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SUMMARY
Programmes for 1lifting surface theory calculations on wings oscillating
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1 INTRODUCTION

Programmes have been written in the Mercury Autocode system for finding
the generalised forces on wings oscillating harmonically in supersonic flow.
The method used is a modification of the Multhopp-Richardson method1, and is
described in a separate paper2; the purpose of the present paeper is to describe

the programmes and the details of the numerical method.

The method relies on replacing the integral equation (which one cannot
solve in general) connecting the downwash and 1lift by a matrix equation (which
one can solve)for the 1lift values at a set of points on the wing. These lifts
being known, the generalised aerodynamic forces corresponding to any particular
modes of distortion can be found., The machine calculation is thus split into
two parts; the first builds up the matrix egquation and inverts the complex
matrices needed for its solution, while the second finds the generalised aero-
dynamic forces for wing distortion modes which afe expressible as polynomials
in the chordwise and spanwise co-ordinates, The first part of the calculation
is performed differently for different wing planforms and for different leading
and trailing edge conditions; the second is not. Hence six programmes have been
written to perform the first part of the calculation for different classes of
planform, and one programme does service for all other cases in the second stage
in which the generalised forces are found. Necessity, in the form of machine
capacity limitations, dictated that the calculation should be split into these
two parts. This may, however, be thought of as a virtue since, once the complex
matrices for any wing have been found by the first programme, the generalised
forces for different sets of distortion modes may be found on separate occasions

without repeating the whole of the calculation.
2 THE PROGRAMMES
The programme titles are:

RAE 178A Multhopp-Richardson; segmented planform, subsonic leading edge,

supersonic trailing edge.

RAE 179A Multhopp-Richardson; curved subsonic leading edge, straight

supersonic trailing edge.
RAE 180A Multhopp-Richardson; segmented planform, subsonic edges.
RAE 181A Multhopp-Richardson; segmented planform, supersonic edges.

RAE 1824 Multhopp-Richardson; segmented planform, subsonic leading edge,

mixed trailing edge.



RAE 25824 Multhopp-Richardson; curved mixed leading edge, straight supersonic
trailing edge.

RAE 183A Generalised forces for polynomial modes.

These are written for general values of frequency parameter, and special
versions RAE 178A/4, RAE 179A/1, 180A/1, 181A/1, 182A/1, 258A/1 and 183A/1 are
written to take advantage of the reduction in computation (and machine) time
possible in the steady case., These programmes need as data some constants
speoifying the planform together with some standard data relating to the
number of integration stations taken., This is detailed in Appendix A.

The ‘'segmented' planform of RAE 178A, RAE 180A, RAE-181A, RAE 182A is a
symmetric planform of the type shown in Fig.1, where the half-wing is divided
into three spanwise sections having different leading and trailing edge sweep-
back angles. These sections are not necessarily swept back at different angles
so that, for example, a delta wing falls into this classification. In RAE 1784,
RAE 180A and RAE 181A the leading and trailing edge conditions are clear from
the programme titles, In RAE 182A the 'mixed' trailing edge described is one
in which the outer section is supersonic while the inner two sections are .
subsonic and swept back; the wing of Fig.2 is of this type, being of a shape
uséd in a current aircraft rather than a general example. The planform dealt
with by RAE 179A and 2584 is shown in Fig.3. With co-ordinates (X,Y,Z) based
on root chord, the equation of the leading edge for ¥ 2 O is \

Y = s(aX + a2x2‘+ evone 4 a1hx1“)
the leading edge for Y < O being defined by symmetry. Here, S = semi~-span/root
chords The trailing edge is straight. Ogive and gothic planforms have leading

edges of this type with suitsable values of 8y seceeesy B and Bg = eseses = 8y, = 0.

5
In RAE 258A the 'mixed' leading edge described is one in which a central portion of

the leading edge on each half of the wing is supersonic, as shown in Fig.4.

The sbove programmes with their various planform variations are written

®

with some hope of covering the range of planform shapes likely to be of practical
interest, together with their leading and trailing edge conditions. Variants of
four of the programmes, namely RAE 178A/2, RAE180A/2, RAE 181A/2, RAE 1824/2,
have been devised to take any type of planform into account for the leading and
trailing edge conditions specified.‘ Sincé the planform is not limited in these
to the 'seégmented' type, more preliminary work needs to be done by the user for

these programmes. More information about the planform is needed than the basic
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data required, for example, for the segmented planform; the actual input needed

for these programmes is specified in Appendix A,

The programme RAE 183A evaluates generalised forces for wing distortion
modes which are expressible as polynomials in the chordwise and spanwise co-
ordinatess It accepts as input data the output of any of programmes 1784, 179A,
1804, 1814, 182A or 25B8A together with information about the modes for which the
generalised forces are needed. Separate versions, RAE 1834/1 and RAE 1834/2,
deal with the steady case and with general planforms respectively. The actual
form of the polynomials giving the wing distortion, and the input data for this

programme, is given in Appendix A.

3 THE NUMERICAL METHOD

The method used, which is a modification of the Multhopp-Richardson method,
is described in a separate Reportz. For completeness, a summary of the steps in

the calculation is given in Appendix B.

The aim of the calculation is to evaluate the matrices Mrs’ Nr
of equations (22) and (23) of Appendix B, and to combine these to form one large

and R
s rs

matrix C which may be used to evaluate the generalised forces. The logarithmic
correction terms (that is, those involving 635 in (16)) are then found and used
to modify the relevant elements of C. The steps taken in the calculation may
be roughly detailed as follows (the symbols are all defined in Appendix B):-

(a) Work out the co-ordinates of the lift and downwash points, and n
and Ny at each point.

- - 1 . . .
(b) Work out s ™ *ps, Ny and y_ Vrs,y for all the integration points
and each downwash point, and find the other guantities needed in forming Mrs’
N , R *»
rs’ “rs
(o) Evaluate K(X, Y), equation (9), for all the values of X = xrs-xrs,ly

and Y = ys - yrs,Y-

s s t
(d) TFor each downwash point form the matrioces H Mrs Nrs Rrs G! of

equation (22) and combine these,

(e) Form the correction terms (i.e. those terms of (16) which involve
668) and add to the appropriate terms elready found in (4) above to give the
matrix C.

(f) Form from C the symmetric and anti-symmetric aerodynamic influence

matrices A, B, L and M of (19).



(g) Porm the matrices Z, Z etc (see following equation (20)) of the

deflection and downwash values at the collocation points.
(n) PForm the generalised force matrices.

So far as the organisation of the programmes is concerned, steps (a) to
(f) form the first part of the calculation while steps (g) and (h) form the
second part.

Integrals have to be evaluated numerically at three points in the

calculation.

In the expression (17) for La(ér’ ns) write

' _ He-1) o E, _
~zive(n,) (E_-E) ~zivo(n ) (€ -E)
e h (£)aE = f ; ] o h (£)ag

dred

r

a

—

-1 -1 3(E.-1)

The second integral on the right is evaluated by an eight-point Legendre-
3

Gauss formula (see, for example, Gawlik~ for the weights and ebscissae). The
first integral on the right hand side is found either by an eight point Jacobi-
Gauss formula if ha(g) has a singularity of the form 1/¥(1 + E) occurring at
E = -1 (see, for example, Mineurt page 289 for the weights and zeros) or by an
e

ight point Legendre~Gauss formula if ha(g) has no singularity at £ = ~-1.

The expression (16) for caﬁ(Er, ns) contains an integral

N2

2
/ /1 - ng log |n - f dn
™

which mgy be written in either of the forms

4
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("1 -0,2 Ny n ns+0.2
N

¢ TIS'O° 2 n ’12

N2

. ’ 2
/ 1 =m log ln-nsldn =§ N, ng=0.2  mg
M

T]s n2
|+
™ ns

‘lL if n2 - T]s < 0.2, ns - T]1 < 0020

O

The last two of these integrals on the right-hand side are evaluated by a
Gauss formula which takes the logarithmic singularity at n = Ny into account
(suitable Gauss weights and zeros are given in Mineurh, page 556); the remaining

integrals, if any, are found by a Legendre-Gauss formula.

The third integral which has to be evaluated is

(x+1R)/(p%]¥])

t{cos VT"Y[ + i sin vT.[Xli ar

’ (1)

1 + 71

(x-MR)/(%]¥])

which occurs in equation (9) for K(X,Y). The real and imaginary parts of this

s are dealt with separately; the upper limit (X+MR)/(BZIY|) is positive, whereas
(X-MR)/(ﬂzlY]) can be either positive or negative, so some simplification
follows from the odd and even nature of the integrands. To eveluate an integral
like



b
f""“ (v [v]) =25 | (2)
a 1 + %

for some a and b with a 2 0 and b > O, the integral is expressed as the sum of

t integrals

aty  at2y . a+(t-1)y b

] + /i ¥ oeeenes + ]~ + ]

2 at a+(t-2)y  a+(t-1)y
where'

<
it

min [ 2 &
5 ’.vin
and t is an integer chosen so that
O<b-a-(t-1)<y .

Since the limits of integration in (1) ere large _when leYl is smell the

following approximation is used when large iimits occur. For any c and d

' a [ Ta ]
~iVT|Y| . id : b d )

iv,yl‘/ L 3T 4 e‘1VTIY| s | - /ﬂ e“IVT]Yl . gt

] . 2\3/2

¢ xS SRR I 12‘ c (1 +a )5
4) : J°
L - n
d o0 .
s/ dr sf 5373 1 - ¢
(1 + T2)37§ J (1 + m2)3 2 1 4 o2

This last expression is less than 10V if ¢ 2 71, which gives the

approximations

06L

R

Wi

(b
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v Y] ‘/ cos (v ]x]) TdT 5‘ . [? sin (vilzl%}d )
}1-0-'!7 [}

c 1 + 7

and } ’ (3)

d
le'.[ sin (vmlyl)—_ng;__ + - [? cos (vt lY[)

1+ 7 1 + 71 c

to within 10-4 if ¢ 2 71, This approximation may be used as it stands if, in

(2), a>71 amd b > 71. If a <74 and b > 74 write

and approximate to the second integral by means of (3).

For the various leading and trailing edge conditions different positions
for the 1lift points, interpolation functions and integration points have to be
teken to account for the different singularities. These are discussed in

section 4.2,

L DESCRIPTION OF PROGRAMMES

Lot The programmes and their use

The programmes RAE 178A to 182A and 258A which find the aerodynamic
matrices are all six chapter Mercury Autocode programmes, and their logical
structure is given in Appendix C. The variants of these programmes (178A/W,
1784/2 etc.) are also six chapter Mercury Autocode programmes, whose logical
structure is similar to that given in Appendix C. The programme RAE 183A which
finds generalised forces is a three chapter Mercury Autocode programme, and its

logical structure is also described in Appendix C.

Due to the limited capacity of the computer, there are certain restrictions
on the size of problem which may be treated by the programmes. The quantities m,

n, p and g must satisfy

2<m<10, ns<29, ps<10, q=< 21

together with additional limitations which are given in the following table.
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: If m= then n <

2 21

3 18

L 14

5 10
6,7 8
8,9
10 |

Also
mpq x integral part of {(n + 1)} < 1608 .

For 180A and 182A there is the additional limitation that mg < 189 .

