (eqns. (40) - (467). 

\. ' 
. --A very rough calculation is given of the limiting value 

of the flap deflection n for which tho position of maximum suotion 
et CL = CL f ACL on the upper surface of Q lovedrag 

opt . opt 
aerofoi;.with the flap up (or on the lower surface with the flap 
down) is likely to be at the desj.gn position for CL = CL 

opt' 
rl 4 Q. If this position is at x = X, tho limiting deflection 
is likely to be nearly proportional to 1 - E - X; for a 20 per cent 
flap, for example, it ie likely to bo nenrly twice ns large for , 
X a 044 ns for X a 0.6. Only n gradual i&crease of drag at 
cL = CLopt t ACLopt is to be nntioipnted when Q is incroosed 

beyond the 1Lmit considered. 

Bormulne nre found for the cnlculntion of hinge moments, 
In these cnlculntions no is given its theoretical 'Kuttn-Joukowski' 
value, since for nny other vnluo of no the large vnlucs of the 
velocity nt the trailing edge, which result from theory nnd nre not 
rcniized in practice, complctcly falsify tho cnlculntion of tho 
hinge moment. Por cusp& or ncnrly cuspcd ncrofoils there is some 
reason to bol&:va thnt cnlculntlons with the 'Kuttc-Joukowski' 
value of ho give fnirIy sntisfnctory values of the normal loading 
on the flnp nnd of the hinge moment; for nerofoils with large 
troilin~dgo nngles empiricnl corrections must bo sought to tho 
vrluos so cnlculnted; thesa ompiriccl corrcctlons will probably 
depend on the position of the transition to turbulence in the 
bomdnry lnyer, on tho Reynolds number nnd, in wind-tunnels, on the 
turbulence of the stream. The prcscnt method of correlnting 
expeximentnl dntn for nerofoils which are not cusped nlso requires 
theoretical crlculntions with the ~KuttnJoukowski~ vnluo of no. 

With the hinge moment coofficLcnt oxpnndcd in the form 

bl bi 
cH = b,+b,K'+ben = b,--co+- 

Cl Cl 

CL:- bn, 

eguntrons arc obtnlnad for the determinntion of bo, bx, b, 'ba. 
Approximation I of Ref. 2 lsnds to the snmo values ns the 
theory (Ref. 3) for bl, b nnd be. [Eqns. (66) - (69) 
This is equally true of the vnlues of m and ce/cr, 
those values are nlso correct on more exnct theories, the some 1s 
not true of bl, 5, ba, 
in fact, not 

The 'flnt-pints' values of bl, b, be are, 
sufficiently correct for most purposes 

given for obtaining them (nnd nlso b. 
1 

by numerlcnt R$&%~o~" 
on Approximation III (eqns. (61) - (63,, (70) - (72))~ USC of 

' these formulne will usually be more correct and .more convenient than 
the nctunl intcgrntion of the pressures to find the hinge moment 
with selected values of cL'(or CL) nnd n. 

w 
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In the simple theory in the body of the report squares of 
n and products of n and the aerofoil ordinates are neglected, 
More accurate calculations will be very rarely wanted; it is shown‘ 
in,the Appendix how a theory may be constructed in which the 
products of TJ and the aerofoil ordinatea are not neglected. -- 

_> .* 
For wings of similar thiokness distribution whose thicknesses 

are not exceptionally large, 
values of be, bi, ba 

the corrections to be ap,olied to the 
and b four&from Approximation I are all 

approximately proportional to the thickners; the value of bo, 
according to Approximation I is proportional to the camber, The 
effect produced by a local modification to the thiokness distribution 
Is proportional to its scale. >c 

For an aileron of 25 per cent chord on a certain suction 
aerofoil the following values have been computed. 

bo bl bz j b Method 

0.046 -0'386 -0'725 /0*490 Approx.111: eqns.(61)-(63),(70)-(72). 

o-obgl--0*565)-c-944 /o*599 )Approx.Iy eqns. (66) - (69). 

0'046 -0.383 

0'050 -0'570 

0'052 +0'029 

Approx.111, ao=2~eco1 Direct integration 
(=7*044) f$$Hoffrom 

Approx.1, ao=2n 'CL=O .and yto$ 
8 

Approx.111, ao=21t 

For tho 15 per cent thick low-drag aerofoil with a 
20 per cent flap which is to be teetcd in the 13 ft. by 9 ft. 
wind-tunnel at the N.P.L., values of A$/q, A(E - PI/v, AE'/~) 
have been computed by the theory of the Appendix for comparison with 
the reeults*of the simple theory in the body of the report 
[l!nble 4; values are to be compared with those headed r, 6, t ' 
under E ,= O*Z in I'nble 21. For the enme nerofoil the following 
vnlues of bo, - bl, -be and b have been computed? the factors 
cnusing the diffcronces between the last two lines are discussed. 

bo 1 -bi 1 -ba 1 b I Method 

0 oe49g5 0'923 0'648 Approximation I 

4 0 0'349 0.7-39 0'547 Approximation III. Simple 
Eqns. (61) - (63). (70) - 

'Theory. 
(72). 

o IO.364 /0*774(0*574 1 Approximation III, Theory in Appendix. 

Introduction/ 
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1. Introduction 

The cnlculntion of tho velocity at the surface and of other 
nerobynaaic properties, especially the hinge moment, of nn aerofoil 
with a hinged flap is considered, on a simple theory, in this report; 
it is shown in an appendix how more nccurnte results may be obtained. 

Hingedflaps on aerofoils are of interest not only’ns control 
surfaces, but also o&devices for introducing vnriable camber on 
low-drag wings to extend the rnnge of lift coefficients at which low 
drag is obtained nnd to decrease the moment coefficient nt high 
s’peedsl, 

The theory may be expected to lead to values of the 
velocity in reasonable agreement with experiment except near the 
trniling edge and the hinge and at large flap deflections. Boundnw 
lnyer effects nenr tho trniiing edge make predictions of hinge 
mpments difficult; there is some renson to hope, however, that 
fnirly sstlsfnctory results mny be obtained for cusped or nearly 
cusped norofoils. It is plnnned to test the theory and to nake a 
beginning of nssessing its limitations by pressure-plotting 
e$periments in the 13 ft. X g- ft. wind tunnel nt the N.P.L. 

..- . ~ I 
2. Notntion 

The chord of the nerofoil, by definition, joins the 
lending rind trng .edges, and is normal to the nerofoil contour n-t 
the loading edge rind also at a rounded trniling edge, 1 s . 

X) y: x is the distance from the lending edge measured along 
the chord and y -the nerofoil ordinate, both in frnotions ^ 
of the chord, nnd both for zero flap deflection (Fig. 1). 

r) : -the flop defleotion, mensurcd in radians and counted n8 2 
positive when the flap is deflected downwards. (Fig. 2); 

X*,Yr: the coordinates with respsot to the nxes of x rind Y, 
for a flap deflection ‘q, of that point on the surface 
of the flap which is nt (x, y) for zero deflection. ,: ’ 

xarYa: the distance from the lending edge measured nlong the 
new chord, and the nerofoil ordinate normal to the 
;z;ho;z respectively, both in fractions of the 

, (3 both for n flap deflection n. (Fig. 3). __ . - 

h E the contour of the flop, when undeflected, ‘meets the, : 
upper nnd lower surfaces of the aerofcil at x x h. -- 

E : E = l-h, “nd E may be taken ns the flap chord 
(expressed as a fraction of the original chord of-the 
nerofoil), (Fig. I ). 

e : f? Fr;infala&,de_fle;;c:z cos e ), ’ 

nnd for a flap deflection 
Xa = sina-@ - %(l - 00:: e). 

01 : e1 = 2 sin-l +h = 2 cos-i aE. 

Figs. l/ 
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&, k,: the coordinates of the hinge with respect to the original 
mew of x and y, For all but the most accurate 
calculations (which are very seldom required), ha -Y 
be taken equal to h, and the value of kl is tirgely 
immaterial as long as it 1s not greatar, numerically, 
than each of the ordinates of the top and bottom surfaces 
at x = h. 

cc : the incidence, for a flap deflection n, with respect 
to the new chord (Fig. 3). 

cc’ : the incidence with respect to the original chord’- i.e. the 
incidence of the front part of- the wing, or the incidence 
at zero flap deflection (Fig. 3). 

u ! the undisturbed velocity of the air relative to the 
aerofoil. 

p’ : the air density. 

Q :. the velocity of the’ air at the surface of the acrofoil, 
relative to’the aerofoil 

gw, gip B, CL , goptf Crb, 9, cl cl, CO, YO: See Ref. 2. 
opt : ,’ 

!Che symbols are used here to denote value’s for zero flap 
deflection, -@, .the no-Lift angle, and o( 
incidence for tho optimum CL, are both me8&!&e~h&om 
the chord for zoro flap deflect$on; zf dcnotow dz/dB. 

*gi, *CL , he, etc.: Values for a flap deflection 11 (to the 
opt 

firwt order in ~1) are donoted by gy + Agi, 

% + ACL 
opt’ 

fl + Ap, etc. Those quantities which 
opt 

nre functions of position,, such RW g; ‘+ bi’ refer c 
to a value of x2 egunl to tha value of x to which 
%. refers; i.e.,’ gi and Agi refer to the same-vnlue 
of 0. Alwo -(e + Ap), doPt + AcCoPt are measured 
from the new chord line - 
and not of ~(1 

i.ei- they are the valucw of, c(, 
(s&e Fig. 3) when CL = t ana when 

CL, = CLopt, respectively. , 

L,M,N: When q/U is expanded in powers of CL nnd n the.first 
terns are . ~ 

. 
a/v = L f MCL + Nn. 

suffixes u, e, 8, c: the suffix u denotes vnluow on the upper’ 
surfnce and the suffix R values on the lowor surfnce; 
the suffix s refers to vnluea for the corresponding 
symmetrical nerofoil and the suffix c to vnlues for 
the cnmber.or centre line. 

r;w,t;$ 
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S = (AE, - API/r), 

t = A&&/T), 

m = -ACEIo/v 

a0 : CL = no sm(cC + p + A@). 

