

ROYAL LIBRARY

MINISTRY OF AVIATION
aERONAUTICAL RESEARCH COUNCIL
CURRENT PAPERS

Mercury Programmes for Lifting Surface Theory Calculations on Wings Oscillating in Supersonic Flow

by
G. Z. Harris, Ph.D.

MERCURY PROGRAMMES FOR LIFYING SURFACE THEORY CALCULATIONS ON WINGS OSCILLATING IN SUPERSONIC FLOW

by
G. Z. Harris, Ph.D.

Abstract

SUMMARY Programmes for lifting surface theory calculations on wings oscillating in supersonic flow are described. The computation falls into two parts, one finding the complex influence matrices connecting lift and downwash, and the other finding the generalised forces when the influence matrices are given as data. The numerical method is desoribed and values of cunstants used in the calculations are given.

CONTENTS Page
1 INTRODUCTION 3
2 THE FROGRAMMES 3
3 THE NUNERICAL METHOD 5
4 DESCRIPTION OF PROGRAMMES 9
4.1 The programmes and their use 9
4.2 Data input and output 12
5 DISCUSSION 12
6 CONCLUSIONS 13
Appendix A Data input and output for the programmes 14
Appendix B Summary of method 27
Appendix C Logical structure of the programmes 35
Appendix D Lift and downwash points, interpolation functions and integration constants 37
Symbols 61
References 64
Illustrations Figures 1-7Detachable abstract cards

Programmes have been written in the Mercury Autocode system for finding the generalised forces on wings oscillating harmonically in supersonic flow. The method used is a modification of the Multhopp-Richardson method ${ }^{1}$, and is described in a separate paper ${ }^{2}$; the purpose of the present paper is to describe the programmes and the details of the numerical method.

The method relies on replacing the integral equation (which one cannot solve in general) connecting the downwash and lift by a matrix equation (which one can solve)for the lift values at a set of points on the wing. These lifts being known, the generalised aerodynamic forces corresponding to any particular modes of distortion can be found. The machine calculation is thus split into two parts; the first builds up the matrix equation and inverts the complex matrices needed for its solution, while the second finds the generalised aerodynamic forces for wing distortion modes which are expressible as polynomials in the chordwise and spanwise co-ordinates. The first part of the calculation is performed differently for different wing planforms and for different leading and trailing edge conditions; the second is not. Hence six programmes have been written to perform the first part of the calculation for different classes of planform, and one programme does service for all other cases in the second stage in which the generalised forces are found. Necessity, in the form of machine capacity limitations, dictated that the calculation should be split into these two parts. This may, however, be thought of as a virtue since, once the complex matrices for any wing have been found by the first programme, the generalised forces for different sets of distortion modes may be found on separate occasions without repeating the whole of the calculation.

2 THE PROGRAMMES

The programme titles are:
RAE 178A Multhopp-Richardson; segmented planform, subsonic leading edge, supersonic trailing edge.

RAE 179A Multhopp-Richardson; curved subsonic leading edge, straight supersonic trailing edge.

RAE 180A Multhopp-Richardson; segmented planform, subsonic edges.
RAE 181A Multhopp-Richardson; segmented planform, supersonic edges.
RAE 182A Multhopp-Richardson; segmented planform, subsonic leading edge, mixed trailing edge.

RAE 258A Multhopp-Richardson; curved mixed leading edge, straight supersonic trailing edge.
RAE 183A Generalised forces for polynomial modes.
These are written for general values of frequency parameter, and special versions RAE 178A/1, RAE 179A/1, 180A/1, 181A/1, 182A/1, 258A/1 and 183A/1 are written to take advantage of the reduction in computation (and machine) time possible in the steady case. These programmes need as data some constants specifying the planform together with some standard data relating to the number of integration stations taken. This is detailed in Appendix A.

The 'segmented' planform of RAE 178A, RAE 180A, RAE-181A, RAE 182A is a symmetric planform of the type shown in Fig. 1, where the half-wing is divided into three sponwise sections having different leading and trailing edge sweepback angles. These sections are not necessarily swept back at different angles so that, for example; a delta wing falls into this classification. In RAE 178A, RAE 180A and RAE 181A the leading and trailing edge conditions are clear from the programme titles. In RAE 182A the 'mixed' trailing edge described is one in which the outer section is supersonic while the inner two sections are. subsonic and swept back; the wing of Fig. 2 is of this type, being of a shape used in a current aircraft rather than a general example. The planform dealt with by RAS 179A and 258A is shown in Fig. 3. With co-ordinates (X,Y,Z) based on root chord, the equation of the leading edge for $Y \geqslant 0$ is

$$
Y=S\left(a_{1} X+a_{2} X^{2}+\ldots \ldots+a_{14} X^{1 / 4}\right)
$$

the leading edge for $Y<0$ being defined by symmetry. Here, $S=$ semi-span/root chord. The trailing edge is straight. Ogive and gothic planforms have leading edges of this type with suitable values of $a_{1}, \ldots \ldots, a_{5}$ and $a_{6}=\ldots \ldots=a_{14}=0$. In RAE 258A the 'mixed' leading edge described is one in which a central portion of the leading eage on each half of the wing is supersonic, as shown in Figo4.

The above programmes with their various planform variations are written with some hope of covering the range of planform shapes likely to be of practical interest, together with their leading and trailing edge conditions. Variants of four of the programmes, namely $\operatorname{RAE} 178 \mathrm{~A} / 2, \operatorname{RAE} 180 \mathrm{~A} / 2, \operatorname{RAE} 181 \mathrm{~A} / 2, \operatorname{RAE} 182 \mathrm{~A} / 2$, have been devised to take any type of planform into account for the leading and trailing edge conditions specified. Since the planform is not limited in these to the 'segmented' type, more preliminary work needs to be done by the user for these programmes. More information about the planform is needed than the basic
data required, for example, for the segmented planform; the actual input needed for these programmes is speoified in Appendix A_{0}

The programme RAE 183A evaluates generalised forces for wing distortion modes which are expressible as polynomials in the chordwise and spanwise coordinates. It accepts as input data the output of any of programmes 178A, 179A, 180A, 181A, 182A or 258A together with information about the modes for which the generalised forces are needed. Separate versions, RAE 183A/1 and RAE 183A/2, deal with the steady case and with general planforms respectively. The actual form of the polynomials giving the wing distortion, and the input data for this programme, is given in Appendix A.

3 THE NUMERICAL METHOD

The method used, which is a modification of the Multhopp-Richardson method, is described in a separate Report ${ }^{2}$. For completeness, a summary of the steps in the calculation is given in Appendix B.

The aim of the calculation is to evaluate the matrices $M_{r s}, N_{r s}$ and $R_{r s}$ of equations (22) and (23) of Appendix B, and to combine the se to form one large matrix C which may be used to evaluate the generalised forces. The logarithmic correction terms (that is, those involving $\delta_{\beta s}$ in (16)) are then found and used to modify the relevant elements of C. The steps taken in the calculation may be roughly detailed as follows (the symbols are all defined in Appendix B):-
(a) Work out the co-ordinates of the lift and downwash points, and η_{1} and η_{2} at each point.
(b) Work out $x_{r s}-x_{r s, \lambda \gamma}$ and $y_{s}-y_{r s, \gamma}$ for all the integration points and each downwash point, and find the other quantities needed in forming $M_{r s}$, $N_{r s}, R_{r s}$.
(o) Evaluate $K(X, Y)$, equation (9), for all the values of $X=X_{r s}-X_{r s}, \lambda r$ and $Y=y_{s}-y_{r s, \gamma}$
(d) For each downwash point form the matrioes $H M_{r s} N_{r s} R_{r s} G^{\prime}$ of equation (22) and combine these.
(e) Form the correction terms (i.e. those terms of (16) which involve $\delta_{\beta s}$) and add to the appropriate terms already found in (d) above to give the matrix C.
(f) Form from C the symmetric and anti-symmetric aerodynamic influence matrices A, B, L and M of (19).
(g) Form the matrices $\bar{Z}, \overline{\bar{Z}}$ etc (see following equation (20)) of the deflection and downwash values at the collocation points:
(h) Form the generalised force matrices.

So far as the organisation of the programmes is concerned, steps (a) to (f) form the first part of the calculation while steps (g) and (h) form the second part.

Integrals have to be evaluated numerically at three points in the calculation.

In the expression (17) for $L_{\alpha}\left(\bar{\xi}_{r}, \eta_{s}\right)$ write $\int_{-1}^{\bar{\xi}_{r}} e^{-\frac{1}{2} i \nu c\left(\eta_{s}\right)\left(\bar{\xi}_{r}-\xi_{\sigma}\right)} h_{a}(\xi) d \xi=\left\{\int_{-1}^{\frac{1}{2}\left(\bar{\xi}_{r}-1\right)}+\int_{\frac{1}{2}\left(\bar{\xi}_{r}-1\right)}^{\bar{\xi}_{r}}\right\} e^{-\frac{1}{2} i \nu 0\left(\eta_{s}\right)\left(\bar{\xi}_{r}-\xi_{j}\right)} h_{a}(\xi) d \xi \cdot$

The second integral on the right is evaluated by an eight-point LegendreGauss formula (see, for example, Gawlik ${ }^{3}$ for the weights and abscissae). The first integral on the right hand side is found either by an eight point Jacobi-
 $\xi=-1$ (see, for example, Mineur ${ }^{4}$ page 289 for the weights and zeros) or by an eight point legendre-Gauss formula if $h_{\alpha}(\xi)$ has no singularity at $\xi=-1$.

The expression (16) for $C_{\alpha \beta}\left(\bar{\xi}_{r}, \eta_{s}\right)$ contains an integral

$$
\int_{\eta_{1}}^{\eta_{2}} \sqrt{1-\eta_{s}^{2}} \log \left|\eta-\eta_{s}\right| d \eta
$$

which may be written in either of the forms

$$
\begin{aligned}
& \int^{\eta_{2}} \sqrt{1-\eta^{2}} \log \left|\eta-\eta_{s}\right| d \eta= \\
& \eta_{1} \\
& \left\{\begin{array}{l}
\int_{\eta_{1}-0.2}^{\eta_{1}}+\int_{\eta_{s}+0.2}^{\eta_{2}}+\int_{\eta_{s}-0.2}^{\eta_{s}}+\int_{\eta_{s}}^{\eta_{s}+0.2} \\
\quad \text { if } \eta_{2}-\eta_{s}>0.2, \eta_{s}-\eta_{1}>0.2
\end{array}\right. \\
& \eta_{s}-0.2 \\
& \int_{\eta_{1}}^{-0.2}+\int_{\eta_{s}-0.2}^{\eta_{s}}+\int_{\eta_{s}}^{\eta_{2}} \\
& \text { if } \eta_{2}-\eta_{s}<0.2, \eta_{s}-\eta_{1}>0.2 \text {, } \\
& \int_{\eta_{1}}^{\eta_{s}}+\int_{\eta_{s}}^{\eta_{2}} \quad \text { if } \eta_{2}-\eta_{s}<0.2, \eta_{s}-\eta_{1}<0.2 .
\end{aligned}
$$

The last two of the se integrals on the right-hand side are evaluated by a Gauss formula which takes the logarithmic singularity at $\eta=\eta_{s}$ into account (suitable Gauss weights and zeros are given in Mineur ${ }^{4}$, page 556); the remaining integrals, if any, are found by a Legendre-Gauss formula.