There are limitations on the Mach number and frequency pareameter which can
be used, but these are imposed by the basic theory rather than by limitations of
the computer or of the detailed numerical method. The method breaks down when

M = 1; Mach numbers very close to M = 1 will give trouble, since the functions

. 2 - -
2X exp -iv M°X cos MRy
R 2 -1 2 -1

of equation (9), Appendix B, will have a large number of waves making approxi=-

mate integrations involving this function difficult., Similar remarks apply to
large values of the frequency parameter v. However, larger numbers of 1lift and
downwash points and of integration points may be used for extreme values of M
and v to offset this, gnd this is discussed below.

In any particular case, the values of m and n, and consequently the number
of 1ift and downwash points, are chosen with regard to the complexity of the
modes for which the generalised forces asre ultimately needed. These should be
chosen in such a way that the deflection can be adequately represented by an
(m - 1)th degree polynomial in the chordwise co-ordinate and an (n < 1)th
degree polynomial in the spanwise co-ordinate. However, even for rigid-body
motions of any particular wing there are minimum values of m and n below which
reasonable answers could not be expected. In addition, a higher value of m

should be chosen when the Mach number is close to unity. The choice of p and g,

@

[

~

@
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which determines the number of integration points, will depend on M and v; a
higher value of p should be taken for M neer unity or for large v. The value

of g should be higxér if there are any kinks in the planform or if the Mach
number is close to one; in the latter case the integration areas of Fig.5 extend
further in the spanwise direction. In addition, the number of points chosen
will depend on the aspect ratio of the wing under considerstion. For low aspect
ratio wings, for example, more chordwise 1ift and downwash points (as well as

integration points) than spanwise points will be needed.

The foregoing remarks on the numbers of points to be taken, and on
limitations, are of a general character and should be taken as an overall

guide if related to any particular problem,

The time taken by prograemmes 178A etc. varies approximately linearly
with

mpq x integral part of 3(n + 1) .

Since there is also some variation in time taken with Mach number and frequency
parameter, and also from planform to planform, it is only possible to predict
times to within rather broad limits. Examples of times which have been taken

using programmes 178A and 179A are given in the following table.

min ! P ! q { Mach No. v Planform Time
217131417 1.25 0.3 '} Delta wing 18 min
3+7 13417 1.25 0.3 }aspect 25 "
3171517 ! 1.25 0.5 | ) retio 1.456 8 "
3171319 | 1.25 0. 25 ’LSwept wing, aspect ratio 2, 60° 30 "
317 317 t.12 0. 25 >leading edge sweep, 27° 32 "
517 13]7 ] 1.8 |0.25 | Jtrailing edge sweep 15 "
347 317 1. 051 0. 25 }Cropped delta wing, aspect ratio 37 "
31711317 14 41 0.25 3, leading edge sweep, 49° 17
347 13417 1.0 0.15 Delta wing, aspect ratio 1.5 102 "
51815 8 ! 2,0 2. L : Ogive wing,‘aspect ratio 0.87 ' 60 "

Times for programmes 180A etc. should be little different. The considerable
effect of Mach number on the computing time, which is exemplified above for the
cropped delta wing of aspect ratio 3, should be noted; the reason for this

variation is that for M close to unity the limits (X - MR)/(BZIYI) and
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(X + MR)/(leYI) will be large in modulus, and the integrals of (9), Appendix B

will take longer to evaluate.

The times taken for programmes 178A/4 etc., which operate for zero frequency
parameter, will be very much less than these times since the function K(X, Y) of
(9) takes the particularly simple form 2X/R instead of having to be found by

numerical integration.

Programme 183A, and.its derivatives, which find the generalised forces

2]

are straightforward and quick. It is not worthwhile to discuss them in any
detail here.

[

4.2 Data input and output

The data input and ocutput for the individuel programmes is given in detail

in Appendix A,

For the programmes RAE 178A etc. which perform the first part of the
calculation, this consists of basic data specifying the planform followed by
date needed for the numericel work, consisting of the chordwise and spanwise
positions of the 1ift and downwash points end matrices connected with the inter-

polation functions used and integration points. This latter numerical data

4

depends only on the wing leading and trailing edge conditions, and is in the
form of standard input tepes; these vary with the number of points taken for
the various stages of the calculation (that is with choice of m, n, p and q)

and values are given in Appendix D. The standard tapes containing this data

(4

are kept along with the programmes.

The output data from these programmes is suitable for input to the
generalised forces programme 183A (or one of its variants). Additional data,
giving information about the polynomial distortion modes for which generalised

forces are required, have also to be provided..

The output of programme 183A is the matrix of generalised forces, the real
part being divided by the aspect ratio and the imaginary part by (aspect ratio) x
(frequency parameter). This form is chosen since, if simple pitching and
heaving modes only are being considered, the data output gives, with a change of

sign, the aerodynamic derivatives for these modes.

Q)

5 DISCUSSION

The Mercury programmesdescribed in this Report have been used in aerodynamic
derivative calculations on a number of wings. .- Results have been presented in
Ref.2 for an ogee wing, a symmetrical tapered wing and a delta wing and compari=-

sons made with other theoretical and experimentsl results. PFurther csleulations
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are being made on a series of cropped delta and swept wings which are being used
in an extensive programme of theoretical and experimental work, The results of
these calculations are to be given in a separate Report. In view of this, the

reader is referred to these separate sources for examples of the results which

‘have been obtained, and of the good agreement which has been obtained both with

experiment and with other theory.
6 CONCLUSIONS

Mercury Autocode programmes have been developed which calculate generalised
forces on wings osoillating in supersonic flow. A fairly general specification
of planform and, of leading and trailing edge conditions is allowed for by means

of separate programmes.
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Appendix A
DATA INPUT AﬁD QUTPUT FOR THE PROGRAMMES

(see section 2)

. 1P Page

A Input for programmes 1784, 1804, 181A and 182A 15
A.2 Input for programmes 179A, 258A ‘ 18
A.3 Input for programmes 178A/1, 179A/1, 180A/1, 181A/1, 1824/1, 258A/4 19
AL Input for programmes 178A/2, 180A/2, 1814/2, 182A/2 19
A.5 Output from programmes 1784, 1794, 1804, 181A, 182A, 258A, 178A/2,

1804/2, 181A/2 and 182A/2 22
A,6  Output from programmes 1784/1, 179A/1, 180A/1, 181A/1, 182A/1,

2584 /1 23
A.7 Input for progremmes 183A, 183A/1 and 183A/2 23%
A.8 Output from programmes 1834, 183A/1 and 1834/2 25

For all programmes described in this Appendix, standard data tapes are

available containing numerical data necessary for the calculations. This is as

follows:

(a) For progremmes 178A, 179A, 180A, 181A, 182A, 258A etc., tapes

containing n,G and q,P.

(b) For progremmes 178A, 179A, 181A etc., tapes containing m, H,

A

(e) PFor programme 180A etc., tapes containing m, H,

(d) For programme 182A etc.,, tapes containing m, H, 21....Em (for sub-

sonic leading edge, supersonic trailing edge), H (for subsonic leading edge,

subsonic trailing edge).

(e) TFor programme 258A etc., tapes containing m, H, 21....Em (for sub-

sonic leading edge, supersonic trailing edge), H, 21....Em (for supersonio

leading edge, supersonic trailing edge).

[

©
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A Input for programmes 1784, 180A, 181A and 182A

These programmes all deal with the 'segmented' planform of Fig.1, for

different leading and trailing edge conditions. Data are provided as follows:

RAE 1784 Multhopp~Richardson: segmented planform, subsonic leading edge,

supersonic trailing edge

First set of
values of
(M,m,n)

First set of

values of

(P:Q)

<

Segmented planform data (see below)

number of variations of Mach number, m

and n
Mach number

nunber of chordwise 1lift and dewnwash

stations

m, X m, matrix of coefficients in chord-
wise interpolation functions relevant to
the leading and trailing edge conditions,

defined in Appendix B following (22)

the m, chordwise downwash points relevant
to the leading and trailing edge
conditions

number of spanwise 1lift and downwash

stations

1‘1‘l xn,‘

wise interpolation functions, defined in
Appendix B following (22)

matrix of coefficients in span~

number of variations of p and g
number of chordwise integration stations
number of spanwise integration stations

q x q matrix of coefficients in span-
wise integration functions, defined in

Appendix B following (14)

nunber of variations of frequency

parameter

N, values of frequency parameter

3



16

Second set
of values

of (P’ Q)

Final set
of values

of (P’Q)

Second set
of values
of (M,m,n)

S
o
N
-
WQ
N
Ll
g
N

i
<
.
°
.
<

Py 3%y oF
N2 N2 N2

y

V LU v
17 "y
3

M2m2H2(€1 see Emz)nZGz

N S .}_;AM(\“M&E

1 etc, etc.

Appendix A

Defined sgbove

Defined above

Defined above

RAE 180A Multhopp-Richardson: segmented planform, subsonioc edges

Segmented planform data (see below)

Ny

M1m1H1n1G-1

N,

PPy

N

V,eos V
N
N,

etcs etc.

2 SRR QRIIPRRIERE. Y o J

N,

R . Ry

As defined for 178A (note that
51...Em are not required)

RAE 181A Multhopp~Richardson: segmented planform, supersonic edges

Segmented planform data (see below)

Y

M1m1H1 (€1o-o€m )n1G'1

1

as defined for 178A

p, Gauss zeros for interval (=1,1)
relevant to a singularity 1/v(1-%)

@,

(s
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Appendix A
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4 p1

etc. etc.

)
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P, weights, related to Gauss weights bdy
w, = Wi/k(z‘;i), with W, and k(?;i) defined
in Appendix B, equation (12) and adjacent

text.

a3 defined for 178A

RAE 1824 Multhopp=-Richardson: segmented planform, subsonic leading edge,

mixed trailing edge

Segmented planform data

Segmented planform data (see below); note that number of

segments can only be 2 or 3

N

M1m1

H, (€1-..gm1)

=g

PPy

Ny

v1.00vN

3

etc. etc.

\
|

as defined for 178A

relevant to subsonic leading edge,
supersonic trailing edge as defined in
178A

relevant to subsonic leading edge,
subsonic trailing edge; compare with
180A

as defined for 1784

For the above four programmes, basic planform data relevant to the

'segmented' planform of Fig.1 must be provided. This consists of

d

n

root chord/mean chord

number of segments making up half wing
(n = 1’2:3)
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Yy first segment O €y < Yy (y1 non-
dimensional and based on mean cnord)
tan A1 ‘ A1 = leading edge sweep
tan ¢, = trailing edge swesp
1 1
Yy }
|
tan A2 ! as above for the second segment
f Yy SV SV if applicable
tan ¢2 |
y3 ﬁ
4 .
tan A3 > as above for third segment
;Yo SY € y3 if applicable
tan ¢3 K

A.2  Input for programmes 179A and 258A

These programmes deal with planformshaving curved leading edges, as shewn

in Fig.3. Data is provided as follows.

RAE 179A Multhopp-Richardson, curved subsonic leading edge, straight supersonic
-trailing edge ' ~

Curved planform data (see below)

N1 '\

M1m1H1(g1.,.‘gm1)n1G1

N,

. as defined for 178A above

N

V,ees V
N
! 3

etc. etc.

o

RAE 2584 Multhopp-Richardson, curved mixed leading edge, straight supersonic
trailing edge

Curved planform data (see below)

1

N

- _ & as in 178A sbove
M1m1H1(€1...;m3

J

H1(E1...€m1) as in 181A above

<

«

@R

4]

&)
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p1q1P1 F as in 178A above

N

V,e00V
1 N
3

etc. etc. J

Curved planform data

g

The planform, of the type shown in Fig. 3, has its leading edge specified
for ¥ 2 O by

Y - S(a1x + 32X2 + se0es + & XN) s (N < 1}4.)