CO) 019 02: When CL is expended in powers of K' and q the 
first terms* ore 

CL = co + Olcc' + caq, 

cH : the hurge-moment coefficient, SW that the hinge 
moment is &pUaE2caC H for nn nerofoil chord of 
length c. 

b 0, bx, ba, b: When CH is oxpnnded in powers of CL' nnd 7) 

51 = b. + b1c(' + bar), 

nnd when cH is cxpnnded in pov?ers of CL rind rlt 

bl b, 
OH = b. -c, co + c, CL - bq I 

( 
so b + ba = "" bl , 

Cl ) 

3. The Simple Theory of nn Aerofoil rath n Hmp,ed Pl.nP 

We suppose thot the contour of the flnp in its 'zero' 
position moots the upper nnd lower surfaces of the nerofoil nt 
X = h (Pig. I), nnd thnt the coordlnntes of the hlngc, with 
respect to the nxes of x nnd y, nrc (hl, k,). For 011 but 
the most nccurato cnlculntlons (which nre very z:eldom required) 
we mny trike hi = h, nnd the value of k1 is immnterinl so 
long RS it does not exceed, numerLcnlly, the ordinntc of either 
surfflce n-t x = h. 

Let/ 

*The notntion here differs from thnt munllv ndoptcd in the 
considerntion of nerofolls with control finps, nccordlng to which 
CL = a, + R,ci' + n,q, The use of no for the slope of the 
(C&) curve, however, is now well estnblishcd; in pnrtlculnr, 
it 16 SO used by Glnuert nnd hns been so used m preceding reports 
of this series. Adoption of tke usunl notetLon for control flnps 
would therefore lead to confusion between ~~ end eL. All 
confusion is flvoided by the simple expedient of using oo, cl, ca 
for Rot QI, na ns in the text. We then hnve cl = noi there 
seems to be no obJection to such n relntionship. 
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Let the point on the contour of the flnp whose coordinntes 
for zero deflec,tion ore 
to the hinge) Fecom w (." 

(x, ) (with polar coordinates (r, 6) rolntive 
I, yLT1'for n flap deflection q. Then 

Xl = hL + r cos ($J -3) ,=,..hl. + (x - h,) co6 q + (y 7 kl,),sin q 

e..(l) 

!. 

Yl = kl. + r sin ($ - q) = kL + (y - kl) co8 q,- (x -h,) sin q. 

. ..(2) 

mid squnres of q 
: 

If n is smnll, and products'of q 
nnd the nerofoil ordinntes nre~ noglocted, then approximntely ,. 

Xl = x9 ~' yn = y - q(x - h). . ..(3) 

The trniling edge 1s at the point' (1, - q(1 - h)), rind to the 
first order in I q the chord is still of unit length. 

For the most part we shrill be content with this simple 
theory*, but the nxes must bc chnnged so thnt the new axis of x is 
nlong the new chord, 
of the trailing edge t 

oining the 1o;uding edge to the new position 
Fig. 3); To the first order in q the axes 

must be rotated through on--angle Eq, - where: E 'I = 1 - h, is . - 
the length of tho chord of the flap as .a frnction of the total chord 
of the wing. Tho now coordinates, nre 
denoted by (xs, ya ). 

with n flap deflection q, 
To the first order in q; with products of 

rl and tho nerofoil ordinates neglected, 
, 

x2 = -x1 = x, . ..(4’) 

92 = y t 2$x. -(o 6,x Q h) 

3 
>...(5) 

a y1 + Eqx = Y + htl(l -x) (h 4 x 6 1) 

Since tho,ordiqatos of both the top nnd bottom surfncos 
cro altered by the same amount, tho half-thickness ys is unnltered; 
the change in the ordinnte of the centre line is 

0 
* y c = Eqx (0 6.x 6 .h)- 

1 ' = hq(l -x) (h 6 x 4 I) 
. ..(6) 

0. r .,Thc incidenoo with respect to the new-chord is donoted 
by 01; we denote by CL' the incidence with rcspeot to the old 
chord - i.e., the incidenbe of the front port of the wing (Fig. 3). 
Since the new chord mnkos an nngle Eq with the old chord 

/ :: CE J cc' + Eq. . ..(7) ' 

, I- I . 9%' . , , 

*For a ‘more occurate, 
Appendix, 

nnd much more complicated, theory, see the -. 

>\ 
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The quantities we wish to calculate are, in addition to the 
tQ.Q.y zoment, the nTlift.angle -?, the moment coefficient at zero 

cl 
MO 

, the optmum lift ooefficient :CI, and incidence 
opt 

opt' 
and the velocity at the surface. In connection with the calculation 
of the velocity at the surface, we require 689 +,9 Es9 "i9 ‘09 gi9 
% C’ EC’ 

"A. (Ref. 2. E, denotes as/d.@). 

On the sFrople theory above, ys has the same value a8 
for zero flap deflection, and so therefore have gs, $s, &s, E:, Co, 

According to (6) Ay, is represented by two straight lines, 
and the determination of the changes produced by the deflection of the 
flap in all the other.quantities required (except the hinge moment) 
is merely a special case of the example in sp of Ref. 2, where y, 
was represented by two guartics in x. All we need to do is to make 
the following substitutions in the values obtained in that example. 

% = En, b. = hT), bL = fin, cI = a, - bi = r), 

aa = a3 = a4 = ba = b3 = b4 = o, = o3 = c4 = 0, 

r, = h, 01 = 2 sir+- dh = 2 COI+ a. . ..(8) 

4. The Mo-Lift Angle, Moment Coefficient at Zero Lift, Ootimum 
'Lift Coefficient ma Incidence 

We use p, CMo, CL 
opt 

, Clopt to denote values at zero 

flap deflection,nnd supposo these values calculated by the theory of 
Ref. 2. For the changes due to n flap deflection ,T we find that 

AP 01 
h'- - + 

sin 0% 
-=I . ..(9) 
11 71 n 

A'?VTO 
m 1-- P h sin 8%, . ..(lO) 

r) 

--- ACLopt = 2sinO,, . ..(n) 
11 

sin 6TX 
, . ..(12) 

71 

where 

CL = no si.n'(ti + @ + ATE). . ..fl3) 

Formulae (~3) and (12) do not nllow for any change in a0 ns the 
flap is deflected. It is easy to cnlculntc the effect of nny change 
whose magnitude is known or can be inferred; but such effects will 
usually be negligible for the purposes for which the formulne will 
be required. 

, Vnlues/ 
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Values of 'GJx; (ein~SL)/71, (AfJ)/v, , m, ana (AC, 
0pP 

9 

(~opt)/n. Par a0 7 2x, are tabulated in Table 1 for E = 0.4, 
0'3', 0'25,,0'2,,0'15, 0'1, 0'08. 

by Glauert 
The formula for m is in agreement with the formula given 

ti Ref; 3. - . 1, .', 

The,velues of Api. kiopt i?.(g) end (12) refer to the 
new chord:. lie., -(p + A@),,. aopt.+ Adopt are the values' of Ce 
when, C L J- 0.. end when .CL = CLoat,.respectively. The value of ' 

-tll at zero lift is 

.,.(‘14) 

the value of Cc' 

r 

We note also that, for a0 a 2x, 

*CM0 = &@A% . . . I 
opt 

. ..(15)- 

1..(16) 

Consider the application to reduce the moment coefficient 
of a, low-dreg wing at high speeds. 
for e fai:ly hQh deeign C , 

Suppose the wing is cambered 
appropriate to the cruismg speed or 

i; the clunb, end that at htgh speeds the flap is up, so that q and 
L are negative. 

opt. 
Lot .CL 

cot 
(the desrgn CL), for example, 

be 0~5; if the low-speed equiv&nt of the top speed Qi; is 0'2, 
should make we went CL + AC= = 0.2, so fti no = 2x we 

opt 
r) = --o-s,&ll f31) 
we sh,ould make -q 9 

radiansj for a 20 per cent flap, 
to deg 44* d.13. 

for example, 

Further,if, for the particcLar &ype of-oentre 
originnl aerofoil, 

. 

line on the 

-cMo/cL = K, 
opt 

then 

--@MO + ACio) =' KCL 
opt 

+ giACL 
opt' 

end is lees, with the flap up, thnn if the aerofoil hnd been 
origmnally mubored for C 

Lopt 
+A%. without a flnp by 

cpt 

-(%h LiK) ACLapt. 

Suppose/ 
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Suppose, for example, that -ML = 0'3, as above; that 
opt 

K = 0'25 (the value appropriate to a centre-line dSSi@Sned for 
constant approximate loading over the whole chord: see Ref. 4, s9); 
and that h = 0'8, so that we have a 20 per cent flap-aa before. 
Then -C 

MO 
is reduced, by the use of the flap, by 

0'3 [0'4 - 0-25-j = 0'045: in fact, with CL = 0'5 as above, 
opt 

+111, 
WOUla ,be O-125, ana with the flap up, so that ACL, is 

opt 
-0.3, dCMo = -0.4 x 0.3' = -0.12,. so -(CM0 + AC& = 0*005; 
without a flap and with a value of - C 

LOti 
equai to o-i, % Would 

0 

have been 0.05. 

5. The Velocitv at the Surface and the Lift Coefficient 

To find the velocity distribution at the surface we use 
the methods and notation of Ref. 2. Two methods may be of interest - _ 
Approximation I, based on a very rough linear theory, to give rnpidly 
a rough idea of the changes produced by the deflection of the flap 
away from the nose of the nerofoil (where Approximation I foils 
entirely), nnd Approximntion III for more ncournte work. 

