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SUMMARY 
Programmes for lifting surface theory calculations on wings oscillating 

in supersonic flow are described. The computation falls into two parts, one 
finding the complex influence matrices connecting lift and downwash, and the 

other finding the generalised forces when the influence matrices are given as 
data, The numerical method is described and values of constants used in the 

calculations are given. 
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1 INTRODUCTION 

Programmes have been written in the Mercury Autocode system for finding 
the generalised forces on wings oscillating harmonically in supersonic flow. 
The method used is a modification of the Multhopp-Richardson method', and is 

described in a separate paper*; the purpose of the present paper is to desoribe 
the programmes and the details of the numerical method. 

The method relies on replacing the integral equation (which one cannot 
solve in general) connecting the downwash and lift by a matrix equation (which 
one can solve)for the lift values at a set of points on the wing. These lifts 
being known, the generalised aerodynamic forces corresponding to any particular 
modes of distortion can be found, The machine calculation is thus split into 

two parts; the first builds up the matrix equation and inverts the complex 
matrices needed for its solution, while the second finds the generalised aero- 
dynamic forces for wing distortion modes which are expressible as polynomials 
in the chordwise and spanwise co-ordinates., The first part of the calculation 
is performed differently for different wing planforms and for different leading 
and trailing edge conditions; the second is not. Hence six programmes have been 
written to perform the first part of the calculation for different classes of 
planform, and one programme does service for all other cases in the second stage 
in which the generalised forces are found. Necessity, in the form of machine 

capacity limitations, dictated that the calculation should be split into these 

two parts. This may, however, be thought of as a virtue since, once the complex 
matrices for any wing have been found by the first programme, the generalised 
forces for different sets of distortion modes may be found on separate occasions 
without repeating the whole of the calculation, 
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The programme titles are: 

RAE 178A Multhopp-Richardson; segmented planform, subsonic leading edge, 
supersonic trailing edge. 

RAE 17gA Multhopp-Richardson; curved subsonic leading edge, straight 
supersonic trailing edge. 

RAE 180A Multhopp-Richardson; segmented planform, subsonic edges. 

RAE 181A Multhopp-Richardson; segmented planform, supersonic edges, 

RAE 182A Multhopp-Richardson; segmented planform, subsonic leading edge, 
mixed trailing edge. 
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RAE 258A Multhopp-P.chardson; curved mixed leading edge, straight supersonic 
trailing edge. 

RAE 183A Generalised forces for polynomial modes. 

These are written for general values of frequency parameter, and special 
versions RAE 178A/l, RAE 179A/l, 18OA/l, 18lA/l, 182A/l, 258A/l and 183A/l are 
written to take advantage of the reduction in computation (and machine) time 
possible in the steady case. These programmes need as data some constants 
specifying the planform together with some standard data relating to the 
number of integration stations taken, This is detailed in Appendix A. 

The 'segmented' planform of RAE 178A, RAE 18OA, F&E-181A, RAE 18211 is a 
symmetric planform of the type shown in Fig.1, where the half-wing is divided 
into three spanwise sections having different leading and trailing edge sweep- 
back angles. These sections are not necessarily swept back at different angles 
so that, for example; a delta wing falls into this classification. In FLAE 178A, 
RAE 18OA and RAE 181h the leading and trailing edge conditions are clear from 
the programme titles. In RJB 182A the 'mixed' trailing edge described is one 
in which the outer section is supersonic while the inner two sections are. 
subsonic and swept back; the wing of Fig.2 is of this type, being of a shape 
used in a current aircraft rather than a general example, The planform dealt 

with by RAE 179A and 258A is shown in Fig.3. With co-ordinates (X,Y,Z) based 
on root chord, the equation of the leading edge,for Y Z 0 is \ 

Y = S(alX + a2X2.+ x14) 
O*gOOo + "14 

the leading edge for Y < 0 being defined by symmetry. Here, S = semi-span/root 
chord. The trailing edge is straight. Ogive and gothic planforms have leading 
edges of this type with suitable values of a 1 ,.ooo.., 

a5 
and a 6 = . . . . . . = a 

14 
= 0. 

In RAE 258A the 'mixed' leading edge described is one in which a central portion of 
the leading edge on esch‘half of the wing is supersonic, as shown in Fig.& 

The above programmes with their various planform variations are written 
with some hope of covering the range of planform shapes likely to be of practical 
interest, together with their leading and trailing edge conditions. Variants of 
four of the programmes, namely RAE 178A/2, I&El 8OA/2, RAE 18lA/2, RAE 182A/2, 

have been devised to take any type of planform into account for the leading and 
trailing edge conditions specified. Since 'the planform is not limited in these 

to the 'segmented' type, more preliminary work needs to be done by the user for 

these programmes, Afore information about the planform is needed than the basic 
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data required, for example, for the segmented planform; the actual input needed 
for these programmes is specified in Appendix A. 

The programme RAE l83A evaluates generalised forces for wing distortion 
modes which are expressible as polynomials in the chordwise and spanwise co- 
ordinates. It accepts as input data the output of any of programmes 178A, 179A, - 
180A, 181A, l82A or 258A together with information about the modes for which the 
generalised forces are needed. Separate versions, RAE 183A/1 and RAE 783A/Z, 
deal with the steady case and with general planforms respectively. The actual 
form of the polynomials giving the wing distortion, and the input data for this 
programme, is given in Appendix A, 

3 THE NUMERICAL METHOD 

The method used, which is a modification of the Multhopp-Richardson method, 
is described in a separate Report". For completeness, a summary of the steps in 
the calculation is given in Appendix B, 

The aim of the calculation is to evaluate the matrices Mrs, Nrs and Rrs 
of equations (22) and (23) of Appendix B, and to combine these to form one large 
matrix C which may be used to evaluate the generalised forces. The logarithmic 
correction terms (that is, those involving 6 ps in (16)) are then found and use3 
to modify the relevant elements of C. The steps taken in the calculation may 
be roughly detailed as follows (the symbols are sll defined in Appendix B):- 

(a) Work out the co-ordinates of the lift and downwash points, and q 
1 

and. rl2 at each point. 

(b) Work out x - x 
I-9 rs, W may -Y 

S rs,Y 
for all the integration points 

and each downwash point, and find the other quantities needed in forming Mrs, 

N Rrs' rs' 
(0) Evaluate K(X, Y), equation (9), for all the values of X = X -X rs rs,hy 

andY=y -y 
S rbY* 

(d) For each downwash point form the matrioes H M N R G' af rs rs rs 
equation (22) and oombine these. 

(e) Form the correction terms (i.e. those terms of (16) whioh involve 

Sps) and add to the appropriate terms already found in (d) above to give the 

matrix C. 

(f) Form from C the symmetric and anti-symmetric aerodynamic influence 
matrices A, B, L and M of (19). 
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(g) Form the matrices z, 2 etc (see following equation (20)) of the 
deflection and downwash values at the collocation points; 

(h) Form the generalised force matrices. 

So far as the organisation of the programmes is concerned, steps (a) to 
(f') form the first part of the calculation while steps (g) and (h) form the 
second part, 

Integrals have to be evaluated numerically at three points in the 
calculation. 

In the expression (17) for La(gr, q,) write 

The second integral on the right is evaluated by an eight-point Legendre- 
Gauss formula (see, for example, Gawlikj for the weights and abscissae). The 
first integral on the right hand side is found either by an eight point Jacobi- 
Gauss formula if h,(E) h as a singularity of the form l/4(1 + F;) occurring at 

F; . = -1 (see, for example, Mineur4 page 289 for the weights and zeros) or by an 
eight point Legendre-Gauss formula if h,(e) has no singularity at 5 = -1. 

C 

The expression (16) for Cap(tr, qs) contains an integral . 

which m'ay be written in either of the forms 



r&-o.2 
', + i'+ 7 +qs+T2 

9 
T&to.2 q,-0.2 

% 

if 772 - q, > 0.2, q, - l-j, > 0.2, 

The last two of these integrals on the right-hand side are evaluated by a 

Gauss formula which takes the logarithmic singularity at TJ = q, into account 
(suitable Gauss weights and zeros are given in Mineur 4 , page 556); the remaining 

integrals, if any, are found by a Legendre-Gauss formula. 

The third integral which has to be evaluated is 

which occurs in equation (9) for K(X,Y). The real and imaginary parts of this 

are dealt with separately; the upper limit (XtMR)/(p21YI) is positive, whereas 

(x-w(P21yI > can be either positive or negative, so some simplification 
follows from the odd and even nature of the integrands. To evaluate an integral 

like 
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(2) 

064 

for some a and b with a 2 0 and b > 0, the integral is expressed as the sum of 
t integrals 

P 

a++ a+2Jr : 

J J 
+ + 

a a+* 

.*.... + ,:+;: + .,i,,, 

where 

JI = min (T 3 ,;“n> 

and t is an, integer chosen so that 

, O<b-a-(t-I)$<$ . 

Since the limits of integration in (1) ore large-when B21Yl is smd the 
following approximation is used when large limits occur. For any c .&d d 

d 00 

4 

‘- /Y-t-T’ 

-4 1 This last expression.is,less than 10. if c $ 71, which gives the 
. 

approximations 
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d 

4yI 
s 

cos cvT jyl) TdT * 7 sin (vZIYI)’ 

C J-z [ Jl+r2 4 

and 

d 

vlyl 
J 

sin (v~‘iyI) - TdT $ - ’ ‘OS (vTlyl~ 
[ I' 

C I 1 + T2 rY-Y=7 c 

I ! (3) 

I 
to within 10 -4 if c b 71. This approximation may be used as it stands if, in 

(2), a > 71 and b > 71. If a < 71 and b > 71 write 

and approximate to the second integral by means of (3). 