N

X and Y here being based on the root chord, and the leading edge for ¥ < O
defined by symmetry. The equation of the trailing edge is

X=-1 = Y tan A .

The 'curved planform' data are then as follows:

N degree of polynomial

8geeely coefficients

tan A tangent of trailing edge sweepback
S semi-span/root chord

A.3 Input for programmes 178A/1, 179A/1, 180A/1, 181A/1, 182A/1 and 258A/4

These are the versions of 178A, 1794, 1804, 1814, 1824 and 258A which
deal with zero frequency parameter., The input data are the same as the input
data specified for the corresponding programmes in A,1 and A.2 above, except
that the parameters N, and v,...v_ are omitted.

3 1 N3

A.4  Input for programmes 1784/2, 1804/2, 181A/2, 1824/2

These programmes, namely

RAE 1784A/2 Multhopp-Richardson; subsonic leading edge, supersonic trailing edge
RAE 180A/2 Multhopp-Richardson; subsonic edges

RAE 181A/2 Multhopp-Richardson; supersonic edges

RAE 1824/2 Multhopp-Richardson; subsonic'leading edge, mixed trailing edge
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are the versions of 1784, 180A, 181A and 182A which take account of any planform,
providing certain planform data are provided. The input data for these

programmes are as follows.

RAE 178A/2 Multhopp=-Richardson: subsonic leading edge, supersonic trailing edge

m1H1(g1...gm1)

n1GH defined in A.1 above for 1784
PPy ;

M1 ) Mach number

v frequency perameter

Planform data (see below)

RAE 180A/2 Multhopp-Richardson: subsonic edges

1
n,G, : defined in A.1 -above for 180A
P14y _ d
M1 Mach number
v . frequency parameter
Planform data e (see below)

RAE 181A/2 Multhopp-Richardson: supersonic edges

m1H1(Ea...Em1) 3

n, & | ' ‘> defined in A.1 above for 1814
p1§é1..o451) (WH.;.WP1) ! .
4P : )

M1 Mach number

v frequency parameter

Planform data (see below)

RAE 1824/2 Multhopp-Richardson: subsonic leeding edge, mixed trailing edge

H,(£,...E )i ‘
m, H, 51“'%1 1 .
n1G1 defined in A.1 sbove for 182A

P4 Fy

2, tat

06

4y

[ €]

O

i\l

wh
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Mach number

1
Y frequency parameter
m value of mn et which trailing edge
discontinuity occurs
Planform data (see below)

Planform data

0

For the above

consisting of:

four progremmes, certain planform data must be provided,

a root chord/mean chord
8 semi-span/mean chord
(1) (1) (1) (o :
xlift xdownwash y 3 = 3m [2n + 2] values of co-ordinates
. x and y (referred to mean chord as
* reference length) at the r 1ift and
. ?‘downwash points, starting at point
x(r) x(r) y(r) furthest upstream on centre line
' Lift downwash section, znd ending at point furthest
7 Jdownstream on extreme starboard section
) Cpenety t = [$n + %] values of (chord/mean
: chord), starting at centre line section
(or starboard section nearest it)
n$1)...n§r) | r velues of n, and n,, es defined in
, Appendix B, following (9), r being
n§1)...n§r) J defined above
g r x q matrix of values of § at inter-

. sections of spanwise integration
stations with reversed Mach lines
through downwash points

X rp x q matrix of values of X

=X -X, . for each
downwash ~ integration’

of the s downwash points there being

a p x q matrix of X's.
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It should be noted that the above programmes do not allow for repeats for

variations of any of the quantities for which repeats are allowed in 1784, 1804,

1814, 1824, namely (M1,m1,n1),.(§1,q1) and v,

A.5 Qutput from 1784, 179A, 180A, 181A, 1824,

258A, 178A/2, 4180A/2, 181A/2

and 182A/2

The output from these programmes is:

8

d

(1) - (1)
*1ift  *3downwash

L8 (6

1ift downwash

N

1

16ﬂsgA -167(3231

1,

-16ﬂ32M

2
16“SIH’ 4

Yo

etc. etc.

y

78

SNCORY

semi-span/mean chord

root chord/mean chord

.

number of variations of Mach number,
m and n (not in 178A/2 etc.)

Mach number

number of chordwisé 1lift and downwash

stations

number of spanwise 1lift and downwash

atations

3t = 3m [3n + %] values of co-ordinates
x and y, taken in order described in A.4
under ‘'planform data', and referred to

mean chord as reference length

number of variations of p and q (not in
1784/2 etc. )

number of chordwise integration stations
number of spanwise integration stations

number of variations of frequency
parameter (not in 178A/2 etc.)

first velue of frequency paremeter

where the matrices A ani B are defined

in Appendix B, equation (19)

where the matrices L and M are defined

in Appendix B, equation (19)

second value of frequency parameter

]

(G

24

O



o)

s

*)

Appendix A 23

A.6 Data output from 1784/1, 179A/1, 180A/1, 184A/4, 182A/1, 258A/1

Output from these programmes is the same as that output from
RAE 178A etc. described in section A.5 above, except that the values of
Nj’ v, B and M (all of which are zero in the steady case to which these
programmes apply) do not appear.

A.7 Data input for 183A, 1834/1 and 1834/2

The programme evaluates generalised forces for modes Zi’ based on mean
chord, which are expressible as polynomials in the chordwise and spanwise co=-
ordinates. Taking m (which is #1 at the port and starboard tips) as the spanwise

co-ordinate, the polynomials are defined as follows

(i) Symmetric distortions

(ia) Purely chordwise distortions are defined by polynomials
Byt 8 Xt eee t o x* (r < 19).
r
(ib) Purely spanwise distortions are defined by polynomials
by + by Mok e + b, e (s <19).
(ic) Distortions having both a spanwise and chordwise element are

defined by polynomials

COO+001X+.-.+COtX

+ 2 + 2 X + +c 2 it
40 * o4 ] e T oM X

2t 2t 2t _t

+ 0 *Cpy M X+ aesdog, M X (t < 6).

to "

(i1) Antisymmetric distortions

(iia) Purely spanwise distortions are defined by polynomials

Ay + eee + n2u+1 (u < 19).
(iib) Distortions having both a chordwise and spanwise component are

defined by polynomials
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" s v
eoon+eo1nx+o.o+eov«nx

3 v
+e1o-q3 + ey n3 X+ eee + 2, N -X

‘e 2v+] . 2v+1 2v+i xv (v < 6).

woM e N X+ oo v€ T -

The input for the progremne'is then as follows.

RAE 183A Generalised forceé for polynomial modes (and RAE 183A/4, and

RAE 183A72)
n Indicator: n = 0 if symmetric modes only
1 if antisymmetric only
2 if both symmetric and antisymmetric
r, number of symmetric chordwise polynomials (see (ia)
sbove) (do not punch if n = 1)
r - maximum degree of these (if r, +0and n 1)
(1) (1)
e‘o ®» 009 ar R

r, (r + 1) coefficients

~~
H
—
p g
o0
P
2}
-—
p
henesnmaee Ve st

0 T
8, number of symmetric spanwise polynomials (see (idb)
N ebove) (do not punch if n = 1)
2s maximum degree of these (if s, ¥0and n # 1)
3
(1) (1)
bo ave bs
. > 5, (s + 1) coefficients
b(s1) b(s1)
O [N 2 s
o
t, number of symmetric double polynomials (see (ic)
above) (do not punch if n = 1)
t meximum degree of these (if t, #+ O and n * 1)

1

o€

(€]

@

4

Ay

)]
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) J
00 °*° “tt ‘

t, (t + 1)2 coefficients

(5) " (&) 1

00 *°* %t
u, number of antisymmetric spanwise polyncmials
(see (iia)) (do not punch if n = 0)

2u + 1 maximum degree of these (if u, +0and n # 0)
> o

dé1) * 00 d(1) E

" 2
. . u, (u + 1)° coefficients
(u ) (u ) ‘ ’
a Voa !

v, number of antisymmetric double polynomials
(see (iib)) (80 not punch if n = 0)
v meximum degree of these (if v, #0and n % 0)
3(1) o e 0 e(1) (
00 vv ; >
. < vy (v + 1)° coefficients
S ) ) {
00 " Tyv

followed by data output from the appropriate programme, namely

for 1834  the output from 1784, 179A, 180A, 1814, 182A and 258A described

in A.5 above

for 183A/4 the output from 178A/1, 179A/1, 180A/1, 181A/1, 182A/1 and 258A/1

described in A.6 above

for 183A/2 the output from 178A/2, 180A/2, 181A/2, 1824/2 described in A.5

above.

A.8 Data output from programmes 183%A. 183A/1 and 183A/2

L]

The data output from 183A is as follows

RAE 183A Generalised forces for polynomial modes

M1 Mach number
m1 number of chordwise lift and downwash stations
n number of spanwise 1lift and downwash stations

P, number of chordwise integration stations

25
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Y number of spanwise integration stations

v, first value of frequency parameter

E1,F1 two (r1 + 8, + t1) square 2 r1,s1,t1,u1 and v, are as de-
matrices of symmetric general-{ fined in input for 183A in
ised forces (E real, F section A.7
imaginary) ‘>-23(E1 + iv F1) = Q symmetric

G1,H1 two (u1 + v1) square matrices -25(G1+1v H1) = Q antisymmetric

of antisymmetric generalised where Q is defined in equation

(20) of Appendix B

forces w,

v2 etc. eto,

Output from RAE 1834/1 differs only in that

(1)  the frequency parameter is not punched, being zero, and there are no

repeats for different frequency parameters,

(i1) F1 and H1 are not printed since v = O,

Output from RAE 183A/2 differs in that there are no repeats of (M,m,n),
(P: Q) or V.

ay

@

G

Tt]

o
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SUMMARY OF METHOD

(see section 3)

The detail of the method is given in a separate reportz. A summary,
together with the main results, is given here for completeness and to enable the

main steps in the programmes to be followed.