According to Approximation I, for zero flnp deflection 

..(17) 

(the upper sign nppl 
to the lower aurfnce 

inEh;;ethe upper surface and the-lower sign 

x = SAT 7 CO8 9) = sin-2 &e, 0 6 9 6 71, . ..(18) 

and 

cz = no(g+p). . ..(19) 

l!he theoretical value of a,,. if the Kutt&Joukowski 
relntion ia satisfied, is z7c on this theory. 

According to Approximation III, for the upper surfnce 

a, = u s ( 1-c sin(e+Eu.-~)+~F cos(e+E*-@) a8 > u 
QO 

U 

. ..i20) 

where/ 



. ..(2'1). 

and for the lower surface 

8i.n 
CL 

(0 - cg + B) --a- Fg COB (e - cR + p) 
a0 

where 

eye (I f Ej) 
Fe = L 

($j + sina e)”  l 

~1 denotes a&/ao. In both (20) and (22) 

cL = a0 t3tn (Cc + f3)f 

in,(20) - (23), e is defined af3 in (iO)j 
I 

where -1 

and similarly with the suffix o; -aleo 
_ t 

. ..(22) 

. ..(25) 

. ..(24) 

. ..(25) 

. ..(26) 

..:.(27), 

The theoretic81 value of ao, when the Rutte+oukoweki condition is 
satisfied, is 2*eCo. 'PO find the velocity ,for a flap deflectioh II,' 
in Approxinatioq I we change I g,, gi, CL. 

opt 
into. g, +..+,, gi +,+i9 

CLopt + ACLoptp 
in Approximation III we change q, E, B, C* into ' 

V+&,g + AC? B.+ AB, E' +.A&'. (In additiori*we should make 8ny 
a0 which WQ oan mfer from experiment or which 

experience hae led us to expect; for emall flap deflections we 
should not expect any apprecieble change,~) 
f&J then applies to a value of x 

The resulting velue of 
equal to the value of x 8t 

which the original value of Q/U tfor r) = 0) applied, - i.e. if 
we write 
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xa = +A1 -, CO8 e) = shl2 -;?e . ..(28) 

for B flap deflection of q, the calculated values of 9/rr SPPly 
to the same values of 6 as before; 

Ap and AC5 were'found in S4f and, as explained at 
opt 

the end of s3, since Ags = 0, 

A% p A+, = A~:, P AE& = ACo = 0. ..,.(29) 

Consequently 

A%.l = -9~~ - Wcr 

AEU 
= Asj = AcO, 

AEA = -Acj = AE; 
I 

, . ..(JO) 

hi, A$,,, AE~, A&; are then imnediatbly found from $9 Of Ref. 2, 
as explairie8 at the end of SS. We find that" 

sin Q(e + Bi) , 
hi = z en ..i(31) 

, x sin qe - BT’ 

zhq cosa $3 
z = hn cot 2% (3 AQ2, say) for h<x<l, 

T 

and 

1 [A$+A+&]'~II 
sin .-&(e + el) sin e1 

,AE:, 9 co880 
71 sin $- 1 8 -eJ y" Tc 

8, 1 
where . .;.(34) 

41 = $39~ seaa +e, Aqh tl -&hq ooseca @J 

,..(32f 

. ..(33) _ 

Sinoe we ake ccncerned only with 8 theory iinear in qs J A$),, AE~, 
AZ; are proportional to r). In the expression for q/U, &o OccurS 
in the oombination so - p, (ond Afl, of course, is also _ 
proporticnel to q). It is therefcke convenient to write , 

q. ,= rll, pc;;- Ap = sq, AE; 7 tq. . ..(35) 
. -, 

From/ 

*En is used for loge. 



Prom (32), (33) and 
in terms of OL in 

1 
i s = - 

71. 
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(34) we then find (substituting for E and h 
a and t) that 

r = E tan $6 for 

= h cot -;i 
. ..(36). 

for 

( co9 81 sin - 0 CO8 8 1 en Blrl sin $(8 *IS - + 011 81) - eln , 71 81 f 

. ..(37) 

t2 
1 ( - COB 81, COB 0 Flin &(w+ e,) sin 0% 

.En 
71 sina f3 sin $10 - a,1 

coeec 8, 
n: . . 

. ..(38) 

where 

00s 01 .= 2E - 7. . ..(39) 

t vanishes at L = 0 end e = 71; e vanishes at 0 = x, and 
st 8 =..n 

B =) -(z/n) oin 8%. 

Ate ~0 
i' r 

ie continuous and equal to -2 sin OLj -e is 
0 ont inuoua na equal to -(sin Bl)/x.i but t , is logarithmically 
infinite. Consequently the velocity is logarithmically infinite 
at x = h according,to this simple theory. If this infinity is to 
be avoided, the details of the way in which the surface is rounded 
off,near x = h. must be studied, and some such theory used as 
that expounded in the Appendix, This logarithmic infinity io a defect 
of our simple theory, but it is not to be considered a very serious 
defect. For the effect is purely local! it LS correct that the 
velocity will vary rapidly near x = h; and the exact values 
reached will depend critically on the way in which the surface is 
rounded off, details of manufacture included. 

Tables of (Ag. l/v, 
I3 = 0'4, 0'3, 0'25, 0.3, o.l,~90"1 

nnd t ngninst x for. , 
, 0'008 RPC to bo found in 

Table 2. 

If, in Approxunntion III, we wish to include the cffcct of 
the change in y. due to the flap deflection, we note that 

this change is, in any cnse, very snnll. 

*Although t is logarithmically infinite nt B I t3=, 

l' t $,(S) 60 converges, and for small values of 6 

t31+6 6 
. L-5 t j$S) de = + Cl (h3 Rn 6). 

I 2 sine, 
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It may be convement to kavo available explicit formulae for 
the change in q due to the flap deflection. On Approximation I 

a/v = 1+e,t [gi+t(i+b) (C&-C&opt) cotmS 

1 1 1 
-- ( --- ) CL tan $6 + 2 

i 

sin +(e + 01) 
.h - sin 13% oot $3 

2 a0 2% Tl sin 616 -011 II 
. ..(40) 

For Approximation III we write 

GCSE 
QF ’ 

. ..141) 

so that 

AYO t 
Gu = -+ r +u 

rl 1 + "A + eina 8' 
. . ..(42) 

Then 

F sin(e+~u-@)+%F cos(e+~;-p) 
a0 

U 

and 

+ % A% 
co Fu+- . ..(43) 

2n e U 

sin 
% (8 - et + 13) - - F~ cos (B - Ed + p) 
a0 

?L *‘BR 
2x G co Ft + - - u ’ I 

. ..(44) 

where ' 
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y-y {pyGu+] FUnin(e+&U-p) 

+ {y$-~+~Gu} Fucos(B+E~--P) 

f 5 
271 0 

co Gu Fu . ..(45) 

The value o-1 Agi (0) in (31) enables us to determine if, 
in my particular case, the position of maximum suction for 
% = C,Lopt + AcLopt on the upper surface of a low-drag aerofoil 

with the flap up (or on the lower surface w.ith the flap down) is at 
the design position for CL -;I CL 

opt' 
TJ 3 0. If this position 

is et x =I X, ancl if, as is usual, gl(9) = '0 for 0 < x 6 x 
(where the dash denotes differentiatmn with respect to 
very roughly, we require6 

B), then 

1111 sin 8% cos 8 
IAg;1(8)] = 271 h-x < g;(e) + 29, s~tn3B for O6 x "* 

Normally, but not necessarily always, the least value of the right- 
hand side occurs at x = X. Then we require, roughly, 

1111 - sin e1 < (h - A'x 
271. 

X) g; (2 sin* X') , 

For example, if h = 0’8, sin BI = 0’8; and if ag ax is 
constant ana equal to s d 

-than 1q1 
for o 4 x 6 X, with X = l b, 

s 1 0’12, met not exceed about 5-g deg. 

If/ 

* 
g;(:! sin1 X4) is the value of g;(S) et 8 = 2 sin3 X’. 
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If EI is kept co?stant and X varies between, say? O-6 
and 0.4, then gb(z sin-l X2) varies very little, so the luniting 

! value of Id " is nearly proportional to h - X, With h ;cr~*8; thie 
limiting value will therefore b;o;bo;t half as large again 

' X = 0.5 es for X = 0'6; = 0'4 it wzll be twice as 
large. In any case when n exceeds the values considered here, the 
position of maximum suction will move forkbard gradually, end only e 
gradual rise of dreg et CL = CL (rather faster for flap up 

opt 
' than for flap down) is to be anticipated, 

Finally we note that 

t-10 if, when CL is expnnded in bowers of o(* and n the first 
terms me 

we hove 

CL = 00 + CiCX' + Oar), . ..(47) 

co = no sin p, . ..(48) 
. CL = 80 COG B 7 80 t . ..(49) 

ca 81 sin 81 
- ca l--+ . . ..(50) 
CSL YT 76 

The theoretical vnlue of oo, for the KuttoJcukowski 
condition to be sntisfied, is ,a7ceco, but the value of ta/or 

. is independent of the value of no. Vnlues of c$cl are tabulated 
in Tnble 1 for the same vnlues of E as before. It is clenr that 
the formula for ca/cn is the same ns on the rough linear theory 
lending to Approximation I, ond is in agreement with the formula 
given by Glauert in Ref. 3. 

On the simple theory here presented, in the calculation of 
the effect of the flap deflection on the velocity distribution 
producte of TJ nnd the nerofoil ordinntes ore neglected. It is 
shown in the Appendix how, by complicnted cnlculntions, these 
products mny be taken into account; and it is worth remnrking that 
if, for exnmple, products of TJ and the square of the thickness 
are neglected, the corrections to the simple theory will, for 
geometrically sunilnr thickness distributions, be proportional to 
the thiokness. Except for very thick nerofoils such nn 
npproximntion is nlwnys justified (except perhnps nt the noae of 
the nerofoil). In fnct, nwny from the nose of the nerofoil, the 
velocity on the surface nt a given incidenoo and flnp dcflcction 
is nearly a linenr function of the thickness for cerofoils hnving 
p given centre line nnd geometrically sLmilnr.thickncss distributions, 
so long as the thickness is not exceptionally lnrge. 