For the various leading and trailing edge conditions different positions 

for the lift points, interpolation functions and integration points have to be 

taken to account for the different singularities. These are discussed in 
section 4.2, 

4 DESCRIPTION OF PROGRAMMES --Y 

4.1 The programmes and their use -.a?-..* 

The programmes RAE 178A to 182A and 258A which find the aerodynamic 

matrices are all six chapter Mercury Autocode programmes, and their logical 
structure is given in Appendix C. The variants of these programmes (178A/l, 
178A/2 etc.) are also six chapter Mercury Autocode programmes, whose logical 
structure is similar to that given in Appendix C. The programme RAE 183A which 

finds generalised forces is a three chapter Mercury Autocode programme, and its 

logical structure is also described in Appendix C. 

Due to the limited capacity of'the computer, there are certain restrictions 

on the size of problem which may be treated by the programmes. The quantities m, 

n, p and q must satisfy 

2 d m Q IO, n Q 21, p &IO, q d 21 

together with additional limitations which are given in the following table. 
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If m = then n d 

2 21 

3 18 

4 14 

5 10 

697 8 

839 6 

10 5 

AlSO 

mpq x integral part of [&(n + 1)J < 1608 . , _ 

For 180A and 182A there is the additional limitation that mq 6 189 o 

There are limitations on the Mach number and frequency parameter which can 
be used, but these are imposed by the basic theory rather than by limitations of 
the computer or of the detailed numerical method, The m-ethod breaks down when 
M = I; Mach numbers very close to M = 1 will give trouble, since the functions Q 

of equation (y), Appendix B, will have a large number'of waves making approxi- 
mate integrations involving this function difficult. Similar remarks apply to 
large values of the frequency parameter v. However, larger nmbers of lift and 
downwash points and of integration points may be used for extreme values of M 
and v to offset this, arrl this is discussed below. 

In any particular case, the values of'm'and n, and consequently the number 
of lift and downwash points, are chosen with regard to the complexity of the 
modes for which the generalised forces are ultimately needed. These should be 
chosen in such a way that the deflection can be adequately regresented by an. 

Cm - 1)th degree polynomial,in the chordwise co-ordinate and an (n L l)th 
degree polynomial in the spanwise co-ordinate. However, even for rigid-body 
motions of any particular wing there are minimum values of m and n below which 

reasonable answers could not be expected. In addition, a higher value of m 

should be chosen when'the Mach number is close to unity. The choice of p and q, 

. , 



which determines.the number of integration points, will depend on M and v; a 
higher value of p should be taken for M near unity or forlarge V. The value 
of q should be hi&er if there are any kinks in the planform or if the Mach 
number is close to one; in the latter case the integration areas of Fig.5 extend 
further in the spanwise direction. In addition, the number of points chosen 
will depend on the aspect ratio of the wing under consideration. For low aspect 
ratio wings, for example, more chordwise lift and downwash points (as well as 
integration points) than spanwise points will be needed, 

The foregoing remarks on the numbers of points to be taken, and on 
limitations, are of a general character and should be taken as an overall 
guide if related to any particular problem. 

The time taken by programmes 178A etc. varies approximately linearly 
with 

m pq x integral part of &(n + 1) o 

Since there is also some variation in time taken with Mach number and frequency 
parameter, and also from planform to planform, it is only possible to predict 
times to within rather broad limits. Examples of times which have been taken 
using programmes 178A and 179A are given in the following table. 

trailing edge sweep 

3,'leading edge sweep, 49' 
Delta wing, aspect ratio 1.5 
Ogive wing,‘ aspect ratio 0.87 

Times for programmes 180A etc. should be little different. The considerable 
effect of Mach number on the computing time, which is exemplified above for the 

cropped delta wing of aspect ratio 3, should be noted; the reason for this . 

variation is that for M close to unity the limits (X - MR)/(p21YI) and . 
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(X + MR)/(p21YI) will be large in modulus, and the integrals of (9), Appendix B 

will take longer to evaluate. . 
The times taken for programmes 178A/l etc ., which operate for zero frequency 

parameter, will be very much less than these times since the function K(X, Y) of 
(9) takes the particularly simple form 2X/R instead of having to be found by 
numerical integration. 

Programme 183~, and-its derivatives, 'which find the generalised forces 
are straightforward and quick. It is not worthwhile to discuss them in any 
detail here. 

4.2 Data in& and output 

The data input and output for the individual programmes is given in detail 
in Appendix A. 

For the programmes RAE 178A etc. which perform the first part of the 
calculation, this consists of basic data specifying the planform followed by 

data needed for the numerical work, consisting of the chordwise alaa spanwise 
positions of the lift and downwash points and matrices connected with the inter- 

polation functions used and integration points. This latter numerical data 
depends only on the wing leading and trailing edge conditions, and is in the 

form of standard input tapes; these vary with the number of points taken for 
the various stages of the caloulation (that is with choice of m, n, p and q) 
and values are given in Appendix D, The standard tapes containing this data 

are kept along with the programmes. , 

The output data from these programmes is suitable for input to the . 
generalised forces programme 183A (or one of its variants). Additional data, 
giving information about the polynomial distortion modes for which generalised 

forces are required, have also to be provided,. 

The output of programme 183A is the matrix of generalised forces, the real 
part being divided by the aspect ratio and the imaginary part by (aspect ratio) x 
(frequency parameter). This form is chosen since, if simple pitching and 
heaving modes only are being considered, the data output gives, with a change of 
sign, the aerodynamic derivatives for these modes. 

5 DISCUSSION 

The Mercury programmesdescribed in this Report have been used in aerodynamic 
derivative calculations on a number of wings. Results have been presented in 

Ref.2 for an ogee wing, a symmetrical tapered wing and a delta wing and compari- 
sons made \vith other theoretical and expel*jmental' loslllts. Further calculations 
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are being made on a series of cropped delta and swept wings which are being used 
in an extensive programme of theoretical and experimental work, The results of 
these cslculations are to be given in a separate Report. In view of this, the 
reader is referred to these separate sources for examples of the results which 

.have been obtained, and of the good agreement which has been obtained both with 
experiment and with other theory. 

6 CONCLUSIONS 

Mercury Autocode programmes have been developed which calculate generalised 
forces on wings osaillating in supersonic flow. A fairly general specification 
of planform and,of leading and trailing edge conditions is allowed for by means 

of separate programmes. 

. 
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Appendix A 

DATA INPUT &D OUTPUT FOR THE PROGRAWES .Y??.w?n s....z.Y- e-.-w 
(see section 2) 

INDEX -Ic- 

A.1 Input for programmes 178A, 18OA, 181A and 182A 
A,2 Input for programmes 17YA, 258A 

A.3 Input for programmes 178A/l, 179A/l,'l8OA/l, 181A/l, 18ul/?, 258A/l 

A.4 Input for pro_grammes 178A/2, 18OA/2', 181A/2, 182A/2 

A.5 Output from programmes 178A, 179A, 18OA, 181A, 182A, 258A, 178A/2, 
18OA/2, 181A/2 and 182A/2 

A,6 Output from programmes 178A/l, 17YA/l, 18OA/l, 181A/l, 182A/l, 
258A/l 

Page 

15 . 
18 

19 
P 

19 
c 

\ 22 

23 \ 

A.7 Input for programmes It)3A, 183A/l and 183A/2 23 
A.8 Output from, programmes 183A, 183A/l and 183A/2 25 

/ 

For al.1 programmes described in this Appendix, standard data tapes are 
available containing numerical data necessary for the calculations. This is as 
follows: 

(a) For programmes 178A, 179A, 18OA, 181A, 182A, 258A etc., tapes 
containing n,G and q,Pe ' 

(b) For programmes 178A, 17YA, 181 A etc., tapes containing m, H, 
ij,. . . .<. 

f (0) For programme 180A etc., tapes containing m, H. 

(d) For programme 182A etc., tapes containing m, H, g,....ern (for sub- 
sonic leading edge, supersonic trailing edge), H (for subsonic leading edge, 
subsonio trailing edge). 

(e) For programme 258A etc., tapes containing m, H, ~l..~.~m (for sub- 
sonic leading edge, supersonic trailing edge), I-I, z,*...grn (for supersonio 
leading edge, supersonic trailing edge). 
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A.4 Gput for programmes 178A, 18OA, 181A and 182A 

These programmes all deal with the 'segmented' planform of Fig.1, for 
different leading and trailing edge conditions. Data are provided as follows: 

RAE 178A Multhopp-Richardson: segmented planform, subsonic leading edge, 
supersonic trailing edge 

First set of 
values of 

Ohm, d 

First set of pl 

Segmented planform data (see below) 

Nl 
number of variations of Mach number, m 
and n 

/ 
M1 

Mach number 

ml 
number of chordwise lift and downwash 
stations 

ml 
x m, matrix of coefficients in chord- 

wise interpolation functions relevant to 
the leading and trailing edge conditions, 
defined in Appendix B following (22) 

the m, chordwise downwash points relevant 
to the leading and trailing edge 
conditions 

number of spanwise lift and downwash 
stations 

"I 
x n, matrix of coefficients in span- 

wise interpolation functions, defined in 
Appendix B following (22) 

N2 number of variations of p and q 

values of 
i 91 

(p,q) 
' pl 

I 

N3 

number of chordwise integration stations 

number of spanwise integration stations 

YX% matrix of coefficients in span- 
wise integration functions, defined in 
Appendix B following (14) 

number of variations of frequency 
parameter 

‘,? l *O “N  

3 
N3 values of frequency parameter 
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Second set 
of values 
of (P,(I) 

Final set 
of vslues 
of (P,9) 

Second set 
of values 

of 0Mw-d 

'" P2'42'P2 

! NJ 
'* 
\ 
'i. 

v .a*V 
1 , N; 

0 

Defined above 

. 