Wing co~ordinates £ and 7 are chosen so that

x - xmid chord =~ %&c(n) \>
| (&)

s = ¥y _J

&

where ¢ c(n) = local chord, s¢ = semi-span and (X,y) are co-ordinates based on
the wing mean chord ¢ as reference length. Two sets of mn points are taken over
the wing; one of p01nts (E ,n ) at which the 1ift is evaluated and one of points
(g Mg ) at which downwash values are taken. According to locel leading and

)

trailing edge conditions, a function

1 " E (subsonic leading edge, subsonic trailing edge

i

} 17-“——"7 (subsonic leading edge, supersonlc trailing edge) & (5)
5

\

(1 - E) (supersonic leading edge, subsonic trailing edge)

1 - (supersonic leading and trailing edges)
\ ~

is defined which takes into account the singularity which occurs in the chordwise

i)

-

1lift distribution. Then the m points Ea(a =1, couno ;'m) are chosen to be the
zeros of the m'th degree polynomial of the set orthogonal with respect to the
weight function f(g) over (-1, 1); the E are similarly chosen with weight
function f(=E). The n points ng are chosen to be the zeros of the n'th degree
polynomial of the set orthogonsl with respect to the weight function V(1 - 7 )
over (=1,1). Lift and downwash points for m = 2, n = 7 are shown for a delts

wing with subsonic leading edge in Fig.6.
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These points being chosen, interpolation functions ha(g) and gﬁ(n) are

defined, having the form

h (E) = (polynomial of degree (m - 1) in E) £(E)

and

gp(n) = (polynomial of degree (n - 1) in n) V{1 - n2)

with the properties

ba(gy) = Bay
’ (6)
65Y being the Kronecker delta. We also define
1 ‘ 1
H, = —%f h(8)aE, Gy = -;-[ gg(n)an . (7)
-1 ‘ -1

The integral equation comnecting reduced lift £(&,n) and downwash w(g,n)
on a wing oscillating harmonically with frequency parameter v in an airstream

of speed V is

712(5';7)') €M(g')n',’n)
w(EN) = sl K x, 3t - y) dEmen  (8)
(n' = n)
711(5':'0') -1 .

where

Ot

€]

¢}

3%

[
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i (xem)/(B°[¥]) )
2X o -ivM2X MRy | . -1uX T ~ive|Y|

K(X;Y)

} : if X > BlY| and Y # 0

2 K if X > BlY| end ¥ = 0

Lo if X < plY| J
cees (9)

and R = vV(X° - p&?), p° = 2 - 1. K(X,Y) takes the particularly simple form
2X/R if v = 0. Further, EM(E',n',n) = min{€1(g',n',n),1} end & = ,(&',n',n)
is the equation of the reversed Mach lines through the point (x',y'); these
cut the wing leading edges (or tips) where n = n1(g',n') and 7 = nz(g',n‘).
The region of integration in (8) is shewn in Fig, 5. If the 1lift is
approximated by 4(Z,m), where

o v By(Blegn)

o(UE,m) = Z ), Fop ~HTs
a=1 PB=1

(10)

and
Pug = Hobgo(ng) &€ ,mg) (11)

the integrations in (8) mgy be performed approximately.

To perform the chordwise integration a variable & such that & = <1 at
the leading edge and £ =1 at E = EM(E',n',n) is teken, The singularity in

the chordwise integration of (8) can be represented by a function

which depends on the singularity in the integrand arising from the singularilty
in K at the Mach line and the singularity in ha(g) at the leading edge (and
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trailing edge, if relevant), Other possible forms of k(Z), which do not arise
in the programmes considered here, are given in Refs.{1 and 2. The chordwise
integration of (8) can then be carried out by a p~point Gauss~type integration
formula, the integrand being evaluated at p points gk(x =1, 0o ,p) and
multiplied by weights Wm/k(éx) (Wk being the relevant Gauss weight).

For the spanwise part of the integration in (8) a variable ¢, such that
¢ = (~1,1) corresponds to 1 = (n1,n2), is defined; q points ¢Y(Y =1, eee 5G)
in (~1,1) are chosen to be the q zeros of the qth degree Chebyshev polynomial.
Interpolation polynomials pY(¢) (¥ =1, eee ,q) of degree (q - 1) are defined
so that

(»

p(¢,) = &, - (13)

Then a suitable integrafion formula for any function U(n) is

gt , ',
—iﬂm-(n_n')z - e () e WG [ (14)
1, (E',n') -1 :
c
) daé
(¢ - )7

N =1

where 2 ﬁY = (nz - n1)¢Y +m, + My and P is the (q x q) matrix of coefficients
of the polynomials p1(¢), ves ,pq(¢). The integrals on the right of (14) are
easy to evaluate exactly.

Carrying out the chordwise and spanwise integrations of (8) gives the

equation

[{D]

@

. L
~8ns W(Er’ns) = ziJ Z{: Paﬁ Caﬁ(ar’ns) (15)
a=1 fB=1

for the downwash at any point (Er,ns). Here
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o Eony)
_ L i Mg a1+ (B pongony, QLG
G (nz(a >My ) ~n, (E_sm_)) / H, k(%)
vl et
p, (¢$)ag
2 X K(xrs- rs, Ay’ ys"yrs,'{ ], (¢~ )2
-1 rs
L(E:n)(n<g’n{)( ) l l 2
4§ LT 5. 1-1") log |n-n_|an -
o) | T T G ), @) ;ZJ'J( "es1y)”
Ly (Epmy)
|
p(e)ap
x (n-n rS,Y log|n-n,; .| j‘ ? o) (16)
. /
and

a)

~ 2 _ _
Ly(En,) = —2—s [—;— L (W + 1)vo(n )b () + (i - 1) n!(E,)
Ha{c(ns)} ‘ ) a'r ' | [« D of

¢ 322 [ exp [ 1 vc(ns)(ér-a)lha(€>da} :

eeee (17)

The immediate substitution of (10) and (41) in (8), and the approximate evaluation
of the chordwise and spanwise integrals is not the only step taken to reach

[T

equation (15). Allowance is made for a logarithmic singularity which arises from
the chordwise integration, and this gives rise to those terms of (16) which
involve Lqﬂﬁr,ns). It will be noted that the right hand side of (16) entails

the evaluation of the function K(X,Y), as well as some of the other gquantities,

12y

at a set of pq integration points, These points are shown for a particular case
with p = 3 and q = 7 in Fig.7.
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Since any problem may be considered as the sum of a symmetric and an
antisymmetric problem, the downwash need only be evaluated at points on the
starboard -half wing. The set of equations which is given by taklng (15) for

all the downwash points may be written as a matrix equatlon )

P (18)

()

when n is odd (n can be even, in which case the only matrices appearing in (18)

G

are C+_ and‘C++). W is a column of #m(n + 1) downwash values, taken in order
from upstream on the centre line to downstream at the extreme starboard station,
P a column of mn P of 's taken in order from upstream at the extreme porﬁ to
downstream at the extreme starboard section, C__ and C__ are m(n - 1) square

matrices, Co—’ 6 and b+é are (m x gm(n - 1)) matrices, and Coo is (m x m).

o+
Write
. - ' \
S (a+iB)” = /Q Loty =0l
L O “
i . H
s (—\ »
\\_\) °I /, -
and . ) .
@+ )~ = ¢ )/ O 1 N\= ok 5 (19)

the unit matrices being (m x m). Then the (j x j) matrices Q of generalised

oy

force coefficients Qij corresponding to deflection shapes Z1(x,y), coe ,Zj(x,y)

are given by

(&

o 5 Q = ZAZ! - vZBZ' + i(ZBZ' + vZAZ') (symmetric) )
32xs = ‘
(20)
1 - TTo - oA 1 = 1 2 - .
Q = ZLgx VZMZ' + 1(ZM§x + vZLg') (antisymmetric) J .

32ﬂ$2
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Here pVZEBQij is the generalised force in mode i due to deflection in mode j;
also
- [ =\ = = ' \
2= 2y, Bo= 0l 2= R\, &=[4
. | : :
L) j 1 * ° [ ]
.—‘ :, 1 .= L ] L[]
\ oz, Vo2, Z 2,
\ 'J / J / \\ \
and the row matrices 21, 21, 21, §1 and so on are defined by
7 1 1
Z1 = (221(E1Jn!2_(n+1))’°'°’ 2Z1(€m’n%_(n+1)), Z1(E.»1:7']_%_(n+3)))'°°) Z1(€m’nn))
=
Z1 - (Z1(g1,‘q‘1§(n+3)),.°.l Z1(§m’nj2_(n+3)))"°’ Z1(€1,nn),°.°’ Z1(€m}nn)) ?
21 = (Z1(E1’n%(n+1))’.'°’ Z1(€m)n%(n+1)):°°': Z1(51:nn):-°‘) 21(€m:nn))
21 = (Z1(€1’7%(n+3))}"" Z‘I(Em’mg(r&}))’”" Z1(€1’nn))"°’ Z1(Em’nn))
00000(21)
Z and Z2_ are similarly defined in terms of row matrices Z etc., 2 being
=X Ve 37 - =1,x =-1,x
given by replacing Z1 by 7;} in the equation defining 21 on the right of (21).

In assembling the matrix C of (18) from terms defined in (16) a ocertain
simplification is possible, The terms involving 638 in (16) being omitted for
the moment, the elements of the row of the matrix C which correspond to the

downwash point (Er,ns) are the terms of the matrix

N R G! (22)
rs rs rs
taken row by row., H and G are matrices whose rows consist of the coefficients
in the interpolation functions ha(g)/Ha (e =1, eve, m) and gp(n)/(}‘3

(B =1, ese, n) respectively., We also define
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M = _ 1 - : W /G, vee W A(G)) KD
8 nz(gr:"']s) - m(érms) <1 ! P ép) 1

oy~

’

| (M), e () S
( i,

\
n-1
Re = L rs,1 **° s,
4 n=-1
nrssq " 8,4

vese(23)

where st (1 =1, ¢eeo ,m) is the (p x'q) metrix in which the element in the AR

row and Yth column is

) (5. )"

K(x,g = xly’ Vg = yrs,Y) £(g TS, NY

rs rs,\y

Nrs is the (q x q) diagonal matrix whose Yth diagonal element is

The matrix C is formed by combining all the terms from matrices such as
(22), the' terms arising from the logarithmic correction (i.e. those involving

853 in (16) being added separately.

This procedure - the calculation and formation of the matrices (22) and
their combining to form the matrix G of (18) - is in fact the basis of the whole

computation.

¢

Gf

(L)

()]
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Appendix C

LOGICAL STRUCTURE OF THE PROGRAMMES
(see section 4.1)

Cet Logical structure of programmes 1784, 1794, 1B0A, 181A, 182A and 258A

_—_——’_
Read planform data and punch s, (root chord)/c.
Read armd punch mumber of variations of Mach number, m armd n,

Read and punch Mach mumber, m and n,
Read data associated with these,

1

Work out and punch co-ordinates of the m[%(n+1)] 1ift and
downwash points; find N and N for each dowrwash point and

the n values of the sectional chord,
Read and punch number of variations of p and q.

1

Y

Read ard punch p, q and read associated data,
Read and punch mmber of variations of v,

1

Y

prle)
3,
/ ($-9.)°

(1 + (&g )] and vy -y, end find
mpq[#(n+1)] velues of x_ -

Viork out mq[#(n+1)] values of Mgy 2
i

*rg sAY °

1

Read ard punch y, For each downwash point fand pq values
of K<xrs' Xog ap? Tg =¥ ) and form the matrix
t4

T8,y
2 L]
M N s/(16“5 )

t

For each dowrwash point form HM N R G'/(161(52) and

rs
combine these matrices to form E/(‘lémaz).

Y

Form correction terms, and add to the appropriate elements

of T/(16n82).

r

Form the matrices CJ/(16—nsz), 5&/(161:82) and invert to give

161(52(A+1B),16x52(1r&iM). Punch out 160(52A, -16nszB, 16xs°L and

-16xs°u.
Y

Have all values of v been dealt with?

-t

No \ Yes

Have all variations of p and q been dealt with?

No Y Yes

Have all variations of Mach number, m and n been dealt with?

//4"/70’—" v Yes

J—
%
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Logical structure of programme RAE 183A

[

Read indicator n, to show whether symmetric modes, anti-
symmetric modes, or both are wanted,
Read coefficients of the polynomial mode shapes,

Y

Read (% span)/(mean chord), (root chord)/(mean chord),
Read number of variations of Mach mmber, m and n,

Y

Read and punch Mach number, m, n,
Read co-ordinates of 1ift and dowrmash points,

A 4

Z
Form matrices {=

[N
I

s> Sy
Z, Z

» Sx =

N

for symmetric modes
} as

for antisymmetric modes

appropriate,
Read mmber of variations of p, q.

\

Y

Read and punch p ard q,
Read mumber of variations of v.