Hinge/ 
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6. Hinge Mcmentu 

unit chord, 
is the hinge-moment coefPicient, such that, for 

lf'~!?~?kvidth of the flap 
is the moment about the hinge of the norm81 

m-sew?, .P , then 
1 

r  5puzE2c H = - ha)dxa + (ya -ka) dy&..,(51) 
d . . . 

the axes-of x2 and y2 being used,, 
I 1 

(ha, ka) being the coordinates 
of the hinge relative to those axes. and'the integral bcinrr taken 
round the contour of the flap in the 
the total head, assumed constant, 

P = II- 

and 

negative sense. Now rf H ie 

3pqa, . ..(52) 

4 
H [(XZ - ha)dxz + (ya - kz)dyal = 89 . ..(53) 

SO 

,EaCH = - [(xz - hn)dxz +'(~a - ka)dyzl. ' . ..(94) 

d I. , 
It is usual to neglect the contribution to the integral-‘ 

in (54) from the part of the contour of the flap forward of x = h. 
If this part of the contour is a cirole with its centre oh the hinge, 
so that the lines of action of the normal pressures on the surface 
forward of x c h all intersect the hinge, this contribution is, 
identically zero4 othcrwiee it nhould bc specifically noted that the 
effects of the difference from the total head of the normal pressures 
on this part.of the surface of the flap hflve been neglectcdl moreover 
thes? cffecte could not be thooroticnlly cnlculntcd in many cases 
when there is no seal; ideal fluid theory would protide no guide. ' 

' It should also be specifically etoted,that, since this 
invoetigntion.ie a theoretical one on the bnsie'of potential flow, 
all offbcts of okin friction are neglected. 
nre neeumcd to hnvc their theoreticnl.vnluoe, 

Moreover, the,preseures 
Now boundnry-lnyer 

effects nre grcntcst nt the trailing edge, and thy contribution to 
the hinge moment of the pre-- LzOurcs near tho trailing cdgc is considerable, 
so boundary-layer effecte.mny be cxpectcd to have a considerable 
influcnce'on the bingo moment. There is some evidence, however, thct 
for cusped or nenrly cuepcd nerofoils, hinge moments'cnlculatcd by 
Potential theory will provide n good guide, especially nt large 
Rcynolde'numbcrs in strenme of low turbulence or in flight,'provided 
thnt a0 is given its theoreticnl lKuttn-Joukowskir value. This 
statement-does not imply that the nctunl prceeures on the eurfnce 
near the trailing edge will be nt'nll nccwntely found in this manner, 
but It does seem thnt the difference between the prossuree 'on the' 
upper nnd lower eurfncee - the normal loading - mdy be fairly 6011 .' 
reproduced, For nerofoils with large trniling-edge nngles the hinge 
moment appears to be more dependenti on the position of the transition 
to turbulence in the boundnry layor, on Reynolds number and on 
turbulence in the s'trenm thnn for cuepcd nerofoils; nt ttie present 
time OUr'only hope of being nble to forecnet hinge momsnts on 
acrofoila viith large tailing-edge nngles seems to'b"e to‘flnd empirical 
.correOtion8 to vnlues calculated in the manner described above. In 1 II 3 



any oase it seems valueless to calculate hrnge moments with any 
value of a0 other than the theore tioal 'Kutte-JoukCwskiI values, 
since even if the trailing edge is rounded, it ~$11 be only slightly 
rounded, and with any such,value of :a0 the velocity p .will, 
according to potential theory,- reaoh large values whuh tiillpot 
be obtained in experiment or in practice; these large ;;l;;;li.ll 
entirely falsify the calculation ?f the hing mom$nt. 
therefore give a0 its ~Kutta-Joukowski' value., .I I 

13 we now neglect the second term in (54), and use,the ' 
simpl& approximation (5), we may write . 

I 

[X - h] aX. . ..(55) 
U.3 ,- 

Now suppose that, when Q/U ais cxpsnaea in powers of 'CL and 7), , 
the first terms are 

Q/u= Ii.+ MCL + NV. . ..(56) 

When the hinge-moment coefficient is expanded in powers 
of I%' an8 q it is usual to write, for the first terms, 

cH 1 b. + blci' + bsq: ..r(57) 

If the first tarns in tho expansion of 52 in powers of Cc' rind q 
ah, QS befojre, 

. 
, % - co + C& + caq, . ..(59 

then the first terms in the expnnsion of CH in powers of CI, , 
ma 11 are 

%! 

*It is found experlmentnlly* thnt, for cuspea or nearly cusbea 
nerofoils, bl nna bs (see eqn.(57)) nre very close to their 

Kuttn-Joukowski circulation, Thus 
be nenr to its theoroticnl value, ' 

hns its theoreticnl vnluo. At 
present the experlmentnl-evidence is thnt 

: I less thnn ite theoretical vnluo, 
ca/o& mny be slightly -~ 

but this small departure may perhaps 
be lessened, by on increase of Reynolds number rind n decrease of frce- 
stream turbulence,, rind by ensuring smoothness of the flerofoil SurfnCe 
with the flnp deflected. 

For nerofolls with large trnLling--edge angles the most ' 
i 

successful method nt present of correlnting experlmentnl dntn is to 
Plot the rntio of the measured vnlue of bl to'its theoretic01 vnlue 
ngninst the rntio of the mensured vnlue of 
value, and sidlnrly for oi nnd oa. 

ba. to its theoretlcnl 
For any given vnlue of E 

, it nppears thnt the points t'hus plotted lie on strnight 1Lnes 
independent of sh@pe or of the positron of the trnnsition to turbulence 
in the bounanry layer. Hence bs 
knowledge of bl and 

rind,. oa may be estianted from R 

bat cz. 'These theoreti% vnlties nre those found with the Kuttn- 
IS ma the theoreticnl values of bl, cl, 

Joukowski circulation; we therefore require to' be nble to cnlculote 
these theoretical vnlues even'fo'r'nerofoils whrch nre not ousped. It ' 
seems well within &he bounds'of fiossibility thnt it will prove possible 
to cslculnte 0% 
lQyers, with scale 

wzth sufficient nccumcy by nllotiing for boundary 
rind transition effects included; nnd it is hoped 

ultimately to bo able to compute bl ns well. 
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bl . bl 
cH = b,, -c,uo +O-;CL-brlr . ..(59) 

where 

b = "" bl - ba. . ..(60) 
01 

Hence, from (55); 

,.(, +) If s,‘L~-qJ~~-h’ax’ . ..(61) bl E2- 1 s (2 LjMl - zLJ’JJ$x - h) dx, Cl h . . . . (62 ). lk 
-Eab = 1 ( 2LjNj - 2LJTu)(x - h)dx....(63) 

h , 
On AppsoxFmtion I it follows from (40)'(with a0 = 2x) that 

. , 

Hence, if we keep only the moe; important term, . 

,:b; +o) J -4 \~&cLopt Cot@) (x - h)ax, 
(X - h) Cot $33 aX, 

. ..(65) 

Since/ 
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since 

it follows that 

x = g1 - CO8 e), 

h = $-(1 - CO8 BL)) 

4 (x - h) cot &Qax = 
s 

(coa e1 - coa 8) sin 8 cot&j 2ae 

01 
. . - 

= 
1 

(00s 61 - cos e)(l + ~03 e) ae 

1 

= (n - ei)(cos eL - f2) + (1 - -!z cos QI) sin Ql, 

and 
In 

sin -2(e*,) 
(x-h)dx = Rn 

\ 

sin $-(e+ez) 

sin -ye-&1 ( 0, d.n i-/Q-s, ) 
(~09 er. - COB e)sin BdB 

= +$(oos 01 
[ 

- ooa Q)a .&I 
sin +(Q + e,) 

.sb +[e - 0~1 

I x + p Sin Q%(e COB en - Sin e) e1 
TC - er si.na 81 

= _. sin 2er. + . 
4 2 

Hence 

bx 

a-  

0% 
I -  6  cos e,) sin ~3~ -t (7~ - Q~)(~os e1 -6)) 

1 --$ I(% - E) sin Qi - (+2 - 2E)(n - @,)I, . . . (66) 

b. =-- 
Ea 

gi(X - h)dx + '2 {(+-E) sin o1 - (%- 2E)(7~ - 61%)) 

'h s 3. 
4 

. ..(67) 
(since on Approximation I with a0 = ~TC, 

CO = 2xp 

and 
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and 

h sin %* 
b = 

f&a y- 03. -ssin%L). ' . ..\68) 

It follows thaii 

- ba = ‘b - 2 ,bp 
,Ol 

1 
= ; {2Eh + (n - 0,) sin 01 - (3 y 2E)(7c - &)“I. 

. ..(69) 
These values agree with those found by Glauert, by ‘flat- 

plate’ theory end summation of infinite series, in Ref. 5. The same 
is true of the values previously found in this report for m and 
ta/cl (ems. (10) end (50))~ but whereas those values are also 
correct on more exact non-linear theorieo, eqns. (66) - (69) are not 
so correct. In fact, the values found from these equations are not 
sufficiently accurate for most purposes, and values should be 
calculated on Approximation III, Nevertheless the values of -bJc%, 
b and -ba from the formulae~r+bov~ are tabulated, for what they are 
worth, in Table 1 for E = O-4, 0'3, 0'25, 0.2, 0'15, 0.1, 0'08. 

a0 = 
@Approximation III it follows from eqns. (45) - (4G), with 

2x8 , that 

\ = Fu sin (e + Eu - p), 

3 
. ..(70) 

=.t? = Fe sin (8 - EJ + p), 
-7 

MU = ,200 [I + COB (8 + Eu - @)I, 

Ma - 
-L 

2710 co 
Cl + COB (% - E& + a)], 

1 

..,(71) 

J 

% = Gu~uSin(~+EU-~)+6~uOO~(~+~U-~), 

.,.(72) 

1 Ne = Gj FE Sin (8 - Ed + p) - sFe, COB (8 - Ei f 

where Gu, Gg me given by (42), and r, a9 t by (361, (37),, (38). 
(See oleo Table 2). 