!i- 
i 

PN 99 ,'N 
2 N2 

Defined above 
2 

f 
J 

N; 

1, ‘1 l * l ‘NY 

1 

M2m2f12(&-~m2h2G2 Defined above 

etc. etc. 

RAE 18011 wthopp-Ris&ardson: segmented planform, subsonio edges 

Segmented planform data (see below) 

MlmlH; nl Gl 

N2 

p141p.l . 

N3 

;r lj 

1 
:I 
i 1~ As defined for 178A (note that 

are not required.) f ~l..o~m 
II 
I 
,: 

v 9o.V 
1 

N3 
I 
.i 

etc. etc. 

R/J3 18lA Multhopp-Richardson:, segmented planform. supersonic edges 

Segmented planform data (see below) 

N, I_ . 
MlmlHl(~l-~mlhlG, I . . - 

i 
as defined for 178A 

8 

0 

p, Gauss zeros for interval (-?,I) 
relevant to a singularity 1/4(4-Z) 
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RAE 182A 

w1’ l ** ‘wp, 

p, weights, related to Gauss weights by 
W i = 'i~(t;i)J with Wi and k(ci) defined 
in Appendix B, equation (12) and adjaoent 
text, 

‘1 ”  l ‘N 

as defined for 178A 
3 

etc. etc. 

Multhopp-Richardson: segmented planform, subsonic leading edge. 
mixed trailing edge mw- 

Segmented planform &ta (see below); note that number of 
segments can only be 2 or 3 

Nl 
Mlml 

! 
t 
!’ 

as defined for 178A 

relevant to subsonic leading edge, 

supersonic' trailing edge as defined in 
178A 

“I G1 

N2 

PI %pl 

N3 
v 

1 
. ..V 

N3 

relevant to'subsonio leading edge, 
subsonic trailing edge; compare with 
480~ 

1 

as defined for 178A 

? 
i 

etc, etc. 

Segmented planform data 

For the above four programmes, basic planform data relevant to the 

'segmented' planform of Fig.1 must be provided. This consists of 

d root chord/mean chord 

n number of segments making up half wing 
(n = I,%31 
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first segment 0 < y S y, (y, non- 
dimensional and based on mean cnord) 

06, 

tan A, 4 
= leading edge sweep 

tan +, $1 = trailing edge sweep 

tan A2 

tan #2 

y3 
tan A 

3 
tan 4~~ 

\ 

1 

as above for the second segment 

Y? 4 y f y2, if applicable 

I! . i 
;i 
i 

‘I 

> 

as above for third segment 

; y2 Q y Q y 
3 

if applicable 
c 

A.2 Input fP,r,ar$smmes m and 25811 ..- .cs._ y\_rr_ -.m 

These programmes deal with planformshaving curved leading edges, as shcwn 
in Fig.3. Data is provided as follows. 

*RAE 179A Mul~.-~~-~ed su~~&~eading edge. straight supersonic 
.trailinL$& . - .sw*- 

Curved planfbrm data (see below) 

*I 2 

M,m,H,(~,*...~~m )n,G, 
1 

*2 

v 
1 

. ..V 
*3 

etc. etc. 

RAE 258A MulthEEchardson, -Ym- cc -c curved mixed leadineutrai&ht supersonic -- ..a. - "W 7.wa.m--I a..- - --...A- -w-- 
trail&in&ed~~ 

Curved planform data (see below) 
1; 

N1 

M,m,~$(~,eao-~) i 
as in 178A above 

. 1 J 

H,(i,...iim,) as in 181A above 
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nG 
1 -1 

N2 

PI 915 

N3 
v omov 

1 
N3 

etc. etc. 

as in 178A above 

i 

Curvedplanform data _y-...----1_ 

The planform, of the type shown in Figo3, has its leading edge specified 
for Y a 0 by 

Y = S(a,X + a2X 2 + ..*.. + aN xN) , (N s 14) 

X and Y here being based on the root chord, and the leading edge for Y c 0 
defined by symmetry. The equation of the trailing edge is 

X-l t Y tan A D 

The 'curved planform' data are then as follows: 

N degree of polynomial 

a . ..a 
1 N coefficients 

tan A tangent of trailing edge sweepbaok 
S semi-span/root chord 

A.3 Input for_programmes 178A/l. 179A/l, lSOA/l, 18lA/l, 182A/l and 258A/l 

These are the versions of 178A, 179A, 18OA, 18lA, 182A and 258A which 
deal with zero frequency parameter. The input data are the same as the input 
data specified for the corresponding programmes in A.1 and A.2 above, except 

that the parameters N 
3 

and vl...vN are omitted. 
3 

A.4 Input for_grograumes 178A/2, 180+/2, 18lA/2, 1824/2 

These programmes, namely 

RAE 178A/2 Multhopp-Richardson; subsonic leading edge, supersonic trailing edge 

RAE 18OA/i Nulthopp-Richardson; subsonic edges 

RAE IalA/ Multhopp-Richardson; supersonic edges 
RAE 182A/2 Multhopp-Richardson; subsonic'leading edge, mixed trailing edge 
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are the versions of d 78A, 18OA, 181A and 182A which take account of any planform, 

providing certain planform data are provided. The input data for these 

programmes 

RAJ3 178A/2 

are as follows, 

MulthoERichardson: ..a--.-- subsonic leading edge, supersonic trailing edge 

m,Hi(~,qe~~ ) 
ml 

nG 
1 1 

1 

defined in A.1 above for 178A 

Pl %pl , 

Ml 
Mach number 

V frequency parameter 

Planform data (see below) 

RAEI 180A/2 Multhoup-Richardson: subsonic edges 

mlHl 

nG 
II 

Pl qpl 

i 
defined in A.1 .above for 180A 

V 

Mach number 

frequency parameter 

Planform data (see below) 

FAE 181A/2 Multhopp-Richardson: supersonic edges 

m,H,(zi..*T$ > 
“I 

defined in A.1 above for 181 A 

V 

Mach number 

frequency parameter 

Planform data (see below) 

RAE 182A/2 Multhopp-Richardson: subsonic leading edge, mixed trailing edPe 

m,H, (g, 0. *i Ii,, 
1 

m? 
nG 

1 1 
i 

defined in A.1 above for 182A 

PI q1 p1 ! 
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5 
Mach number 

3 

C  

V frequency parameter 

value of q at which trailing edge 

Planform data 

Planform data 

discontinuity occurs 

(see below) 

For the above four programmes, certain planform data must be provided, 
consisting of: 

d 

S 

x2t 
. 

‘C o..C 
1 t 

root chord/mean chord 

semi-span/mean chord 

xi;;nwash Y(' ) -' I 3r 
= 3m [in + 63 values of co-ordinates 

I x and y (referred to mean chord as 
reference length) at the r lift and 

downwash points, starting at point 

x 

furthest upstream on centre line 
section, and ending at point furthest 
downstream on extreme starboard section 

t = [in + Q] values of (chord/mean 
chord), starting at centre line section 
(or starboard section nearest it) 

i r values of TJ, and q2, as defined in 
. _ k Appendix B, following (Y), r being 

1 defined above 

r x q matrix of values of E at inter- 
sections of spanwise integration 
stations with reversed Mach lines 

through downwash points 

rp x q matrix of values of X 

= 'downwash OXintegration' for each 

of the s downwash points there being 
a p x q matrix of Z's. 
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It should be noted that the above programmes do not allow for repeats for 
variations of any of the quantities for which repeats are allowed in 178A, 18OA, 
1.8iA, 182A, namely (~~~~'rn~,n,),.(P~,q~) and v0 

A.5 

The output from these programmes is: 

S 

d 

*I 

= semi-span/mean chord 

M1 

ml 

/ 
"I f 

xcL . 

(t> 
'lift 

N2 

PI 

s? 

N3 

v1 
r) 

x(l 1 
downwash 

.,(G 
downwash 

r )  

16&A,, -16xsLB, 

16ns2~,, -16 XS~M~ 

"2 
etc. etc. 

F root chord/mean chord . . 

number of variations of Mach number, 
m and n (not in 178~/2 etc.) 

Mach number 

number of chordwise lift and downwash 
stations 

number of spanwise lift and downwash 
stations 

' . 