The third integral which has to be evaluated is

$$
\int_{(X-M \mathbb{R}) /\left(\beta^{2}|Y|\right)}^{(X+M \mathbb{R}) /\left(\beta^{2}|Y|\right)} \frac{\tau\{\cos \nu \tau \cdot|Y|+i \sin \nu \tau \cdot|Y|\}}{\sqrt{1+\tau^{2}}} d \tau,
$$

which occurs in equation (9) for $K(X, Y)$. The real and imaginary parts of this are dealt with separately; the upper limit $(X+M R) /\left(\beta^{2}|Y|\right)$ is positive, whereas $(X-M R) /\left(\beta^{2}|Y|\right)$ can be either positive or negative, so some simplification follows from the odd and even nature of the integrands. To evaluate an integral like

$$
\begin{equation*}
\int_{a}^{b} \sin (\nu \tau|Y|) \frac{\tau d \tau}{\sqrt{1+\tau^{2}}}, \tag{2}
\end{equation*}
$$

for some a and b with $a \geqslant 0$ and $b>0$, the integral is expressed as the sum of t integrals

where

$$
\psi=\min \left(\frac{\pi}{5}, \frac{\pi}{\nu \mid Y\rceil}\right)
$$

and t is an integer chosen so that

$$
0<b-a-(t-1) \psi<\psi .
$$

Since the limits of integration in (1) are large when $\beta^{2}|Y|$ is small the following approximation is used when large limits occur. For any c and a

$$
\begin{gathered}
|i \nu| Y\left|\int_{c}^{d} \frac{\tau e^{-i \nu \tau|Y|}}{\sqrt{1+\tau^{2}}} d \tau+\left[e^{-i \nu \tau|Y|} \frac{\tau}{\sqrt{1+\tau^{2}}}\right]_{0}^{d}\right|=\left\lvert\, \int_{c}^{d} e^{-i \nu \tau|Y|} \frac{d \tau}{\left(1+\tau^{2}\right)^{3 / 2}}\right. \\
\quad \leqslant \int_{c}^{d} \frac{d \tau}{\left(1+\tau^{2}\right)^{3 / 2}} \leqslant \int_{0}^{\infty} \frac{d \tau}{\left(1+\tau^{2}\right)^{3 / 2}}=1-\frac{c}{\sqrt{1+c^{2}}} .
\end{gathered}
$$

This last expression is less than 10^{-4}. if $\mathrm{c} \geqslant 71$, which gives the approximations
and

$$
\left.\begin{array}{l}
\nu|Y| \int_{C}^{d} \cos (\nu \tau|Y|) \frac{\tau \alpha \tau}{\sqrt{1+\tau^{2}}} \div\left[\frac{\tau \sin (\nu \tau|Y|)}{\left.\sqrt{1+\tau^{2}}\right]_{c}^{\alpha}}\right. \tag{3}\\
\nu|Y| \int_{c}^{d} \sin (\nu \tau|Y|) \frac{\tau d \tau}{\sqrt{1+\tau^{2}}} \div-\left[\frac{\tau \cos (\nu \tau|Y|)}{1}\right]_{c}^{\alpha}
\end{array}\right\}
$$

to within 10^{-4} if $\mathrm{c} \geqslant 71$. This approximation may be used as it stands if, in (2), $a>71$ and $b>71$. If $a<71$ and $b>71$ write

$$
\int_{a}^{b}=\int_{a}^{71}+\int_{71}^{b}
$$

and approximate to the second integral by means of (3).
For the various leading and trailing edge conditions different positions for the lift points, interpolation functions and integration points have to be taken to account for the different singularities. These are discussed in section 4.2 .

4 DESCRIPTITON OF PROGRAMMES

4.1 The programmes and their use

The programmes RAE 178A to 182A and 258A which find the aerodynamic matrices are all six chapter Mercury Autocode programmes, and their logical structure is given in Appendix C. The variants of these programmes (178A/1, $178 \mathrm{~A} / 2$ etc.) are also six chapter Mercury Autocode programmes, whose logical structure is similar to that given in Appendix C. The programme RAE 183A which finds generalised forces is a three chapter Mercury Autocode programme, and its logical structure is also described in Appendix C.

Due to the limited capacity of the computer, there are certain restrictions on the size of problem which may be treated by the programmes. The quantities m, n, p and q must satisfy

$$
2 \leqslant m \leqslant 10, \quad n \leqslant 21, \quad p \leqslant 10, \quad q \leqslant 21
$$

together with additional limitations which are given in the following table.

If $\mathrm{m}=$	then $\mathrm{n} \leqslant$
2	21
3	18
4	14
5	10
6,7	8
8,9	6
10	5

Also
$m p q \times$ integral part of $\left\{\frac{1}{2}(n+1)\right\} \leqslant 1608$.

For 180A and 182A there is the additional limitation that $\mathrm{mq} \leqslant 189$.
There are limitations on the Mach number and frequency parameter which can be used, but these are imposed by the basic theory rather than by limitations of the computer or of the detailed numerical method. The method breaks down when $\mathrm{M}=1$; Mach numbers very close to $\mathrm{M}=1$ will give trouble, since the functions

$$
\frac{2 X}{R} \exp \left[\frac{-i \nu M^{2} X}{M^{2}-1}\right\} \cos \left\{\frac{M R \nu}{M^{2}-1}\right\}
$$

of equation (9), Appendix B, will have a large number of waves making approximate integrations involving this function difficult. Similar remarks apply to large values of the frequency parameter v. However, larger numbers of lift and downwash points and of integration points may be used for extreme values of M and ν to offset this, and this is discussed below.

In any particular case, the values of m and n, and consequently the number of lift and downwash points, are chosen with regard to the complexity of the modes for which the generalised forces are ultimately needed. These should be chosen in such a way that the deflection can be adequately represented by an. ($m-1$)th degree polynomial, in the chordwise co-ordinate and an ($n-1$)th degree polynomial in the spanwise co-ordinate. However, even for rigid-body motions of any particular wing there are minimum values of m and n below which reasonable answers could not be expected. In addition, a higher value of m should be chosen when the Mach number is close to unity. The choice of p and q,
which determines the number of integration points, will depend on M and v; a higher value of p should be taken for M near unity or for large v. The value of q should be higher if there are any kinks in the planform or if the Mach number is close to one; in the latter case the integration areas of Fig. 5 extend further in the spanwise direction. In addition, the number of points chosen will depend on the aspect ratio of the wing under consideration. For low aspect ratio wings, for example, more chordwise lift and downwash points (as well as integration points) than spanwise points will be needed.

The foregoing remarks on the numbers of points to be taken, and on limitations, are of a general character and should be taken as an overall guide if related to any particular problem.

The time taken by programmes 178 A etc. varies approximately linearly with

$$
m p q \times \text { integral part of } \frac{1}{2}(n+1) \text {. }
$$

Since there is also some variation in time taken with Mach number and frequency parameter, and also from planform to planform, it is only possible to predict times to within rather broad limits. Examples of times which have been taken using programmes 178 A and 179 A are given in the following table.

m	n	p	q	Mach No.	ν	Planform	Time
2	7	3	7	1.25	0.3	Delta wing	18 min
3	7	3	7	1.25	0.3	>aspect	25 "
3	7	5	7	1.25	0.3	Pratio 1.456	38
3	7	3	9	1.25	0.25	Swept wing, aspect ratio 2, 60°	30
3	7	3	7	1.12	0.25	>leading edge sweep, 27°	32
3	7	3	7	1.80	0.25	\int trailing edge sweop	15
3	7	3	7	1.054	0.25	Cropped delta wing, aspect ratio	37
3	7	3	7	1.41	0.25	3, leading edge sweep, 49°	17
3	7	3	7	1.01	0.15	Delta wing, aspect ratio 1.5	102 "
5	8	5	8	2.0	2.4	Ogive wing, aspect ratio 0.87	

Times for programmes 180A etc. should be little different. The considerable effect of Mach number on the computing time, which is exemplified above for the cropped delta wing of aspect ratio 3 , should be noted; the reason for this variation is that for M close to unity the limits $(X-M R) /\left(\beta^{2}|Y|\right)$ and
$(X+M R) /\left(\beta^{2}|Y|\right)$ will be large in modulus, and the integrals of (9), Appendix B will take longer to evaluate.

The times taken for programmes $178 \mathrm{~A} / 1 \mathrm{etc}$., which operate for zero frequency parameter, will be very much less than these times since the function $K(X, Y)$ of (9) takes the particularly simple form $2 X / R$ instead of having to be found by numerical integration.

Programme 183A, and its derivatives, which find the generalised forces are straightforward and quick. It is not wor thwhile to discuss them in any detail here.

4.2 Data input and output

The data input and output for the individual programes is given in detail in Appendix A.

For the programmes RAE 178A etc. which perform the first part of the calculation, this consists of basic data specifying the planform followed by data needed for the numerical work, consisting of the chordwise and spanwise positions of the lift and downwash points and matrices connected with the interpolation functions used and integration points. This latter numerical data depends only on the wing leading and trailing edge conditions, and is in the form of standard input tapes; these vary with the number of points taken for the various stages of the calculation (that is with choice of m, n, p and q) and values are given in Appendix D. The standard tapes containing this data are kept along with the programmes.

The output data from these programmes is suitable for input to the generalised forces programme 183A (or one of its variants). Additional data, giving information about the polynomial distortion modes for which generalised forces are required, have also to be provided.

The output of programme 183A is the matrix of generalised forces, the real part being divided by the aspect ratio and the imaginary part by (aspect ratio) x (frequency parameter). This form is chosen since, if simple pitching and heaving modes only are being considered, the data output gives, with a change of sign, the aerodynamic derivatives for these modes.

5 DISCUSSION

The Mercury programmes described in this Report have been used in aerodynamic derivative calculations on a number of wings. . Results have been presented in Ref. 2 for an ogee wing, a symmetrical tapered wing and a delta wing and comparisons made with other theoretical and experjmputali resul.ts. Further calculations
are being made on a series of cropped delta and swept wings which are being used in an extensive programme of theoretical and experimental work. The results of these calculations are to be given in a separate Report. In view of this, the reader is referred to these separate sources for examples of the results which have been obtained, and of the good agreement which has been obtained both with experiment and with other theory.

6 CONCLUSIONS

Mercury Autocode programmes have been developed which calculate generalised forces on wings osoillating in supersonic flow. A fairly general specification of planform and, of leading and trailing edge conditions is allowed for by means of separate programmes.

Appendix A
 DATA INPUT AND OUTPUT FOR THE PROGRAMMES
 (see section 2)

INDEX

Page

A. 1 Input for programmes 178A, 180A, 181A and 182A 15
A. 2 Input for programmes 179A, 258A 18
A. 3 Input for programmes $178 \mathrm{~A} / 1,179 \mathrm{~A} / 1,180 \mathrm{~A} / 1,181 \mathrm{~A} / 1,182 \mathrm{~A} / 1,258 \mathrm{~A} / 119$
A. 4 Input for programmes $178 \mathrm{~A} / 2,180 \mathrm{~A} / 2,181 \mathrm{~A} / 2,182 \mathrm{~A} / 2$
A. 5 Output from programmes 178A, 179A, 180A, 181A, 182A, 258A, 178A/2,
$180 \mathrm{~A} / 2,181 \mathrm{~A} / 2$ and $182 \mathrm{~A} / 2$
A. $6 \underset{ }{\text { Output from programmes } 178 \mathrm{~A} / 1,179 \mathrm{~A} / 1,180 \mathrm{~A} / 1,181 \mathrm{~A} / 1,182 \mathrm{~A} / 1 \text {, } 23}$
A. 7 Input for programmes 183A, 183A/1 and 183A/2 23
A. 8 Output from, programmes 183A, 183A/1 and 183A/2 25

For all programmes described in this Appendix, standard data tapes are available containing numerical data necessary for the calculations. This is as follows:
(a) For programmes 178A, 179A, 180A, 181A, 182A, 258A etc., tapes cortaining n, G and q, P.
(b) For programmes 178A, 179A, 181A etc., tapes containing m, H, $\bar{\xi}_{1} \ldots \bar{\xi}_{m}$.
(o) For programme 180A etc., tapes containing m, H.
(d) For programme 182 A etc., tapes containing $m, H, \bar{\xi}_{1} \ldots \bar{\xi}_{m}$ (for subsonic leading edge, supersonic trailing edge), H (for subsonic leading edge, subsonio trailing edge).
(e) For programme 258A etc., tapes containing m, H, $\bar{\xi}_{1} \ldots . \bar{\xi}_{m}$ (for subsonic leading edge, supersonic trailing edge), $H, \bar{\xi}_{\mathrm{j}} \ldots \ldots \bar{\xi}_{\mathrm{m}}$ (for supersonic leading edge, supersonic trailing edge).
A. 1 Input for programmes 178A, 180A, 181A and 182A

These programmes all deal with the 'segmented' planform of Fig.1, for different leading and trailing edge conditions. Data are provided as follows: RAE 178A Multhopp-Richardson: segmented planform, subsonic leading edge, supersonic trailing edge

Segmented planform data (see below)

First set of $\begin{aligned} & \text { values of } \\ & (p, q)\end{aligned}\left\{\begin{array}{l}N_{2} \\ p_{1} \\ q_{1} \\ P_{1}\end{array}\right.$
N_{3}
$\nu_{1}, \ldots, \nu_{N_{3}}$
number of variations of Mach number, m and n

Mach number
number of chordwise lift and dewnwash stations
$m_{1} \times m_{1}$ matrix of coefficients in chordwise interpolation functions relevant to the leading and trailing edge conditions, defined in Appendix B following (22)
the m_{1} chordwise downwash points relevant to the leading and trailing edge conditions
number of spanwise lift and downwash stations
$n_{1} \times n_{1}$ matrix of coefficients in spanwise interpolation functions, defined in Appendix B following (22)
number of variations of p and q
number of chordwise integration stations number of spanwise integration stations $q_{4} \times q_{1}$ matrix of coefficients in spanwise integration functions, defined in Appendix B following (14)
number of variations of frequency parameter
N_{3} values of frequency parameter

Second set
of values
of ($M, m, n)$

etc. etc.\end{array} \quad\right.\) Defined above

RAE 180A Multhopp-Richardson: segmented planform, subsonio edges
Segmented planform data (see below)

$$
\begin{aligned}
& N_{1} \\
& M_{1} m_{1} H_{1} n_{1} G_{1} \\
& N_{2} \\
& p_{1} q_{1} P_{1} \\
& N_{3} \\
& \nu_{1} \ldots v_{N_{3}} \\
& \text { etc. etc. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { As defined for } 178 \mathrm{~A} \text { (note that } \\
& \bar{\xi}_{1} \ldots \bar{\xi}_{\mathrm{m}} \text { are not required) }
\end{aligned}
$$

RAE 181A Multhopp-Richardson: segmented planform, supersonic edges
Segmented planform data (see below)
\(\left.\begin{array}{l}N_{1}

M_{1} m_{1} H_{1}\left(\bar{\xi}_{1} ··· \overline{\bar{E}}_{m_{1}}\right) n_{1} G_{1}

N_{2}

p_{1}\end{array}\right\}\)| |
| :---: |
| as defined for 178A |

$\zeta_{1} \ldots \zeta_{p_{1}} \quad \begin{aligned} & p_{1} \text { Gauss zeros for interval }(-1,1) \\ & \text { relevant to a singularity } 1 / \sqrt{ }\left(1-\zeta_{2}\right)\end{aligned}$
$w_{1}, \cdots, w_{p_{1}}$ mixed trailing edge
$n_{1} G_{1}$
N_{2}
$p_{1} q_{1} P_{1}$
N_{3}
$\nu_{1} \ldots \nu_{N_{3}}$
etc. etc.