3 

More eccurnte vnlues of bo, b1 end b me to be found. 
;;ke;w;. # -N (63) by nuacrionl integration, with the above 

, P - 

For more accurate cnlculntions still in which'the seoond 
term in (54) is included, see §3 of the 44penaL. 

We/ 



We may remark also that, for *wings of stmllar t:ickness 
distribution whose thlcknc 'sses are not exceptioullly LarCe, bi, 
bd and b are approximately linear Punctions oE the thLc:mess, 
and the corrections to the results found by ApproximatLon I 
pm;w,$;6), (601, (69)) are approximntely proport*onal to the 

*- . SSI;1llarly if a local modificntion'is made to the 
thicknees distribution, e.g. by 'convcxing* a control surface to 
change the balance, then tho effect produced is pronortional to 
the scale of the local modification. 

The correction to be -,-j nv\Lied to the value of b. given 
by (67) is also approximately proportional to ths thickness; the 
value given by (67) is itocl f proportional to the camber. 

7. Numerical 1llu:~trations. 

Our first numerical illustration relates to a control 
surface on a suction wing designed for a flight test. The fairing 
was designed from Approxmation I with gs as shewn in Fig. 41pa 

a = 0-1448964, 
b-c = 

b = 0'2321126, 6 = -0'0937737, 
0’3550309 and x = 0.75. The centre line was designed 

from Approximation I ;jith gi as shewn in I?ig. 5 (see Ref. 4 s12), 
k = 0'073, k' :F O'OZ, X - 0.75. The design CI is o-2, 
c*,& is -0.075 ma the nerofoil is t6'por cent thrckd a sketch 
of it is shown in Pig. 6. The adoron is a 25 per cent flap - 
i.e. it consists of the wholc of the wing aft of the ouctlon slot. 



Values of bar bl, b, be have been worked out fkom 
Tqu,jtions (61) - (63)? with L, M, N, given by (701, (?I), and 

72 , with the following results: 

b. = 0'046, b1 = -0'386, be = -0'725, b = o-450. 

These are probably the most satisfactory values It is possihle.to 
obtain without, empirical corrections. Thevalues according to. . 
bPrqx~mtiOn I-are given below for COmpSriSOn. !.I * 

bo = 0'049, bl = -0'565, ba = -0'944, b' = 0'39s. 

These values.of bL, be, 
'flat-plate' theoryJ; 

,b are the same as those obtained on a 
the differences from the more accurate 

values &iven above are considerable. 

Average values of be and bl from CL = ',-to 1 
CL = 0'5 ivere also found by computsng cH for these *two 
Cpa lue s (with n = o) directly by integration of the right- 
hand side of (55). On Approximation III, wsth a, = 27ceCo 
(which for this aerofoil is 7.0440)~ it :5'as thus found that' 
,b, = 0.046 and b, = -0.383; on Approximation I, with I 
n 2x, be = 0'050 bl 'Q.570. 
qtiti satisfactorilv with those=gzven nbove 

These values compare 
sspecrally as this 

last computat,ion is"not very acc&ate. In &der to exhibit-the 
large change in bl 
values of bo 

produced by a smnll change m ab, -aGerage 
rind b1 between CL = 0 rind CL‘ = o-5 were 

also computed on Rpproximotlon III with a0 = 271; the values 
obtnlned wero..bo 
vnlue of 

= 0'052, br = +o'ozg. The chnnge in the 
bi, 

2neC" to 2~~ 
from-o*387 to +0*029 when a, is changed from 
is quite striking. 

Our second numerlcnl illustrntion concerns certnin 
computations which have nlre-dy been cnrrled out for the 
nerofoil on whzch pressure--plotting experiments ore p1nnned.i.n the 
13 ft. X 9 ft. wind tunnel at the 1q.P.L. The oerofoil is n 
symmetric:1 low-dmg aorofoil of the so--called rroof-topf vnrie't 
designed from Approx, I with ga as nhown in Pig. 7 (see Ref.7 6), T 

Fig. 7/ 
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e = 0.1336624, b = o*~o~;:'i3, c= -0: 18X7961 and x = o*G; it is 
15 per cent thick, with a cusp, and a sketch of it is shown in 
Pig. a. The flap is to be a 23 per cent flap, with the hinge 
at the intersection of thenonnnls to the upper and lower surfaces 
at x = O-8, i.e. on the chord line at x = h, = 0'793534. 

In the first place, values of the aerofoil ordinates 
are given in Table 3, and of +?,, me, E; in Table 4. Ce is 
o'lo6g6, and the theoretical value of a,(= 27ceCo) is 
6'9925. 

It was considered that this aerofoil would be a 
suitable one for which to compute the difference between the 
simple theory of the preceding paragraphs and the more accurate 
theory of the Appendix. Since the original aerofoil is 
syfumetrical, A+,, AesP A,E; are zero, even on the theory in 
the nppendix; values of (A+c)/q, A(eC - @)/n, AE~JT)~ 
calculated by the theory in the Appendix, are reproduced in 
Table 4; these values should be compared \Tith those headed 

respectively under E = 0.2 in Table 2. The value 
at x = 0.8 has not been computed, since it depends 
on the amount of rounding--off on the surface near 

that value of x. Apart from valuce at x = 0.8, the biggest 
difference between the entries in the two tables for A+-I 

0.0166 (at x 0'85). it appears from the calculations 
izat this differencz may r&e to 0.038 near 

biggest difference is 0.0084 (at xx 
= 

it is 0~0063 at x = o. The more accurate value 
however, is 0.3560, compared with 0.3498 on the 

simple theory; when allowance is made for the change in A@/np 
it appears that for AEC/T 
o-0099 (at x =: 0-g). 

the biggest.difference would be 

At/ 
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At this stage it seems best to leave detailed sample 
calculations of velocity distributions until the experiments are 
performed, so that the calculations may be made-for the same 
circumstances as the experiments. We may say in a gcneral.way, 
however, that whereas the correction terms introduced in the Appendix 
may make a.diffcronce of as much as 7 
in s/v near x = 

in the third decimal place * 
0.8 for a flap dcflcction of 10 deg., they nre 

unlikely to make a bigger diffcrcnce thnn about 5 or 6.in the fourth 
decimcl plncc nccr x' = 0.5, forexnmple. 

The hinge-momcnt'coefficients of this nerofoil and flap 
hcve bL!cn worked out on Approximation I, and nccording to 
Approximation IIx,both.fcxh,tho simple theory in $6 (eqns. (,61), (62), 
(63), (70), (71), 
Appondix. 

(77 
The result 22 

etc.) and from the complicated theory of the 
are set out below. 

. 
6, j-b% /-ba ; b 1 Method 

0 O'49P5 j 0.923 /!I'~648 Approximation I, 

I I 

0 0'364 0.774 lo.574 Approximation III. Theory in Appendix. 

There is n fair difference bctwcen the vnlucs in the lnst 
two lines, nnd .somcthLng mny be said nbout the various effects, rind 
their mngnitudo,. which are taken into nccount in the third line and 
not in the second. The coefficients computed by integration are 

In the computation of 
ike %tctbiheory (I) of the cxlct liktion of the hinge 

account is tnken, in the 
(ii) of 

the effect of the'thickncss on the moment in so far as thi moment 
of the pressure component phmllcl to the chord is included (the 
second term ln cqn TV, only cxtrn effeci;i)). In the computation of -bl these are 

In the computntion of b these effects clso 
enter, togothcr with (ii%) the effect of the thickness on the 
velocity chnngc produced by a deflection of the flnp, and (iv) the 
effect of the product of the thickness nnd tho flnp deflection on 
the geometry of the system, 
sqn. (25A) in the Appendix. 

as expressed by the terns in Xx in 

No exnct computation of these scpnrnte effects hns been 
made1 n Judgment of their signs and relntive mngnitudcs has been 
attempted from nn inspection of the work necesscry to*obtaln the 
finished results set out in the'tnble nbove. In the computation of 
--hi, the lnrgcst effect is due to (1) (the locntion of the hinge)? 
the effect of (ii) is.of,the opposite sign nnd nbout one-third as 
big. 
large 

In the computation of b, (iii) and (iv 
-about 2 and. 23 times the effect of (i 

separately are quite 

again positive, (ii) negntive and nbout 
respectively.. (i) is 

(iii) negative nnd (iv) positive 
ns large, 

,.nnd the combined effect Of (iii) ' 
nnd (iv) is positive and Just over hnlf as big ns the effect of (1). 
It will therefore be seen that if accurnte results arc required, the, 
locntlon of the hinge is of considernble importnncc. 

Appendix/ 
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Ap~ndix' 

1. Additional Notation 

Y : the aerofoil ordlnatt at x = h. 

Y' : the slope of the aerofoil surface‘, - i.e. the values of 
ay/ax - at x = h. 

f(x), F(x): Y = f(x) is the equation of the contour of the 
eerofoil-for x 6 h; y = F(x) is the equation of the 
contour of the flap for zero deflection. 