3t = 3m [in + $1 values of co-ordinates 

x and y, taken in order described in A.4 
under 'planform data', and referred to 
mean chord as reference length 

number of variations of p and q (not in 

lS78A/2 etc, ) 

number of chordwise integration stations 

number of spanwise integration stations 

number of variations of frequency 

parameter (not in 178A/2 etc,) 

first value of frequency parameter 

where the matrices A ard B are defined 
in Appendix B, equation (19) 

where the matrices L and M are defined 
in Appendix B, equation (19) 

second vslue of frequency parameter 

06. 

i 
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A.6 Data output from 178A/4. 179A/1, leOA/!, 181A/1, 182A/4, 258A/1 -- 

,Output from these programmes is the seme as that output from 
RAE 178A etc. described in section A.5 above, except that the values of 

N3' 
v, B and M (all of which are zero in the steady case to which these 

programmes apply) do not appear. 

, 

A.7 Data input for.l83A, 183~/1 and 183A/2 

The programme evaluates generalised forces for modes Zi, based on mean 
chord, which are expressible as polynomials in the chordwise and spanwise co- 
ordinates. Taking IJ (which is +l at the port and starboard tips) as the spanwise 
co-ordinate, the polynomials are defined as follows 

(i) Symmetric distm -mu 

(ia) Purely chordwise distortions are defined by polynomials 

r 
&o + a1 

x+ . . . + arx (r G 19). 

(id Purely spanwise distortions are defined by polynomials 

b. + b, q2 -I aa. + bS rl 
2s 

(s d 19)o 

tic> Distortions having both a spanvfise and chordwise element are 
defined by polynomials 

(t < 6). 

(ii) Antisymmetric distortions 

(iia) Purely spanwise distortions are defined by polynomials 

doq+... +duq 2Uil 

(iib) Distortions having both a chordwise and spanwise component are 
defined by polynomials 
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. eoC, q’+ eO, q x + . . . + eel; qi” 

+y0q3 + e,, ‘I3 x + . . . + e,v q3.xv 
. . . 

. 

i-e rl vo 
2v+l + e 

VI rl 
2v+lx + 

. . . + e 2v+l xv 
vv q _ 

The input for.the progremme'is then as follows. 

RAE 183A Generalised f_o_rces for 
iiI?zTT~i~~- 

polynomial modes (and RAF: 183A/l, and c 
w-s " 

n 

9 

r 

a;" .DO a(') 
r . 

. 
* 

(‘IL. aw 
aO r 

t s1 
'. 

28 

(1) (1) b. . . . bs 
. 

+ 

(v < 6). 

Indicator: n = 0 if symmetric modes only 
1 if antisymmetric only 
2 if both symmetric and antisymmetric 

number of symmetric chordwise polynomials (see (ia) 

above) (do not punch if n = 1) 

maximum degree of these (if r, rl: 0 and n * 1) 

I 

i 
‘I (r + 1) coefficients 

number of symmetric spanwise polynomials (see (ib) 

above) (do not punch if n = 1) 

maximum degree of these (if s, * 0 and n * 1) 
'1 

! sl 
(s + 1) coefficients 

number of symmetric double polynomials (see (ic) 
above) (do not punch if n = I) 

maximum degree of these (if t, 4 0 and n t I) t 
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2u + I 

dp .,. d(l) 
U 0 

b,> : 
do 

b,> 
. . . au 

vl 

V 

ei:' . . . e(l) 
vv 

. 

. 

b,> l (VI> 

eOO l l * evv 

t, (t + l)2 coefficients 

number of antisymmetric spanwise polyncmials 

(see (iia)) (do not punch if n = 0) 

maximum degree of these (if u ,*Oandn*O) 

u1 (u + II2 coefficients 

number of antisymmetric double polynomials 
(see (iib)) (do not punch if n =.O) 

maximum degree of these (if v, * 0 and n * 0) 

v1 (V + l)2 coefficients 

followed by data output fmm the appropriate, programme, namely 

for 183A the output from 178A, 179A, laOA, IalA, 182A and 258A described 
in A.5 above 

for 183A/l the output from 178A/l, 179A/l, lUOA/l, 18lA/l, 182A/l and 258A/l 
described in A.6 above 

for 1838/2 the output from 178A/2, 18OA/2, 181A/2, 182A/2 described in A.5 
above. 

A.8 =a output from programmes 183A. 183A/l and 183A/2 

The data output from 183A is as follows 

RAE 183A Generalised forces for polynomial modes 

5 
Mach number 

ml 
number of chordwise lift and downwash stations 

"I 
number of spanwise lift and downwash stations 

PI 
number of chordwise integration stations 
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91 

5 

El 9F1 

G1 'HI 

number of spanwise integration stations 

first value of frequency paramejcer 

two (r, * s, + t,) square 3 
matrices of symmetric general- 
ised forces (E real, F i 

! 
imaginary) 

two (u, + v,) square matrices 

forces 1 
of antisymmetric generalised 

v2 etc. etc, 

Output from RAE 183A/l differs only in that 

r,,s,,t,,u, and v, are as de- 
fined in input for 183A in 
section A. 7 
-2s(E, + iv F,) r= Q symmetric 
-2s(G,+iu H,) = Q antisymmetric P 
where Q is defined in equation 
(20) of Appendix B e 

(i) the frequency parameter is not punched, being zero, and there are no 
repeats for different frequency parameters, 

(ii) F, and H, are not printed since u = 0. 

Output from RAE 183A/2 differs in that there are no repeats of (M,m,n), 

(wd or h 
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SUMMARY OF METHOD 
(see section 3) 

The detail of the method is given in a separate report2. 
together with the main results, is given here for completeness 
main steps in the programmes to be followed. 

Wing co-ordinates E and q are chosen so that * 

x - "mid chord = &c(rl) 

Asummary, 
and to enable the 

where c c(q) = local chord, sz = semi-span and (x,y) are co-ordinates based on 
the wing mean chord z as reference length. Two sets of mn points are taken over 

(4) 

the wing; one of points (& ,q ) at which the lift is evaluated and one of points 
(c,,rl,) at which d ' o ' ownwash values a+re taken. According to local leading and 
trailing edge conditions, a function 

r  

(subsonic leading edge, subsonic trai.&i.ng edge ' 

=h (subsonic leading edge, 'supersonic trailing edge) 
(5) 

<I - c) (supersonic leading edge, subsonic trailing edge) 

1 ‘1 . (supersonic leading and trailing edges) 
J 

is defined which takes into account the singularity which occurs in the chordwise 
lift distribution. Then the m points E;,(a = 1, *..@ i'rn) are chosen to be the 
zeros of the m'tn degree polynomial of the set orthogonal with respect to the 
weight function f(c) over (-1,l); the cr are similarly chosen with weight 
function f(-g). The n points qs are chosen to be the zeros of the n'th degree 

polynomial of the set orthogonal with respect to the weight function f(l - q*) 
over (-1,l). Lift and downwash points for m = 2, n = 7 are shown for a delta 
wing with subsonic leading edge in Fig.6. ,, 
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These points being chosen, 

' 
interpolation functions h,(c) and gP(q) are 

defined, having the form 

and 

h,k> = (polynomial of degree (m - 1) in E) f'(E) 

, 

g,( d = (polynomial of degree (n - 1) in 77) fi1 - q2) 

with the properties 
c 

(6) 

SPY being the Kronecker delta. We also define 

-1 -1 

The integral equation connecting reduced lift 4(&q) and downwash w(<,q) 
on a wing oscillating harmonically with frequency parameter u in an airstream 
of speed V is 

where 



Appendix B 29 

i I 

2e 4. VX 

a 
0 

if X > PlYl and Y + 0 

if X > elY[ and Y = 0 

and B n <(X2 - $Y2), p2 = M2 - 1, X(X,Y) takes the particularly simple form 
2X/R if v = 0. Further, E;,(E',V,d = mink, k',~',d,l~ and E = C,k',$,d 
is the equation of the reversed Mach lines through the point (x',y'); these 
cut the wing leading edges (or tips) Jvhere q = r+(E',q') and q = q,(g',q'). 
The region of integration in (8) is shcwn in Fig.5; If the lift is 
approximated by z(c,rl), where 

a=1 p=l 

and 

the integrations in (8) may be performed approximately, 

To perform the chordwise integration a variable ;j such that C = -1 at 
the leading edge and G = 1 at 5 = Q(&',?J',?$ is taken. The singularity in 

the ohordwise integration of (8) can be represented by a function 

I' 

,'(I - r;) 

(10) 

(11) 

(42) 

which depends on the singularity in the integrand arising from the singularity 
in K at the Maoh line and the singularity in h,(c) at the leading edge (and 
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trailing edge, if relevant). Other possible forms of k(c), which do not arise 
in the programmes considered here, are given in Refs.1 and 2. The chordwise 
integration of (8) can then be carried out by a p-point Gauss-type integration 
formula, the integrand being evaluated at p points $(h = A, . . . ,p) and 
multiplied by weights W#c(s) (Wx being the relevant Gauss weight). 

For the spanwise part of the integration in (8) a variable #, such that 
9 P (-1,l) corresponds to q = (q,,q2), is defined; q points #y(y = I, *.. ,q> 

in (-1,l) are chosen to be the q zeros of the qth degree Chebyshev polynomial. 
Interpolation polynomiala p,(#) (y 3 I, . . . ,q) of degree (q - 1) are defined 
so that 

P,($J = sya l 03) 

Then a suitable integration formula for any function U(q) is 

where 2 6 = (7-1~ - q h + ‘7, + q29 

of the polynomials p:(+y, 
and P is the (q x q) matrix of coefficients 

l ** ,P ,b#h Th e integrals on the right of (14) are 
easy to evsluate exaotly. 