Y

Read and print y. Read 16nszA,-167ts2_B, 167:521'.., ~16rnszM.
Work out matrices E, F (symmetric) and G, H (antisymmetric)
of generalised forces, as appropriate, and punch,

/

Have a1l values of y been dealt with?

| ——=—  No v

- Yo Y Yes

Have all values of p, q been dealt with?

Yes

Have all variations of Mach number, m and n been dealt with?

-l
<

No 4 Yes

A

(/[N

(a

G

wm



9

R

(U}

9))

V)

D.1

D.2
De3

Dol

Appendix D

LIFT AND DOWNWASH POINTS, INTERPOLATION FUNCTIONS
AND INTEGRATION CONSTANTS

(see section 4.2)

INDEX

Chordwise interpolation functions and 1ift and downwash points
D.1.1 Subsonic leading and trailing edges

D.1.2 Subsonic leading edge, supersonic trailing edge

D.1.3 Supersonic leading edge, supersonic trailing edge
D.1.4 Supersonic leading edge, subsonic trailing edge
Spanwise interpolation functicns and 1ift and downwash points

Chordwise integration formulae

D.3.1 k(z) = V(1-8)/ ¥(1+%)
D.3.2 k(%) = 1/v (1-22)
D.3.3 k(%) =1/V(1-2)

Spanwise integration points and interpolation functions

. 37
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De1 Chordwise interpolation functions and 1lift and downwash points

Por the various leading and trailing edge conditions, the chordwise 1ift
points 51, oo ,gm are the zeros of the polynomials orthogonal over (~1,1) to
the function f(£) defined in equation (5) of Appendix B; the downwash points
are derived from the polynomials orthogonal to f(-E) and so are merely the
points =& , «.. s=Eye The polynomials ha(g) such that

ha(EY) = 8@Y
can then be computed; so &also can e
1
= 4
H = / h (E)EE
-1

and hence the coefficients of the matrix H of Appendix B are given.

D.1.1 Subsonic leading and trailing edges

(4]

The m " degree polynomial orthogonsl to V(1-E)/ V(1+E) over (-1,1) is

1

(

£l

sin [(m + 3)cos”

V(1 -§&)

and the zeros of this, which are the 1if't points, are

on(m - o +.1) -~ (a

= 1, cee ’m) .

Ea = cos 2m + 1

Alsc (see, e.g., Refo1)

)

i 2
ch, T o2m o+ 1 \]<1-E’a,> *

For m = 2, +..,10 the Ea and matrix H are given belew.

7D
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m=2
g, = -0.809017 = [0.24,3167  -0.786905
&, = 0.309017 1.666692 2.060145
me<=
51 = -0,900969 = [=0.157232 =0.45L414 1.133290
£, = =0.222521 1.783769  -0.881109  -3.175408
E3 = 0.623490 0.919942 5.155242 4.588597
m= .
Eq = <0.939693 = [-0.117643  0.595763  0.777713  -1.768766
E, = =-0,500000 0.636620 -3.819719 0 5.092958
me=
51 = -0-9591"93 52 = "00652;-861 63 = "001)4-2315
g, = 0.415415 £ = 0.84125)
H = / 0,094,425 0.468140  =1,621007  =1.332168 2.899213
-0.4038L4 -1.806376 7.604538 1.310550 -8.462765
2.929,01 ~3,007541  -14.019808 L.771775 13.340713
1.289214 10.838716 10.62073% -15.688269 -17.137876
-0,726098 -5.219700 2.508502 26.216988 19.546631
m=6
51 - “Oa 9709142 €2 = ‘-O- 74851 1 E;} = "Oo 3510-605
€1+ = 0.120537 55 = 0.568065 & = 0,885,456
H= /0.079033 -0.555593 =-1.324561  3.893245 2312845 -4.911107
~0,301597 2.212510 L.282441 -15.372381 =3.590459  14.41,7903
1.019843 -B8.995055 0.890186  30.124607 ~3.365175 -23.145040
3.953293 9.077668 -19.568599 =35.840237 18.924552  30.497072
-0.992314 4.207053  31.221484 23.,207077 =38.532277 -36.076724
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n=7
g = -0.978148 &, = -0.809017 &5 = -0.5 g, = -0.104528 &5 = 0509017 ~ Ec.=0.669131 £, = 0.91355
— M_ -
H = ~0.068032 =0.4747N '2.118063 3,272 ~-8.792878 "=4., 072740 8.5177L6
-0.636620 -3.819719 22,918312 5.092958 -61.115498 0 LO. 743665
4.075271 -6,385021 -36.722455 25.293710 ' 84.,0424.85 ~21.563349 -54.525668
1,666692 18.727067 20.601449 - -66.667689 -82.405796 53.334151 65.92L4636
-0.869159 -8.252213 8.527085 82.276276 '53,427219 -87.032868 =74 442383
,_ 0.681639 6.199258 -9.573L01 -65.010503. =16.63170 112.66895 79.706637
m =8
g, = -0.982973  E, = -0.850217 = -0.602635 & = -0.273663 &5 = 0.092268 Eg = 05738 &, = 0.739009 &g u_o.mumﬂm
H = | -0.059757 0.538851 1.842108 -6 .65L60l L.ﬂumﬁ 19.17645. 7.262664 -15.03740
0.204912 -1,880303 -5.98L90) '23.432185 21.618523 -61.. 770068 -15,619731 600132
~0.470875 4..548365 11.287551 -56.400372 ~19.420442 122.63398 7.455798 ~12.644057
1.40190L4 -16.337965 3.624898 " 98.906432 -24.,960055 -177.95820 22,229501 38.214175
5.098906 14 470449 ~17.126230 -102.83932 109.16937 T 204.18778 -71.332640 -120.43973
-1.214311 6.990220 " 64..251,785 4,7 .008703 -185.97213 -184.07489 131.04515 138.56385
0.803279 ~5.33926L ~39.35605L "11.007130 207.68139 126.79735 -188.29138 -151.96935
-0.671099 %.649085 31.829680 -19,553113 -182.03262 -66.364252 229.4,8166 160.19973 |
ms= , ‘ i
gy = -0.986361. =-=0.87947L & = -0.677282 g, = -0.401695 & = -03082579 Ec = 0.245L85 g = 0.5k6948 &g = 0.789141 g = 0.945817
H = [ 0.053299 0.478950 -2.617516 -5 .87406. 18.746946 16.810482 -40.920690 -~13.,091236 26.,916689
-0.177698 -1.574932 8.898695 18.313511 -63.470833 =147 ..244098 133.32740 30.363907 -80,015830
0.377579 3.218297 ~19.85L943 -31.096987 136.53336 52142795 =246 ,14372 -23,21189% 130.93235
-0,866821 ~6.510304 50.879902 12,028,656 -237.98127 9.938393 363.59L67 -17.525482 -178.27738
5221292 -11.014657 ~75.468952 78.489565 302.63544 -156.07579 -443.12859 92.149563 220.759%7
2.046485 28.801335 35.464569 -182,97058 -254.18525 339.79912 467 .36689 -191.75364 -257.21981
-1.023663 -12,108217 "18.808727 198.17453 116.64878 -474.62921 ~409.17647 umo 12222 286.66388
0.76301L 8.597042 ~19.626112 -146.95301 -3.095485 508.82343 302.95111 -397.42719 *=308.28850
| =0.663910 ~7.341040 18.794800 126.09703 -26,017590 . =473.65531 -203.35796 46183576 321.50382_|
m = 10
g, = -0.988831 &, = -0.900969 & = -0.733052 § =-05 &= -0.222521 Eg = 0.0M4730 &, = 0.365341 &g = 0.623490 &g = 0.826239 &, = 0.955573
H = 0.048112 -0.529776 ~2.350962 10,075043 16.753492 49 . 274019 ~36.386187 36063908 23,814,106 48716458 |
-0.157232 1.746835 7.495085 ~33.476051 -50.894359 162 ..14844 101.78872 -2]73.98262 -58.164982 145.06109
0.317281 -3.605630 ~14.11819% " 70.024410 "82.152777 -325,28226 -12)..83025 5.18401 55.50u874 ~-238.16532
-0.636620 7.639437 22.918312 -147.69579 ~61.115500 550.03948 40.743669 -733.38598 ~0.000002 325.94932
1.783769 -25.853875 9.160121 21,,.,23783 -98.684222 ~755.20989 197.36844 9.61370 -112,78197 =406 145216
6.254811 21.116765 -92.,114870 -233,464),2 '372.99236 794 .68041; ' =556.69301 - -105k.6953 274 64945 477.87552
-1.439751 10.456665 115.00669 8L.4:32623 -575.15399 -606.78112 919.17075 1051.6208 ~466 .09339 =538.6239
0.919942 =7.7123950 -67.584787 38.79317L 577.38706 307.85578 -115L. 7741 -910.09308 . 659.87093 587.34038
-0,736272 6.4,71608 52,008938 ~51..856916 -478.70592 -8L..601,781 1217.0021 18.99975 ... -826.16271 ~622 ,93663
a 0.658777 -5.898362 ~45.699203 57.580408 429.47249 6.427876 ~1173.8013 ° -553,768710 938.28761 " 6uk.61Th3 |
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Appendix D ' L3

D.1.2 Subsonic leading edge, supersonic trailing edge

Here are required the polynomials orthogonal to 1/v (1+4E) over (-1,1).
Mineur™ (page 286) shows that the polynomials orthogonal to 1/vx over (0,1) are
the polynomials P2m(V%), where PZm(u) is the Legendre polynomial of degree 2m
over the interval (=1,1) in u. Changing the interval (0,1) in % to the interval

(-1,1) in E, it follows that the 1ift points required here are just the points
-1 (Q.=1, sesecey m)

where u, are the positive zeros of P2m(u). Mineur also shows that the

Gauss weights for the weight function 1/vx inthe intervel (0,1) are related
to the weights Aa and zeros U, for a 2m-point Gauss-Legendre formula in the
interval (-1,1). In our notation, Mineur's result is

(0:='1, .o/ol’ m) .

The ha(E) have to be evaluated numerically. The values of u, and Aa are
given by Cawlik”.

The values of Ea and Hfor m = 2, ..., 10 are appended.

m= 2

gy = -0,768826 H = (o.u18413 -0.866080 |

52 = 0.483112 1,248338 1.623695

ms=

g, = -0.886122 H = (-0.113494,  -0.750005 1,222712

E, = -0.12560L 1,951982 ~0.438550 -2.980841

53 = 0,738999 0.326935 2.971845 2.937L01

m = 4

Eq = -0.932704 H = [-0.191550 0.510096 1.253233 ~1.881627

Ep = -0.447631 1,064,075  ~4.069892 -0.907808 5.016493

E3z = 0.269355 2.261946 L.799258 -3.439512 =6 416744

g, = 0.844313 -0,595113 0.241878 5.879177 5.29188L

me=

Eq = -0.955673 Eo = -0.624337 53 = -0,076805

E, = 0.496669 E; = 0.896988

H = 0.065238 0.749802 -1.477083 ~2.114775 3.053761
-0.277555 -3.035913 7.808881 3,065611 -8.487790
3.192554 -1.532975 -13.929905 2.,238163 12.010365
0,520348 7.572723 9.723486 -~9.618407 -12.658678
-0,219706 -3,000001 -1.012335 11.198712 9.652849



= 0.185500

= [ 0.126804
~0.478864
1.678016
3.266546
0.459860

0.968633

¥

&5
-0.437377
1.813861
-9-&-6614-52
9. 714646
0.772826

i

~0.729400
0.634856 .