%’ PTP AI+ APT; PL and PT are the radii of curvature at the 
original leading and trailing edges (zero deflection), 
respectively; PL + APL, PT* ' APT the radd of curvature 
at the new leading and trailing edges for a flap deflection 
'-I* 

hat ka : the coordinates of the hinge with respect to the axes of 
xa and 92. 

x, xx : See oqne. 23A and 24A. 

e, 8' : Near x = o 

f(x) = d(zp,)x+ + ex + .,. ; 
near x = 1 

F(x) = J(2~~)(1 - x)4 + !'(I -x) + . . . . 

The values of & and 1' are those appropriate to the 
upper or the lower surface according as the new ledin&! 
and trolling cages, respectively lie on the orlginnl upper 
or lowcr surface. 

Geometrical Considcmt~ons. The Determlnntion of $. rind of 
the Velocity nt the Surfncc. 

If more accurate onlculntions nrc desired thnn those of the 
simple theory in the body of the report, tho positiori of the hinge 
nna the contour of the flnp nenr nna forwnra of x = h must be 
given ex3ctly. Cnlculntions mny then be made for any flnp deflection, 
but the questions nt issue arc sufficiently illustrntod if we 
restrict our ottcntion to smftll vnlues of n, neglecting its squnre, 
but retnining its products with the nerofoil ordlnntes. Even for such 
cnlculntlons, the exact position of the hinge is of importance. In 
the very rare crises when such cnlculntlons nre necesspry nnd justified, 
it will probnbly be legitimnte to nssumo thnt cnre has been e&rcised 
in designing the flnp so ns to preserve, 
of T)1 

nt nny rnte for small values 
na fnir nn external surfnce to the nerofoil ns possible: one 

wny of nchievlng this alrn is to locnte the hinge nt the intersectIon 
of the normnls to the upper and lower surfnces nt x = h, nna to 
mdke the portions of the contour of the flnp nenr x = b on both 
surfaces circulnr nrcs with their centres on the hinge. Let (ha, ki) 
be the coordlnntes of the hinge, ns thus determlncd, relntive to the 
originnl nxes of x rind y; denote by Y rind Yf the ordinnte rind 
slope of the .".erofoil surface - i.e. the values of y 
respectively - nt x = h, 

‘ma ag/ax, 
nnd use subscripts u nna .4 for 
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values on 'the upper and lower s&faces, respectively. values on 'the upper and lower s&faces, respectively. (The (The 
eubacrlpte will be omitted when the analysis is the same for both subscrlpte will be omitted when the analysis is the same for both 
surfaces.) Then since (h=,,k;) lies on both normals surfaces.) Then since (h=,,k;) lies on both normals 

whence 

4 -h = -Y&(kl -Y,,, 

hi -h = -Y+ -Y,), 
J 

. ..(?A) 

. ..(2A) 

Since 

I 

hl = h- 
Y; Y)Ou -yeI 

' Y$ - Yj 

kr = 
Y&Yu - Yj Yi 

Y; - Yj 
,I:, 

yu = Y, + Ye, Yj = Y, - Y,, . ..(3A) 

and similarly for Y', where Y is the ordinate of the centre 
line and Ys the half-thicknesscat x = h, 

h1 = h- Y; YJ Y$YA . 

% . ..(4A) 1 
kl 7 Y, + Y& Y& 

I-* 
;E ;;I~F" equations (1) and (2) of $3 we neglect squares of n, 

X1 = x‘+ q(y --I), ~'1. = y - q(x -hL): ..(5A) 

The point which wae at the traillng edge for ?J = 0 is now at 
(1 -'klri, - ~(1 - hx)). 

;Ef the equation of the contour of the flap for zero 
deflection is y = l?(x), then 

91 = F(x) - r)(x - hL) 

= F(xD.) - ntx~ - hl + F'(x,)[F(x>) - ka]} . ..(6A) 

to the first order in 
edge). 

n (except perhaps very near the trailing 
Eqn. (6A) is the equation of the contour of the flap for a 

deflection q, with x1 and yn as current coordinates. 

BY/ 

*This use of F is not to bo confused with the use of Fu and Fe 
in (20) and (22) et seq. 
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By definition the leadmg and trailing edges are at the 
ends of the chord, and the chord is normal to the aerofoil contour 
at the leading edge, and also at the trailing edge if the trailing 
edge is rounded. Consequently, when the flap is deflected, the 
position of the leadmg edge is slightly altered, and if the trailmg 
edge is rounded, the position of the trailing edge is slightly 
different from the new position of ths old trailing cage. A short 
analysis shows that the new lending edge is at 

X = o(i--P), Y = 11 
(I -hi - PT)PL 

, . ..(7A) 
l- PL - pT 

and the now trailing edge at 

x = i --xv, y = 41 -hx) + rl 
(hx - Pj+T 

, . ..(BA) 
1 - PL - PT 

to the first order in q, where pL m-d pT arc the rndii of 
curvature at the leading nnd trailing edges, respsotivoly. 

The new chord is of length 1 - kiq, to the first order 
in rl- 

We now tnke the new lending oage as a new origin, rind the 
new chord ns the new axis of x, The nxes nre thcroforc rotntod 
through nn..nngle 

1 

-7 
--1 - PT 

I ..,(gA) 
l- pL - pT 

we nlso divide the coord1nntes by 3 - klq, so thnt the new chord 
may be of unit length. 
iLnp deflcotion n, 

We ngnin denote the now coordinntes, with n 
by (~a, ~a). Then to tho first order in n 

I 
1 

= x + q klx - 
--1 - PT 

7 
l- pL - PT "I ' 

1 
Ya = + v(x - PL) 

- hl - PT Ii Cl - l- PL - PT k+ . ..(loA) 

. kid 

1 
= 9+t7 &Y + 

- hn - pT 

l- pL - pT 

Henoe/ 
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He&e if y = f(x) is the equation, for 0 6 x < h, of the 
contour of the aerofoil in the original coordinatee (x, y), its 
equation in the new coordinstes is, to the first order in q, 

Va = f(x) + q 
I 

1 
klyz + 

- hL - pT 

l- PL - PT 
(x2 - P,) 

I 

1 
= f(%) + tl 

I 

- hl - pT 

1 - PL - PI-J 
ba-pL*f’+b)f+b)I~+ kz[f(-,,) - 

1 
for xa 6- !I + q- 

- 4 - pT 
Y 

I 

. ..(llA) 
1 - PL - PrJ 

except very near the leading edge, 

Referred to the old axes the e uatlon of the contour of the 
flap, for a deflection q, is given by ? 6A) with x1 and yL as 
current coordinates. We must therefore write x1 and y 
X and y ‘in '(loA‘) (or x and y for xy and y1 Fn ~6AfS)rin 
order to find the equation of the contour of the flap in the new 
coordinates. We find that the new equation is 

= F(Q) + q 
I 

hl - pL 
[1-x2 ’ Ya l- PL - PF 

- F’(x2) F(x,) - Plpl 

-1 
-+ kl[Fba) + (1 - xa) F’(x2)l } 

1 
for x2 > h + TJ kih - 

--L d pT 
y t 

l- ?L - p!c I 

. ..(12A) 

except very near the trailing edbe. 

It is now not difficult to verify that y 
cant inuous , 
f' (xl 

It is necessary only to romark that 
= F'(x) at x = h, 

f9x)an: g x)a%d t 
and that, since y =I F(x) is, 

nenr x = h, part of a circle with its centre at (hi, kx), 

and 

(x - hL)2 + [F(x) - klla = constant 

x - hl + F'(x)[F(x) - kl] = 0, ' 

in the neighbourhood of x = h on both surfaces. Since ya nnd 
y& are now both continuous, the lognrithmic infinity in E', found 
on the simple theory in the body of the report, does not now occur, 

Equations (??A) and (12R) me vnlid for both the upper 
and lower mrfaces, and provide equctiona for the contour of the 

norofoil/ 
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aerofoil with the flap deflected referred to axes suitable for the 
calculatien of the velocity distribution. With xa = $( 1 - co9 e), 
as before, II, is determined from the equation 

9 = 2ya cosec 8, . ..(t3A) 

where ya is given by (IIA 
(12A) with the equations (5 

and (12A). We may compare (lti) and 
s3, of the simple theory, which, in 

the present notation, are 

and 

Y2 = f(xa) + n(l - h)xo for o 4 x 6 h . ..(14A) * _ 

Ya = P(G) + qh(l -x11) for h < x 4 1....(15A) 

The simplest method of carrying out the calculations would 
appear to be to find 
in S5, 

on the simple theory, as explained 
and then, from to find the alteration necessary to 9 

to allow for the difference'bctween eqns. (4qA) and (12A) on the one 
hand and eqne. (I&) and (15A) on the other! from thesa values of 
the necessary changes in $ tho necessary changes in E and s1 
would then be found numerically, except that the value of E( at 
x = h, If required, would need a special computation! its value 
depends criticnlly on the amount of fniringaff near x = h. 