Carrying out the chordwise and spanwise integrations of (8) gives the 
equation 

m n 
-8~s w(&q,) = pap C,&lJ 

,a 
Z 

(15) “ ,  

for the downwash at any point (,,r$. Here 
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x K(xrs- x > Y,-Y ) 
' P,(dW 

rs,Xy rs,Y I 
-1 

WQ2 . 

and 

L,Gr,Q = 
4S2 

H,b(q,) I2 c 
& i CM2 + 1) vdq,) ha<,) + (M2 - I) h$$ 

-c 
+ $ v2MlJ2 I exp !G i vc(?,)$.-E)h-$% 3 . 

-1 
. . . . (17) 

The immediate substitution of (10) and (11) in (8)) and the approximate evaluation 
of the chordwise and spanwise integrals is not the only step taken to reach 
equation (15). Allowance is made for a logarithmic singularity which arises from 
the chordwise integration, and this gives rise to those terms of (16) which 
involve L,(r,rQ. It will be noted that the right hand side of (I 6) entails 
the evaluation of the function K(X,Y), as well as some of the other quantities, 

at a set of pq integration points, These points are shown for a particular case 
with'p = 3 and q = 7 in Fig.7. 
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iince any problem may be considered as the sum of a symmetric and an 
antisymmdric problem, the downwash need only be evaluated at points on the 
starboard-half wing. The set of equations which is given by 

. . . 
all the downwash points may be written as a matrix equation 

' co- coo co+\ 
-8nsW=CP= c 

i 

c 
+- to c++ ,I' 

/ 

taking (15) for 
-< 

: 

(18) 

9 

when n is odd (n can be even, in which case the only matrices appearing in (18) ' 
are C +- and. Ctt). W is a column of &m(n + 1) downwash values, taken in order c 

from upstreain on the centre line to downstream at the extreme starboard station, 
P a columnofmnP 

afi 
's taken in order from upstream at the extreme port to 

downstream at the extreme s&.rboard section, Ct- and Ct+ are &m(n - 1)'square 
matrices, C , C and C o- ot +A are (m x $-m(n - 1)) matrices, and Coo is (m x m). 

Write 
. . 

- (A + iB) -1 = CJ 

and 

(L + iM) -1 = (c+- C+:, it) / c. 

i 

.;I '\,.= ?K 

-1’ l l 

\ 

i 
i 

'I 
. 4 

.: . 0, (3 1 
\ 

\ 
1, * 

/ 

i 
/  

the unit matrioes be$ng (m x m). _ Then the (j x j) matrices Q of generalised 
force coefficients Q ij corresponding to deflection shapes Z,(x,y), . . . ,Zj(x,y) 
are given by 

, :L Q 
'32~s~ 

= “ia; - v?Bz' + i(zB$ t u?Az_') (symmetric) 

1 -Q 
32%~~ 

= ZL$ - VIM;' + i(&zi t ~zLp'> (antisymmetric) ,/ . 
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Here pV2;'Qij is the generalised force in mode i due to deflection in mode j; 

also 

¶ 

and the row matrices i 5, and so on are defined by 

Z E 

zx and & are similarly defined in terms of row matrices 2, x etc., 2, x being 
az, ' J J 

given by replacing Z, by x in the equation defining 2, on the right of (21). 

In assembling the matrix C of (18) from terms defined in (16) a certain 
simplification is possible. The terms involving 6 

Ps 
in (16) being omitted for 

the moment, the elements of the row of the matrix C which correspond to the 
dcwnwash point (sr,r$ are the terms of the matrix 

H"rs Nrs 'rs G' (22) 

taken row by row. H and G are matrices whose rows consist of the coefficients 
in the interpolation functions h,(E)/H, (a = 1, .*., m) and gP(n)/GP 

(p = 1, . . . . n) respectively. We also define 
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where Ki -rs (i = 1, ..O : ,m) is the (p x.9) 
row and y th column is 

.K(xrs - xhys Y, - Y,,,~) 

N rs is the (q x q) diagonal matrix whose 

. . ..(23) 

matrix in which the element in the X th 

. - 

th 
Y diagonal element is 

The matrix C.,is formed by combining all the terms from matrices such as 
(22), the' terms arising from the logarithmic correction (i.e. those involving 

% 
in (16) being added separately. 

This procedure - the calculation and formation of the matrices (22) and 
F?. 

their combining to form the matrix C of (18) - is in fact the basis of the whole 

computation. 
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LOGICAL S'I'RUCTURE OF THE PROGRAMMES 
(see eection 4.1) 

c.1 Lo&xl structure of proRremme8 178A. 179A. IBOA. 18lA. 182A and 258A 

Read planfarm data and punoh 8, (root chord)b. 
Read an3 punch number of variations of Mach number, m a.113 n. 

Read and punoh Mach nuder, mad n. 
Read data associated with these. 

t 
Work out and punch co-ordinates of the m[&(n+j)] lift and 
dowmvash points; fird q, and q2 for each d ownwash point and 
the n values of the sectional C&II& 
Read and punch nuder of variations of p and q. 

I Read ad punch p, q and read associated data. 
Read and punch number of variations of v. I 

Vork out mq[&(n+l)] values of q rs,y ' I 
+f% 

-, (%-s) 

[I +c&z./ls.~s ,)I aIla Ys -Yrs,y 9 2 fimfi 
mpq[*(n+l)] vdds of xrs -x rs,hy l 

t 
Read andpunch Y. 
of K(xrs-x 

For each clownwash point find pq values 

rs,N , Y,-Y rs,y) ad form the matrix 

blr6rBNr$(16~s2). 

I 
+ 

I 

For each downwash point formmrs Nr, Rr8 G"/(16ne2) and 

combine these matrices to form ~/(lks2). 1 
Form correction terms, ad sc?d to the appropriate elements 
of ~/(16&). 

I 1 

t 

Form the matrices CJ/(1&cs2), k,4i6xs2) and invert to give 

16xs2(A+iB),16xs2(LtiM). Punch out16xs2A, -16~3 53 Sand ,167~s 
-167w2M. 

+ 

Have all values of v been dealt with? 

Have all variations of p and q been dealt with? 

Have all variations of Mach number, m and n been dealt with? 

t 
Yes 
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C.2 Logical structure of prowamme RAB 183A 

Appendix C 064 

Read indicator n, to show whether symmetric modes, anti- 
symmetric modes, or both are wanted. 
Read coefficients of the polynomial mode shapes. 

+ 

Read (3 span)/(mean chord), (root chord)/(mean chord). 
Read nuniber of variations of Mach number, m and n. 

+ 
7 I  

Read and punch Mach nu&er, m, n. 
Read co-ordinates of lif't and downwas h points. 

I 
t 

c z, $9 ,Z for symmetric modes 
Form matrices 

2, & _ , z for antisymmetric modes 
appropriate. 
Read number of variations of p,q. 

I 
T 

Read and punch p alld q. 
Read number of variations of v. 

I 
t 

Read and print v. RWUI 16~~~~,-16~28,16~~?~,-16~s%. 
Work out matrices E, F (symmetric) and G, H (antisymmetric) 
of generalised forces, as appropriate, and punch. 

t 
Have all values of v been dealt with? 

No ,r Yes 

3 

1 Have all values of p, q been dealt with? 
I 

No 
- 

1’ Yes 
0 

a 

I Have all variations of Mach number; m and n 

No Yes 
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Appendix D, 

LIFT AND DOWNWASH POINTS, INTERPOLATION FUNCTIONS 
AND IlNTEGRATION CONSTANTS 

(see section 4.2) 

INDEX 

D.l Chordwise interpolation functions and lift and downwash points 
D.l.1 Subsonic leading and trailing edges 
D,1.2 Subsonic leading .edge, supersonic trailing edge 
D. 1.3 Supersonic leading edge, supersonic trailing edge 
D.1.4 Supersonic leading edge, subsonic trailing edge 

D.2 Spanwise interpolation functions and lift and downwash points 

D.3 Chordwise integration formulae 

D.3.1 k(Z) = ~+ti)/ 6(1+C) 

~.3.2 k(z) = I/v~(I-~~) 

D.3.3 k(S) = l/f&G) 
D.4 Spanwise integration points and interpolation functions 

PaJg 

38 
38 
43 
47 
51 
52 
53 
54 
55 
57 
59 
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D.1 Chordwise inte ctions and lift and downwash points 

For the various leading and trailing edge conditions, the chordwise lift 

points E,, *.. ,E m are the zeros of the polynomials orthogonal over (-1,l) to 

the function f(c) defined in equation (5) of Appendix B; the downwash points 
are derived from the polynomials orthogonal to f(-E) and so are merely the 
points -Em, ..* ,-E;,. The polynomials h,(E) such that 

can then be computed; so also can 

1 
H, = & 

s 
ho;@& _ 

-1 

and hence the coefficients of the matrix H of Appendix B are given. 

D.l.1 SubsonideadinE and trailing edges 

The mth degree polynomial orthogonal to J(l-c)/<(l+g) over (-1,l) is 

sin m + 
57 

+)cos-' El 
1 - 59 

and the zeros of this, which are the lif't points, are 

(a = I, . . . ,m) . 