Segmented planform data
$\left.\begin{array}{l}\begin{array}{l}q_{1} P_{1} \\ \mathrm{~N}_{3} \\ \nu_{1} \\ \text { etc. } \ldots \nu_{N_{3}}\end{array} \\ \text { etc. }\end{array}\right\}$ as defined for 178A

RAE 182A Multhopp-Richardson: segmented planform, subsonic leading edge.

Segmented planform ata (see below); note that number of segments can only be 2 or 3

$\bar{H}_{1} \quad$ relevant to subsonic leading edge, subsonic trailing edge; compare with 180A
p_{1} weights, related to Gauss weights by $w_{i}=W_{i} / k\left(\zeta_{i}\right)$, with W_{i} and $k\left(\zeta_{i}\right)$ defined in Appendix B, equation (12) and adjaoent text.
$\left.\begin{array}{ll}n_{1} G_{1} \\ N_{2} \\ p_{1} q_{1} P_{1} \\ N_{3} \\ \nu_{1} \ldots v_{N_{3}} \\ \text { etc. etc. }\end{array}\right\}$ as defined for 178A

For the above four programmes, basic planform data relevant to the 'segmented' planform of Fig. 1 must be provided. This consists of
d
root chord/mean chord
n
number of segments making up half wing ($n=1,2,3$)

A. 2 Input for programmes 179A and 258A

These programmes deal with planformshaving curved leading edges, as shown in Fig. 3. Data is provided as follows.

RAE 179 A Multhopp-Richardson, curved subsonic leading edge, straight supersonic trailing edge

Curved planform data (see below)

RAE 258A Multhopp-Richardson, curved mixed leading edge, straight supersonic trailing edge

Curved planform data

The planform, of the type shown in Fig. 3, has its leading edge specified for $Y \geqslant 0$ by

$$
Y=S\left(a_{1} X+a_{2} X^{2}+\ldots .+a_{N} x^{N}\right)
$$

X and Y here being based on the root chord, and the leading edge for $Y<0$ defined by symmetry. The equation of the trailing edge is

$$
X-1=Y \tan \Lambda
$$

The 'curved planform' data are then as follows:

N	degree of polynomial
$a_{1} \cdots a_{N}$	coefficients
$\tan \Lambda$	tangent of trailing edge sweepback
S	semi-span/root chord

A. 3 Input for programmes $178 \mathrm{~A} / 1,179 \mathrm{~A} / 1,180 \mathrm{~A} / 1,181 \mathrm{~A} / 1,182 \mathrm{~A} / 1$ and $258 \mathrm{~A} / 1$

These are the versions of 178A, 179A, 180A, 181A, 182A and 258A which deal with zero frequency parameter. The input data are the same as the input data specified for the corresponding programes in A. 1 and A. 2 above, except that the parameters N_{3} and $\nu_{1} \ldots \nu_{N_{3}}$ are omitted.

A. 4 Input for prograrmes $178 \mathrm{~A} / 2,180 \mathrm{~A} / 2,181 \mathrm{~A} / 2,182 \mathrm{~A} / 2$

These programmes, namely
RAE 178A/2 Multhopp-Richardson; subsonic leading edge, supersonic trailing edge RAE 180A/2 Multhopp-Richardson; subsonic edges
RAE 181A/2 Multhopp-Richardson; supersonic edges
RAE 182A/2 Multhopp-Richardson; subsonic leading edge, mixed trailing edge
are the versions of 178A, 180A, 181A and 182A which take account of any planform, providing certain planform data are provided. The input data for these programmes are as follows.

RAE 178A/2 Multhopp-Richardson: subsonic leading edge, supersonic trailing edge
$m_{1} H_{1}\left(\bar{\xi}_{1} \ldots \bar{\xi}_{m_{1}}\right)$
$n_{1} G_{1}$
$p_{1} q_{1} P_{1}$
M_{1}
ν
Planform data
defined in A. 1 above for 178A

Mach number
frequency parameter
(see below)

RAE 180A/2 Multhopp-Richardson: subsonic edges
$m_{1} H_{1}$
$n_{1} G_{1}$
$p_{1} q_{1} P_{1}$
M_{1}
ν
Planform data
defined in A. 1 above for 180 A
Mach number
frequency parameter
Planform data
(see below)
RAE $181 \mathrm{~A} / 2$ Multhopp-Richardson: supersonic edges

RAE 182A/2 Multhopp-Richardson: subsonic leading edge, mixed trailing edge $m_{1} H_{1}\left(\bar{\xi}_{1} \ldots \bar{\xi}_{m_{1}}\right) \bar{H}_{1}$
$n_{1} G_{1}$
$p_{1} q_{1} P_{1}$

M_{1}	Mach number
ν	frequency parameter
$\bar{\eta}$	value of η at which trailing edge
	discontinuity occurs
Planform data	(see below)

Planform data

For the above four programmes, certain planform data must be provided, consisting of:
d

8

$$
c_{1} \ldots c_{t}
$$

$\eta_{1}^{(1)} \ldots \eta_{1}^{(r)}$

ξ
$\overline{\mathrm{x}}$
root chord/mean chord
semi-span/mean chord

$x_{\text {lif } t}^{(1)}$	$x_{\text {downwash }}^{(1)}$	$y^{(1)}$	$3 r=3 m\left[\frac{1}{2} n+\frac{1}{2}\right]$ values of co-ordinates x and y (referred to mean chord as reference length) at the r lift and
$\begin{gathered} (r) \\ x_{\text {lift }} \end{gathered}$	$x_{\text {downwash }}^{(r)}$	$y^{(r)}$	downwash points, starting at point furthest upstream on centre line section, and ending at point fur thest downstream on extreme starboard section
$c_{1} \ldots c_{t}$			$t=\left[\frac{1}{2} n+\frac{1}{2}\right]$ velues of (chord/mean chord), starting at centre line section (or starboard section nearest it)

$\left\{\begin{array}{l}r \text { values of } \eta_{1} \text { and } \eta_{2}, \text { as defined in } \\ \text { Appendix } B, \text { following (9), } r \text { being } \\ \text { defined above }\end{array}\right.$
$r \times q$ matrix of values of ξ at intersections of spanwise integration stations with reversed Mach lines through downwash points
$r p \times q$ matrix of values of \bar{X}
$=x_{\text {downwash }}-x_{\text {integration }}$ for each of the s downwash points there being a $p \times q$ matrix of $\bar{X}^{\prime} s$.

It should be noted that the above programmes do not allow for repeats for variations of any of the quantities for which repeats are allowed in 178A, 180A, 1.81A, 182A, namely ($\left.H_{1}, m_{1}, n_{1}\right),\left(p_{1}, q_{1}\right)$ and ν_{0}
A. 5 Output from 178A, 179A, 180A. 181A, 182A, 258A, 178A/2, 180A/2, 181A/2 and 182A/2

The output from these programmes is:

A. 6 Data output from 178A/1, 179A/1, 180A/1, 181A/1, 182A/1, 258A/1

Output from these programmes is the same as that output from RAE 178A etc. described in section A. 5 above, except that the values of N_{3}, ν, B and M (all of which are zero in the steady case to which the se programmes apply) do not appear.

A. 7 Data input for 183A, 183A/1 and $183 \mathrm{~A} / 2$

The programme evaluates generalised forces for modes Z_{i}, based on mean chord, which are expressible as polynomials in the chordwise and spanwise coordinates. Taking η (which is ± 1 at the port and starboard tips) as the spanwise co-ordinate, the polynomials are defined as follows
(i) Symmetric distortions
(ia) Purely chordwise distortions are defined by polynomials

$$
a_{0}+a_{1} x+\ldots+a_{r} x^{r} \quad(r \leqslant 19)
$$

(ib) Purely spanwise distortions are defined by polynomials

$$
b_{0}+b_{1} \eta^{2}+\ldots+b_{s} \eta^{2 s}
$$

(ic) Distortions having both a spanwise and chordwise element are defined by polynomials

$$
\begin{gather*}
c_{00}+c_{01} x+\cdots+c_{0 t} x^{t} \\
+c_{10} \eta^{2}+c_{11} \eta^{2} x+\cdots+c_{1 t} \eta^{2} x^{t} \\
\vdots \\
+c_{t 0} \eta^{2 t}+c_{t 1} \eta^{2 t} x+\cdots+c_{t t} \eta^{2 t} x^{t}
\end{gather*}
$$

(ii) Antisymmetric distortions

(iia) Purely spanwise distortions are defined by polynomials

$$
d_{0} \eta+\cdots+d_{u} \eta^{2 u+1}
$$

(iib) Distortions having both a chordwise and spanwise component are defined by polynomials

24

$$
\begin{gathered}
e_{00} \eta^{i}+e_{01} \eta x+\ldots+e_{0 v} \eta x^{v} \\
+e_{10} \eta^{3}+e_{11} \eta^{3} x+\ldots+e_{1 v} \eta^{3} \cdot x^{v} \\
\vdots \\
+e_{v O} \eta^{2 v+1}+e_{v 1} \eta^{2 v+1} x+\ldots+e_{v v} \eta^{2 v+1} x^{v}
\end{gathered}
$$

The input for the programme is then as follows.
RAE 183A Generalised forces for polynomial modes (and RAE 183A/1, and RAE $183 \mathrm{~A} / 22$
n
Indicator: $n=0$ if symmetric modes only
1 if antisymmetric only
2 if both symmetric and antisymmetric number of symmetric chordwise polynomials (see (ia) above) (do not punch if $n=1$)
maximum degree of these (if $r_{1} \neq 0$ and $n \neq 1$)

s_{1}

28
$\left.\left.\begin{array}{lll}b_{0}^{(1)} & \ldots & b_{s}^{(1)} \\ 0 & \ldots & s_{s} \\ \left(s_{1}\right) & \ddots & \left(s_{1}\right) \\ b_{0} & \ldots & b_{s}\end{array}\right\} \begin{array}{lll}s_{1} & (s+1) \text { coefficients }\end{array}\right\}$
t_{1}
t
number of symmetric spanwise polynomials (see (ib) above) (do not punch if $n=1$) maximum degree of these (if $s_{1} \neq 0$ and $n \neq 1$)
number of symratric double polynomials (see (ic)
above) (d.o not punch if $n=1$)
maximum degree of these (if $t_{1} \neq 0$ and $n \neq 1$)

followed by data output from the appropriate programme, namely
for 183 A the output from 178A, 179A, 180A, 181A, 182A and 258A described in A. 5 above
for $183 \mathrm{~A} / 1$ the output from $178 \mathrm{~A} / 1,179 \mathrm{~A} / 1,180 \mathrm{~A} / 1,181 \mathrm{~A} / 1,182 \mathrm{~A} / 1$ and $258 \mathrm{~A} / 1$ described in A. 6 above
for $183 \mathrm{~A} / 2$ the output from $178 \mathrm{~A} / 2,180 \mathrm{~A} / 2,181 \mathrm{~A} / 2,182 \mathrm{~A} / 2$ described in A .5 above.
A. 8 Data output from programmes 183A. 183A/1 and 183A/2

The data output from 183 A is as follows

RAE 183A Generalised forces for polynomial modes

M_{1}	Mach number
m_{1}	number of chordwise lift and downwash stations
n_{1}	number of spanwise lift and downwash stations
p_{1}	number of chordwise integration stations

q \quad number of spanwise integration stations
ν_{1}
$\mathrm{E}_{1}, \mathrm{~F}_{1}$
G_{1}, H_{1}
first value of frequency parameter
two $\left(r_{1}+s_{1}+t_{1}\right)$ square
matrices of symmetric general-
ised forces (E real, F
imaginary)
\(\left.\begin{array}{l}two\left(u_{1}+v_{1}\right) square matrices

of antisymmetric generalised

forces\end{array}\right\}\)| $r_{1}, s_{1}, t_{1}, u_{1}$ and v_{1} are as de- |
| :--- |
| fined in input for 183 A in |
| section A. 7 |
| $-2 s\left(E_{1}+i \nu F_{1}\right)=Q$ symmetric |
| $-2 s\left(G_{1}+i \nu H_{1}\right)=Q$ antisymmetric |
| where Q is defined in equation |
| (20) of Appendix B |

ν_{2} etc. eto.
Output from RAE 183A/1 differs only in that
(i) the frequency parameter is not punched, being zero, and there are no repeats for different frequency parameters,
(ii) F_{1} and H_{1} are not printed since $\nu=0$.