Equation (11A) does not hold nt the lending edge (e = e), 
nor equation (12A) nt the trailing edge (0 = 71). Special methods 
nre nccessnry, therefore, to find the new vnlues of 9, with the 
flnp aofiectea, nt 8 =t e nnd 8 ‘1 7t. Tho npproprinte 
approxmntion to +(O) is 2d(pL + &pL), where PI is the rndiua 
of curvnture nt the original lending edge, rind pL + bL the 
rndius of curvature ot the new lending edge. If, nenr x = 0, 

f(x) = $(2p5) x% + .ex + . . . , , . ..(16A) 

we find, mnking due nllownnce for the chnnge 
chord, that the vnlue of $(G) is now 

of the length of tha 

+(o) = +'(2pL) 2.4 
1 --hr -PT Ii . ..(li’A) 

2 l- 
pL - pT 

to the first order in q. Similarly if, nenr x = 1, 

F(x) = 3(2PT)(1 -x)4 + f’(l -x> + . . . , . ..(18A) 

then the new value of 9(n) is 4!(n) - V(2pT) 1 + n &kl f c c .2 j' hi - pL - . ..(lgA) 
2 l- 

PL - PT 

I 

The/ 
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The values of 1 and et are those appropriate to the 
uot;; or the lower surface according as the new leading and trailing 

b 9 respectively, 1~ on the original upper or lower surface, 

Finally, we may note that since the angle between the old 
and new chords is given by (gR), 

1 
ti = ci'+Tl 

--I - pT 
. ..:(zoA) 

It should bo mentioned that, on an aorofoil specially 
designed for suction, with the velocity at the surface decreasing 
discontinuously at one chordwise position on each surface, where a 
slot is cut and suction applied, the theory of this appendix will not 
be applicable if the suction slot is at x = h - i.e. if the wing 
aft of the suction slot is to be usod s.8 a flap. The hingecannot then 
be loccted nt the intorscction of the nonnols to the upper and lower 
surfnces nt x = h; theoretically there is n singulnrlty in the 
equation of the nerofoil contour thcrc nnd prncticnlly the position 
of the hinge is lnrgely,determincd by mociy-micnl nnd other gcometricnl 
conaidcrntions, arising from the necocsity of leaving the slot free 
for all vnlucs of r) without outtirg nwny too much Gf the surface nt 
and nenr the elot, 

3. Hinge Moments 

Wo return to oquntion (54) of §6 
using eqn. (128) for ye. Note first thnt 

,thnt 

rind retain the second term, 
it follows from eqns.(loA) 

! 1 
% =i kl+rl 

- hl - pT 
(h, - 

l- 
PII - PT 

From (t2.A) and (zlA)-It follows, 
firot order in q 

nftcr some reduction, thnt, to the 

dya 1 d 
X, --ha + (ya - ka) - = - - (x2 - hz)' + (YZ - kzla 

da 2 dxz > 

where 

= X + q(Xl + 2klX), . ..(22A) 

1 Xi3 -hl + F’(Q) [F(x,) -&I, . ..(23A) 
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-xa) - 
hi - pL 

Fh) 
I 

1 
1 - PL- PrJ i 

.a 

-X 

i 

kl + 
hl - pL 

= -x2) - 
4 - pL 

1 -P& - Pr l- PII - PT 

x {I + F”(xa) CF(x,) - &I + D’(xa)121. . ..(24A) 

since y = P(x) is, near x = h pB& of a circle with its 
centre at (hx, kr), it follows thei X and X1 both vanish 
identically in the neighbourhood of xa = h. 

EaCH is given by eqn. (54) of §6, but that equation was 
obtained with the length of the new chord 88 unity, whereas, 
strictly speaking, CR should be defined 80 that the hinge moment 
is $-plJ?EacaUH, where c is the original aerofoil chord. with 
the new chord of unit length, the length of the o&i.gnal chord, 
to the first order in q, is 1 + klq. UonsequetkAy the right-hand 
side of (54) should be multiplied by 1 - 2krq, 

EaQH = aXa. . ..(25A) 

We have taken the lower limit of integration RS h because, although 
the flap extends from xa = h + q[k%h - (I - hp)Y], the integrend 
vanishes identically i+ the neighbourhood of x2 = h. 

With II, M, N a8 in (70) 
by ih 

(71) rind (72) (but with r, 8, t 
roplnced, 
4&l, t! 

on the u per surfnce, 
,(E* - ta49 A+I a 

e more accurate values of 
erivcd from eqns, (IIA) and (12A), 

and on the lower surface by tho more nccurnte values of dlpj/), 
Abe - PM-I, -qh similnrly derived), the following equations 

‘are obtained from (25A) for bo, b%, b, ba. 

. . . (26A) 

. ..(27A) 

. ..(28A) 
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Table 2. 

i 

0 
0'005 
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0'05 
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0'6 
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liable 2 Contd. 

X 

0 
0'005 
0'0075 
0'0'125 
0-025 
0'05 
0'075 
o-1 
o-15 
0'2 
0'25 
o-3 
0'35 
0'4 
0'45 
o-5 
0'55 
0-6 
0'65 
0'7 
0'75 
0'8 
0'85 
o-9 
0'925 
0'95 
0'975 
0.9875 

1 

0 
3'0261 
3'0320 
3'0414 
D'O590 
o-0848 
0'1056 
3.1241 
3'2875 
o-1891 
0-22065 
3'2532 
o-2878 
0'3259 
0’3689 
0’4192 
0’4808 
0'5611 
O-6767 
o-8813 

co 
o-8384 
o-5880 
0’4192 
0'3439, 
O-2677' 
0'1813 
0'1257 

0 

E = 

r 

JO 
I'0177 
l-0217 
3-0281 
3'0400 
3-0573 
3-07125 
z-0833 
3'1050 
D-1250 
0'1443 
0'1637 
o-1a345 
0'2041 
0'2261 
0'2500 
0'2.7'64 
0'3062 
0'3407 
0’3aip 
o-4330 
0'3750 
0'3151 
0'2500 
0'2136 
o-1721 
0'1201 
o-0844 

0 

0'25 

8 

-0'5515 
'0'5516 
-0-5509 
-0'5505 
--o-549a5 
-0-5481 
-0'5463 
-0.5445 
-0'5404 
'0'53475 
-0-5304 
-0-5243 
'0'5171 
-0-5085 
--o-498? 
-0'4853 
-0-4690 
-0-4475 
-0'4175 
-0'3718 
-0'2757 
-0.1709 
yo-1110 
-0.0661 
-o-o471 
-0'0300 
-0-0144 
-0-0070 

0 

t 

0 
070044 
0'0054 
0'0070 
0-0101 
0'0149 
0'0191 
0'0230 
0'0310 
0'0396 
0'0494 
O-0609 
0'0748 
0'0920 
0'1142 
O"1435 
0'1843 
O-2447 
0'3431 
0'5386 

.ca 
O-5724 
0'3634 
0'2392 
o-1894 
o-1425 
0'0935 
0'0638 

0 

0 
0'0226 
0'0277 
o-0358 
0'05115 
O"O733 
o-09135 
0'3 07‘1 
o-1357 
0'1626 
o-1891 
0'2163~ 
0-2450 
0-2760 
0'3104 
o-3497 
0'3962 
0'4537 
0'5295. 
O-6399 
o-8384 

M 
0'7778 
O-5123 
0'4117 
o-3l575 
0'2113 
0'1457 

0 

E = o-2 

r 

0 
0'0142 
0'0174 
OS0225 
0'0320 
0'0459 
o-0569 
0'06675 
o-0840 
0’1000 
0'1155 
0'1309 
00.1468 
0'1633 
o-7809 
0'2000 
0'2211 
o-244P5 
o'27255 
0'3055 
o-3464 
0'4000 
0'3361 
0'2667 
0'2278 
o-7835 
o-1281 
0’0900 

0 

a 

-0-5093 
-0-5091' 
-0-5090 
-o-5088 
-9-5082 
-0-5071 
-0'5058 
-0'5045 
-0-50175 
-0-4985 
-0.49495 
'0'4907 
-0'4858 
-0'4800 
-0.4730 
-0-4645 
-0.4531 
-0.439*P5 
-O-4212 
-0'3943 
-0-3515 
-0'2546 
-o'.14575 
-0-0839 
-0.0592 
-0.0374 
-0-0178 
-0-0087 

0 

t 

0 
7'0030 
I.0037 
I-0048 
3'007850 
3'0103 
I-0132 
3'0159 
3'0214 
0'0272 
0-0338 
0'0415 
0'0507 
0-0621 
0'0764 
0'095 1 
0'1203 
0'1560 
0'2102 
0'3071 
0'4885 

o-T280 
0'3156 
O-2437 
o*iaoo 
0'1164 
b-0790 

0 . 
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X 

0 
0'005 
0'007 
0'012 
0'025 
0'05 
0'075 
0'1 
0.15 
0'2 
0.25 
0'3 
0'35 
o-4 
0'45 
0'5 
0.55 
0'6 
0'65 
0'7 
0'75 
0'8 
0985 
0'9 
0'925 
0'95 
0'975 
0.987 

1 
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Table 2 Contmued 

E = 0.15 E = 0-i 

r 

0 0 
0’0190 0'0106 
0'0233 0'0130 
0'03Oi' o'o16g 
0'0429 0'0240 
0'0615 0'0344 
0'0765 0'0427 
Q.0097 0'0500 
0'1135 0'0630 
0'1357 a 0750 
0'1575 0'0866 
0'1797 0'0982 
0'2028 0'1101 
0'2276 0'1225 
0'2547 0'1357 
0'2851 0'1500 
0'3202 0’1658 
0'362.1 0'1837 
0'4t46 0'2044 
0'4845 0'2291 
o-5880 0'2598 
0'7778 0'3000 

03 0'3571 
0’6880 
0*52535 

0'2033 
0'2420 

0'3901 0'1950 
0'2556 0'1361 
o-1748 0'0956 

0 0 

s 

-0'4546 
-0.4545 
-0'4544 
-0.4543 
-o-453gt 
-0'4532 
-0'4525 
-0'4516 
-0’4499 
-0.4479 
-0'4456 
-0.4430' 
-0’4399, 
-0'4364' 
-0'4321 
Q-4269 
-0'4204 
-0',4121 
-0*4011, 
-0'3859' 
-0'3631 
-0'3245 
-0'2273 
-0'1126 
-0'0777, 
-0'0483' 
-0'0227 
-0'0110 

0 

t 

0 
0'0019 
0'0023 
0'0030 
0'0044 
0'0065 
0'0083 
0'0100 
0'0134 
0'0170 
0'0211 
0’0258 
0'0314 
0'0382 
0’0468 
0.0578 
0'0723 
0'0924 
0'1216 
0'1673 
0'2471 
0'4207 

co 
0'4621 
0'3351 
0'2382 
0'1501 
o-1008 

0 

LJ Q/V 
b 

0'0150 
0'01845 
0.023g5 
0'0340 
0'0488 
0'0606 
0'0710 
0'0097 
0'1071 
0'1241 
0'1412 
0'1589 
0'1777 
0'1981 
0'2206 
0'2462 
0'2760 
0'3120 
0'3575 
0'4192 
0.5123 
0'6880 

O'YO95 

5 

o'53775 
0'3333 
0'2236 

0 1 

r 

0 
0'0071 
0'0087 
0'0112 
0'0160' 
0'0229 
0'0285 
0'0333 
0'0420 
0'0500 
0'0577 
0'0655 
0'0734 
0'0816 
o'o9o45 
0' 1 ooo5 
o':1055 
0'1225 
0'1363 
0'15275 
0'1732 
0'2000 
O-2360 
0'30005 
0'2563 
0'2065 
0'1441 
0'1013 

0 

, 

- 

a 

-0'3820 
-0.3819 
--OF3819 
-0'3818 
-0'3816 
-0'3812 
-0.3808 
-0'3804 
-0'3795 
-0'3784 
-0'3772 
-0'3758 
-o'37435 
-0'3724 
-0'3702 
-0'3675 
-0'3642 
-0'3600 
-0'3545 

z;*;;g . 