Also (see, e.g., Ref.1) 

For m = 2, . . ..I0 the Ea and matrix H are given belaw. 
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m=2 

E, = -0.809017 
&2 = 0.309017 

m=3 

E, = -0.yoo969 
&2 = -0.222521 
g3 = 0.623490 

m=$ 

El = ~o.%!%93 
c2 = -0,ymooo 
c3 = 0.173668 
54 = 0.766044 

m=5 

E, = -0.959493 
E$ = oe415415 

Hz 0.094425 
-W&38& 

2.929401 
I. 289214 

-0.726098 

m= 6 

&, = -0.970942 
C& = 0.120537 

H= 0.243167 -0.786905 
I .666692 2.0601'45 

H= -0.157232 -0.454414 1.133290 
I .783769 -0.881109 -3.175408 
0.919942 5mj5524.2 4.588597 

H = -0.117643 o.59570 0.777713 

0.636620 -3.819719 2.808432 4.939387 -5.2&86 
-0.780930 2.104287 12.118110 

e2 = -0e654.861 e3 = -0.142315 
&5 q 0.841254 

0.468140 -I,621007 -1.332168 2.899213 

-1.806376 7.604538 I,310550 -8.462765 

-3.007541 -14.019808 4.771775 13.3bo713 
10.838716 10.620734 -15.688269 -17.137876 
-5.219700 2.508502 26.216988 %546631 i 

&2 = -0.748511 E3 = -0.354605 
E5 = 0.568065 ‘56 = 0.885456 

H- r 0.079033 -0.555593 -1.324561 3.893245 2.312845 -4.911107 
-0.301597 2.212510 4.282441 -15.372381 -3.590459 a.447903 

1.019843 0.890186 30.124607 -3.365175 -23.14W 
3.953293 ymg -19.568599 -35.840237 18.924552 30.497072 

-0.992314 4: 207053 31.221484 23.207077 -38.532277 -36.076724 
0.698082 -3.400104 -20.593911 -0.g19353 54.808264 39.559729 
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D.l.2 Subsonic 1eadin.a edge, supersonic trailing edge 

Here are re-quired the polynomials orthogonal to l/f(l+&) over (-1,l). 
Mineus' (page 286) shows that the polynomials orthogonal to l/&c over (0,l) are 
the polynomials P,,(h), where P2m (u) is the Legeniire polynomial of degree 2m 
over the interval (-1,l) in u. Changing the interval (0,l) in k to the interval 

. 
(-?,'I) in E, it follows that the lift points required here are just the points' 

% 
= 2u; - 1 (a= I, . . . . . m 1 

where ua are the positive zeros of P,,(u). Mineur also shows that the 
Gauss weights for the weight function I/& inthe interval. (0,l) are related 
to the weights Aa and zeros uo for a 2m-point Gauss-Legendre formula in the 
interval (-1,l). In our notation, Mineur's result is 

Ha = 2Aaua (a =,I, .i.., m 1 l 

The h&(g) have to be evaluated numerically. 
given by Gawlik'. 

The values of ua and A, are 

The values of ea and H for m = 2, ..,*, 10 are appended. 

m= 2 

c, = -0.768826 
E, = 0.483112 

m=3 

% = -0.886122 
E, = -0.125604 
E3 = 0.738999 

m= 4 

El = -0.932704 
E2 = -0.447631 
E3 = y$m~; 
E;4= l 

m=5 

-5, = -0.955673 
E;L, = 0.496669 

H= 0.065238 
-0.277555 

3.192554 
0.520348 

-0.219706 

H = 0.418413 -0.866080‘ 
1.248338 1.623695 I 

Hz -0.113494 -0.750005 1.222712 
I,951982 -0.438550 -2.980841 
0.326935 2.971845 2.937401 

H= 

i -0.191550 -0.595113 I.064075 2.261946 o . 510096 -3.439512 -0. 50879177 1.253233 go7808 -1.881627 -6.416741 5.016493 5.291884 

c3 = -0.076805 

0.749802 -1.477083 -2.114775 3.053761 
-3.035913 7.808881 3.065611 -8.487790 
-1.532975 -13.929905 2.238163 12aOlO365 

7.572723 Y-723686 -9.618407 -12.658678 
-3.00000~ -1.012335 11.198712 9.652849 
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m= 6 

E, = -0.968633 
eJ4 = 0.185500 

cr, = -0.729400 
c; = . 0.634856 

-0.615297 -9.908939 

.g3 = -0.31im5 
56 = o o 926923 

3.656221 3.634710 -5.135485 
-15.418284 -6.842342 14.603836 

30.074085 1.071460 -21.757441 
-33.308347 Il.308804 25.335055 

20.201120 -21.830813 -24.372211 
-5.284675 21.168914 17.822070 
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D.4.3 Supersonic leading qdge, supersonic trailing edge 

47 

The polynomials orthogonal to f(E;) ~3 1 over (-1,l) are the Legendre 
pelynomials; the zeros and weights in the corresponding Gauss formulae are given 
by Gawlik3B The Ha are merely one half of these Gauss weights; the hc(F;) are 

found numerically. 45, and H are given below for m z 2, . . . ,lO. 

m=2 

51 = -0.577350 
c, = 0.577350 

m=3 

e, = -0 l 774597 

F;2 = 0.000000 
E;3 = 0.774597 

LR= 4 

q = -0.861136 
Q = -0~339981 
E3 = 0.339981 
4;/+ = 0.861136 

m=5 

El = -0.90618o 
-54 = 0.538469 

H= 
i 

0 
0 

3.515625 
0 
0 

III= 6 

El = -0.932470 E2 = -0.661 zag -0.238619 
E;J+ = 0.238619 &5 = 0.661209 

53 = 
66 = 0.932470 

II = 
( 

1 
1 

H= 0 
2.250000 

0 

H= -0.530834 
1.816548 
1.816548 

-0.530834 

-1.732051 
1.732051 

-2.323790 

2.3:3790 

0.616434 

E2 = -0.538469 
E5 = 0.906180 

2.542288 -2.805500 
-5.997920 Il.138834 

5.9;7920 -16.406250 11.138834 
-2.542288 -2.805500 

3.000000 
-3.750000 
3.000000 1 
4.592502 -5.333073 

-U49645 7.205240 
-2.449645 -7.205240 
4.59?92 5.333073 

43 
= 0.000000 

-8.768046 
7.304187 

H= -0.443601 -8.210802 8.805437 16.616i,.&P 
1.262568 

-17.819831 
15.621774 -23.626062 -16.862181 

-11.018974. 
25.502029 

L9.038039 37.876413 6.916705 -28.986373 
11.018974 -9.038039 -370876413 6.916705 
-1.262568 

28.986373 
15.621774 23.626062 -16.862181 

0.443601 -8.210802 
-25.502029 

-8.805437 16.616&g 17.819831 
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0.1.4 Supersonic leading edge, subsonic trailing edge 

This case, in which f(c) = 6(1-c), is not dealt with in the programmes 
which are the subject of this Report, and the h-(E) etc. have not been 
calculated by the writer. However, it is worthUpointing out that the lift 
points are again derived from the Legendre zeros over (-1,l). Mineur' 

bw 290) gives a result, which gives the positions of the lift points needed 
here as 

gu = 1 - 2ui (a = 1, . . . ,m) 

where the u CL are the positive zeros of P2m+, (u). The lift points thus follow 
from the zeros of the Legendre polynomials of odd degree. 

The lift points for m = 2, ,;. ,lO are as follows: 

m=2 

5 F -0.642324 

m=3 

'; 5 F -0.801612 

m=4 
i 

El F -0.874668 

m=5 

% F -0.913863 

&5 F 0.854693 

m=6 

% F -0.937232 

Eg = 0.597709 

m=Z 
5 

El F -Q.Y52258 
= 0.347982 . E5 .i 

m= 8 

El F -0.962480 
E5 = 0.134937 

m=Y 

0 = -0.969743 
E5 = -0.039584 
EY = 0.948570 

E, = Oe420102 

cc2 = -0.099737 

c, = -0.397896 

E, = -00573760 

E2 = -0.683974 

56 = Oe893778 

E;, = -0.756963 
EG = 0.689289 

F;2 = -0.807568 
56 = 0.474297 

= -0.843999 
F 0.278691 

g3 = Ok70579 

g3 
= 0.247551 

k3 = -0~066244 

E3 = -00285055 

e3 = -0e438909 
E7 B . 0.919042 

E3 = -0.5496~ 
E7 = 0.753273 

E3 F -0.631381 
E7 = 0.568348 

E;4 = 
0.789719 

E;4 = 0,461078 

c, = 0.174775 

E, = ~0. o&g562 

5 -0.221528 
= 0.936287 

2 L -0.353719 = 00799574 
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m=lO . 
5, = F;2 = -0,871056 ? -a693166 Q. = -0.456458 
E75= 1;. l y$; & = 0, I 09852 

53 
0.391433 Eg = 0.834087 %I= CL 957624 E7 =: , g8=. 0.639868 

D.2 Spanwise interpolation f'unc.tions and lift and downwash points 

Spanwise positions of both lift and downwash points are given by the zeros 
of the polynomials orthogonal to J(1-q2) over (-1,l). These are the polynomials 

( see, for example, Hildebrand5 page 308) 

which were orjg,inally considered in connection with lifting surface theory by 
Mu-lthogp6. This polynomial has zeros 

Tp = cog -1 
n+l 0 (b = l,...,n) D . 