Output from RAE 183A/2 differs in that there are no repeats of (M, m, n),
(p, q) or ν.

Appendix B

SUMMARY OF METHOD

(see section 3)

The detail of the method is given in a separate report ${ }^{2}$. A sumary, together with the main results, is given here for completeness and to enable the main steps in the programmes to be followed.

Wing co-ordinates ξ and η are chosen so that

$$
\left.\begin{array}{rl}
x-x_{\text {mid chord }} & =\frac{1}{2} \xi c(\eta) \tag{4}\\
s \eta & =y
\end{array}\right\}
$$

where $\bar{c} c(\eta)=$ local chord, $\overline{s c}=$ semi-span and (x, y) are co-ordinates based on the wing mean chord $\overline{0}$ as reference length. Two sets of mn points are taken over the wing; one of points $\left(\xi_{a}, \eta_{\beta}\right)$ at which the lift is evaluated and one of points $\left(\bar{\xi}_{r}, \eta_{s}\right)$ at which downwash values are taken. According to local leading and trailing edge conditions, a function

$$
f(\xi)=\left\{\begin{array}{cc}
\sqrt{\left(\frac{1-\xi}{1+\xi}\right)} \text { (subsonic leading edge, subsonic trailing edge } \tag{5}\\
\frac{1-\xi)}{\sqrt{(1+\xi)}} \text { (subsonic leading edge, supersonic trailing edge) } \\
\sqrt{(1-\xi)} & \text { (supersonic leading edge, subsonic trailing edge) } \\
1 & \text { (supersonic leading and trailing edges) }
\end{array}\right\}
$$

is defined which takes into account the singularity which occurs in the chordwise lift distribution. Then the m points $\xi_{a}\left(a=1, \ldots,{ }^{\prime} \cdot m\right)$ are chosen to be the zeros of the m'th degree polynomial of the set orthogonal with respect to the weight function $f(\xi)$ over $(-1,1)$; the $\vec{\xi}_{r}$ are similarly chosen with weight function $f(-\xi)$. The n points η_{S} are chosen to be the zeros of the n 'th degree polynomial of the set orthogonal with respect to the weight function $\sqrt{ }\left(1-\eta^{2}\right)$ over $(-1,1)$. Lift and downwash points for $m=2, n=7$ are shown for a delta wing with subsonic leading edge in Fig. 6 .

These points being chosen, interpolation functions $h_{a}(\xi)$ and $g_{\beta}(\eta)$ are defined, having the form

$$
h_{\alpha}(\xi)=(\text { polynomial of degree }(m-1) \text { in } \xi) f(\xi)
$$

and

$$
\left.g_{\beta}(\eta)=\text { (polynomial of degree }(n-1) \text { in } \eta\right) \sqrt{\left(1-\eta^{2}\right)}
$$

with the properties

$$
\left.\begin{array}{l}
h_{\alpha}\left(\xi_{\gamma}\right)=\delta_{\alpha \gamma} \tag{6}\\
g_{\beta}\left(\eta_{\gamma}\right)=\delta_{\beta \gamma}
\end{array}\right\}
$$

$\delta_{\beta \gamma}$ being the Kronecker delta. We also define

$$
\begin{equation*}
H_{\alpha}=\frac{1}{2} \int_{-1}^{1} h_{a}(\xi) d \xi, \quad G_{\beta}=\frac{1}{2} \int_{-1}^{1} g_{\beta}(\eta) d \eta \tag{7}
\end{equation*}
$$

The integral equation connecting reduced lift $\ell\left(\xi, \eta_{1}\right)$ and downwash $w(\xi, \eta)$ on a wing oscillating harmonically with frequency parameter ν in an airstream of speed V is
$w\left(\xi^{\prime}, \eta^{\prime}\right)=\frac{-1}{8 \pi s} \int_{\eta_{1}\left(\xi^{\prime}, \eta^{\prime}\right)} \frac{c(\eta) d \eta}{\left(\eta^{\prime}-\eta\right)^{2}} \int_{-1}^{\xi_{M}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)} \eta^{\prime} K\left(x^{\prime}-x, y^{\prime}-y\right) \ell(\xi, \eta) d \eta$
where
$K(X, Y)=\left\{\begin{array}{ll}\left\{\frac{2 X}{R} \exp \left\{\frac{-i \nu M^{2} X}{\beta^{2}}\right\} \operatorname{oos}\left\{\frac{M R \nu}{\beta^{2}}\right\}+i \nu|Y| e^{-i \nu X} \int_{(X-M R) /\left(\beta^{2}|Y|\right)}^{\left(\beta^{2}|Y|\right)} \frac{\tau}{1+\tau^{2}} e^{-i \nu \tau|Y|} d \tau\right. \\ 2 e^{-i \nu X} & \text { if } X>\beta|Y| \text { and } Y \neq 0 \\ 0 & \text { if } X>\beta|Y| \text { and } Y=0\end{array}\right\}$
(9)
and $R=\sqrt{ }\left(X^{2}-\beta^{2} Y^{2}\right), \beta^{2}=M^{2}-1$. $K(X, Y)$ takes the particularly simple form $2 x / R$ if $\nu=0$. Further, $\xi_{M}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)=\min \left\{\xi_{q}\left(\xi^{\prime}, \eta^{\prime}, \eta\right), 1\right\}$ and $\xi=\xi_{1}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$ is the equation of the reversed Mach lines through the point (x^{\prime}, y^{\prime}); these cut the wing leading edges (or tips) where $\eta=\eta_{1}\left(\xi^{\prime}, \eta^{\prime}\right)$ and $\eta=\eta_{2}\left(\xi^{\prime}, \eta^{\prime}\right)$. The region of integration in (8) is shown in Fig. 5: If the lift is approximated by $\bar{\ell}(\xi, \eta)$, where

$$
\begin{equation*}
o(\eta) \bar{\ell}(\xi, \eta)=\sum_{a=1}^{m} \sum_{\beta=1}^{n} P_{\alpha \beta} \frac{h_{\alpha}(\xi) g_{\beta}(\eta)}{H_{a} G_{\beta}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\alpha \beta}=H_{\alpha} G_{\beta} o\left(\eta_{\beta}\right) \ell\left(\xi_{\alpha}, \eta_{\beta}\right) \tag{11}
\end{equation*}
$$

the integrations in (8) may be performed approximately.
To perform the chordwise integration a variable ζ such that $\zeta=-1$ at the leading edge and $\zeta=1$ at $\xi=\xi_{M}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$ is taken. The singularity in the chordwise integration of (8) can be represented by a function

$$
\begin{equation*}
k(\zeta)=\sqrt{\left(\frac{1-\zeta}{1+\zeta}\right)}, \frac{1}{\sqrt{(1-\zeta})}, \quad \frac{1}{\sqrt{(1-\zeta)}} \tag{12}
\end{equation*}
$$

which depends on the singularity in the integrand arising from the singularity in K at the Mach line and the singularity in $h_{\alpha}(\xi)$ at the leading edge (and
trailing edge, if relevant), Other possible forms of $k(\zeta)$, which do not arise in the programmes considered here, are given in Refs. 1 and 2. The chordwise integration of (8) can then be carried out by a p-point Gauss-type integration formula, the integrand being evaluated at p points $\zeta_{\lambda}(\lambda=1, \ldots, p)$ and multiplied by weights $W_{\lambda} / k\left(\zeta_{\lambda}\right)$ (W_{λ} being the relevant Gauss weight).

For the spanwise part of the integration in (8) a variable ϕ, such that $\phi=(-1,1)$ corresponds to $\eta=\left(\eta_{1}, \eta_{2}\right)$, is defined; q points $\phi_{\gamma}(\gamma=1, \ldots, q)$ in ($-1,1$) are chosen to be the q zeros of the q th degree Chebyshev polynomial. Interpolation polynomials $p_{\gamma}(\phi)(\gamma=1, \ldots, q)$ of degree $(q-1)$ are defined so that

$$
\begin{equation*}
p_{\gamma}\left(\phi_{a}\right)=\delta_{\gamma a} . \tag{13}
\end{equation*}
$$

Then a suitable integration formula for any function $U(\eta)$ is

where $2 \bar{\eta}_{r}=\left(\eta_{2}-\eta_{1}\right) \phi_{r}+\eta_{1}+\eta_{2}$, and P is the ($q \times q$) matrix of coefficients of the polynomials $p_{1}(\phi), \ldots, p_{q}(\phi)$. The integrals on the right of (14) are easy to evaluate exactly.

Carrying out the chordwise and spanwise integrations of (8) gives the equation

$$
\begin{equation*}
-8 \pi s w\left(\bar{\xi}_{r}, \eta_{s}\right)=\sum_{\alpha=1}^{m} \sum_{\beta=1}^{n} P_{\alpha \beta} c_{\alpha \beta}\left(\bar{\xi}_{r}, \eta_{s}\right) \tag{15}
\end{equation*}
$$

for the downwash at any point $\left(\bar{\xi}_{r}, \eta_{s}\right)$. Here

$$
\begin{aligned}
& c_{\alpha \beta}\left(\bar{\xi}_{r}, \eta_{s}\right) \\
& =\frac{1}{G_{\beta}\left(\eta_{2}\left(\bar{\xi}_{r}, \eta_{s}\right)-\eta_{1}\left(\bar{\xi}_{r}, \eta_{s}\right)\right)} \sum_{\gamma=1}^{q} \sum_{\lambda=1}^{p} \frac{g_{\beta}\left(\eta_{r s, r}\right) W_{\lambda}\left\{1+\xi_{M}\left(\bar{\xi}_{r}, \eta_{s}, \eta_{r s}, \gamma\right)\right\} h_{a}\left(\xi_{r s, \lambda r}\right)}{H_{\alpha} k\left(\xi_{\lambda}\right)} \times \\
& \times K\left(x_{r s}-x_{r s, \lambda r^{\prime}} y_{s}-y_{r s, r}\right) \int_{-1}^{1} \frac{p_{r}(\phi) d \phi}{\left(\phi-\phi_{r s}\right)^{2}}
\end{aligned}
$$

$$
\begin{align*}
& \left.x\left(\eta-\eta_{r s, r}\right)^{2} \log \left|\eta-\eta_{r s, r}\right| \int_{-1}^{1} \frac{p_{\gamma}(\phi) d \phi}{\left(\phi-\phi_{r s}\right)^{2}}\right\} \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
L_{\alpha}\left(\bar{\xi}_{r}, \eta_{s}\right)= & \frac{4 s^{2}}{H_{a}\left\{c\left(\eta_{s}\right)\right\}^{2}}\left\{\frac{1}{2} i\left(M^{2}+1\right) v o\left(\eta_{s}\right) h_{a}\left(\bar{\xi}_{r}\right)+\left(M^{2}-1\right) h_{a}^{\prime}\left(\bar{\xi}_{r}\right)\right. \\
& \left.+\frac{1}{4} \nu^{2}\left\{o\left(\eta_{s}\right)\right\}^{2} \int_{-1}^{\bar{\xi}_{r}} \exp \left\{-\frac{1}{2} i v c\left(\eta_{s}\right)\left(\bar{\xi}_{r}-\xi^{\prime}\right)\right\} h_{\alpha}(\xi) d \xi\right\} \tag{17}
\end{align*}
$$

The immediate substitution of (10) and (11) in (8), and the approximate evaluation of the chordwise and spanwise integrals is not the only step taken to reach equation (15). Allowance is made for a logarithmic singularity which arises from the chordwise integration, and this gives rise to those terms of (16) which involve $L_{a}\left(\bar{\xi}_{r}, \eta_{s}\right)$. It will be noted that the right hand side of (16) entails the evaluation of the function $K(X, Y)$, as well as some of the other quantities, at a set of $p q$ integration points. These points are shown for a particular case with $p=3$ and $q=7$ in Fig. 7.

Since any problem may be considered as the sum of a symmetric and an antisymmetric problem, the downwash need only be evaluated at points on the starboard half wing. The set of equations which is given by taking (15) for all the downwash points may be written as a matrix equation

$$
-8 \pi \mathrm{sW}=\mathrm{CP}=\left(\begin{array}{lll}
\mathrm{C}_{0-} & \mathrm{C}_{00} & C_{0+} \tag{18}\\
\mathrm{C}_{+-} & C_{+0} & C_{++}
\end{array}\right) \mathrm{P}
$$

when n is odd (n can be even, in which case the only matrices appearing in (18) are C_{+-}and C_{++}). Wis a column of $\frac{1}{2} m(n+1)$ downwash values, taken in order from upstream on the centre line to downstream at the extreme starboard station, P a column of $\mathrm{mn} \mathrm{P}_{\alpha \beta}$'s taken in order from upstream at the extreme port to downstream at the extreme starboard section, $C_{+\infty}$ and $C_{++} \operatorname{are} \frac{1}{2} m(n-1)$ square matrices, C_{0-}, C_{0+} and C_{+0}^{\prime} are ($m \times \frac{1}{2} m(n-1)$) matrices, and $C_{o o}$ is ($m \times m$).