-2.,097758

7.140408
~3.209597

-13.301344

19.6767L8
-9.908939

g
3
%
3.656221
-15.41828Y
30.074085
=33.308347
20.201120
"5- 28%75

' -0.310115
0.926923

34634710
"6 0825-251{-2
1.071460
11.308804
21.168914
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~5.135486 \

14.603836
=21, 757441
25.335055
-24.372211
17.822070

«

(e,

]

[}

W
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>vvornwk D

ms=

-0.046119
0.163100
«0.425213
Lo 433042
0.703883
=0.327353
0.178736

m=8

NA = «0.981945

~0.095172
.0.323200
=0.753473
2.284512
114268341
-1.211769
0.681379
| 0391477

e

nms=

g, = -0.98%26" ", = -0.873107

0.035742
~0.118150
0.24759%,
~0.568286
5.673596
0.884521
-0.420707
0.261279
~0.155142

m = 10

mA = uo.mmmmmq.

i

0.076277
«0.24,7416
0.492677
~0.977551
2.8880%
5.268900
lA OPWSPW
0.867648
-0.572379
ru.o.urummm

-0.753253

2.626035
lm . Pﬂumu
~3.28362
14..127003
-6.133875

3.291278

E, = =0.841399

0.405661
|.A QPUNQO&..
3.643077
-17.072488
16.36695%6
1.,500878
lé . WNY\— mN;_
0.861262

0.756443
-2.485062
5.116614
-11.081393
-5.690616
22.647637
-10.039483
6.110598
-3.601344

mm = =-0.896227

-0.387761
1.283483
-2.689682
m.ONmu@O
-~26.890368
2L. 755545
2.4,26858
-2.226832
1.663859
lA Aog‘— W.N

1.781779
-6.871305
23.118831
22.911318
-1,299825
-0.435308

mu = =0.580441

2.899858
-m . ngmﬂ
19.256542
-7.325229

-32.730760
45.192878
~25.4.30037
14.. 526889

mu = =0.660922

-2.097281

7.242062
50.827222
L 6822
-1.263770
-2.333883

2.045590.

m = lO.-Nmomg

3

-3.689815
11.809096
~22.634936
39.742030
~13,68068,
-61,..869872
86.010023
=49.786664
"32.570686
-19.69,338

& = co.mqmmrm;/meMau:|O¢ummuum,:1 mulnatOotmmoumlzi.m# = ~0.055257

5.148072
-16.029152
4. 994939
12.196907
=U4 . 2L41,32
47.694L660
-27.4821%

m# = =0.236458

-5.822943
21.093623
~55.292225
99.864283
-102.98271
54.094:561
-11.872175
 3.362216

mr = =0.373313

I-n\uo\_ W\_mwm
29.123424
~-52.761335
4,3.823593
38. 500416
=127.04:302
131.10773
-85.567933
51.249991

m = =0 cPﬁmo.Wo

L

8.410695
I-Mm . thﬂgo
61.61748),
~-143.01605
248.7653
~245.84142
118.95293
-21.738531
2.8,2511
1,069296

mw = o%ummwp

-8.399566
31192143
~60.812936
79.974190
~72.312189
43.672971
-16.94,1780

Eg = 0,141272

~11.822066
35.215875
-41.553525
3.78885%6
67.191208
-117.5422l
111.96108
amm.véoqmé

mw “
16.831549
~-58.167549
131.82438
=-236.73049
298.95652
-249.50421,
© 132.56606
=L48.57, 742
20451979

= JO.ObUAum

' Eg =0.723983

-6.354593
13,718121
~8.227852
-9.827310
32,024,862
40,039999

18. 514690
lmu . mbvw.wmm
121.49332
185.20920

-153,28221
96.36723L

mm = 0.291883

26.121792
=76 .177348
99.791299
~52, 707546
-73.013367
214, 24014
-285.10278
257.06425
|;_mmawgo

mm‘u ﬂo.AmOQNA\ mm = 0.114023

26.092363
~-80.609766
138.00342

=142, 28541
6.846002
23414820
-387.29338
360.88461
~256. 34733
158.81737
|

~45.040861
150.40296
-311.88095
540.71154
-741.60349
765.9952)
-583.12374
© 331,1982L
~158.73599
78.333012

mq = 0.,945512

8.857946
-25.542265
39.221629
-48.172538
51.012606
=46 607432
wu.murmum|

E

NN = O. N@E}

11.271281
I-Nm ab-uoug
22.86 7441
1.944669
=40,120304
76.179335
-92,841439
75.962755

mu = 0.593478
-39.790988
13117451

~-243.03839
352.46573

~-416.77602
405,14559

-323,98268
213.62669

-114.4,906

mﬂ = 0.408235

=56.326550
162.71538
~225.43263
174.82554

27.082252
-321.0204);
570.22508
-660.59239
579.76240
~383.92277

L
mm ﬂ 0.957828

-15.570633
5.309083
-}70. 93390,
90.003386
'A 8.&.\%
100.67320
-B9.055813
62.474872 |

mm = 0.827199

20.233377
50.096 962
52,054,020
19.430759
41.294895
-111.75431
67.44592
- mb-. 3.@ OW
144.63135

—h

mm - O.mgwpu

184..109326
- mo Smmw
7.9
~743.22568
84.77330
=1 PN.UWPWO
4.98575
£85.91802
4 .Nn—.mmOﬂm
S071.14486

NW = o.wmmgw

27. 77652
-81.331016
129.01613

-167.26087
192.96248

I-NOW . Wg
196.85134

-170.39927
118.20673 |

gg = 0.858484

36.686411
~94.339495
109.61714
-68.864333
-24.023547
147.98325

lmmmomgma
352.91616
~364.28515

. 276,344,885 -

£10

45

l%ox_wmgmg
14744763
-236.10275

. 310.73220
=366 . 55444
399.48734
-406.11254
383.29058
-326.74:18

= 0.972609

22),.84992
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D.1.3 Supersonic leading edge, supersonic trailing edge

The polyncmials orthogonal to £(E) =1 over (-1,1) are the Legendre
pclynomials; the zeros and weights in the corresponding Gauss feormulae are given
by Gawlik3. The Ha are merely one half of these Gauss weights; the ha(ﬁ) are

found numerically. ga and H are given below for m = 2, «e ,10,

m= 2
E4 = =0.577350 H = ( 1 -1.732051
€2 = 0.577350 1 1.732051
m =
Eq = =0.774597 H = o} =2,323790 3.000000
Eo = 0.000000 2.250000 0 -34.750000
g3 = 0.774597 0 2.323790 3.000000
m=4
Ey = =0.861136 H =[-0.53083L 0.61643L L.592502  ~5.333073
Ep = =0.339981 1.81654,8  =5.343087  ~2.449645 7205240
Es = 0.339981 1.,816548 54343087 =2.4496L5 «7.205240
g, = 0.861136 -0,530834  -=0.616434 4., 592502 5,333073
me=
Eh = 0.538469 55 = 0.906180
H = 0 2.542288 -2.805500 -8.768046 9.675834
0 -5.997920 11.13883.. 7.304487  ~13.564723
3.515625 0 «16,4,06250 0 14..765625
0 5.997920 11.138834.  =7.304187 134564723
m=6
Eq = =0.932470 Eo = -0.661209 Ez = -0,23861
gh = 0.238619 g5 = 0.664209 52 = o.9§247g
H=/0.413644 «0,443601 -8.210802 8.805437 16.616449 -17.819834
-0.83,822 1.262568  15.621774 =23.626062 ~-16.862181 23.502039
2.629339 =11,018974 =9.038039  37.876413 6.916705 -28.986373
2.629539 11 001897# -90038039 -37087614-13 6 .916705 28.986373
~0.834822 -1.262568 15.621774 23.626062 -16.862181 =25,502029
0.41364), 0.443601 -B8.210802 -8,805437 16.6164L9  17.819831
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jree-

0
0
0

4, 785156
0

0
0

m‘_n - 0,960290

[~ ~0,353127

0.622137
-1,117701
34441084
36444081
-1.117704
0.622137

. -0.353127

m=9

ma. = -0,968160
™ 0

0
0

o -
6.056214

loReNeoNo

m= 10

g, = =0.973%07
0.314093

-04522071
04803026
l\_ . -wmgb-u
4.252382
4,252382..
-14 394643
0,803026
~0.522071

| 0.314093

&y = =0.741531

~24852863
5292500
=11.274212
0o .
11.274212
=54 292401
2,852863.

mN = IOQ Nwmﬁmﬂ

04367729
-0,780925
2,126798
~1 mo NWW_A mm
184759182
~-2,126798
04780925
~0,367729

3156506
=5.373993
84778294
~18,167273

. 0]
18,167273
-8.77829)

56373993
~3.1 WmWOm

mm = .IOO@@B@W

~0,322508
0.603506
la o;_ m‘— Wk-m
34217946
28.563568
=34217946
1181948
~0,603506
0.322508

g

&5 = =0.L05845

3.005836
~7.137129
27779591

43066406
27.7795%1
~74137129

3.005836

mu = 04525532

124329616
-21,416685
364190302
-21.,612719
~21.612749
364190302
~21.416685
12,329616

3
6427982
~1l 4311547
56028006
-88,.8241,69
56028006
~144311547
6.427982
lu . NmOUA L

£z = =0.679410

3
~16.943959
28,016256
424426789
694280387
~42,01718
“1,2,017418
69,280387
~2.426789
28.016256
-16.943959

= =0,613371

&), = 0 mm = 0.4058L5
22,508756 -23.715697
-38,006778 514254456
33,019166 -81., 359027
0 94, 746094
38,006777 51 4254456
~224 508756 umu.ﬂwmmmw
M .
!
m~+ = =0,133435 .mm"qo.ému#um
-12,839474 -56 . 548620
26.88287L 894438889
-68,86L07 -904268052
117.82245 394021621
117822445 39.021621
68.864L073 ~90, 268052
~26.882875 89.438889
1 Nowumr.ﬂ.r IWmoWb.mmNO
m# = 0,324,253 mm =0
-42,927889 444339653
71.,129880 -85,080423
-105.41571 171.86277
93,662501 ~288.85598
o 3L6.41543
~93.662542 -288,85598
10541571 171.86277
-71.129880 ~85,080423
42,927889 44433953
m#.u ~0,433395 mu¢ﬂo.érmm~r
174397931 134.85353
~-32,386363 211441566
62,446558 290.86298
-159.85492 ~295.93657.
282.23412 131.18136
-282,23442 131,18136
159,854,492 -295,93657
~62,446558 290.86298 -
32,386362 ~211 441566
~17¢397931

- BR - =

-

131485353
j

mm = Ooﬂk.\_ m.w;

=31.49933L

35.669829

-22, 761254
0

22,76125L
~35.669829
51499334

&g = 0525532

58,887033
-112,26642

17476496
=-212,72765

212,72765
~171, 76496

112426641

-58,887033

mm = OOWNNTNWW

1304 75431
~205,62536
221,924,76
~148.33398
0]
14,8,33398
-221.92L76
205,62536
~134., 75431

~135.38623
2Ly 59326
~28.11141
68248327}
~881,15,96
881415496
~682.83275
4284117141
~2Ulia39326
135438623

7

7

g

«48.102939
56,083591
~58465234d;

56.,083592

334188358

59.870849
-72,597138
564755142
-21,288177
-21,288177
564755142
-72.597138
594870849

= 0.613371

7
245495420
~-361481138
457.46310
~49,87918
457.46310
~361.81138
24,5.95420
-139.1859

mﬂ = 0,433395

461, 04652
418,79692
418479692
-518,20518
46404652
~310413922

= 0,949108
32,188358 |

= 0,796667

&g = 04960290

58

!

|

g8

116.05320
~116,05320

491,126137

624 346641 ]
9M.126136
107.99551

10799551

6243661k |

= 0,836034

111416830
144493938
127.4.3878
73. 706075
o]
luxu..NOmO.Nm
127.43878
1),,93938
11416830

318444865
536443067
762472870
19664 31605
088,9949

088,9949

966431605
762, 72870
536643067
1318644865

ol

1
|
|
|
)
¢
i
i
'
:

E, = 0.968160

9
117.92294.
-173,36602
207.767T1
~227, 31009
233,69295
~227,31009 °
207.76771
-173.36602
117.9229%
_—

= 0.865063

9
248.,41911
~286443319
271.76355
69,098721
69,098721
271.76355
=286,4-3319
218,41911

3

g

43

10.=
~224,27112 |
331411237
~399.99959
L34 14404
6l 414125
46l 1412
~hi 3o 14404
399.,99959
~331.11238
2227112

= 0,973907







f::l'}.