-0'31dl 
-0'2873 
-0'1910 
-0'1141 
-0'06765 
-0'0309 
-o'0148j 

0 

t 

0 
0'0010 
0'0012 
0'0016 
0'0023 
0'0034 
0'0644 
0'0053 
0'0070 
o-0089 
0'0111 
0'0135 
0~0164 
0'0199 
0'0242 
o-0296 
O'Oj60 
0'0466 
0'0603 
o*oa11 
0'1148 
0'1775 
0'3262 

cm 
0'5710 
0'3542 
0'2087 
0'1370 

0 

Table 2 Continued/ 
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X 

0 
0.005 
0'0075 
0'125 
0'025 
0'05 
0'075 
0'1 
0'15 
0'2 
0'25 
0'3 
OS35 
0.4 
0'45 
0'5 
0'55 
0'6 
0.65 
0.7 
0'75 
0'0 
0'85 

:I;25 
0'95 
0*9?5 
0'9875 

1 

0 
0'0133 
0'0163 
0'0211 
0'030'1 
0'0431 
0'0536 
0*0620 
0'0793 
o-9945 
0.1094; 
0'1245 
0'1400 
0'1563 
0'17405 
0'1935 
0'2154 
0'2408 
0.2711 
0'3089 
0'3509 * 
0'4312 
0'5546 
0’8892 
1*207g 
0'6622 
0'3873 
0'2558 

0 

- 
E = 0’03 

r 

0 
0'0057 
o'oo6g 
0'00905 
0'012~ 
0'0103 
0'02205 
0'0267 
0'0336 
0'0400 
0'0462 
0'0524 
0'0587 
0'0653 
0'0724 
0'0809 
0'0084 
0*09Qo 
0'1090 
0'1222 

x: ' . 

0*1904 
0'2400 
0'2620 
0'2lii 
0'1473 
0'1035 

0 

9 

-o-3454 
-0'3454 
-0.3453 
-o'34535 
6.3452 
-0'3449 
-OS3446 
-0'3443 
-0~3436 
-0'34295 
-O'3421 
-o'3411 
-043400 
-0.3307 
-0.3371 
-O'3352 
-0.3329 
-0.3300 
-0'3262 
-0'3210 
-0'3136 
-0'3021 
-O'2814 
Q.2320 
-o'1403 
-0;08?5 

-t-o*@3635 
-o'a173 

0 

- 
t 

0 
O'Q007 
O'OO'W 
0'0011 
0'0016 
0'0024 
0'0031 
0'0037 
0'0050 
0'0063 
0*007f3 
o*oog5 
0*0115 
0'0140 
0.0170 
0'0200 
0'0257 
0'0324 
0'0413 
0'0558 

'0'0701 
0'1183 
0'2062 
0'5223 
0'99 95 

!I!able 3/ 
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Table 2 ' 

Ordmatss for 15 'per cent T'hlck Aerofs~IZ 

x = 0’6 

a = 0'1336624 b = o'zoG4419 c = -o*1817961 

X 

-0 
0’001 
0'002 
0'003 
0'004 
0'005 
0'006 
o-007 
0'0075 
0-008 
0'009 
0'01 
0'012 
0'0725 
0'014 
0'016 
0'010 
0'02 
0.025 
0'03 
0'035 
0'04 
0'05 
0'06 
0'07 
0'075 
0~08 
0'09 
0'1 

YO'12 
0'14 
0'15 
0'16 
0'18 
0'2 
0'22 
O"24 
0'25 
0'26 
0'20 
0'3 
0'32 
0'34 

Y 

0'0045290 
0*006404G 
0'00:8422 
0'0090532 
0'0101194 
0'0110326 
0'0119070 
0'0123863 
0'0127910 
0'0135G37 
0'0142939 
0*01565oG 
0'0159714 
0'0168963 
0'0100540 
0'019139c 
0'0201649 
0'0225165 
0'0246338 
0*0265726 
0’0283692 
0'0316306 
0'0345500 
0’0372090 
0'0304565 
0’0396565 
0’0419209 
0'0440521 
0’0479245 
0'0513336 
0'0529812 
0'0544999 
0'0573215 
0’0598821 
0'0622064 
0'0643125 
0'0652881 
0'066213O 
0’0679200 
0’06943DO 
0'0707726 
0’0719253 

X 

0'35 
Oi36 
0.30 
0'4 
0'42 
0'44 
0'45 
0'46 
0'40 
0'5 
0'52 
0'54 
0'55 
0'56 
0'50 
0'6 
0'62 
0'64 
O"65 
0'6G 
0'68 
0'7 
0'72 
0'74 
0'75 
0'76 
0'70 
0'0 
0'02 
0'84 
0'05 
0'06 
Oil30 
0.9 
0'92 
0.925 
0'94 
0'95 
0'96 
oz975 
0'90 
0'9075 

1 

-- 
Y -- 

0'0724356 
0'0729000 
0'0736830 
0'0743030 
0'0747260 
o-o-i49564 
0'0749971 
0'0749866 
0'0748065 
0'0744030 
0'0737593 
0'0728527 
0'0722912 
0'0716511 
0'0701054 
0'0601156 
0'0654904 
0'0624562 
0'0600156 
0'0591003 
0'0555237 
0'0517543 
0'0470436 
0'0430300 
0'0417959 
0'0397491 
0'0356351 
0'03152'12 
0'0274412 
0'0234297 
0'0214610 
0'0195235 
0'0157625 
0'0121920 
o'ooi?O651 
0'00l30700 
0'0050481 
0'0044827 
0'0032316 
0'0016143 
0'0011593 
0'0005759 

0 

Table 4/ 
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l?able em 

AP -= 0.3560 

X 

c 
0'005 
0'0075 
0'0125 
0'025 
0'05 
0'075 
0'1 
0'15 
0'2 
0'25 
0'3 
0'35 
OS* 
0'45 
0-S 
0'95 
0-6 
a*$5 

. 

&.!5 
. 

0'85 
0'9 
0'925 
0'95 
0'975 
0'9875 

1 

--- 

0 -0'5156 0 
0'0146 -0.5153 0'0034 
0'0179 -0'5152 0'0042 
0-0232 -0.5149 0'0054 
0'0331 -0.5143 0'0079 
0'0473 -0'5130 0'0116 
0'0587 -0'5116 0'0149 
0'0687 -0'5702 0'0176 
0'0865 -0.5071 0'0236 
0'1028 -0'5036 o'o2g6 
0'1185 -0.4996 0'0365 
0'1341 -0.4952 0'0446 
0'1501 --0'40g8 0'0538 
0'1668 -0'4837 0'0657 
0'1845 -094764 o*o798 
0'2036 -0.4675 o-0984 
0'2245 -0.4564 0'1228 
0'2478 -0'4426 0'1516 
9'2754 -0*4247 0*2008 
0'3095 -0.3984 0'2989 
0'3523 -0'3555 0.4966 
0.4004 -0'2556 .Y 
0'3420 -0'1423 0.5446 
OS2694 -0*0802 0.3130 
0'2292 -0'0557 O-2384 
0*7637 -0'0346 0'1720 
0'1276 -0-0162 0'7082 
0'0884 -0.0077 0.0724 

0 0 0 

AE,-Ap 

rl 

- 

AE' 
c 
-11 

46005 
46840 
48377 

I"143278 
)'I43469 
3'143564 
3'143754 
3' 144221 
3' 145131 
3. I 
0' 1 
3. 1 
0* 149705 
0' 150776 
0' 151526 
O'l51866 
0'151670 
a*?50750 
0'148806 
0'145311 
0'139040 
0'127504 
0'112937 
0'096523 
OpD78803 
0'060103 
0*040640 
0'030672 
0'020568 
0'010340 
0'005184 

0 

Es 

0 0'0134 
0’0019 0'0139 
0'0024 0'0141 
0'0031 0'0147 
0'0045 0'0160 
0'0068 0.0187 
0'0089 0'0214 
0'0109 0'0243 
0'0150 0.0302 
0'0194 0'0364 
0'0242 0'043l 
0'0294 0.0503 
0'0352 0'0581 
0'0416 0'0667 
0'0488 0.0764 
0'0570 0'0874 
0.0664 0'1001 
0'0773 0'1153 
0'0873 0'0'784 
0'0937 0'0433 
o-0967 +0*0097 
0'0958 -0'0228 
0'0907 -0'0542 
0'0801 -o-08$9 
0'0719 -0'1000 
0'0607 -0.1149 
0'0443 -Oil297 
0'0310 -0'1371 

0 -0.1444 

'See remark8 in S7. 

AH. 
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