Write

$$
(A+i B)^{-1}=c\left(\begin{array}{c}
O \\
I \cdot \\
\cdot \\
0
\end{array}\right)=C J
$$

and
the unit matrices being ($m \times m$). Then the ($j \times j$) matrices Q of generalised force coefficients $Q_{i j}$ corresponding to deflection shapes $Z_{i}(x, y), \ldots, z_{j}(x, y)$ are given by

Here $p V^{2-3} Q_{i j}$ is the generalised force in mode i due to deflection in mode j; al so
and the row matrices $\bar{Z}_{1}, \overline{\bar{Z}}_{1},{\underset{\sim}{Z}}_{1}, \underset{=1}{Z}$ and so on are defined by

$$
\begin{align*}
& \left.\bar{Z}_{1}=\left(\frac{1}{2} Z_{1}\left(\xi_{1}, \eta_{\frac{1}{2}(n+1)}\right), \ldots, \frac{1}{2} Z_{1}\left(\xi_{m}, \eta_{\frac{1}{2}}(n+1)\right), Z_{1}\left(\xi_{1}, \eta_{\frac{1}{2}(n+3)}\right), \ldots, Z_{1}\left(\xi_{m}, \eta_{n}\right)\right)\right) \\
& \bar{E}_{1}=\left(z_{1}\left(\xi_{1}, \eta_{\frac{1}{2}(n+3)}\right), \ldots, Z_{1}\left(\xi_{m}, \eta_{\frac{1}{2}}(n+3)\right), \ldots, z_{1}\left(\xi_{1}, \eta_{n}\right), \ldots, z_{1}\left(\xi_{m}, \eta_{n}\right)\right) \\
& \underline{Z}_{1}=\left(z_{1}\left(\bar{\xi}_{1}, \eta_{\frac{1}{2}(n+1)}\right), \ldots, z_{1}\left(\bar{\xi}_{m}, \eta_{\frac{1}{2}}(n+1)\right), \ldots, z_{1}\left(\bar{\xi}_{1}, \eta_{n}\right), \ldots, z_{1}\left(\bar{\xi}_{m}, \eta_{n}\right)\right) \\
& {\underset{n}{1}}_{Z}=\left(Z_{1}\left(\bar{\xi}_{1}, \frac{\eta_{1}}{2}(n+3)\right), \ldots, Z_{1}\left(\bar{\xi}_{m}, \eta_{\frac{1}{2}}(n+3)\right), \ldots, Z_{1}\left(\bar{\xi}_{1}, \eta_{n}\right), \ldots, Z_{1}\left(\bar{\xi}_{m}, \eta_{n}\right)\right) \tag{21}
\end{align*}
$$

 given by replacing Z_{1} by $\frac{\partial Z_{1}}{d x}$ in the equation defining \underline{Z}_{1} on the right of (21).

In assembling the matrix C of (18) from terms defined in (16) a certain simplification is possible. The terms involving $\delta_{\beta s}$ in (16) being omitted for the moment, the elements of the row of the matrix C which correspond to the downwash point $\left(\vec{\xi}_{r}, \eta_{s}\right)$ are the terms of the matrix

$$
\begin{equation*}
H_{r s} N_{r s} R_{r s} G^{\prime} \tag{22}
\end{equation*}
$$

taken row by row. H and G are matrices whose rows consist of the coefficients in the interpolation functions $h_{\alpha}(\xi) / H_{\alpha}(\alpha=1, \ldots, m)$ and $g_{\beta}(\eta) / G_{\beta}$ ($\beta=1, \ldots, n$) respectively. We also define

$$
R_{r s}=\left(\begin{array}{ccc}
1 n_{r s, 1} & \cdots & n_{r s, 1}^{n-1} \tag{23}\\
& \vdots & \\
& & \\
& & \\
& & \\
& & \\
& & \\
n s, q
\end{array}\right)
$$

where $\bar{K}_{i}^{r s}(i=1, \ldots, m)$ is the $(p \times q)$ matrix in which the element in the $\lambda^{\text {th }}$ row and $\gamma^{\text {th }}$ column is

$$
K\left(x_{r s}-x_{\lambda \gamma}, y_{s}-y_{r s, \gamma}\right) f\left(\xi_{r s}, \lambda_{\gamma}\right)\left(\xi_{r s, \lambda r}\right)^{i-1} .
$$

$N_{r s}$ is the ($q \times q$) diagonal matrix whose $\gamma^{\text {th }}$ diagonal element is

The matrix C.is formed by combining all the terms from matrices such as (22), the terms arising from the logarithmic correction (i.e. those involving $\delta_{\beta s}$ in (16) being added separately.

This procedure - the calculation and formation of the matrices (22) and their combining to form the matrix C of (18) - is in fact the basis of the whole computation.

Appendix C

Work out and punch co-ordinates of the $m\left[\frac{1}{2}(n+1)\right]$ lift and downwash points; find η_{1} and η_{2} for each downash point and the n values of the sectional chord.
Read and punch number of variations of p and q.

Read and punch p, q and read associated data.
Read and punch mumber of variations of ν.

Work out mq $\left[\frac{1}{2}(n+1)\right]$ values of $\eta_{r s}, \gamma, \int_{-1} \frac{p_{p}(\phi)}{\left(\phi-\phi_{r s}\right)^{2}} d \phi$,
$\left[1+\xi_{\mathrm{M}}\left(\bar{\xi}_{\mathrm{r}}, \eta_{\mathrm{s}}, \eta_{r s, \gamma}\right)\right]$ and $\mathrm{y}_{\mathrm{s}}-\mathrm{y}_{\mathrm{rs}, \gamma}$, and find
$\operatorname{mpq}\left[\frac{1}{2}(n+1)\right]$ values of $x_{r s}-x_{r s}, \lambda_{r}$.

Read and punch ν. For each downwash point find pq values of $K\left(x_{r s}-x_{r s, \lambda y}, y_{s}-y_{r s, \gamma}\right)$ and form the matrix $x_{r s} N_{r s} /\left(16 \pi s^{2}\right)$.

For each downwash point form $H M_{r s} N_{r s} R_{r s} G Y /\left(16 \pi s^{2}\right)$ and combine these matrices to form $\bar{C} /\left(16 \mathrm{~ms}^{2}\right)$.

Form correction terms, and add to the appropriate elements of $\bar{c} /\left(16 \pi s^{2}\right)$.

Form the matrices $C J /\left(16 \pi s^{2}\right), \overline{\mathrm{C}} K /\left(16 \pi s^{2}\right)$ and invert to give $16 \pi s^{2}(A+i B), 16 \pi s^{2}(I+i M)$. Punch out $16 \pi s^{2} A,-16 \pi s^{2} B, 16 \pi s^{2} L$ and $-16 \pi s^{2} \mathrm{M}$ 。

Ho
Yes
Have all variations of p and q been dealt with?

Have all variations of Mach number, m and n been dealt with?

C. 2 Logical structure of programme RAR 183A

Appendix D
LIFT AND DOWNWASH POINTS, INTERPOLATION FUNCTIONS
AND INTIEGRATION CONSTANTS
(see section 4.2)
INDEX Page
D. 1 Chordwise interpolation functions and lift and downwash points 38
D.1.1 Subsonic leading and trailing edges 38
D.1.2 Subsonic leading edge, supersonic trailing edge 43
D.1.3 Supersonic leading edge, supersonic trailing edge 47
D.1.4 Supersonic leading edge, subsonic trailing edge 51
D. 2 Spanwise interpolation functions and lift and downwash points 52
D. 3 Chordwịse integration formulae 53
D. $3.1 \mathrm{k}(\zeta)=\sqrt{ }(1-\zeta) / \sqrt{ }(1+\zeta)$ 54
D. $3.2 \mathrm{k}(\zeta)=1 / v^{r}\left(1-\zeta_{0}^{2}\right)$ 55
D. $3.3 \mathrm{k}(\zeta)=1 / \sqrt{ }(1-\zeta)$ 57
D. 4 Spanwise integration points and interpolation functions 59

D. 1 Chordwise interpolation functions and lift and downwash points

For the various leading and trailing edge conditions, the chordwise lift points $\xi_{1}, \ldots, \xi_{\mathrm{m}}$ are the zeros of the polynomials orthogonal over $(-1,1)$ to the function $f(\xi)$ defined in equation (5) of Appendix B; the downwash points are derived from the polynomials orthogonal to $f(-\xi)$ and so are merely the points $-\xi_{m}, \ldots,-\xi_{1}$. The polynomials $h_{\alpha}(\xi)$ such that

$$
h_{a}\left(\xi_{\gamma}\right)=\delta_{a r}
$$

can then be computed; so also can

$$
H_{1}=\frac{1}{2} \int_{-1}^{1} h_{\sigma}(\xi) d \xi
$$

and hence the coefficients of the matrix H of Appendix B are given.

D.1.1 Subsonic leading and trailing edges

$$
\frac{\sin \left[\left(m+\frac{1}{2}\right) \cos ^{-1} \xi\right]}{\sqrt{(1-\xi})}
$$

and the zeros of this, which are the lif't points, are

$$
\xi_{a}=\cos \frac{2 \pi(m-a+1)}{2 m+1} \quad \quad(a=1, \ldots, m)
$$

Also (see, e.g., Ref.1)

$$
H_{a}=\frac{\pi}{2 \pi+1} \sqrt{\left(1-\xi_{a}^{2}\right)} .
$$

For $m=2, \ldots, 10$ the ξ_{α} and matrix H are given below.
$\underline{m}=2$
$\begin{aligned} & \xi_{1}=-0.809017 \\ & \xi_{2}=0.309017\end{aligned} \quad H=\left(\begin{array}{rr}0.243167 & -0.786905 \\ 1.666692 & 2.060145\end{array}\right)$
$m=3$

$$
\begin{aligned}
& \xi_{1}=-0.900969 \\
& \xi_{2}=-0.222521 \\
& \xi_{3}=0.623490
\end{aligned} \quad \mathrm{H}=\left(\begin{array}{rrr}
-0.157232 & -0.454414 & 1.133290 \\
1.783769 & -0.881109 & -3.175408 \\
0.919942 & 5.155242 & 4.588597
\end{array}\right)
$$

$m=4$

$$
\begin{aligned}
& \xi_{1}=-0.939693 \\
& \xi_{2}=-0.500000 \\
& \xi_{3}=0.173648 \\
& \xi_{4}=0.766044
\end{aligned}
$$

$$
H=\left(\begin{array}{rrcr}
-0.117643 & 0.595763 & 0.777713 & -1.768766 \\
0.636620 & -3.819719 & 0 & 5.092958 \\
2.808432 & 4.939387 & -5.256386 & -7.802865 \\
-0.780930 & 2.104287 & 12.118110 & 9.571631
\end{array}\right)
$$

$m=5$
$\underline{m}=6$
$\xi_{1}=-0.970942$
$\xi_{4}=0.120537$
$\xi_{2}=-0.748511$
$5=0.568065$
$\xi_{3}=-0.354605$
$\xi_{6}=0.885456$
$\mathrm{H}=\left(\begin{array}{rrrrrr}0.079033 & -0.555593 & -1.324561 & 3.893245 & 2.312845 & -4.911107 \\ -0.301597 & 2.212510 & 4.282441 & -15.372381 & -3.590459 & 14.447903 \\ 1.019843 & -8.995055 & 0.890186 & 30.124607 & -3.365175 & -23.145040 \\ 3.953293 & 9.077668 & -19.568599 & -35.840237 & 18.924552 & 30.497072 \\ -0.992314 & 4.207053 & 31.221484 & 23.207077 & -38.532277 & -36.076724 \\ 0.698082 & -3.400104 & -20.593911 & -0.919353 & 54.808264 & 39.559729\end{array}\right)$

$$
\begin{aligned}
& \begin{array}{l}
\xi_{1}=-0.959493 \\
\xi_{4}=0.415415
\end{array} \\
& \begin{array}{l}
\xi_{2}=-0.654861 \\
\xi_{5}=0.841254
\end{array} \\
& \xi_{3}=-0.142315 \\
& H=\left(\begin{array}{rrrrr}
0.094425 & 0.468140 & -1.621007 & -1.332168 & 2.899213 \\
-0.403844 & -1.806376 & 7.604538 & 1.310550 & -8.462765 \\
2.929401 & -3.007541 & -14.019808 & 4.771775 & 13.340713 \\
1.289214 & 10.838716 & 10.620734 & -15.688269 & -17.137876 \\
-0.726098 & -5.219700 & 2.508502 & 26.216988 & 19.546631
\end{array}\right)
\end{aligned}
$$

D.1.2 Subsonic leading edge, supersonic trailing edge

Here are required the polynomials orthogonal to $1 / \sqrt{ }(1+\xi)$ over $(-1,1)$. Mineur ${ }^{4}$ (page 286) shows that the polynomials orthogonal to $1 / \sqrt{x}$ over $(0,1)$ are the polynomials $P_{2 m}(\sqrt{x})$, where $P_{2 m}(u)$ is the Legendre polynomial of degree $2 m$ over the interval $(-1,1)$ in u. Chenging the interval $(0,1)$ in \dot{x} to the interval $(-1,1)$ in ξ, it follows that the lift points required here are just the points

$$
\xi_{a}=2 u_{a}^{2}-1 \quad(a=1, \ldots, m)
$$

where u_{a} are the positive zeros of $P_{2 m}(u)$. Mineur also shows that the Gauss weights for the weight function $1 / \sqrt{x}$ inthe interval (0,1) are related to the weights A_{a} and zeros u_{α} for a $2 m$-point Gauss-Legendre formula in the interval ($-1,1$). In our notation, Mineur's result is

$$
H_{\alpha}=2 A_{a} u_{a} \quad(a=1, \ldots \ldots, m)
$$

The $h_{a}(\xi)$ have to be evaluated numerically. The values of u_{α} and A_{α} are given by Gawlik ${ }^{3}$.