Also (see, for example,-Multhopp6) . 

For n = 2, . . . . ,7 the qS anq the matrix G of coefficients in the interpolation 
functions (see following equation (22) of Appendix B) are given below. These 
have been found by the writer for n = 2, O.O ,21. 

n=2 

q, = -0.5 
q2 = 0.5 

n=3 

q1 = -0.707”107 
712' 0 
rl3 

= 0.707107 

n= 4 

?I 1 -0.809017 
rl2 = -0. jog01 7 

q3 z 0.30901‘7 

x 
= 0.809017 

G = 

G = 

G = 

1.273240 -2. %Q-79 
1.273240 2.546479 > 

0 
2.546479 

0 

-0.786905 
2.060145 
2.060145 

-0.786905 

-3.601265 5.092958\ 

3. io1265 
-5.092958 

5.092958 

0.972668 -6.666769 8. ww’g -10. I 
‘-3.147621 

6.666769 

10.185g16 85916 

-3.147621 -10,185916 
-0.97266g 8.240580 loo185917 
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9 
3 -6.866025. = -0.5 

3 1 ?l3 
=o 

q4 
= 0.5 

Y 
= 0.866025 

/’ 
G 5 4.4~0631 -5.092958 -17.642524 20.371831 

-7.639437 15.278874 10.185916 -20.371833 
-20.371833 

-IO.:85916 
20.371833 

15.278874 -20.371833 
-4.410632 -5.092959 17.642525 20.371834 

i 

n= 6 

rlq = -o.900969 '12 = -0.623490 q3 = -0.222521 
q4 

= 0.222521 

t15 = 
0.623490 q6 = 0.900969 

G = 

-0.7842&l -16.087807 17.856118 36.708772 -40.743664\ 
1.637651 21.878823 -35.090909 -25.403260 

-42.856962 -10.883974 48.912135 9.066318 
12.856962 -10.883974 -48.912136 9.066318 
d.637651 21.878823 35.090907 -25.403260 

0.784261 -16.087809 -17.856121 36.708777 

n=l 

Tl s -0.923880 
0.382683 

7-Q = -0.707107 rl3 = -0.382683 =o 

T5 = 16 =: 0.707107 q7 =. 0.923880 r)4 

G n’ 

-; 0 . -5.512579 5.966772 48.667402 -52.677217 
1 0 

-75.284486 
7.2O2531 -lo.r85917 -57.620246 81.487334 57.620245 

\ r 5.092958 0 0 0 0 -13.308541 -0.O0ooq -7.202530 13.308541 5.512578 -50.929582 -~0.185916 34.776892 34.776895 5.966772 -42.209007 -48.667396 42.2WJO7 57.620245 0.000001 -110.29745 -110.29745 +2.677209 122.23100 81.487331 -31.183851 -57.620246 31.183851 -0.000001 75.284477 

81.487341\ 

D.3 Chordwise integration formulae 

The function k(Z) of (12) takes the values 

[ Jj-=f-$) if,“:;;;;; 

! 

k(C) = ’ ’ 

i 
, 

5 

::= 

-1 
+I 

at‘ a superso nio leading edge 
at a Mach line. 

subsonic leading edge 
subsonic trailing edge 

subsonic leading edge 
Mach line 

-81.487333 . 
81.487331 

-81.487331 
81.487328 

-81.487332 
81.487331 i 
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The case k(g) = <(l-g), which occurs when 2: t -1 at a supersonic leading 
edge and < = , +I at a subsonic trailing edge is not considered here, since the 
corresponding leading and trailing sdge condit+ons are not dealt with by the 
programmes described in this Report. 

- The Gauss zeros 
k(c) are - 

$ and the quantities Wx/“( 5) for the various values of 
as folIiows. 

D.g.1 dZ, = 4-(6tr,)/f(i+&) 

The zeros here are the same as the lift points in D,l,l, The integration 
< . 

points’ a+e . + 

(x = 1, l ;* ,p) 

ana 

being twice the vaJ.ue of the corresponding II_ in D,‘l .I ‘above. Values of wI are 
given below for p = 1, .O. ,lO. The values tf 2& have already been 
in D.l,l,. (where they appear as C’s) and so m-e omitted here, except 

I  

pal’ G= -0.5 
vi, = 1 e 813799 

'1,=3' w,= 0.389453 
w2 a 0.875093 

given above 5 
forp=l, ’ , 

p_= 

P 

w’f = 0.701770 

w.j = o. I 60925 
w* 1 0.431683 
w3= 0.565385 

. w = 0.>19581 
w; E. 0.308813 

wj = o.otj7ogo .z 
w* = 0~.246211 .I 
w3= 0.362760 
W& = 0.416584 
"5 = a398378 
W63 0.311288 
“7 = 0.170373 

p = 2. . ,w 1 = 0.738633 
I L w2 = 1.195133 

-&,,&& wl = 0.,238775 
w2 = 0.604600 
w3 = 0.687526 
n4 = 0.448750 

p=,i _ WI = Oell5667 
w 2 = 0.320502 

.m3 = 0.451914 
w 4 = 0.479798 
w5 = 0.397766 
W6 = 0.224611 

-J-J = 8 : WI = 0;067914 
w2 = 0.19456g 
n 3 = 0.294946 
w 4 = 0~355490 
w 5 = 0.368022 
"6 = 0.330852 
n 7 = 0.248997 
"8 = 0.133515 
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ILL2 71 = o.of&43o 
WIJ = 0.157393 
ws = 0.243299 
w4 = 0.302841 

1; = = 0.329564 0.320575 
w7 = 0.276846 
w8 = 0.203116 
wy ‘ts 0.107376 

p=lO WI = 0.044593 
W9 = 0.129818 

0.203507 w’ : 0 259114 w4 
= 0:291698 
= 0.298363 

~.3.2 k(z) = l/S(i - z21 

The Gauss zeros corresponding to the weight function k(Z) = l/f (1 - Z2) 

are the Chebyshev zeroa 

(h = 1, . . . ,p> 

and 

The values of % and w ,, are given below for p = 1, . . e ,lO. 

p=l 

p=2 

5 = 0 

g-l-- -0.7071 07 
-$j = 0.707107 

Cl = -0.866025 
zp= 0 

c3 = 
0.866025 

= -0.923880 =: -0.382683 
z3 = 0.382683 

g4 = 0.923880 

w1 
=n= 3.141593 

"I = 1.110721 

w2 = 1.110721 

w; = 0.523599 
w2 = I,047198 

w3 = 0.523599 

“I = 00300559 
w2 = 0.725613 
w 
w; 

= 0.725613 
= 0,300559 

55 
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G= -0.965926 
c2 = -0.707107 

q= -0.974928 9 = = -0.7tH831 
-3 -0.433884 
54 = 
zi5 = d33884 %= 0.781831 
c7 = 0.974928 

p=8 

% 
g2 E 

-0.980785 
-0 831470 

= 
c4 G3 = 

-0:555570 
-0.195090 

c5 = 0.195090 
%= 0.555570 

= 
Z8 g7 = 

0.831470 
0.980785 

G= -0.984808 
z2 = -0.866025 
c3 = -0.642788 
r;4 = -0.342020 

z6 c5= = 
9 

0.342020 
z7 = 0.642788 
$3 = 0.866025 
Gy = 0.984808 

WI = 0.194161 
WI 

wf 

= 0.508320 
= 0.628319 ,. 

14 3 = = 0.508320 0.194161 . 

WI = oe135517 

"2 = Oe370240 

w3 = 0.505758 
w4 = 0.505758 
W5 = 0.370240 

w6 = 00135517 

WI = 0.099867 
t2 = = 0.279822 

3 0040435Lc 
"4 c O.-U799 
"5 = 0.404354 
w6.= 0.279822 
w7 = 0.09986.7 

5 

“A = 0.076612 ~’ , . 
w2 = 0.218172 i 
w3 = 0.326517 

Yvft- 
= Oe385153 
= 0.385153 

w ;= 0.326517 

w7 = Oe218172 

“8 = 0.076612 

"I = 0.060615 
w 2 = 0.174533 
"3' 0.267400 
? 4 5 0,328015 
w 5 = 0.349066 

= 0,328015 
= 0.267400 

w 8 = 0.174533 
my =~0,060615 
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p = ?O 

57 

’ 
z2 : -0.987688 

-0 891007 
s3 E -0:707107 
CL+. = -0.453991 

= 
z< z5 = 

-0.156434 
0.156434 

57 = 0.453991 
cj3 = 0.707107 
t;g = 0.891007 
slOE 0.987688 

D.3.3 k(E) = l/Y-(1-a 

w1 = 0.049145 
W2 = 0.142625 

"3 = 0,2221& 

m4 = Oe27g918 
w5 

= 0.310291 

w6 = 0.3102g1 

1; 
= 0.279918 
= oa222144. 

w9 = 0.142625 
"10 = 00049145 

The zeros here are the negative of the lift points for a singularity 

l/f(l+C), which was dealt with in D. 1.2 above, So 

% = 1 - 2u; . (h = I, me. ,p) D 

Gauss weights and zeros for a singularity l/v'% over (O,l), to which the wx 

required here are related, are given in Mineur 4 (page 289). Alternatively, 
in view of the remarks of D.1.2 above, it may be shown that 

(1 = 1, . . . ,p)‘ 

where the A h are the weights and u h the positive zeros in a 2p-point Legendre- 
Gauss formula (see, e.g. Gawlikj). Vtiues of C& and w 

h are given below for 
p = I, 0.. ,lO. 

p=l 

G E -0.483112 “I = 1.198202 
ts;! = 0.768826 

w2 = 0.886868 

r;l = -0.738999 ( ;I. = 0.63golg 

52= 0.125604 = o.g54~56 

<3 = 
0.886122 W2 

3 
= 0~446613 
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p=6 

t5= -0.844313 
ciz = 
c3 = 
CL+ = 

+ -0.896988 

2 = = 

z!+ -2 = 

-0.496669 0.076805 
- 

= 

5 0.624337 w55673 

P 

zq = -0.945512 
= -0.723983 
= -0.368524 

g; = 00055257 
z5 = o. 469038 
z6 = 0.796335 
c7 = 0.976648 

p=8 

sl= -0.957828 _ . 