Appendix D 51

De1.4 Supersonic leading edge, subsonic trailing edge

This case, in which f(E) = V(1-E), is not dealt with in the programmes
which are the subject of this Report, and the ha(E) etc. have not been
calculated by the writer. However, it is worth pointing out that the 1lift
points are again derived from the Legendre zeros over (41,1). Mineurh
(page 290) gives a result, which gives the positions of the 1ift points needed

here as
2
E, = 1 - 2u (o = 1, oo ,m)

where the u_ are the positive zeros of P2m+1(u). The 1ift points thus follow

from the zeros of the Legendre polynomials of odd degree.

The 1ift points for m = 2, ces 510 are as follows:

m = 2

g, = -0. 642324 g, = 0.420102

m=3

g, = -0.801612 £, = =0,099737 g = 0. 670579

El_i.&

§ = -0. 874668 52 = =0, 397896 55 = 0,247551 Eh = 0.789719
n=5

51 = =-0,913863 52 = =0,573760 gs = =0,06624; 54 = 0461078
55 = 0.854693

m=6

E, = -0, 937232 E; = ~0. 683974 &B = =0, 285055 Eu = 0174775
55 = 0,597709 Eg = 0.893778

m =

BIRER O BINER pitpm e
m =8

SIOTi G oumsst G- ogen oo onsser
m =

gy = ~0.969743 E> = ~0.843999 E3 = =0.631381 g, = ~0.353719
Eg = ~0.,03958L Eg = 0.278691 g7 = 0.568348 Eg = 0.799574
gy = 0. 948570
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m=10 ' 3 _

Eq = -0,975087 Ep = =0,871056 Ez = -0.693166 E), = ~0.456458
g; = ~0.181000 Eg = 0,109852 5? = 0.391433 Eg = 0.639868
Eg = 0.83,087 Eo= 0,95762L ‘

D.2 Spanwise interpolatidn fUncéions and 1ift and downwash points

Spanwise positions of both 1lift and downwash points are given by the zeros

of the polynomials orthogonal to V(1-n2) over (-1,1). These are the polynomials

(e}

(see, for example, Hildebrand” page 308)

(8

sin [(n + ‘I)cos"1 n]
V(1 - °)

which were originally considered in connection with 1ifting surface theory by

Multhoppé. This polynomial has zeros

Mg = °08 nggn-:@1+ O (B

1, L] ,n) °

Also (see, for example,_Mu;thopps) _

G

G, = == 1 -2 .
g = 2An+ 1) Mg

For n=2, ... ,7 the n, and the matrix G of coefficients in the interpolation
functions (see following equation (22) of Appendix B) are given below. These
have been found by the writer for n= 2, ... ,21.

ns=2

m = -0.5 G = '< 1.273240 -2.546479)

Ny = 0.5 1.273240 2. 546479

n = ‘ ’ &
ny = =0,707407 G = 0 -3,601265 5,092958.

np= O ( 2. 546479 0 —5.092958) )
ng = 0.707107 0 3, 601265 5,092958 ‘
n =4

n, = -0.809017 G = ( -0,786905 0. 972668 8. 24,0579 -10,185916 “

Ny = ~0. 309017 2,060145 -6.666769 '=3,147621 10,185916

ng = 0.309017 2,060145 6. 666769 ~3,147624 -10.185916

m, = 0.809017 -0. 786905 -0.972669 8. 24,0580 10,185917
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Appendix D 53
n =
ny = -0, 866025 N, = =0.5 ng = 0 n, = 05 ng = 0.866025
¢ = / o 4o 110631 ~5.092958 17, 6L252) 20, 374831
0 ~7.639437 15. 278874 10,185916 ~20. 371833
"t 3,819749 o . ~20. 371833 0 20. 371833
0 7.6394.37 15, 278874 -10,185916 ~20.371833
0 L. 410632 -5,092959 17.642525 20, 371834
n==~6
n = -0, 900969 Mo = =0.623490 n3 = =0.222521 n, = 0, 222521
G = ‘
7 0. 706595 -0.784261  -16.087807 17.856118 36.708772 =40, 743664
{-1.,021059 1.637651 21.878823  -35,090909  =25.403260 40, 743665
2, 860943 ~-12,856962 -10, 88297L 48,912135 9,066318 =40, 743665
2,860943 12.856962 -10. 883974 -48.912136 9,066318 40, 743665
-1,021059 -1,63765% 21,878823 35, 090907 =25,403260 40, 743664
0. 706595 0. 784261 -16.087809 ~-17.856121 36,708777 40, 743664
n = Z
4 = =0.923880 np = =0.707107 n3 = -0. 382683 n, = 0
5 = 0. 382683 ng = 0.707107 N = 0. 923880 ,
G =
P -54512579 5.966772 1,8.667L02 “52.677217 «75.28L486 81,4873
/ ) 70202531 -10,185917  =57.62026 81,487334 57.620245 -81.487333
0 -13,3085L1 34776895 4,2.209007  ~110.29745 «31,183851 81.487331
5.092958 =0,000001 =50,929582 0,000001 122.23100 «0,00000% =81.487331
K\ o 13.308541 34776892 ~42,209007  =110,29745 31.183851 81.487328
0 =7.202530 ~10.185916 57.620245 81.487331 “57.620246  =81.487332
i} 5.512578 5.966772 -1,8,667396 524677209 75.28LL77 81.487331

D.3

Chordwise integration formulae

The function k(Z) of (12) tekes the values

-

)

k(g) = %

1

e

DR

if ¢
A

U

if &

au

ks
[iAS
uu

-1
+1

-1

+1

-1
+1

at a
at a

at a
at a Mach

st a

at a Mach

line

line.

subsonic leading edge
subgonic trailing edge

subsonic leading edge

supersonic leading edge
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The case k(Z) = V(1-Z), which occurs when % = -1 at a supersonic leading
edge and £ = +1 at a subsonic trailing edge is not considered here, since the
c"or'res;sonding leading and trailing edge conditions are not dealt with by the
programmes described in this Report. ‘

The Gauss zeros Eh and the quantltles W /k(%) for the various va.lues of
k(%) ars as follows.

D300 (X)) = V{1-2)/ V(1+2) | - -

The zeros here are the same as the llft p01nts in D.1.,1. The integration

points are

(&

2 -
Z’h = (eS8 ﬂ(gp +)‘1+1) (?\

n

1, sse ,p)
and

W

) k(z,\) = 2p2-7|-(1\/< -;i) ,

&y

being twice the value of the corresponding H in Ds1.1 above. Values of w, are

given below for p =1, ... ,10. The values of c‘;)\ have already been g:Lven above s
in Du1.1.(where they appear as &'s) and so are omltted here, except for p = 1,
p =1 % = ~0.5 - p=2 Wy = 0.738633
we o= 1.813799 . Wo = 1.195133
‘p=23 " v, = 0.389453 =t w, = 0.238775
A wo = 0,875093 W, = 0,604,600
W3 = 0,701770 w3 = 0.687526
: W), = 0. 448750
=5 wy = 0,160925 p=6 - wy = 0.115667 -
Wy = 0.431683 wo = 0.320502
w3 = 0.565385 cw3 = 0.451914
Wy = 0.519581 . Wy = 0. 479798 2
Wg = 0. 308813 . Wi = 0. 397766
wg = 0.224611
p=17 wq = 0.087090 =+ p =8 : wq = 0.067914 N
w2 = 0,246211 . w2 = 0.194569
w3 = 0,362760 w3 = 0.294946
Wy = 0.41658) Wy, = 0.355490
wg = 0.398378 Wg = 0. 368022
wg = 0,311288 wg = 0.330852
wy = 0.170373 wy = 0.248997
wg = 0133515
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EECECEE

U uuouuu oy

=
(e8)

N
L)

D.3.2 k(%) = 1/V (1 - £9)

0. 0544430
0.157393
0. 243299
0. 302814
0. 329564
0. 320575
0. 276846
0.203116
0.107376

|
o
uauuwuwuuwaegenuwuy

w10

The Gauss zeros corresponding to the weight function

are the Chebyshev zeres

and

The values

p=1

“

p=_2

u

oau uu

nnuin

%

2p
w. = wk = X 4 -2
A kZZx; P .
of C% and W, are given below for p =1, ... ,10.
W, =% = 3.141593

-0,707107
0.707107

-0, 866025
0
0.866025

-0.923880
-0, 382683
0. 382683
0.923880

cos (2p - 2\ + 1)%

nun i u

wuuun

1.110721
1.110721

0. 523599
1. 047198
0. 523599

0. 300559
0.725613
0.725613
0, 300559

(7‘-=1:

0. 044593
0.129818
0, 203507
0.259114
0.291698
0.298363
0.278517
0.233923
0.168545
0.088191

K(Z) = 1N (1 - 2°)

eee D)

55
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U uuuunu U uunu u

hunuuwuu il

(LRI LRt S S A B

oo unuuauuuy

~0. 951057

=0. 587785
0

0, 587785
0. 951057

-0. 965926
-0. 707107
-0. 258819
0.258819
0.707107
0. 965926

-0. 974928
-0.781834
C

0. 43388
0.781831
0.974928

~0. 980785
-0, 831470
=0. 555570
-0.195090
0.195090
0. 555570
0. 831470
0.980785

~-0. 984,808
-0, 866025
~0.642788
~0. 342020
S
0. 34,2020
0.642788
0. 866025
0. 984808

o uw uu wiuuu

nununuuu

tunuuuuuu

BN A A { O O 1

0.194161
0. 508320
0.628319
0. 508320
0.1941 61

0.135517
0. 370240
0. 505758
0. 505758
0. 370240
0.135517

0.099867

0.279822
0. 404354
0. 448799
0. 404 35,
0. 279822
0.099867

0.076612
0.218172
0. 326517
0. 385153
0. 385153
0. 326517
0,218172
0,076612

0.060615
0, 174533
0. 267400
0. 328015
0. 34,9066
0. 328015
0. 267400

0. 174533
0. 060615

Appendix D
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p_= 10
;a = -0, 987688 Wy o= 0. 049145
42 = -0,891007 Wo = 0. 142625
43 = -0, 707107 w3 = 0,222144
g, = =0.453991 = 0.279918
§5 = -O.1564}A W5 = 0. 310291
Zg = 0.156434 wg = 0.310291
Z7 = 0.453991 Wo = 0.279918
48 = 0,707107 W8 = 0, 222144
49 = 0.891007 w9 = 0,142625
QOB Oc 987688 W1O = Oo 0}4-91}4-5