The values of ξ_{a} and H for $m=2, \ldots ., 10$ are appended.
$m=2$
$\xi_{1}=-0.768826$
$\xi_{2}=0.483112$
$H=\left(\begin{array}{rr}0.418413 & -0.866080 \\ 1.248338 & 1.623695\end{array}\right)$
$m=3$

$\xi_{1}=-0.886122$
$\xi_{2}=-0.125604$
$\xi_{3}=0.738999$

1.951982 \& -0.438550 \& -2.980841

0.326935 \& 2.971845 \& 2.937401\end{array}\right)\)
$\underline{m}=4$
$\xi_{1}=-0.932704$
$\xi_{2}=-0.447631$
$\xi_{3}=0.269355$
$\xi_{4}=0.844313$
$H=\left(\begin{array}{r}-0.191550 \\ 1.064075 \\ 2.261946 \\ -0.595113\end{array}\right.$
$\left.\begin{array}{rrr}0.510096 & 1.253233 & -1.881627 \\ -4.069892 & -0.907808 & 5.016493 \\ 4.799258 & -3.439512 & -6.416741 \\ 0.241878 & 5.879177 & 5.291884\end{array}\right)$
$m=5$
$\xi_{1}=-0.955673$
$\xi_{4}=0.496669$
$\xi_{2}=-0.624337$
$\xi_{3}=-0.076805$
$\mathrm{H}=\left(\begin{array}{rrrrr}0.065238 & 0.749802 & -1.477083 & -2.114775 & 3.053761 \\ -0.277555 & -3.035913 & 7.808881 & 3.065611 & -8.487790 \\ 3.192554 & -1.532975 & -13.929905 & 2.238163 & 12.010365 \\ 0.520348 & 7.572723 & 9.723486 & -9.618407 & -12.658678 \\ -0.219706 & -3.000001 & -1.012335 & 11.198712 & 9.652849\end{array}\right)$
$\underline{m}=6$

$\xi_{4}=-0.968633$ $\xi_{4}=0.185500$	$\begin{aligned} & \xi_{2}=-0.729400 \\ & \xi_{5}=0.634856 \end{aligned}$		$\begin{aligned} & \xi_{3}=-0.310115 \\ & \xi_{6}=0.926923 \end{aligned}$		
$\mathrm{H}=0.126804$	-0.437377	-2.097758	3.656221	3.634710	$-5.135485)$
-0.478864	1.813861	7.1404 .08	-15.418284	-6.842342	14.603836
1.678016	-9.466452	-3.209597	30.074085	1.071460	-21.757441
3.266546	9.714646	-13.301344	-33.308347	11.308804	25.335055
-0.918187	0.772826	19.676748	20.201120	-21.830813	-24.372211
0.459860	-0.615297	-9.908939	-5.284675	21.168914	17.822070

D. 1.3 Supersonic leading edge, supersonic trailing edge

The polynemials orthogonal to $f(\xi)=1$ over $(-1,1)$ are the Legendre pelynomials; the zeros and weights in the corresponding Gauss formulae are given by Gawlik ${ }^{3}$. The H_{α} are merely one half of the se Gauss weights; the $h_{c}(\xi)$ are found numerioally. ξ_{a} and H are given below for $m=2, \ldots, 10$.

$m=2$

$\xi_{1}=-0.577350$
$\xi_{2}=0.577350$

$$
\mathrm{H}=\left(\begin{array}{rr}
1 & -1.732051 \\
1 & 1.732051
\end{array}\right)
$$

$m=3$

$$
\begin{aligned}
& \xi_{1}=-0.774597 \\
& \xi_{2}=0.000000 \\
& \xi_{3}=0.774597
\end{aligned}
$$

$H=\left(\begin{array}{c}0 \\ 2.250000 \\ 0\end{array}\right.$ -2.323790
0
2.323790 $\left.\begin{array}{r}3.000000 \\ -3.750000 \\ 3.000000\end{array}\right)$
$m=4$
$\xi_{1}=-0.861136$
$\xi_{2}=-0.339981$
$\xi_{3}=0.339981$
$\xi_{4}=0.861136$
$m=5$
$H=\left(\begin{array}{rrrr}-0.530834 & 0.616434 & 4.592502 & -5.333073 \\ 1.816548 & -5.343087 & -2.449645 & 7.205240 \\ 1.816548 & 5.343087 & -2.449645 & -7.205240 \\ -0.530834 & -0.616434 & 4.592502 & 5.333073\end{array}\right)$
$\xi_{1}=-0.906180$
$\xi_{2}=-0.538469$
$\xi_{5}=0.906180$
$H=\left(\begin{array}{c}0 \\ 0 \\ 3.515625 \\ 0\end{array}\right.$

$$
\left.\begin{array}{crcr}
2.542288 & -2.805500 & -8.768046 & 9.675834 \\
-5.997920 & 11.13883! & 7.304187 & -13.564723 \\
0 & -16.406250 & 0 & 14.765625 \\
5.997920 & 11.138834 & -7.304187 & 13.564723 \\
-2.542288 & -2.805500 & 8.768046 & 9.675834
\end{array}\right)
$$

$m=6$

\[

\]

D. 1.4 Supersonic leading edge, subsonic trailing edge

This case, in which $f(\xi)=\sqrt{ }(1-\xi)$, is not dealt with in the programmes which are the subject of this Report, and the $h_{a}(\xi)$ etc. have not been calculated by the writer. However, it is worth pointing out that the lift points are again derived from the Legendre zeros over $(-1,1)$. Mineur ${ }^{4}$ (page 290) gives a result, which gives the positions of the lift points needed here as

$$
\xi_{\alpha}=1-2 u_{\alpha}^{2} \quad(\alpha=1, \ldots, m)
$$

where the u_{a} are the positive zeros of $P_{2 m+1}(u)$. The lift points thus follow from the zeros of the Legendre polynomials of odd degree.

The lift points for $m=2, \ldots, 10$ are as follows:

$\mathrm{m}=2$

$\xi_{1}=-0.642324$

$$
\xi_{2}=0.420102
$$

$m=3$
$\xi_{1}=-0.801612$
$\xi_{2}=-0.099737$
$\xi_{3}=0.670579$

$\mathrm{m}=4$

$\xi_{1}=-0.874668$
$\xi_{2}=-0.397896$
$\xi_{3}=0.247551$
$\xi_{4}=0.789719$
$m=5$
$\xi_{1}=-0.913863$
$\varepsilon_{2}=-0.573760$
$\xi_{3}=-0.066244$
$\xi_{4}=0.461078$
$\xi_{5}=0.854693$
$m=6$
$\xi_{1}=-0.937232$
$\xi_{2}=-0.683974$
$\xi_{3}=-0.285055$
$\xi_{4}=0.174775$
$\xi_{5}=0.597709$
$\xi_{6}=0.893778$
$\mathrm{m}=7$
$\xi_{1}=-0.952258$
$\xi_{5}=0.347982$
$\xi_{2}=-0.756963$
$\xi_{6}=0.689289$
$\xi_{3}=-0.438909$
$\xi_{7}=-0.919042$
$\xi_{4}=-0.049562$
$m=8$
$\xi_{1}=-0.962480$
$\xi_{5}=0.134937$
$\xi_{2}=-0.807568$
$\xi_{3}=-0.549642$
$\xi_{4}=-0.221528$
$\xi_{8}=0.936287$
$m=9$
$\xi_{1}=-0.969743$
$\xi_{5}=-0.039584$
$\xi_{9}=0.948570$
$\xi_{2}=-0.843999$
$\xi_{3}=-0.631381$
$E_{L_{+}}=-0.353719$
$\xi_{6}=0.278691$
$\xi_{7}=0.568348$
$\xi_{8}^{+}=0.799574$
$m=10$
$\xi_{1}=-0.975087$
$\xi_{2}=-0.871056$
$\xi_{3}=-0.693166$
$\xi_{7}=0.391433$
$\xi_{4}=-0.456458$
$\xi_{8}=0.639868$
$\xi_{9}=0.834087$
$\xi_{10}=0.957624$

D. 2 Spanwise interpolation functions and lift and downwash points

Spanwise positions of both lift and downwash points are given by the zeros of the polynomials orthogonal to $\sqrt{\left(1-\eta^{2}\right)}$ over $(-1,1)$. These are the polynomials (see, for example, Hildebrand ${ }^{5}$ page 308)

which were originally considered in connection with lifting surface theory by Multhopp ${ }^{6}$. This polynomial has zeros

$$
\eta_{\beta}=\cos \frac{\pi(n-\beta+1)}{n+1} . \quad(\beta=1, \ldots, n) .
$$

Also (see, for example, Multhopp ${ }^{6}$)

$$
G_{\beta}=\frac{\pi}{2(n+1)} \sqrt{\left(1-\eta_{\beta}^{2}\right)}
$$

For $n=2, \ldots, 7$ the η_{β} and the matrix G of coefficients in the interpolation functions (see following equation (22) of Appendjx B) are given below. These have been found by the writer for $n=2, \ldots, 21$.
$n=2$
$\eta_{1}=-0.5$

$$
G=\left(\begin{array}{lr}
1.273240 & -2.546479 \\
1.273240 & 2.546479
\end{array}\right)
$$

$n=3$

$\eta_{1}=-0.707107$
$\eta_{2}=0$
$\eta_{3}=0.707107$

2.546479 \& 0 \& -5.092958

0 \& 3.601265 \& 5.092958\end{array}\right)\)

$n=4$

$\eta_{1}=-0.809017$
$\eta_{2}=-0.309017$
$\eta_{3}=0.309017$
$\eta_{4}=0.809017$

2.060145 \& -6.666769 \& -3.147621 \& 10.185916

2.060145 \& 6.666769 \& -3.147621 \& -10.185916

-0.786905 \& -0.972669 \& 8.240580 \& 10.185917\end{array}\right)\)

$n=5$

$G=\left(\begin{array}{lllll}\eta_{1} & =-0.866025 & \eta_{2}=-0.5 & \eta_{3}=0 & \eta_{1}=0.5 \\ 0 & 4.410631 & -5.092958 & -17.642524 & \eta_{5}=0.866025 \\ 0 & -7.639437 & 15.278874 & 10.185916 & -20.371831 \\ 3.819719 & 0 & -20.371833 & 0 & 20.3718333 \\ 0 & 7.639437 & 15.278874 & -10.185916 & -20.371833 \\ 0 & -4.410632 & -5.092959 & 17.642525 & 20.371834\end{array}\right)$
$n=6$

$\eta_{1}=-0.900969$	$\eta_{2}=-0.623490$
$\eta_{5}=0.623490$	$\eta_{6}=0.900969$

$G=$
$\left(\begin{array}{rrrrrr}0.706595 & -0.784261 & -16.087807 & 17.856118 & 36.708772 & -40.7436641 \\ -1.021059 & 1.637651 & 21.878823 & -35.090909 & -25.403260 & 40.743665 \\ 2.860943 & -12.856962 & -10.883974 & 48.912135 & 9.066318 & -40.743665 \\ 2.860943 & 12.856962 & -10.883974 & -48.912136 & 9.066318 & 40.743665 \\ -1.021059 & -1.637651 & 21.878823 & 35.090907 & -25.403260 & -40.743664 \\ 0.706595 & 0.784261 & -16.087809 & -17.856121 & 36.708777 & 40.743664\end{array}\right)$
$n=7$

$\eta_{1}=-0.923880$	$\eta_{2}=-0.707107$	$\eta_{3}=-0.382683$	$\eta_{4}=0$
$\eta_{5}=0.382683$	$\eta_{6}=0.707107$	$\eta_{7}=0.923880$	

$G=$
$\left(\begin{array}{lrrrrrr}\because 0 & -5.512579 & 5.966772 & 48.667402 & -52.677217 & -75.284486 & 81.487341 \\ 0 & 7.202531 & -10.185917 & -57.620246 & 81.487334 & 57.620245 & -81.487333 \\ 0 & -13.308541 & 34.776895 & 42.209007 & -110.29745 & -31.183851 & 81.487331 \\ 5.092958 & -0.000001 & -50.929582 & 0.000001 & 122.23100 & -0.000001 & -81.487331 \\ 0 & 13.308541 & 34.776892 & -42.209007 & -110.29745 & 31.183851 & 81.487328 \\ 0 & -7.202530 & -10.185916 & 57.620245 & 81.487331 & -57.620246 & -81.487332 \\ 0 & 5.512578 & 5.966772 & -48.667396 & -52.677209 & 75.284477 & 81.487331\end{array}\right)$

D. 3 Chordwise integration formulae

The function $k(\zeta)$ of (12) takes the values

The case $k(\zeta)=\sqrt{(1-\zeta)}$, which occurs when $\zeta=-1$ at a supersonic leading edge and $\zeta=+1$ at a subsonic trailing edge is not considered here, since the corresponding leading and trailing edge conditions are not dealt with by the programmes described in this Report.