P 

t;2 r,= = 
-0.966403 
-0.827199 

z3 = -0.593478 
= 

c5 z4 = 
-0.291883 

0.043138 

G[ G= = 
0.373313 
0.660922 

(zs8 = 0.873107 

c9 0.985626 - _ 

"1 = 0.388835 
“2 = 0.708654 

w3 = 0.659452 
w4 = 0.266115 

WI = 0.259727 

w.2 = 0.517140 

"3 = 0.595397 
w4 = 0.466796 

w5 = 0.175984 

wl = 0.185222 
W2 = 0.386743 
w3 = 0.49.379 
w4 = 0.477296 
z5 = = 0.343544 

6 0,124806 

w I = 0.138551 
w2 = 0;297686 
"3 = 0,402081 
)'L+. = 0.432q78 
$7 
vi 2 

= 0.382394 .' 
= 0.261925 

V? 7 = 0.093041 

w1 = 0.107459 
w2 = 0.235212 
w3 = 0.329489 

w4 = 0.37658~ 
w5 = 0,369727 
w6 = 0.3ovgo6 
w 7 = 0,205687 
IV 8 = 0.072001 

iv 1 = 0;085735 
wi = 0.190073 
IT 3 = 0.272871 
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p = IO 

59 

G’ = -0.972609 = -0.858484 
= -0.664343 
E: -0.408235 
= -0.114023 
= 0.190871 

"I = 0.069972 
w2 = 0.156555 
w3 = 0.228686 
w4 = 0.279516 

2 = = 
0 

0.304295 0.300712 
W 7 = 0.269102 
"8 = 0.212409 
"9 = 0.135918 
wlo = 0.046759 

D.4 Spanwise intoaration points and interpolation functions 

. The integration points used to carry out the spanwise integration 
(see (14), Appendix B) are the Chebyshev zeros 

For q = 2, . . . ,7 the matrices P of the coefficients in the interpolation 
functilons are given below. These have been found by the writer for 
q 2, . . . ,21. 

as=$, 
The values of $Y are given above in D.3.2 (where they appear 

and are not duplicated. 

& 

P = 0.5 -0.707107 
095 0.707107 > 

LEA 

P E 
i 

0 -0.577350 0.666667 
1.0 0 \ Q 0.577350 -A* l ym; 

1 

PE -0.103553 0.112085 0.707107 -09765367 
0.603553 -1.577161 -0.707107 1.847759 
()a603553 1.577161 -0.707107 -1.847759 

-0.103553 -0.112085 0.707107 0.765367 

& 
P 5 0 0.324920 -0.341641 -0.940456 0.988854 

8 -1.376382 2.341641 1.521690 -2.588854 

1.0 0 -4.0 0 0 1.376382 2,341641 -1.521690 -:I:88854 
0 -0.324920 -0.341641 0.940456 0.988854 
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-0.046234 -0.755983 
0.235702 2.666667 

-2.403256 -1.910684 
2.403256 -1.910684 

-0.235702 2.666667 
0.046234 -00755983 

0.782651 1.333333 
-3.771236 -2.666667 

7.382315 1.333333 
I.333333 

-2.666667 
1.333333. 

-0.228243 0.234113 1.585814 -1.626596 -1.983469 
0.797473 -1.020007 -5;075149 6.491360 4.456813 

-2.076521 4.785894 50581812 -A 2.664764 -3.574087 
0 -8.0 16.0 

2.076521 4.785891 -5.;81812 -l2.864764 3m;74087 
-0.797473 -i.o20007 5.075150 

0.228244 0,23l+113 -1.585814 

.  1  

.  , -  
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SYMBOLS 

matrices defined by (19) 
local chord is c c(q) 
mean chord 
matrix of quantities CaP(&qs) defined by (18) and. 
immediate text 
defined by (16) 
function whichtakes into account the chordwise singularity 
in lift; see (5) 

s 

I 

A,B 
477) 
z 
C 

cfi,(%9 TJ 
fw 

l&l) 
G 

GP h,(C) 

H 

Ha 
k( G> 

u, d 
L. 

La(i$-ls) 
m 
1.4 
M 
M rs 
n 
N rs 
P 
P,(#J) 
P 
P 

aP 
9 

interpolation function for spanwise lift distribution; see 
(6) and preceding text 
matrix of coefficients of interpolation functions; see 
following (22) 
defined by (7) 
interpolation function for chordwise lift; see (6) and 
preceding text . 
matrix of coefficients of interpolation functions; see 

following (22) 
defined by (7) 

function which takes.into account the singularity in the 
chordwise integration; see (12) 
Kernel function, defined in (9) 
reduced lift, defined in such a way that the aotual lift 

2 ispV e iut e(x,y) 
approximation to &(&T-J; see (10) 

matrix defined by (19) 
see (17) 
number of chordwise lift and downwash points 
Mach number 
matrix defined by (19) 

matrix defined by (23) 
number of spanwise lift and downwash points 
diagonal matrix; see text following (23) 
number of chordwise integration points 
interpolation polynomial satisfying (13) 

matrix of coefficients in p,(#) 

see (11) 

number of points used in spanwise integration 



Q 
Q ij 

r 
R 
R 

ITS 

9: . 

s 

t 

V 

w(w) or d&d . . 

x,y: 7, 

X 
-PS 

X 
rb XY 

X 

y3 

Y rfbY 
Y 

zl(x,Y) "' zj(x,Y) 

z, ,F, etc. 

g, ,$, etc. 

1 

8 

Y 

SYMBOLS (CONTD) 

matrix of generalised forces, defined by (20) 
2-3 reduced generalised force coefficients; p V c Q.. is the 

1J 
generalised force in mode i due to motion in mode j 
suffix associated with chordwise variation of downwash point 
= ((x2 - p2y2) 
matrix defined by (23) . 

reduced semi-span, defined 30 that semi-span = SC 
f 

suffix associated with spanwise variation of downwash point 
reduced time 
airspeed 
reduced downmash, defined in such a way that the actual 
downwash is V eiut ~(x,y) 

Gaussian weights associated with a p-point integration 
formula for k(Z) 
Cartesian co-ordinates, referred to c as reference length 
value of x at a downwash point (&q,) 
value of x at an integration point 
zz x' - x 

value of y at a downwash-point (gr,qs) 
value of y at an integration point 
=y’-y 

modal deflection shapes 

row matrices whose'eiements are the modal deflections 

evaluated at the lift points; see (21) 

row matrices whose elements are the modal deflections 
evaluated at the downg!ash points; see (21) 

see following (21) 

see following (20) 

suffices associated with chordwise and spanwise variation 
of lift points respectively 
= g(M2 - 1) 

suffix associated witi spanwise variation of integration 

point3 
-variable for chordwise integration; see preceding (12) 
Gaussian zeros associated with weight function k(g) 
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(COETD) SYMBOLS 

vy3 

?-I rby 
VJ2 

spanwise cc-ordinates of downwash and lift points 
respectively 

= rly(ir’Q 
intersections of E = ~+(~',TJ',TJ) with leading edge or 
tips - see Fig.5 
value of q when + = + 

Y 
suffix associated with chordwise variation of 
integration points 
frequency parameter = UC/V 
wing co-ordinates; see (4) 
chordvise co-ordinate of point at which lift is 
evaluated 
chordwise co-ordinate of downwash point 
value of cwhen g= 5, 7-j = 7-j 

rw 
equation of reversed Mach lines through (E',q') is 

5 = E,k',+$ . 
= minlE, (E',q',d, Ii 
density 
spanwise integration variable; see text preceding (13) 
value of #I at point (Z,,T$ 

frequency 
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FIG. I THE SEGMENTED PLANFORM OF PROGRAMMES 
178A, 1808 , 18lA. AND l82A 

FIG. 2 PLANFORM WITH SUBSONIC LEADING EDGE, 
MIXED TRAILING EDGE 



FIG.3 PLANFORM WITH CURVED SUBSONIC LEADING EDGE, 
STRAIGHT SUPERSONIC TRAILING EDGE 

FIG.4 PLANFORM WITH CURVED MIXED LEADING EDGE, 
STRAIGHT SUPERSONIC TRAILING EDGE . 0 



FIG.5 INTEGRATION AREA FOR EQUATION (8) OF APPENDIX B 
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FIG.6 LIFT AND DOWNWASH POINTS ON A DELTA WING 
WITH SUBSONIC LEADING EDGE, M= 2, N = 7 
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