D.3.3 k(g) = 1/v(1-2)

The zeros here are the negative of the 1if't points for a singularit&
1/V(1+%), which was dealt with in D.1.2 sbove. So

Z = 1- 2ui . (A = 1, «eu ,p)

Gauss weights and zeros for a singularity 1/vx over (0,1), to which the Y
required here are related, are given in Mineur4 (page 289). Alternatively,

in view of the remarks of D.1.2 sbove, it may be shown that

.
k(z,)

—

W)\—

—
=

Z+A7\u)\ ('}‘:1: cee ’P)‘

where the AK are the weights and uy the positive zeros in a 2p-point Legendre-
Gauss formula (see, e.g. Gawlik3). Values of é% and w, are given below for
p=1, cee ,100

p=1
Z% = 0.333333 w1.= 2, 309,01
p=_2
4 = ~0.483112 Wy = 1.198202
Zp = 0.768826 W, = 0. 886868
=l
Zp = 0.12560k "W,z 0,954156
é = Oo 8861 22 W = Oc“{-6613

3 3

57
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RDSAVANAI G

ERCATRTANATY

RRTATATY

e uuuaun

LA

FACIUCAEMAEA S

[HI B |

g unuuuu nunnau

fuunuwuuan

g uuauuuy

-0.84313
-0. 269355
0. 447631
0. 932704

~0. 896988
-0, 496669
0.076805
0,624,337
0. 955673

-0,926923
~0.185500
0.310115
0. 729400

0. 968633

-0, 945512
~-0.723983
-0, 368524
0.055257
0. 469038
0.796335
0.976648

~0.957828
=0, 78LA4L4,
-0, 498635
-0.141272
0. 236458
0. 5804441
0. 841399
0. 981945

-0, 966403
-0. 827199
-0.593478
-0, 291883
0.04.3138
0.373313
0. 660922
0.873107
0. 985626

0 u u

U uwnau

Wunnaguwuy 0w uuuu

WU uuwnugnuu

mutwnu

0. 388835
0. 708654,

0. 659452
0.266115

0.259727
0.517140
0. 595397
0. 466796
0.175984.

0.185222
0. 386743
0.492979
0.477296
O, 34 35L4,
0,124,806

0.138551
0. 297686
0, 402081
0.432178
0. 382394
0. 261925
0. 093041

0.107459
0. 235212
0. 329489
0. 376581
0. 369727
0. 309906
0, 205687
0. 072001

0.085735
0.190073
0.272871
0. 324510
0.339079
0. 314911
0.-254766
0.165516
0.057356
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p.=_10

4L = -0, 972609 Wy = 0.069972
éQ = -0,858484 Wo = 0.156555
Z’B = =0.,664343 w3 = 0. 228686
éli- = -0, 408235 Wy = 0.279516
Zr = =0.114023 W5 = 0, 304295

= 0.190871 we = 0. 300712
47 = 0,47803%0 W = 0.269102
Zg = O 720688 wg = 0,212,409
é9 = 0.896227 wg = 0.135918
ZJ]O = 0,988287 W40 = 0. 014.6759

D.4  Spanwise intogration points and interpolation functions

- The integration points used to carry out the spanwise integration
(see (14), Appendix B) are the Chebyshev zeros

(29 = 2¢v¢ = 1)x
cos
% = 2q

. (¥ = 1, «oe ,a)

For q = 2, +os ,7 the matrices P of the coefficients in the interpolation
functions are given below., These have been found by the writer for

g =2, ¢eo ,21. The values of ¢Y are given above in D.3.2 (where they appear
as Cx) and are not duplicated.

g=2
P = /0.5 -0,707407
0.5 0.707107
a=23
P = 0 «0, 577350 0. 666667
\ © 0. 577350 0. 666667
g = &
P = [/ -0,103553 0.112085 0. 707107 -0,765367
Oo 603553 - l °> 5771 61 -O. 7071 O? 1 . 8}4-7759
0.603553 1.577161 -0,707107 -1.847759
-0.103553 ~0.112085 0.707107 0. 765367
S! = 2
P = 0 0. 324920 =0, 341641 -0. 940456 0. 98885,
o} -1,376382 2. 341641 1,521690 -2, 588854
1.0 0 =4 O 0 3,2
0 1.376382 20 341641 -1,521690 -2, 58885,
0 -0, 324,920 ~0, 341 641 0. 9L0456 0. 98885L4.



/ 0,044,658
[ =0.166667
{ 0.622008
1 0.622008

-0, 166667
0. 044658

~0. 04623
0., 235702
-2.403256
2.403256
-0, 235702
0.046234

-0.755983
2.666667
-1, 91068
-1.910684
2.666667
-0, 755983

-002282A3
0. 797473
~2,076521
0
2.076521
~0. 797473
0. 228244

0.234113
~1.020007
L. 785894
-8.0

L. 78589L.
~1, 020007
0.234113

1.585814

=5¢075149
5.581812
0
~5.581812
5.075150
-1.585814

0. 782651
-3.771236
74382315
~7.382315
3.771236
-0, 782651

"1-626596

6. 491360
-12, 866476
16.0
-12,86476.

6. 491360
-1.626596

1.333333

-2,666667 - -

1.333333
14333333
~2.666667

14333333

-1.983h69

b 456813

-3, 574087
0

3. 574087

- 456813

1.983469

Appendix D

-1.380368
3. 771236
=5.15160L
5.151604
-3.771236
1. 380368

20034477
-5 700478
8. 237430
-9, 142857
8.237430
=5, 700478
24034477
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K(X,Y)

e(x:Y) or ‘6(5’71)

Z(Em)
L
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m
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n-Qg'U"U*d'd
=S =

SYMBOLS

matrices defined by (19)

local chord is ¢ c(n)

mean chord

matrix of guantities Caﬁ(gr,ns) defined by (18) and
immediate text

defined by (16)

function which t akes into account the chordwise singularity

in 1ift; see (5)
intefpolation function for spanwise 1if't distribution; see
(6) and preceding text

matrix of coefficients of interpolation functions; see
following (22)

defined by (7)

interpolation function for chordwise 1ift; see (6) and
preceding text

matrix of coefficients of interpoletion functions; see
following (22)

defined by (7)

functlon which takes.into account the singularity in the
chordwise integration; see (12)

Kernel function, defined in (9)

reduced lift, defined in such a way that the actual 1lift
is p v vt e(x,y)

approximation to £(&,n); see (10)

matrix defined by (19)

see (17)

number of chordwise 1lift and downwash points

Mach number

matrix defined by (19)

matrix defined by (23)

number of spanwise 1lift and downwash points

diagonal matrix; see text following (23)

number of chordwise integration points

interpolation polynomial satisfying (13)

matrix of coefficients in pY(d))

see (11)

number of points used in spanwise integration
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1(57) oo 25(x,y)

=

1,41 ete,

N

§1,é1 etc.

ULS]

x’gx
2,

o nal
e

12,
1

o

Y

SYMBOLS (CONTD)

matrix of generalised forces, defined by (20)
reduced generalised force coefficients; p v25? Qij is the
generalised force in mode i due to motion in mode J

suffix associated with chordwise variation of downwash point
= V(x° - p&?)

matrix defined by (23) -

reduced semi-span, defined so that semi-span = sc

suffix associated with spanwise variation of downwash point
reduced time

airapeed

reduced downwash, defined in such a way that the actual
downwash is V e+ "% w(x,y)

Gaussian weights associated with a p-point integration
formula for k(%)

Cartesian co~ordinates, referred to ¢ as reference length
value of x at a downwash point (Er,ns)

value of x at an integration point

=z x' - X

value of y at a downwash point (gr,ns)

value of y at an integration point

=y' -y

modal deflection shapes

row matrices whose elements are the modal deflections
evaluated at the 1ift points; see (21)

row matrices whose elements are the modsl deflections
evaluated at the downwash points; see (21)

see following (21)

see following (20)

suffices associéted with chordwise and spanwise variation
of 1ift points respectively

= J(Mz- 1)

suffix associated with spanwise variation of integration

points

‘variable for chardwise integration; see preceding (12)

Gaussian zeros associated with weight function k(Z)

(cy

&

e
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ns,ﬂB

nrsyY
Ty M2

nY(E',n')

Ers,ky
51 (gl)n"n)

g,(E'yn',m)

S

©
e,_;&e-

SYMBOLS (CONTD)

sparnwise co-ordinates of downwash and 1if't points
respectively

= ﬁy(gr’ns)

intersections of & = 51(5',n',n) with leading edge or
tips - see Fig.5

value of m when ¢ = ¢Y

suffix associated with chordwise variation of
integration points

frequency parameter = wc/V

wing co-ordinates; see (4)

chordwise co~ordinate of point at which 1ift is
evaluated

chordw;se co-ordinate of downwash point

value of & when & = ék’ n = nrs,Y

equation of reversed Mach lines through (g',n') is
E=¢g(&n,m

= ninfg, (E',n',m), 13

density

spanwise integration variable; see text preceding (13)
value of ¢ at point (gr,ns)

frequency
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FIG.1 THE SEGMENTED PLANFORM OF PROGRAMMES
I78A, IBOA, IBIA° AND 182A
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FIG.2 PLANFORM WITH SUBSONIC LEADING EDGE,
MIXED TRAILING EDGE
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FIG.3 PLANFORM WITH CURVED SUBSONIC LEADING EDGE,
STRAIGHT SUPERSONIC TRAILING EDGE

MACH
LINE oaf

FIG.4 PLANFORM WITH CURVED MIXED LEADING EDGE,
STRAIGHT SUPERSONIC TRAILING EDGE
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FIG.5 INTEGRATION AREA FOR EQUATION (8) OF APPENDIX B

LIFT POINTS
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FIG.6 LIFT AND DOWNWASH POINTS ON A DELTA WING
WITH SUBSONIC LEADING EDGE, M=2, N =7
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FLOW. Harris, G.Z, Hovember 1964

Programmes for 1lifting surface theory calculations on wings oscillating
In supersonic flow are described. The computation falls into two parts,
one finding the complex influence matrices connecting lift and downwash,
and the other finding the generalised forces when the Influence matrices
are given as data, The numerical method is descrited and values of con-
stants used In the calculations are given,

FLOW. Harris, G,Z. November 1964

Programmes for lifting surface theory calculations on wings oscillating

in supersonic flow are described. The computation falls into two mrts,
one finding the complex influence matrices connscting 1lift and downwash,
and the other finding the generalised forces when the influence matrices
are glven as data., The numerical method is described and values of con=-

" stants used 1in the calculations are given.,
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FLOW, Harris, G.Z. November 196l

Programmes for 1ifting surface theory calculations on wings oscillating
in supersonic flow are described. The computatlion falls into two parts,
one finding the complex Influence matrices connecting lift and downwasgh,
ard the other finding the generalised forces when the influence matrices
are given as data, The numerical method is described and vaives of con-
stants used In the calculations are given,

SQUVI LOVHLSEV FTHVHOVIAA

——









C.P. No. 85I

© Crown Copyright 1966

Published by
HER MAJESTY’S STATIONERY OFFICE

To be purchased from

49 High Holborn, London w.C.1
423 Oxford Street, London w.1
13A Castle Street, Edinburgh 2

109 St. Mary Street, Cardiff
Brazennose Street, Manchester 2

50 Fairfax Street, Bristol 1

35 Smallbrook, Ringway, Birmingham 5

80 Chichester Strect, Belfast 1

or through any bookseller

_ v \ C.P. No. 851
5.0. CODE No. 23-9016-51