The Gauss zeros ζ_{λ} and the quantities $W_{\lambda} / k\left(\zeta_{\lambda}\right)$ for the various values of $k(\zeta)$ are as follows.

D. $3.1 \mathrm{k}(\zeta)=\sqrt{ }(1-\zeta) / \sqrt{ }(1+\zeta)$

The zeros here are the same as the lift points in D.1.1. The integration points are

$$
\zeta_{\lambda}=\cos \frac{2 \pi(p-\lambda+1)}{2 p+1} \quad(\lambda=1, \ldots, p)
$$

and

$$
{ }^{w_{\lambda}}=\frac{w_{\lambda}}{k\left(\zeta_{\lambda}\right)}=\frac{2 \pi}{2 p+1} \sqrt{\left(1-\zeta_{\lambda}^{2}\right)},
$$

being twice the value of the corresponding H_{a} in $D_{.} 1.1$ above. Values of w_{λ} are given below for $p=1, \ldots, 10$. The values of ζ_{λ} have already been given above in D.1.1. (where they appear as ζ^{\prime} 's) and so are omitted here, except for $p=1$.
$p=1 \quad \begin{array}{ll}\zeta_{1}=-0.5 & p=2 \quad W_{1}=0.738633 \\ W_{1}=1.813799 \quad, & W_{2}=1.195133\end{array}$
$p=3 \quad w_{1}=0.389453 \quad p=4 \quad w_{1}=0.238775$
$w_{2}=0.875093$
$w_{3}=0.701770$
$w_{2}=0.604600$
$W_{3}=0.687526$
$W_{4}=0.448750$
$p=5$

$$
\begin{aligned}
& w_{1}=0.160925 \\
& w_{2}=0.431683 \\
& w_{3}=0.565385 \\
& w_{3}=0.51981 \\
& w_{5}=0.308813
\end{aligned}
$$

$p=6 \quad w_{1}=0.115667$ $w_{2}=0.320502$
$w_{3}=0.451914$
$w_{4}=0.479798$
$w_{5}=0.397766$
$\mathrm{w}_{6}=0.224611$
$\mathrm{p}=7 \quad \mathrm{w}_{1}=0.087090$
$\mathrm{L}=8: \quad \mathrm{w}_{1}=0.067914$
$w_{2}=0.246211 \quad \quad \quad w_{2}=0.194569$
$w_{3}=0.362760 \quad w_{3}=0.294946$
$w_{4}=0.416584 \quad w_{4}=0.355490$
$W_{5}=0.398378 \quad W_{5}=0.368022$
$W_{6}=0.311288 \quad w_{6}=0.330852$
${ }^{W 7}=0.170373$
$W_{7}=0.248997$
$w_{8}=0.133515$

$$
\begin{array}{lll}
p=9 & \underline{p}=10 & w_{1}=0.044_{1} 593 \\
w_{1}=0.054430 & & w_{2}=0.129818 \\
w_{2}=0.157393 & & w_{3}=0.203507 \\
w_{3}=0.243299 & & w_{4}=0.259114 \\
w_{4}=0.302841 & w_{5}=0.291698 \\
w_{5}=0.329564 & w_{6}=0.298363 \\
w_{6}=0.320575 & w_{7}=0.278517 \\
w_{7}=0.276846 & w_{8}=0.233923 \\
w_{8}=0.203116 & w_{9}=0.168545 \\
w_{9}=0.107376 & & w_{10}=0.088191
\end{array}
$$

D. $3.2 \mathrm{k}(\zeta)=1 / \sqrt{ }\left(1-\zeta^{2}\right)$

The Gauss zeros corresponding to the weight function $k(\zeta)=1 / \sqrt{ }\left(1-\zeta^{2}\right)$ are the Chebyshev zeros

$$
\zeta_{\lambda}=\cos \frac{(2 p-2 \lambda+1) \pi}{2 p} \quad(\lambda=1, \ldots, p)
$$

and

$$
w_{\lambda}=\frac{w_{\lambda}}{k\left(\zeta_{\lambda}\right)}=\frac{\pi}{p} \sqrt{\left(1-\zeta_{\lambda}^{2}\right)}
$$

The values of ζ_{λ} and w_{λ} are given below for $p=1, \ldots, 10$.
$p=1$

$$
\zeta_{y}=0 \quad w_{1}=\pi=3.141593
$$

$p=2$

$$
\begin{array}{ll}
\zeta_{1}=-0.707107 & w_{1}=1.110721 \\
\zeta_{2}=0.707107 & w_{2}=1.110721
\end{array}
$$

$\mathrm{p}=3$

$$
\begin{array}{ll}
\zeta_{1}=-0.866025 & w_{1}=0.523599 \\
\zeta_{2}=0 & w_{2}=1.047198 \\
\zeta_{3}=0.866025 & w_{3}=0.523599
\end{array}
$$

$p=4$

$\zeta_{1}=-0.923880$	$w_{1}=0.300559$
$\zeta_{2}=-0.382683$	$w_{2}=0.725613$
$\zeta_{3}=0.382683$	$w_{3}=0.725613$
$\zeta_{4}=0.923880$	$w_{4}=0.300559$

$p=5$

$\zeta_{1}=-0.951057$
$\zeta_{2}=-0.587785$
$\zeta_{3}=0$
$\zeta_{4}=0.587785$
$\zeta_{5}=0.951057$
$w_{1}=0.194161$
$w_{2}=0.508320$
$w_{3}=0.628319$
$w_{4}=0.508320$
$\mathrm{m}_{5}^{4}=0.194161$
$\mathrm{p}=6$
$\zeta_{1}=-0.965926$
$\zeta_{\zeta_{2}}=-0.707107$
$\zeta_{3}=-0.258819$
$\zeta_{5}=0.258819$
$\zeta_{5}=0.707107$
$\zeta_{6}=0.965926$
$w_{1}=0.135517$
$w_{2}=0.370240$
$w_{3}=0.505758$
$w_{4}=0.505758$
$w_{5}=0.370240$
$w_{6}=0.135517$
$p=7$
$\zeta_{1}=-0.974928$
$\zeta_{2}=-0.781831$
$\zeta_{3}=-0.433884$
$\zeta_{\zeta_{4}}=0$
$\zeta_{5}=0.433884$
$\zeta_{6}=0.781831$
$\zeta_{7}=0.974928$
$w_{1}=0.099867$
$w_{2}=0.279822$
$w 3=0.404354$
$w_{4}=0.448799$
$w 5=0.404354$
$w_{6}=0.279822$
$\mathrm{w}_{7}=0.09986 .7$
$p=8$
$w_{1}=0.076612$
$\zeta_{\zeta}=-0.980785$
$\zeta_{\zeta}=-0.831470$
$\zeta_{3}=-0.555570$
$\zeta_{\zeta_{4}}=-0.195090$
$\zeta_{5}=0.19090$
$\zeta_{6}=0.555570$
$\zeta_{6}=0.831470$
$\zeta_{8}^{7}=0.980785$
$w_{2}=0.218172$
$w_{3}=0.326517$
$w_{4}=0.385153$
$\mathrm{w}_{5}=0.385153$
$w_{6}=0.326517$
$w_{7}=0.218172$
$w_{8}=0.076612$
$p=9$

$W_{1}=0.060615$
$w_{2}=0.174533$
$w_{3}=0.267400$
$w_{4}=0.328015$
$w_{5}=0.349066$
$w_{6}=0.328015$
$w_{7}=0.267400$
$w_{8}=0.174533$
$w_{9}=0.060615$
$p=10$

$\zeta_{1}=-0.987688$	$w_{1}=0.049145$
$\zeta_{2}=-0.891007$	$w_{2}=0.142625$
$\zeta_{3}=-0.707107$	$w_{3}=0.222144$
$\zeta_{4}=-0.453991$	$w_{4}=0.279918$
$\zeta_{5}=-0.156434$	$w_{5}=0.310291$
$\zeta_{6}=0.156434$	$w_{6}=0.310291$
$\zeta_{7}=0.453991$	$w_{7}=0.279918$
$\zeta_{8}=0.707107$	$w_{8}=0.222144$
$\zeta_{9}=0.891007$	$w_{9}=0.142625$
$\zeta_{10}=0.987688$	$w_{10}=0.049145$

D. $3.3 \mathrm{k}(\zeta)=1 / \sqrt{ }(1-\zeta)$

The zeros here are the negative of the lift points for a singularity $1 / \sqrt{ }(1+\zeta)$, which was dealt with in D. 1.2 above. So

$$
\zeta_{\lambda}=1-2 u_{\lambda}^{2} . \quad(\lambda=1, \ldots, p)
$$

Gauss weights and zeros for a singularity $1 / \sqrt{x}$ over $(0,1)$, to which the w_{λ} required here are related, are given in Mineur ${ }^{4}$ (page 289). Alternatively, in view of the remarks of D .1 .2 above, it may be shown that

$$
w_{\lambda}=\frac{w_{\lambda}}{k\left(\zeta_{\lambda}\right)}=4 A_{\lambda} u_{\lambda} \quad(\lambda=1, \ldots, p)
$$

where the A_{λ} are the weights and u_{λ} the positive zeros in a $2 p$-point LegendreGauss formula (see, e.g. Gawlik ${ }^{3}$). Values of ζ_{λ} and w_{λ} are given below for $p=1, \ldots, 10$.
$p=1$

$$
\zeta_{y}=0.333333 \quad w_{1}=2.309401
$$

$\mathrm{p}=2$

$$
\begin{array}{ll}
\zeta_{1}=-0.483112 & w_{1}=1.198202 \\
\zeta_{2}=0.768826 & w_{2}=0.886868
\end{array}
$$

$p=3$

$$
\begin{array}{ll}
\zeta_{1}=-0.738999 & w_{1}=0.639019 \\
\zeta_{2}=0.125604 & w_{2}=0.954156 \\
\zeta_{3}=0.886122 & w_{3}=0.446613
\end{array}
$$

$p=4$
$\zeta_{Y_{1}}=-0.844313$
$\zeta_{2}=-0.269355$
$\zeta_{3}=0.47631$
$\zeta_{4}=0.932704$
$p=5$
$\zeta_{1}=-0.896988$
$\zeta_{2}=-0.496669$
$\zeta_{3}=0.076805$
$\zeta_{4}=0.624337$
$\zeta_{5}=0.956673$
$p=6$
$\zeta_{y}=-0.926923$
$\zeta_{y}=-0.634856$
$\zeta_{3}=-0.185500$
$\zeta_{4}=0.31115$
$\zeta_{5}=0.729400$
$\zeta_{6}=0.968633$
$p=7$
$\zeta_{1}=-0.945512$
$\zeta_{2}=-0.723983$
$\zeta_{3}=-0.368524$
$\zeta_{4}=0.05257$
$\zeta_{5}^{4}=0.469038$
$\zeta_{6}^{5}=0.796335$
$\zeta_{7}=0.976648$
$p=8$
$\zeta_{1}=-0.957828$
$\zeta_{2}=-0.78444_{4}$
$\zeta_{3}=-0.498635$
$\zeta_{4}=-0.141272$
$\zeta_{5}=0.236458$
$\zeta_{6}=0.580411$
$\zeta_{7}=0.841399$
$\zeta_{8}=0.981945$
$p=9$
$\zeta_{5}=-0.966403$
$\zeta_{2}=-0.827199$
$\zeta_{3}=-0.593478$
$\zeta_{4}=-0.291883$
$\zeta_{5}=0.043138$
$\zeta_{0}^{6}=0.373313$
$\zeta_{5}^{7}=0.660922$
$\zeta_{5}^{7}=0.873107$
$\zeta_{9}=0.985626$
$w_{1}=0.085735$
$w_{2}=0.190073$
$\mathrm{w}_{3}=0.272871$
$N_{4}=0.324510$
$i i_{5}^{4}=0.339079$
$\pi \frac{5}{6}=0.314911$
${ }^{17} 7^{6}=0.254766$
$W_{8}^{7}=0.165516$
${ }^{n}{ }_{9}^{8}=0.057356$
$w_{1}=0.107459$
$w_{2}=0.235212$
$w_{3}=0.329489$
$w_{4}=0.376581$
$w_{5}=0.369727$
$w 6=0.309906$
${ }^{w}{ }_{7}=0.20 .5687$
$\mathrm{w}_{8}=0.072001$
$p=10$
$\zeta_{1}=-0.972609$
$\zeta_{2}=-0.828484$
$\zeta_{3}=-0.664343$
$\zeta_{4}=-0.408235$
$\zeta_{5}=-0.114023$
$\zeta_{6}=0.190871$
$\zeta_{7}=0.47030$
$\zeta_{8}=0.720688$
$\zeta_{5}=0.896227$
$\zeta_{10}=0.988287$
$w_{1}=0.069972$
$w_{2}=0.156555$
$w_{3}=0.228686$
$w_{4}=0.279516$
$w_{5}=0.304295$
$w_{6}^{5}=0.300712$
$w 7=0.269102$
$\omega_{8}=0.212409$
$w_{9}=0.135918$
$w_{10}=0.046759$

D. 4 Spanwise intagration points and interpolation functions

The integration points used to carry out the spanwise integration
(see (14), Appendix B) are the Chebyshev zeros

$$
\phi_{\gamma}=\cos \frac{(2 q-2 r-1) \pi}{2 q} . \quad(r=1, \ldots, q) .
$$

For $q=2, \ldots, 7$ the matrices P of the coefficients in the interpolation functions are given below. These have been found by the writer for $q=2, \ldots, 21$. The values of ϕ_{γ} are given above in D. 3.2 (where they appear as ζ_{λ}) and are not duplicated.

$q=2$

$$
P=\left(\begin{array}{ll}
0.5 & -0.707107 \\
0.5 & 0.707107
\end{array}\right)
$$

$q=3$
$P=\left(\begin{array}{ccc}0 & -0.577350 & 0.666667 \\ 1.0 & 0 & -1.333333 \\ 0 & 0.577350 & 0.666667\end{array}\right)$

$9 \underline{\square}$

$P=\left(\begin{array}{rrrr}-0.103553 & 0.112085 & 0.707107 & -0.765367 \\ 0.603553 & -1.577161 & -0.707107 & 1.847759 \\ 0.603553 & 1.577161 & -0.707107 & -1.847759 \\ -0.103553 & -0.112085 & 0.707107 & 0.765367\end{array}\right)$

$q=5$

$$
P=\left(\begin{array}{rrrrr}
0 & 0.324920 & -0.341641 & -0.940456 & 0.988854 \\
0 & -1.376382 & 2.341641 & 1.521690 & -2.588854 \\
1.0 & 0 & -40 & 0 & 3.2 \\
0 & 1.376382 & 2.341641 & -1.521690 & -2.588854 \\
0 & -0.324920 & -0.341641 & 0.940456 & 0.988854
\end{array}\right)
$$

9. $=6$

$P=$
$\left(\begin{array}{rrrrrr}0.044658 & -0.046234 & -0.755983 & 0.782651 & 1.333333 & -1.380368 \\ -0.166667 & 0.235702 & 2.666667 & -3.771236 & -2.666667 & 3.771236 \\ 0.622008 & -2.403256 & -1.910684 & 7.382315 & 1.333333 & -5.151 .604 \\ 0.622008 & 2.403256 & -1.910684 & -7.382315 & 1.333333 & 5.151604 \\ -0.166677 & -0.235702 & 2.666667 & 3.771236 & -2.666667 & -3.771236 \\ 0.044658 & 0.046234 & -0.755983 & -0.782651 & 1.333333 & 1.380368\end{array}\right)$

$a=7$

$\mathrm{P}=$

$$
\left(\begin{array}{ccrrrrr}
0 & -0.228243 & 0.234113 & 1.585814 & -1.626596 & -1.983469 & 2.034477 \\
0 & 0.797473 & -1.020007 & -5.075149 & 6.491360 & 4.456813 & -5.700478 \\
0 & -2.076521 & 4.785894 & 5.581812 & -12.864764 & -3.574087 & 8.237430 \\
1.0 & 0 & -8.0 & 0 & 16.0 & 0 & -9.142857 \\
0 & 2.076521 & 4.785894 & -5.581812 & -12.864764 & 3.574087 & 8.237430 \\
0 & -0.797473 & -1.020007 & 5.075150 & 6.491360 & -4.45813 & -5.700478 \\
0 & 0.228244 & 0.234113 & -1.585814 & -1.626596 & 1.983469 & 2.034477
\end{array}\right)
$$

SYMBOLS

A, B	matrices defined by (19)
$c(\eta)$	local chord is $\overline{\mathrm{c}} \mathrm{c}(\eta)$
$\stackrel{\rightharpoonup}{c}$	mean chord
C	matrix of quantities $C_{\alpha \beta}\left(\bar{\xi}_{r}, \eta_{s}\right)$ defined by (18) and immediate text
$C_{e \beta}\left(\bar{\xi}_{r}, \eta_{s}\right)$	defined by (16)
$f(\xi)$	function whichtakes into account the chordwise singularity
,	in lift; see (5)
$g_{\beta}(\eta)$	interpolation function for spanwise lift distribution; see (6) and preceding text
G	matrix of coefficients of interpolation functions; see following (22)
G_{β}	defined by (7)
$h_{a}(\xi)$	interpolation function for chordwise lift; see (6) and preceding text
H	matrix of coefficients of interpolation functions; see following (22)
${ }^{+}$	defined by (7)
$k(\zeta)$	function which takes into account the singularity in the chordwise integration; see (12)
$K(X, Y)$	Kernel function, defined in (9)
$\ell(x, y)$ or $\ell(\xi, \eta)$	reduced lift, defined in such a way that the actual lift is $p V^{2} e^{i \nu t} \ell(x, y)$
$\vec{l}(\xi, \eta)$	approximation to $\ell(\xi, \eta)$; see (10)
L	matrix defined by (19)
$L_{\alpha}\left(\bar{E}_{r}, \eta_{s}\right)$	see (17)
m	number of chordwise lift and downwash points
M	Mach number
M	matrix defined by (19)
$M_{r s}$	matrix defined by (23)
n	number of spanwise lift and downwash points
N_{rs}	diagonal matrix; see text following (23)
p	number of chordwise integration points
$p_{Y}(\phi)$	interpolation polynomial satisfying (13)
P	matrix of coef'ficients in $\mathrm{p}_{\gamma}(\phi)$
$p_{a \beta}$	see (11)
q	number of points used in spanwise integration

SYMBOLS (CONTD)

Q
$Q_{i j}$
r
R
$R_{r s}$
s.
s
t
V
$w(x, y)$ or $w(\xi, \eta) \ldots$
W_{λ}
x, y, z
$x_{r s}$
${ }_{x}{ }_{r B}, \lambda \gamma$
X
y_{s}
$y_{r s, \gamma}$
I
$Z_{j}(x, y) \ldots Z_{j}(x, y)$
\bar{z}_{1}, \bar{Z}_{1} etc.
\underline{Z}_{1}, Z_{1} etc.
$\underset{\sim}{2}, \underset{=}{2}$
Z, 言, Z, Z
α, β
β
γ

ъ
ζ
matrix of generalised forces, defined by (20)
reduced generalised force coefficients; $\rho V^{2-3} Q_{i j}$ is the generalised force in mode i due to motion in mode j
suffix associated with chordwise variation of downwash point
$=\sqrt{ }\left(X^{2}-\beta^{2} Y^{2}\right)$
matrix defined by (23)
reduced semi-span, defined so that semi-span $=\overline{s c}$
suffix associated with spanwise variation of downwash point reduced time
airspeed
reduced downash, defined in such a way that the actual downwash is $V e^{i \nu t} w(x, y)$
Gaussian weights associated with a p-point integration formula for $k(\zeta)$
Cartesian co-ordinates, referred to $\overline{\mathrm{c}}$ as reference length value of x at a downwash point $\left(\vec{F}_{r}, \eta_{s}\right)$
ralue of x at an integration point
$=x^{\prime}-\mathrm{x}$
value of y at a downwash point $\left(\bar{\xi}_{r}, \eta_{s}\right)$
value of y at an integration point
$=y^{\prime}-y$
moâal deflection shapes
row matrices whose elements are the modal deflections evaluated at the lift points; see (21)
row matrices whose elements are the modal deflections evaluated at the downwash points; see (21)
see following (21)
see following (20)
suffices associated with chordwise and spanwise variation of lift points respectively
$=\sqrt{ }\left(M^{2}-1\right)$
suffix associated with spanwise variation of integration points
variable for chordwise integration; see preceding (12)
Gaussian zeros associated with weight function $k(\zeta)$

SYMBOLS (CONID)

η_{s}, η_{β}	spanwise co-ordinates of downwash and lift points respectively
$\eta_{r s, \gamma}$	$=\bar{\eta}_{\gamma}\left(\bar{\xi}_{r}, \eta_{s}\right)$
η_{1}, η_{2}	intersections of $\xi=\xi_{1}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$ with leading edge or tips - see Fig. 5
$\bar{\eta}_{\gamma}\left(\xi^{\prime}, \eta^{\prime}\right)$	value of η when $\phi=\phi_{\gamma}$
λ	suffix associated with chordwise variation of
	integration points
ν	Erequency parameter $=\omega \bar{c} / \mathrm{V}$
ξ, η	wing co-ordinates; see (4)
ξ_{0}	chordwise co-ordinate of point at which lift is evaluated
Ξ	
ξ_{r}	chordwise co-ordinate of downwash point
$\xi_{r s,}, \lambda r$	value of ξ_{5} when $\zeta=\zeta_{\lambda}, \quad \eta=\eta_{r s, \gamma}$
$\xi_{1}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$	equation of reversed Mach lines through $\left(\xi^{\prime}, \eta^{\prime}\right)$ is $\xi=\xi_{1}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$
$\xi_{M}\left(\xi^{\prime}, \eta^{\prime}, \eta\right)$	$=\min \left\{\xi_{1}\left(\xi^{\prime}, \eta^{\prime}, \eta\right), 1\right\}$
p	density
ϕ	spanwise integration variable; see text preceding (13)
$\$_{r s}$	value of ϕ at point $\left(\bar{\xi}_{r}, \eta_{s}\right)$
ω	frequency

REFERENCES

No.
1 J.R. Richardson
Author
Title, etc.
A method for calculating the lifting forces on wings (unsteady subsonic and supersonic lifting surface theory). A. R.C. R \& M 3157 April 1955

2 G.Z. Harris

3 H.J. Gawlik

4 H. Mineur

5 F.B. Hildebrand Introduction to numerical analysis. McGraw Hill, 1956

6 H. Multhopp Methods for calculating the lift distribution on wings (subsonic lifting surface theory). A. R. C. R \& M 2884, January 1950

FIG.I THE SEGMENTED PLANFORM OF PROGRAMMES 178A, 180A, I8IA AND 182A

FIG. 2 PLANFORM WITH SUBSONIC LEADING EDGE, MIXED TRAILING EDGE

FIG. 3 PLANFORM WITH CURVED SUBSONIC LEADING EDGE, STRAIGHT SUPERSONIC TRAILING EDGE

FIG. 4 PLANFORM WITH CURVED MIXED LEADING EDGE, STRAIGHT SUPERSONIC TRAILING EDGE

FIG. 5 INTEGRATION AREA FOR EQUATION (8) OF APPENDIX B

FIG. 6 LIFT AND DOWNWASH POINTS ON A DELTA WING WITH SUBSONIC LEADING EDGE, $M=2, N=7$

A.R.C. CP. : : 0.951

681.14 :
533.6.013.13 :
533.69 : 533.6 .011 .5

MERC:Ny PROGRAMES FOR LIFTING SURFACE THEORY calculations on wing oscillating in supersonic FLOW. Harris, G.Z. November 1964

```
4.R.C.CP. I!o. }85
```

mercury programmes for lifting cldface theor: calculations of. wings oscillating in supersonic FLOW. Harris, G.Z. November 1964

Progranmes for lifting surface theory calculations on wings osclilating in supersonic flow are described. The computation falls into two parts, one finding the complex influence matrices connecting lift and downwash, and the other finding the generalised forces when the influence matrices are given as data. The numerical method is described and values of constants used in the calculations are given.
681.14 :
533.6.013.13:
533.69 :
533.6.011.5 stants used in the calculations are given.
Programmes for lifting surface theory calculations on wings oscillating in supersonic flow are described. The computation falls into two parts, one finding the complex influence matrices connecting lift and downwash, and the other finding the generalised forces when the influence matrices
A.R.C. CP. No. 851
mercury programmes for lifting surface theory calculations on wing osciluating in supersonic FLOW. Harris, G.z. November 1964

Programes for lifting surface theory calculations on wings oscillating in supersonic flow are described. The computation falls into two parts. one finding the complex inf luence matrices connecting lift and downesh, ard the other finding the generalised forces when the inf luence matrices are given as data. The numerical method is described and valles of constants lisfo in the calculations are given.

- Crown Copyright 1966

Published by
Her Majesty's Stationery Office
To be purchased from
49 High Holborn, London w.c. 1
423 Oxford Street, London w. 1
13A Castle Street, Edinburgh 2
109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2
50 Fairfax Street, Bristol 1
35 Smallbrook, Ringway, Birmingham 5
80 Chichester Street, Belfast 1
or through any bookseller

